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ABSTRACT

This paper examines the state of the art in multicriteria opti
mization. For this purpose, multicriteria problems are classified
in terms of complexity as finite and small, finite and large, and
infinite. The relative metiLt, of t>pical methods for solving e^ch.
of these classes are discussed and some suggestions for future work
are made.

1. INTRODUCTION

Multicriteria optimization problems are almost always two or
three phase problems. The first phase is common to all of them and
can be stated as follows. Given (i) a set ft of (feasible) decision
variables (also referred to as alternatives), (ii) a set of criteria
i t

f : P. -»- IR, i = 1,2,...,m, (also referred to as attributes) which

produce values f(x) (with f - (f ,f ,...,f )), and (iii) a partial
m ^

order <. (<) in ]R , the space of values, construct the set of non-
inferior decision variables f2 and the set of noninferior values V

defined as follows:

'The f*• are usually defined on a space X with Q, C X.

* i iIn this paper we shall assume that v <^ v if v. £ v9 for i = 1,2,

...,ra; v^ <. v2 if vi ^ vo and vi ~ v?# Tnis is tlie most commonly
used partial order.



vN = (v ce f (ft) |n(v) n f(«) = {v>} (1)
where

n(v) ={v' e mm|v« <v} (2)
and

«n = {* e n|f(X) e vN} (3)

The second phase consists of the following: given a set of accept
able performance values V^ C jr"1, find all the points in

VNa= VN ° Va (4)
and in

k r I -, (5)«Na= {xeo|f(x)6V„}

The third phase may consist of either selecting a point in ft. or
imposing a total order on the elements of ft . **a

Na

In this paper we shall examine the difficulty involved in
solving multicriteria problems, as well as some of the techniques
suggest** for their solution. For this purpose, it will he con
venient to group multicriteria problems into three distinguishable
classes: (i) when ft consists of a small number of elements, (ii)
when ft consists of a large, but finite, number of elements, and
Uii; when ft is a subset of a normed space.

2. THE "SMALL" MULTICRITERIA DECISION PROBLEM

We begin with the simplest case, when ft contains a small number
of elements, say less than 20, and the number of criteria is fairly
small, say less than 6. This is a common situation when one is
buying a car, a radio, a saw, etc. In this case, the construction
°f.;N ™d % ls <^ite trivial so that phase 1 poses no difficulties,
while in phase 2 the number of decision variables to be considered
is further restricted by V , the acceptable performance set. In

a lu S!t Va is often used t0 convert criteria into constraints
and thus reduce the number of criteria. The final choice (phase 3)
is often facilitated by the fact that, usually, the criteria can be
ordered in terms of their relative importance. Such an ordering is
is called a lexicographic ordering of the criteria. It is used to
impose, successively, more stringent acceptable performance require
ments. Also, it is not uncommon to reorder the relative importance
of criteria after the process of elimination of unacceptable alter
natives has reached a certain stage.
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Let us illustrate this progressive elimination process by
showing how a hypothetical consumers analyst might arrive at a rec
ommendation for a radial-arm saw out of a field of 8 alternatives;
i.e., the cardinality of ft is 8. The following attributes are
commonly considered to be pertinent to this selection (in the initial
order of decreasing importance): (a) depth of cut at 90°, (b) rip
width, (c) motor type, (d) depth of cut at 45°, and (e) price. The
alternatives and attributes are displayed in Table 1. Note that
the attribute (c) is not a numerical value, but it could be con
verted to one by assigning value -1 to an induction motor and value
0 to any other type motor since induction motors are preferred.
Also, since the set (1) is implicitly specified in terms of minimiza
tions, the negatives of the depth*of cut and rip width must be used
to convert this problem to standard}*form. The acceptable perform
ance values are specified as folldws: (a) the depth of cut at 90°
should be at least 3", and (b) the rip width should be at least 25".

Now, in this case, rather than first construct VN and ftN, it
is more expedient to first eliminate all alternatives which do not
yield acceptable performance. Thus, alternatives 2, 5, 7, and 8 are
immediately eliminated, leaving only alternatives 1, 3, 4, and 6 for
consideration. Denoting alternative i by a-, we see that f(a,) £
f(a^) and hence a^ ^ ft^. By inspection, the analyst now obtains that
ftN = {a.,a, ja }. Next, the analyst reorders his priorities to let
motor type take precedence over the other criteria and hence elim
inates afr. Since a depth of cut of 3 1/8" at 9(JC' does not represent
a useful improvement over 3", the analyst consi.ders a. and a.

Alternative

Attributes

(a)
Depth of
Cut at 90°

(b)
Rip

Width

(c)
Motor

Type

(d)
Depth of
Cut at 45°

(e)
Price

1 3 in. 25| in. induction 2-7- in.
4

$265

2 3 24
4̂

induction 4 293

3 4 25 induction 2 220

4 3 4 induction 4 215

5' 4 4 induction 4 175

6 3 25- l
"8 4

universal 4 271

7 3 19*^5 Universal 4 123

8 4 24 induction 1 300

Table 1. Data for radial-saw selection [6]
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indistinguishable under this criterion. Hence, the final decision is
made on the basis of depth of cut at 45°, yielding our analyst's
recor'-'.r-.ndation to buy a. .

Note that the specification of acceptable performance does not
always remove a criterion from the list of functions one desires to
minimize. For example, in the selection of a saw, an acceptable
performance requirement may be that the price should be less than
$3UC, but one still wishes to minimize the sum to be paid for a saw.

Thus, noi infrequently, in the "small" problem case, as in our
example of selecting a saw, we do not have much difficulty in making
a decision since the process is considerably simplified due to the
reduction of the number of alternatives first by the acceptable per
formance requirements and subsequently by lexicographic elimination.
The final sequential reduction of alternatives by the lexicographic
approach appears to be "natural" in that people tend to adopt it
without special training [18], [22],

3. THE LARGE, BUT FINITE, MULTICRITERIA DECISION PROBLEM

We now consider the case where ft consists of a finite number,
v, of alternatives, but v is too large for the construction of ftN
to be possible by inspection. This is obviously a combinatorial 3
piuLlciu iiwolviug surting and one would ex^sd. a oizable uibliogi.ciFlt>
on the. subject. However, this is not so, and we have only been able
to find [14]-[16], [27J. The latest work dealing with this problem
appears to be that of Kung, Luccio, and Preparata [15] who obtain
bounds on Cm(v), the number of scalar comparisons necessary for com
puting the sets V"N and ftj^, where m is the number of criteria and v
is the cardinality of f(ft). Specifically, they show that

cra(v) 1 0(v log2v) for m= 2,3 (6)

cm(v) 1 0(v(log2v)m"2) for m>4 (7)
In [26], Yao shows that

cm(v) ^.vlog2v + v - 1 for in > 2 (8)

Kung et al. exhibit algorithms which satisfy the bound (6) for
m = 2,3, but there appears to be no explicit algorithm that achieves
(7) for m j> 4. However, as we shall shortly show, it is quite easy
to specify a simple algorithm which, for any m, requires at most

Cm(v) = mv(v+l)/2 (9)

scalar comparisons. Now suppose that m = 10 and v = 10 . Then the
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bound in (7) is

0(v(log2v)1D"2) =0(103(log2103)8) =OdO11) (10)
.while

mv(vKL)/2 - 10(106+103) = 0(107) (11)

Thus, the bound (7) is not very sharp, at least not until v gets to
be very large. Consequently, for moderate size problems the algo
rithm below should be quite acceptable. This algorithm requires
that the vectors v G f(ft) be indexed as a set {v.}?,, v. ^ v..

The algorithm first examines vv with Y = v. IJE v 4 V . then v_ is
Y , y a Y

removed from the list. If v G V , then v is compared with v,,,
Y a' Y j

j - Y - 1>...,2,1, until either (a) v ^> v., in which case vv is
rejected, or (b) vv <_ v^, in which case v^i
renumbered so that

rY jc Vj, in which case v,Jis rejected and the list is
:(v1,v2>...,v lfv ,...v )+(v1,v2,...,vy-1), or

(c) the top of the list, namely v-, is reached, in which case vY G
V and is removed as such. The process then begins again with y»
the length of the list, decreased by one.

General Purpose Multicriteria Optimization Algorithm

Data; {v.}<«, V .
i l—J. a

Step 0; Set k = 1, I = 1, Y = v.

Comment: k is the index for the rejected values (v^ « rk) and I is
the index for noninferior values (v^ - v^); Y is the total number
of values under immediate consideration.

Step 1; If v G V , go to step 3; else* go to step 2.

Step 2: Set rfc » vy, k -k+ 1, Y -Y- 1. If Y' » 0, stop; else,
go to step 1.

Step 3: If Y = 1, set vA = v , print the set of noninferior values

^i^i=l and corresponding alternatives (x } and stop; else, set
v = vy, Y = Y - 1, j = Y, and go to step 4.

Step 4: If v < v or v (f V , go to step 5; else, go to step 8.

Step 5: Set rfc = v , k = k + 1. If j = Y, set Y « Y - 1 and go to
step 6; else, renumber (v.j+1»vj+2,.. .,vY) + (v v +1>... ,vM), set
Y = Y - 1,and go to step 6.

Step 6: Set j = j - 1. If j = 0, set v^ «= v, 9. « A+ 1, and go to
step 7; else, go to step 4.

Step 7: If Y = 0, print the set of noninferior values {v.}? , and
i i=l
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corresponding alternatives {x.) * and stop; else, go to step 3.

Step 8: If v > v., set r = v, k = k + 1, and go tQ step 3; else,
go to step 6. n J

Since the superior algorithms for the cases m = 2 and m = 3 are
easy to state, we give below our extension of the schemes proposed
in [15] for these cases. Our extension accounts for V and for the
fact that v£ = vi is possible, whereas in [15] it was assumedv} f v}
for i ^ j.
Bicriteria Algorithm (m=2)

Data: {x.}V ,, {v.}V ,, V .
l iJi=l l iJi=l a

Step 0: Sort the vectors v , i = l,2....,v on the basis of the first
component and renumber so that v| <, v_ <^ ... <^ v . Set i« 1, Y *= 1-

v 1 1
Step 1: Find the largest integer u(i) such that v, » v.., * ... »
vl ,.N i i+1
Vi+u(i)'
Step 2: Find an integer u(i) G I(i) 4 {i,i+l,...,i+y(i)} such that

Vi) =nin<vj[lk e I(i>>; set UY =vy(i)> h=Xp(i)» and Y"Y+lm
Step 3: If i + u(i) < v, set i = i + u(i) + 1 and go to step 1;
else, go to step 4.

Comment: The set {u.}Y , consists of all the values' in f(ft) satis-
1 1 I-, l—i.

fying u, < u0 <...< uv. A value v. not included in {u.}J , cannot
l-i i i i=l

be in V%
rN'

Step 4: Set i = 1, I = 1, b =
2 UStep_5: If u± >b._1 or u± £ Vfl (i.e., u± $ V^), set b± «b^

go to step 6; else, set v0 = u., x« = €., I = I + 1, b. « u., and
go to step 6. £ i * i i i

Step 6: If i < Yi set i = i + 1 and go to step 5; else, print the

set of noninferior acceptable values {v.}^_ and the corresponding
^ o J 3~~*-

set of noninferior alternatives {x.}. , and stop. n
3 J=l

The tricriteria algorithm described in [15] is more complex.
It is based on the following argument. Suppose we are given a set

of noninferior values V. = (v.H . in 1 , ordered so that v, < v^ <..
1 J i 1=1 ' 1 - 2.-.

<_ v., and suppose that we wish to determine if the set V . » {v.};:
J l i J"*"l *• i=l

where v.,. > v., also consists of noninferior values only. Let
A 22+\ ~ 3 2 owi= (v ,v?) G 1R for i = 1,2,...,j + 1, and let W4 = {w. }£ ,be the

•** 1 1 . ~ o k K,—JL
set of noninferior values in «(v. }*!_.. Let w = (v?*,v,) - w. =

r\ o 1 i—l k k k l.

(v. |V. ) and assume,without loss of generality, that
xk k

-6-
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'2 '2 -2vl Sv2 —*" — vfc* n Vi+i consists of noninferior values if
and only if the set W U {w. } consists of noninferior values only.
Furthermore, W^ U{w.^} consists of noninferior values if and only
if vj+1 Kf.*, where j* is the largest integer in {1,2,...,*} such
that vp <v^+1 for p=l,2,...,j*.
Tricriteria Algorithm (m=3)

Step 0: Sort the set {v±}^| on the basis of the first component,
and renumber (v,.}^ and f^)^ accordingly so that v* <_ v* <_ ...

Step 1: Find the largest integer 6such that vj =vf and apply the
bicriteria algorithm to (w^,.. .wfi}(w A(v^v^), i=1,2,...,6)
to find all the noninferior values {w. }£ (with w* <w/ <...<w* )
in {w,}* . Renumber the set. (v. ,v. ,*,v. ^....k) -^(v-.v*
...,vYJ. x ^ i2 x3 6+1 X 2

Step_2: Set i= P+ 1, k = tf. Set v.= v., x. = x., w. = (v?,v?)
for j = 1,2,...,$. 3 3 3 3 3 3 3

2 3
Step 3: Set w = (v.,vT).

Step 4: Find the largest index j* such that w1 <w1 for i= 1 2
•••tj*. j - J * *

2 2
Step 5: If w < w.A and v & v en*- £ - « £ - i.^— j* mia vi c V set vk+1 ~ v±, x^ = x±, renumber
°VW2'-*-Wj*' w»wj*+i»---»wk> *(w1'w2---»wk+1)» set k=k+1,
i=i+ 1, and go to step 6; else, set i=i+1and go to step 6.
Step__6: If i < Y, go to ster 3; else, print the noninferior values

{V;i=l and the corresP°ndinv^ noninferior alternatives {x}k ,and
i=l

stop. » J

Note that in the three algorithms which we have presented the
test for v± G Va is carried out simultaneously with the determina
tion of whether v± G V^ If U is relatively easy to determine
Ia 9,{vi}l=l» then ifc ma>* b* ^>re efficient to do this first.
Similarly it may be more efficient to first determine v completely
and tnen find tne set V^ =V., OV^ In fact, in many decision
problems this may be the only way to proceed since the decision
maker may use information provided by aknowledge of VM to establish
the set of acceptable performance values N
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Thus, the construction of the noninferior, acceptable perform
ance value set VNa is a tractable task in the finite alternative
case. If the third phase is to select a single point, then this
task can be accomplished as follows. (i) Scan the range of values
for each criterion. Those criteria in which the values vary little

(e.g., (max v~ - min v*J)/ave(v?) is small) can be removed from
k v- k k k k

further consideration since these criteria offer little discrimina

tion, (ii) For the remaining criteria, establish an order of im-
portance with appropriately narrow bands of acceptable performance.
A successive application of these bands should reduce the subset of
noninferior alternatives under consideration until a final choice

is made.

When the final task is not to select a single alternative but
to select several or to order the alternatives linearly, as is the
case in university admissions or.in the processing of fellowship
applications [8], it is not uncommon to use a weighting method con

£*v<v,sisting of the assignment of the scalar value /* ^x (x.)> where
i x
A > 0, i = l,2,...,m, are certain weights, to the alternative j.
When there is some experience available, these weights can be com
puted by regression. For example, suppose a fellowship committee
awards annually graduate fellowships to entering, deserving students.
The attributes which the committee takes into account are grade
point average (G.), rating of letters of recommendation (L.), GRE
scores (E.), and a rating of the school of undergraduate education
(S.). Suppose there have been N applicants for the fellowship over
a number of preceding years and the committee ranking.r.i, 0 < r^ _< N,
of each of the N applicants has been recorded. Then, to automate
their selection process, the committee chooses weights a,$,Y>6 > 0
which minimize

N 2
£ (otG.+3L.+YE.+6S,-r.) (12)i=1 i i i i i

In the current year, the number aG. + $L + yE. + 6S is the i
student's score t.o be used in the final ranking. This process
is not beyond criticism since a value which is not noninferior can
be given higher ranking than a noninferior one. Nevertheless, for
lack of anything better, the weighting process is used quite com
monly when a ranking must be produced and is usually applied to all
alternatives in ft rather than to noninferior alternatives only.

4. THE INFINITE ALTERNATIVES MULTICRITERIA DECISION PROBLEM

We shall now consider the case where ft consists of an infinite

number of points, usually defined by equality and inequality con
straints. It is no longer a problem which can be solved by

-8-
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enumeration. We. shall concentrate on the case where ft C j& . Let

us review the most important facts about this case (see, for example,
[7], [20]).

Let f : ]Rn -vJR111"1 be defined by f(x) = (f1(x) ,. .. ,fm"1(x)),
where the f1, i « 1,2,...,m - 1, are the first m - 1 criterion
functions. Let

V= {v G IR111"11Q n {x|f(x) <v} i <j>} (13)

Let s : V -> 3R defined by

s(v) £ min{fm(x)|x G ft, f(x) <_ v} (14)

Let T denote Lhe graph of s(»)» i.e.,

r = {v G lRm |v = (v,vm), vG V, vm = s(v)} (15)

and let

V & f(ft) (16)

Proposition 1: The set of noninferior values, Vjq> is contained in
T, the graph of s(«)« Furthermore,

vN =fr = (v,vm; g rn vjvm =s(v) <v,TD, VvT evn n(v/)} (17)

where N(v) is defined by (2). B

The relation (17) can be reinterpreted as follows.

Corollary: An alternative x G_ft^(f(x) G V^) if and only if x is a
global miniraizer of (14), for v = f(x) and, in addition, f (x) <
fm(x') Vx' G ft satisfying f(x') <_ f(x). a

Proposition 2: The sensitivity function_s(«) is_monotonically
decreasing; i.e., v' ^ v implies that s(v') _< s(v). Furthermore,
suppose s(*) is piecewise continuously differentiable. If
v G r n V satisfies Vs(v) < 0, then v e V„. a

N

Now suppose that

ft = {x GlRn|g(x) = 0, h(x) < 0} (18)
n k n £

where g : IR -• 1R_, h_: 1R -»- 1R are twice continuously differen
tiable. For any v G V, let

ft- = {x G ft|f(x) 4 v} (19)
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If ft- satisfies the Kuhn-Tucker constraint qualification for almost
all v G V and if the corresponding minimizers of (14) satisfy
second order necessary conditions of optiraality (see [17, p.234]),
then by interpreting the results in [24], [25], [17, p.236], we
conclude that s(») is piecewise continuously differentiable and that
Vs(v) = - u(v),_wbere v is the Lagrange multiplier associated with
the constraint f(x) < v in (14).

These observations lead to the following conclusions._ (i) To
compute a noninferior alternative solve (14) for some v G V to ob
tain a solution x(v) and a corresponding multiplier u(v). If
f(x(v)) = v, then (f(x(v)), s(v))G T O V, and if Vs(v) = -y(v) .< 0,
then v = (v,_s(v)) G VN and x(v)G ftN> If these conditions fail,
try another v. In principle, almost all points in ftj^ can be found
in this manner. (ii) Since ft™ consists of an infinite number of
alternatives, the entire set ft„ cannot be constructed.

N

As in the finite alternative case, we find that problems with
two or three criteria are,special because the sets V« can be dis
played as curves or parametrized families of curves when m ~ 2 or
m = 3. This fact is utilized in the algorithms described in [20],
[21] which produce an efficient, piecewise cubic approximation to
Vjq. Once such an approximation to V« is obtained, one can proceed
as follows. First, making use of a set of acceptable performance -
values Va one can reduce the set of noninferior values V« to be con
sidered to Vj» - Vjj n va. Then one can establish bandb of equivalent
performance for each criterion, which are ordered with respect to
their relative importance. One can then apply these bands succes
sively to eliminate a large number of alternatives and narrow down
the final selection to a sufficiently small region so as to make
the final choice fairly easy. This process is essentially the same
as the one described in the finite alternative case.

When there are more than three criteria, the information dis
play problem makes the approach described above, to say the least,
quite cumbersome, if not impossible. However, since s(») is likely
to be piecewise continuously differentiable, one may try to impose
a total order on ft by means of an aggregation function a : 3Rn •* H
of the form

a(x) =a(f1(x), f2(x),..., fm(x)) (20)

and one can choose to minimize either a(x) over x G_ft or a(v) over
v G T. Since on the manifold r V-a(v) = (I |Vs(v))Va(v) may have

v m—11

discontinuities and since both a(v) and V-a(v) may be difficult to
compute, it is common to make a final selection by solving the
aggregated problem

min{a(x)|x G ft} (21)

-10-



in the next section we. shall discuss the manner in which aggregation
has been approached by several authors. However, before proceeding
with this, we must point out the two serious drawbacks of aggrega
tion. The first and most obvious drawback is that in many cases a
solution of (21) will not yield an alternative in ft« or value in VN«
The second drawback is that aggregation is based on1 the assumption
that a total order can actually be imposed on ft. Now there is con
siderable evidence [1] that, in a multiattribute situation, humans
quite commonly will prefer alternative a to alternative b, alterna
tive b to alternative c, but they may not prefer alternative a to
alternative c. This shows that the imposition of a total order is
often contrary to our intuitive aims and hence is quite likely to
lead to less than ideal selections. Thus, aggregation should be
used with extreme caution.

5. IMPOSITION OF A TOTAL ORDER: AGGREGATION

There are basically three schemes, with endless variations, for
imposing a total order on the partially ordered set of values V =
f(ft). The first and oldest (which was used even by Pareto in the
last century) consists of imposing a weighting pattern on the

m A. i icriteria; i.e., one minimizes T^Tf (x), with x e ft and X > 0. We
i=L ~

have seen already an example of this technique in Sec. 3. As it
was shown in [7], when V is directionally convex, any solution of

- v™* .' i .i . . i
nuui/_/A i"" (x) jx G it) is iioninfeiioi:. Fui theirmore, by using all tlivi

X in the set {X £ mm |X ^ 0, Sx1 = 1}, all the noninferior alter
natives can be computed. Thus, starting with a weighting pattern
(X1,...,Xm), we can compute at least one noninferior alternative
and then perturb the X1 to see whether some other noninferior point
in the vicinity of the first one is more desirable. This is quite
common practice in linear-quadratic regulator design [2].

The second scheme is based on the hypothesis that there are-
indifference surfaces and that these surfaces are equi-cost sur
faces for some unknown aggregate cost or utility function u. Thus,
for example, Hanieski [12] assumes that we can specify trade off
coefficients a1 such that given any v = f(x), v lies on an indif
ference surface if

du= f;aidyj:=() (22)
i=l v1

When all a =1, (22) describes a point at which the fractional
changes in' all criteria cancel each other out. Integrating (22),
Hanieski then proposes, to minimize .

m

u(v) = J^a^nv1 (23)
i=l
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subject to v - i (x), x G ft. Since this is a very simple scheme
it is also easy to analyze it. Generally, in the context of a
heuristic selection scheme for a final point v G V^, one tends to
agree that (22) describes a point of confusion or indecision, i.e.,
a point v at which the decision maker finds it almost impossible, to
decide on a preferable small perturbation in v since any fractional
gain in one criterion is offset by an approximately equal loss in
the other criteria. So one may accept this as being a point on a
surface of confusion or indecision, but a surface of confusion need
not be a surface of indifference. For example, suppose m = 2 and

10 0 l ' •. >}

V = {(v ,v )|v = e }. Also suppose a = a =1. Then on V„
" N

12 2 111
u(v ,v") « £nv + £nv = -v + Jlnv (24)

and ve see that u has a maximum but certainly no minima (u(v) -*• -»'
as v1 -*• 0) or local minima. Thus, u does not appear to be an ap
propriate function to minimize. Furthermore, the smaller we make
u(v), the closer v approaches a "dictatorial" solution, i.e., either
vl = min{f (x)|xG ft} or v2 * min{f2(x) |x G ft}, which is inconsistent
with a desire for a trade off or "compromise" between criteria.
Our simple example shows that one must be very cautious in trans
lating well defined local trade off considerations into a global
aggregate utility function.

Before leaving the second scheme of aggregation, we shall
describe two other schemes for obtaining an aggregate utility func
tion from local trade off considerations, so as to illustrate the
range of ingenuity that has been devoted to this subject. The first
is due to Geoffrion [10] and Geoffrion, Dyer and Feinberg [11].
They assume that the decision maker (DM) has a global preference
function u in mind but that he can only furnish local trade off
information in the form of trade off ratios. Thus, they consider
the problem of solving

min{u(f(x))|x G ft} (25)

in a man-machine interactive process. Their method consists of two
subprocedures: one for determining a usable feasible direction and
one for step size determination. Given a value v = f(x) G V, the
decision maker specifies the trade off ratio w* between the ith
criterion f1 and a selected reference criterion, say fm; i.e.,

~i 3u(v) .3u(v)w =-±^~^r> ±- 1,2,..., m- 1 (26)
8v 3v

These m - 1 trade off ratios describe the tangent hyperplane to the
indifference (equi-cost) surface of u passing through v; i.e.,

~1/ 1 ~1\ i *2, 2 ^2. , , ~m—1, m—1 ~m-lv , m «mv ~ ^„_»
w (v -v ) + w (v -v )+...+ w (v -v ) + (v -v ) = 0 (27)

-12-



To obtain the w , the DM answers the query: "How much of a change
Av1 are you willing to permit in the value of v to obtain a change
of Av1 in v , assuming that all other criteria do not change?" Then

w *= ^j i=1,2,...,m -1 (28)
Av

Thus, with w = (w,l),

VU(f(i)) =a«iii iim.T ^ (29)
x ^ m 3x

Dv

and even though Su(v)/3v is not known, w is all we need to solve
the Frank-Wolfe [26] direction finding problem

min«V^u(f (x)), x - x)|x G ft} (30)

3f(x)*^-since we can substitute ,s / w for v u(v) in (30) without affecting
. oX X
A ^ /» a

the resulting solution h = x - x Once the direction h is computed,
Geoffrion et al. require the DM to specify a step size. Thus, they
have invented a well-inspired heuristic method which works well, in
some cases. Obviously, the method inherits all the possible
pathologies that we have mentioned in conjunction with Hanieski1s
scheme.

To conclude our discussion of aggregation methods which
extend local trade off information to a global preference function,
we describe a scheme due to Briskin [3], [4], who assumes that the .
DM can specify all the criteria in terms of the units of a single
criterion, say fm, that the aggregate utility function is of the
form

/ ^ m L **/ 1 m-lN /oi\u(v) = v + u(v ,...,v ) (31)

and that u can be specified by a set of differential equations:

^r^-=hj(v) j= 1,2,...,m -1 (32)
8vJ

Briskin then integrates this system of equations to obtain u(«) and
then minimizes u(f(x)) subject to xG ft.

To see how Briskin1s scheme works, we reproduce one of his
examples which involves hauling freight [4]. Suppose m = 3, with
f measuring time, f^ weight, and f3 dollar cost for a given set of
alternatives. The problem is to deliver as much weight as quickly
as possible and with as little, cost as possible. Briskin assumes
that the criteria f1 and f2 can be expressed in terms of dollars.
Next, he supposes that (a) the DM is willing to spend $30 to gain

-13-
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one hour when the travel time is 30 hours but only $5 when the travel
time is 20 hours, (b) the rate of exchange of money for time varies
exponentially with the time taken, (c) the DM is willing to spend
$20 to deliver 100 lbs. more if the delivered weight is 180 lbs.,
(d) the rate of exchange of money for weight varies inversely with
the weight deJivered, and (e) the willingness to spend money to
gain time is independent of weight and vice versa. From all of this
we get that u must satisfy partial differential equations of the
form

4" (v ,v ) ,1

Sv

auCv^v2) k2„ '
5— - —y (34)

dV V

From the given data and (33) and (34) we get enough algebraic
equations to solve for c, k., and k , which can then he substituted

into the obviously assumed form of u:

- 1 2 klv 2
u(v ,v ) = -ce + k«£nv (35)

Briskin's method probably shares the faults inherent in
Hanieski's method and other methods which transform local trade oft
preferences into a global preference function. In addition, it.
requires mucn more sophistication in specifying the functions h^
than the coefficients in the Hanieski and the Geoffrion et al.
schemes.

A totally different approach to aggregation is represented by
the compromise solution or goal programming methods [5], [9], [13],
[23], [28]-[31]. In fact, these methods are not based on the desire
to construct a global preference function but on a desire to com
pute an alternative x whose value f(x) is close to the ideal value
v defined as follows. Let

v = min{f1(x)|x G ft} , i=l,2,...,m (36)
,pU * A ,^1 ~2 ^mv _,
Inen v = (v ,v ,...v ). The compromise program then is defined as

min{i|W(f(x)-v)|| |xG ft, f(x) G V } , a _> 1 (37)
x> a —~

where W is a positive definite weighting matrix and, as before, V
represents the set of^acceptable performance values. A solution3
(x*,£(x*))of (37) is called a compromise solution. Yu [28] has
shown that, under mild assumptions, x* G ftN for any norm Ihfl with
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1 <_ %< <*>. Compromise soJutions are appealing, but, as pointed
out by Yu [28] and Leitmann and Yu [29], compromise solutions are
quite sensitive both to the units in which the criteria are
expressed and to the particular norm il'll*, used. This is obviously
a drawback and consequently Salukvadze [23] and Zeleny [30] have
independently proposed that scaling be utilized to reduce this
effect. Thus they suggest that the problem

min{j|WS(f(x)-v)|L|x G ft, f(x) G V } , £ > 1 (38)
y, a —

12 m
be solved instead of (37), with S = diag(l/v , 1/v 1/v ), pro
vided no v1 = 0. It is clear that while* this eliminates the sen

sitivity of the solution of (38) to the units used, it makes the
solution sensitive to the values of v1. Thus, while the compromise
solution approach is an obviously attractive way for selecting a
single noninferior alternative without constructing the entire set
ft , it is still not quite a perfect tool either.

The obvious conclusion is that the infinite alternative multi-

criteria decision problem is orders of magnitude more difficult
than the finite alternative multicriteria decision problem and that
methods for its solution still leave much to be desired. Thus,
because of its great practical importance, the infinite alternative
multicriteria problem represents an area of challenging research.

6. CONCLUSION

As we have seen, as long as the number of alternatives is
finite (but not astronomically large), the multicriteria optimiza
tion problem is tractable. However, when the set of alternatives
is a continuum and the number of criteria is larger than 3, the
multicriteria optimization problem becomes tremendously more dif
ficult and one's confidence in the soundness of the choice made by ,
the various schemes proposed is nowhere near as great as in the
finite case. In a way, the difficulty of the infinite alternative
multicriteria optimization problem can be attributed to the fact
that there are currently no entirely satisfactory methods for
approximating such a problem by means of a finite discretized
version of the problem. We can expect a good deal of future work
to be devoted to the question of selecting a "grid" for the approxi
mation of a continuum-type multicriteria optimization problem.
Perhaps a connection of this new work with the old (such as in [20],
[19]) will be based on the acceptance of points of confusion, which
were discussed in Sec. 5, as a basis for selecting such a grid.
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