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Abstract

An experiment intended to determine the influence of the input data on

the performance improvements resulting from program restructuring is described

This influence is found to be non-significant for the particular program,

memory policy, restructuring procedure and inputs considered in the experi

ment. It is speculated that such a conclusion is likely to have much more

general validity.
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1. Introduction

A technique which has been successfully employed to improve the perfor

mance of programs running on a virtual-memory system is the one of program

restructuring. This technique consists of modifying the relative positions

of various parts of a program, called blocks, in the virtual address space

so as to increase the locality of the program. Various approaches to restruc

turing have been proposed. A particularly successful class of approaches

can be described by the following five-step restructuring procedure [1]:

(1) the program to be restructured is partitioned into blocks, whose

average size must be substantially smaller than the page size (or, in a

segmented machine, than the average segment size);

(2) the program is instrumented and run in order to collect data on

its dynamic behavior; for the purposes of restructuring, a complete descrip

tion of this behavior is contained in the block reference string, the string

of block references generated by the program during its execution;

(3) a restructuring algorithm is applied to the block reference string

gathered in (2); the algorithm produces a restructuring graph whose nodes

correspond to the blocks and whose edges have labels somehow -representing

the desirability of storing the two blocks they connect in adjacent areas of

the virtual address space;

(4) a clustering algorithm is applied to the restructuring graph with

the objective of determining those clusters of blocks characterized by the

minimum sum of inter-cluster labels, under the constraint-that the sum of

block sizes in each cluster be less than or equal to the page size;

(5) blocks are assigned to pages according to the results of (4), an

appropriate ordering of the pages and blocks is determined, and the program

is restructured.

This procedure, with different restructuring algorithms, has been applied



to a variety of programs running under a number of different memory management

policies. The performance improvements obtained, in terms of indices like

the page fault rate and the mean working set size, have been very encouraging,

both in the case of programs written for non-virtual memory environments

[2-4] and in the case of programs designed for virtual-memory machines [1].

In particular, tailoring algorithms, which exploit the knowledge of the

memory policy under which the program will have to run [1,2,5], have been

found superior to other restructuring algorithms [3,4].

Ah objection which has been raised against the restructuring procedure

described above is that the characterization of the program's behavior upon

which the procedure is based depends on the input data used in the instru

mented execution of the program performed in (2). There is no guarantee that

the performance improvements due to the reordering of the blocks dictated by

the procedure under a certain set of input data will be preserved under

different input data. In fact, the new arrangement might, under some inputs,

result in a deterioration of performance with respect to the original non-

restructured program. Hatfield and Gerald [3] noted that "fortunately,

many commonly used programs are rather insensitive to data". .Ferrari [1]

published the results of many short experiments in which the performances

of a program restructured using two different algorithms, were compared under

a variety of inputs. Both for an interactive text editor and for a file-

system package, the experiments showed that the better of the two algorithms

remained superior to the other one under most of the inputs.'

This paper describes an experiment designed to quantitatively evaluate

the sensitivity to the input data of the performance improvements resulting

from restructuring. Section 2 covers the general design of the experiment ,

and the selection of the experimental factors. In Section 3, the criteria

employed to choose the levels of the factors are discussed. The term "level;1



is given here the meaning it.has in the experimental design literature. The

results of the experiment and their interpretation are finally presented in

Section 4.

2. The design of the experiment

The main objective of the experiment described in this paper was to

determine the sensitivity of the performance improvements induced by restruc

turing to variations in the .input data.

The performance of a restructured program is defined here as the page

fault rate F it generates when running on a virtual-memory system. F depends

mainly on the following factors:

P the original program;

R: the restructuring procedure used;

J: the input data chosen for the restructuring procedure;

M: the memory management policy under which the program is run;

I: the input data under which the program is run.

The main goal of the experiment required factor I to be varied. We

felt it would be useful to also consider various levels of factor J, in

order to determine to what extent the conclusions suggested by the runs

corresponding to a particular level of J could be extended to other levels.

In other words, our objective was to study the relationship between I and

J rather than simply the influence of I on performance.

Ideally, a complete experiment would have required varying all of the

five factors listed above. However, such an experiment would have been too

expensive to perform. Its cost could have been reduced only by drastically

restricting the number of levels considered for each factor including I

and J, or by reducing the number of combinations of levels with which the

experiment could have been performed. We therefore decided to concentrate



our study on the impact of factors I and J, and of their interactions.

Since we.were in fact interested in their influence on performance improve

ment, we considered two levels for R: no restructuring (level RO) and

restructuring (level Rl). P and M were kept constant throughout the experi

ment. This obviously means that our conclusions are valid only for the par

ticular constant levels selected for P, R (in the restructuring case) and

M.' The selections of these levels are discussed in Sections 3.1, and 3.2.

Since we were also concerned with the effects of the interaction between

I and J on the improvement of the page fault rate F, the experiment had

to be designed as a full factorial one. However, factor J does not play

any role in those experimental configurations corresponding to the non-

restructuring program. Therefore, our three-factor factorial experiment -

consisted of £,(£,+1) configurations.or distinct combinations of levels,

where A, and £, represent the numbers of levels of I and J respectively,

Assuming that no experimental errors are made in the measurement of F,

the only sources of variation for F are the three factors R, I, J and

their interactions. Let R be the main effect of factor R at level Rg,

Ih the main effect of I at level Ih, and Jk the main effect of J

at level Jk. The interaction effect of I and J at levels Ih and Jk

will be denoted by Uhk» and similar notations will be adopted, for the

other interaction effects. The results of our experiment will be interpreted

by the empirical model

Fghk ""F +Rg +h +Jk +RIgh +RJgk +IJhk +RIJghk • ™'

where F hk is the page fault rate of the original (g = 0) or restructured

(g = 1) program running under input Ih, and (if g = 1) restructured with

input Jk; F is the "grand mean", that is the mean page fault rate com

puted over all the conbinations of levels considered.



The empirical model represented by (1) allows us to break down the total

variation of the page fault rate into the contributions of the individual

sources of variation. Standard analysis of variance techniques will be

applied in Section 4 to the results in order to quantitatively evaluate the

relative importance of these sources, in particular that of I and of its

interactions with the other factors.

3. The selection of the levels of each factor

3.1 The memory policy and the restructuring algorithm

The restructuring procedure introduced in Section 1 contains several

components which, in a more detailed study, could be introduced as addi

tional factors. For instance, the restructuring algorithm, the clustering

algorithm and their parameters, the choice and sizes of the blocks, the page

size, could all be varied during an experiment, and some of them have in

fact been [1-4]. For the study described in this paper, only one component

of the restructuring approach was separated from the others and made an

independent factor: the input J under which the program is restructured.

All the remaining components were fixed for the cases in which the original

program had been restructured. Factor R was introduced since some runs

of the non-restructured program had to be included in the experiment.

For the case R = Rl (restructured program), the blocks were chosen

as described in Section 3.2, and the page size was kept at 1024 words/page.

The clustering algorithm used in the experiment is extremely simple: the

two nodes in the restructuring graph whose connecting edge has the highest

label are clustered together if the sum of their sizes is not greater than

the page size; the labels connecting the other nodes to the new node are

computed in the obvious way, and the process is repeated until no further

clustering is possible. Another algorithm is then employed to order blocks



within clusters and the clusters with respect to each other.

Following the program-tailoring philosophy (see [2] and Section 1 of

this paper), the selection of the restructuring algorithm to be used for

R = Rl was made together with the choice of the memory policy M, which

was also to remain unchanged throughout the experiment. M was chosen to

be a "sampled" working set policy. In such a policy, the working set of a

program is measured at periodic virtual-time intervals. Those pages which

are in the working set at one of these instants are guaranteed to remain in

memory until the next sampling time. Those page frames which are occupied

by pages not in the working set are returned to the free pool (page writes

are ignored for simplicity). New pages are loaded into memory on demand.

The memory is initially empty. The window size used to measure the working

set was chosen to be equal to the sampling interval, which was 50 ms.

The restructuring algorithm was the one called the A algorithm in [2].

Its objective is to minimize the number of page faults generated by the given

program in a sampled working set environment.' The sampling interval and the

window size for the algorithm were equal to those assumed for M, that is,

50 ms. Thus, the program was restructured trying to tailor its behavior to

the one postulated as ideal by the sampled-working-set memory policy [2].

3.2 The program to be restructured

The selection of the program on which the experiment would be performed

was made taking a number of criteria into account. First-of all, the program

had to be relatively large and one which was heavily used in order for our

results to have greater practical interest. This is in fact the class of

programs for which restructuring is likely to produce the most substantial

benefits.

Since an interpreter of the machine language of our computer was not



available, and building one was outside the scope of this project, we decided

to restructure only the instruction portion of the program, leaving the data

part untouched. On most machines, including ours, an instruction reference

string is much easier to obtain than a data or complete (instruction-data)

reference string. Proper selection of instruction blocks can facilitate

the instrumentation of a program so that the instruction blocks can be traced

and time-stamped in a relatively straightforward manner during execution.

It is useful to observe that our decision to gather and restructure only

instruction-block reference strings does not make the results of the experi

ment invalid. In a working-set environment, as mentioned in [1], restruc

turing an instruction-block (or a data-block) string does not cause the

results to be distorted with respect to those which would be obtained by

restructuring the corresponding complete string, provided that the instruc

tions and data are kept in separate pages. Because of the role played by

time in a working-set policy, the two portions of a program (data and instruc

tions) can be restructured independently obtaining the same block orderings

and performance improvements as if the whole program were restructured.

This is, of course, not the case of other policies such as LRU in a fixed-

allocation environment. Thus, restructuring only the instruction blocks is

as beneficial, for the instruction portion of a program, as restructuring

. the same portion according to a full trace of the complete program. The

results of our experiment, however, do not represent the full potential of

the restructuring procedure used, since substantially greater improvements

would presumably be obtained if the data portion of the program were also

restructured.

Having decided to concentrate on the instruction blocks, we needed a

program whose instruction portion would be sufficiently large and whose blocks

would be easy to identify, to rearrange and to instrument. All of the



criteria we have listed indicated that a program Tike a compiler would be

suitable for the single level of factor P.. We chose a PASCAL compiler

(written in PASCAL) for its understands^!ity and modularity. The compiler

has 139 procedures, each one of which was considered as a separate block.

The mean size of each block was 129 words with a maximum block size of 669

words and a minimum of 18 words.

Tracing the sequence of execution of the procedures in a program is

conceptually straightforward: a trace routine which records the block number

and the virtual time is invoked whenever a procedure is entered. The inter

ference caused by this software measurement tool is usually non-negligible.

However, the running time of the trace routine was carefully minimized, and

the distortion in the virtual times recorded was found to be tolerable over

the durations of the runs.

3.3 The inputs to the program

The choice of the levels for factors I and J was the most difficult

one. The number of different inputs to be experimented with had to be small

enough as to make the experiment economically feasible. On the other hand,

it had to provide us with a sufficiently wide spectrum of compilations and

compilation performances. We felt that five levels, corresponding to five

instrumented executions of the PASCAL compiler, five applications of the

restructuring procedure, and thirty runs of the compiler (more precisely, of

the five block reference strings recorded during the instrumented runs) in

a simulated virtual-memory environment, would be economically acceptable and

technically sufficient.

Therefore, five different PASCAL programs had to be selected. How could

we measure the magnitudes of their "differences", and what amount of difference

would we consider satisfactory? The simplest criterion was that the inputs
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have different natures, so that they would exercise the different parts of

the compiler as dissimilarity as possible. .Based on this criterion, we

selected the following five programs:

1. the first 800 lines and the last 400 lines of the PASCAL compiler

itself;

2. a program of about 500 statements predominantly consisting of

arithmetic operations;

3. the same program as in 2, but with numerous errors inserted in

the source code;

4. a global flow analysis program of about 400 source statements;

5. a tree traversal program of about 65 statements.

However, the above criterion was not considered sufficient by itself:

The definition of a quantitative measure of the differences between the inputs

we had selected was also deemed to be necessary. From the viewpoint of our

experiment, two inputs of a program are really different if they cause the

program to exhibit substantially different referencing behaviors. The com

parison of two referencing patterns is very difficult to perform.

One way of gaining some insight into the question is to compare the

reference densities of the various blocks of the program under the two inputs.

If the densities are sufficiently different, then the inputs indeed exercise

the program differently. Note that this is a sufficient but not necessary

condition for two inputs to differ from our viewpoint.

The differences between block reference densities for the PASCAL compiler

are reported in Fig. 1. The densities corresponding to input II coincide

with the horizontal axis in both diagrams. The diagram in Fig. 1(a) shows

the' densities of inputs 12 and 13, the one in Fig. 1(b) those of 14

and 15. An easier-to-interpret summary of the information displayed in

Fig. 1 is presented in Table I, which gives the number of blocks whose
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reference densities have a coefficient of variation about the mean density

for the same block within a certain range. This table tells us that for 38%

of the blocks referenced in at least one run, the standard deviation of the

block's reference density is greater than the mean.

Another condition, also sufficient though not necessary, for two inputs

to cause different program behaviors is that their respective influences on

performance differ by non-negligible amounts. Table II shows the percentage

differences between the page fault rates and between the mean working set

sizes produced, under policy M and with the non-restructured PASCAL compiler,

by the five inputs listed above.

The results displayed in Fig. 1 and Tables I and II convinced us that

the five levels selected for factors I and J were sufficiently different

from each other for the purposes of our experiment.

4. The results of the experiment

The mean page fault rates measured during the 30 runs of which the

experiment consisted are reported in Table III. As mentioned in Section 3,

the runs were performed by trace-driven simulation. The simulated environ

ment represented a virtual-memory system in which the memory hierarchy is

managed by a sampled working set policy with a window size of 50- ms. The

total CPU times required to compile the five input programs were, respec

tively, 163.51 s, 52.88 s, 50.49 s, 34.07 s, and 5.05 s. The mean page fault

rates displayed in.Table III were computed as the ratios between the number

of page faults generated by a string and the total simulated time corres

ponding to the same string.

The effect of R on the page fault rate evidently dominates the

effects of the other factors in Table III. The analysis of variance allows

us to quantify this observation: as shown in the pie-chart in Fig. 2, more :



than 86% of the total variation about the grand mean is to be attributed

to factor R. The other two factors are'individually responsible for minor

portions of the total variation: I only explains the 1.86%, and J the

0.27%. Their interaction has a slightly larger impact (5.41%), and so does

the interaction RIJ of all factors.

The results of the analysis of variance are reported in Table IV. If

we apply the F-test to them, we find, not surprisingly, a confirmation of

the above conclusions. The hypothesis that R has no effect is rejected

at a level of significance well below 1%, whereas the one that all the other

sources of variation have no effect cannot be rejected, even if the selected

significance level is as large as 25%.

5. Conclusion

The experiment which has been described in this paper has quantitatively

shown that the performance improvements due to restructuring are not appre

ciably influenced by the inputs to the restructured program. In other words,

the improvements are "robust" with respect to input variations.

This conclusion is, to be precise, valid only for our PASCAL compiler,

the range of inputs covered by the five programs we chose, the memory policy

and the restructuring algorithm used in the experiment. How extendible the

. conclusion is to other levels of the factors which were kept constant is

anybody's guess. The experience of all those who have published the results

of empirical studies of restructuring algorithms, including the authors,

suggests that the only factor likely to have a significant influence on the

improvements due to restructuring is P, the program to be restructured.

If this program is already well-structured in the referencing-behavior sense,

only minor improvements can be obtained by restructuring it. In this case,

the variations due to the input will tend to be more significant than when

12



restructuring produces a substantial improvement. •Our feeling is that, when

a program's performance is so enhanced by restructuring as to make the appli

cation of a restructuring procedure really worthwhile, the inputs do not

usually have a major influence. Unfortunately, this feeling can only be

substantiated by further experimentation.
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Table I

Distribution of the coefficient of variation
of the block reference densities for the PASCAL compiler

Range of the coefficient of variation Number of blocks

0-20%' 8

20-40% 27

40-60% 8

... 60-80% 20

80-100% 13

• 100-120% 13

120-140% 19

140-160% . 5

160-180% 2

180-200% 3

200-220% 6

Non- referenced blocks 15

Total 139

Table II

Percentage differences between the page, fault rates (mean working set sizes)
produced by the five inputs selected

Input Page fault rate Working set
[faults/s] size [pages]

12 13 14 15

14

11 35.7348 5.44

12 36.3808 8.23

13 35.7857 8.11

14 37.5403 8.39

15 34.0594 8.79

1.8 (51) 0.14 (43) 5 (54) 4.6 (61)

1.6 (1.4) 3.1 (1.9) 6.3 (6.8)

—. — 4.9 (3.4) 4,8 (8.3)

9.2 (4.7)



Table III

The results of the experiment
(page-fault rates in faults/s)

Factor I

Factor R Factor J II 12 13 14 15

RO

Rl

35.7348 36.3808 35.7857 37.5403 34.0594

Jl 23.5949 23.7685 24.2994 24.0387 19.6039

J2 23.0689 14.6733 17.5067 25.7998 28.7128

J3 23.1056 15.5431 15.5461 27.8544 23.7623

J4 22.0659 23.9387 24.9332 17.9336 19.0099

J5 21.6867 21.6696 23.5072 22.6005 14.2574

Table IV

Analysis of variance of the results in Table III

Source of variation Sum of squares Degrees of freedom Mean square

R 2520.8266 1 ' 2520.8266

I 54.4766 4 13.6191

J 7.8350 4 " 1.9587

Rl 20.5616 4 5.1404

RJ 7.8350 4 1.9587

IJ 158.3627 16

•

9.897&

RIJ 158.3632 16 9.8977

Total 2928.2607 49
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I (1.86%)

•• RIJ(5.41%)

•* IJ (5.41%)

Rl (0.7%) + J (0.27%) + RJ (0.27%)

Fig. 2. The influence of the various sources on the
total variation of the page fault rate.
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