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Abstract

The paper considers the effect of roundoff error in the solution pro

cess of equilibrium FEM equations The use of the equivalent perturbation

matrix, the misuse of scaling, and the estimation of the condition number

are discussed.
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1. Introduction

The Finite Element Method (FEM) is a successful blend of clever engi

neering, fine mathematics, and ingenious programming. When put to use, the

product seems to be slightly tarnished by roundoff errors. It would be

nice to overlook them.

Roundoff afflicts (1) the numerical integration used to compute the

element stiffness matrices, (2) the assemblage of the global stiffness

matrix, (3) the load, or force, vector f which forms the right hand side

of the familiar equation of virtual work, (4) the numerical solution of

the equation to obtain a vector u. Consequently this u will not repre

sent the approximate displacement of FEM theory for which all those nice

error bounds have been proved.

However the same warning applies to the exact solution of the system

of equations delivered by the exact evaluation of the numerical integration

formulas. Indeed these formulas usually make a greater change in the larger

elements of the true stiffness matrix than do all the sources of roundoff

in (4) put together. The big difference is that the changes in the matrix

elements due to numerical integration are highly correlated whilst those

due to roundoff in (4) are not.

At present the favorite method for solving the system of linear equa

tions generated by the FEM is a refined version of the familiar elimination

process. As a result of twenty-five years of intensive study the problem of

the influence of roundoff error is well understood. The main facts will

be presented here, with emphasis on the positive definite systems that occur

in equilibrium problems.



2- Basic Misconceptions About Gaussian Elimination

The remarks in this section are not confined to finite element problems

MISCONCEPTION 1. The tiny roundoff errors which occur in each of

the basic arithmetic operations required to solve systems with

hundreds of unknowns by Gaussian elimination may accumulate enough

to spoil the results completely.

This fear was widespread in the late 1940's.

REPLY. When roundoff does lead to unacceptable error in the

solution this misfortune is attributable to a mere handful

(perhaps only one) of the errors, those which happen to occur

at sensitive places. This is in contrast to the propagated error

which afflicts initial value problems for differential equations

where accumulation does occur.

The standard example is the Hilbert segment (h.. = l/(i+j-l)) which is

discussed in detail in [4]. The surprising fact is that the initial errors

made in rounding off 1/3, 1/6, 1/7, etc. to single precision do more damage

to the solution than aVl^ the errors committed during the subsequent triangular

factorization and backsolving. This result is typical for graded positive

definite matrices. A matrix is graded if its elements decline (or do not

increase) as their indices increase,

laijl 1 KJ if i1 k> J>*•

MISCONCEPTION 2. In Gaussian Elimination small pivots cause

large errors in the computed triangular factors.



REPLY. The actual size of a pivot is irrelevant. A small one may

or may not accompany large errors. By scaling perversely any

pivot can be made to look small. An initial scaling of a posi

tive definite matrix so that all diagonal elements are unity does

not prevent the occurrence of completely harmless small pivots.

For example,

1 .98 .01 1 r i 0 0 1 f 1 0 0

.98 1 .01 — 0 .04 -.01 — 0 .04 0

.01 .01 1 o -.01 1 o 0 .96

MISCONCEPTION 3. Large multipliers in Gaussian Elimination pro

voke large errors in the factorization.

REPLY. As in No. 2 the multipliers are not the relevant quanti

ties. For arbitrary matrices large multipliers may or may not

accompany large errors in the computed triangular factors. How

ever for symmetric positive definite matrices large multipliers

cannot be blamed for large errors because in any subsequent com

putation the large multiplier is always multiplied by other

elements so that the product is less than the corresponding

diagonal element. For example,

no-8 io"4)

10"4 2

-8
1 0 If 10 0

10+4 1 I ° 2-(104)(!Q-4) 1

Ml 104

0 1

3. The Equivalent Perturbation Matrix (EPM)

Let us consider the standard Gaussian elimination process when applied

to a sparse positive definite n*n matrix K. Some previous experience

with the matrix interpretation of elimination is assumed.



From the original K = 10 the algorithm implicitly derives a sequence of

reduced matrices V3\ j=2,...,n, where K^' is of order n+l-j, is also

positive definite, and is written over K*J '. Upon completion the array K

holds an upper triangular matrix U which is related to the I0J' by

(1) u.j =(K(1))1j , for j=1,1+1,...,n .

The rows of 10 ' run from i to n to conform to their actual positions

in the array K. The multipliers may have been discarded but, in any case

they are the nontrivial elements of a unit (&.. = 1) lower triangular matrix

L. In exact arithmetic

(2) U= DLT .

Because of roundoff errors LU (the exact product) does not equal K and

the so-called equivalent perturbation matrix E is defined by

(3) K-E = LU .

Note that the exact triangular factors of K are completely ignored. E

can be computed but all we really want to know is that E is, in some sense,

small compared to K.

It would be nice to show that |e../k..| is tiny for all i, j but

experience with "fill in" shows that this is not true. Interestingly enough

it is true for the Hilbert segment referred to in an earlier section. It

will be shown later that |e../k..| is always tiny for FEM problems.

It can happen that roundoff destroys positive definiteness (i.e., K-E

is not positive definite) but this property is so desirable that many codes

will make small perturbations in diagonal elements of K to ensure that

ovory Moment of D, the diagonal part of U, is actually positive. We

shall assume that D is positive in this paper.



In exact arithmetic the reduced matrices are related as follows

partition K(j' as indicated, 6. is its (1,1) element,

(j) -(4) K

( * T i
&i u.

*uj mj

It follows from (4) that, in exact arithmetic, for i= j+1 n

(5) kj}+1) <kj^ (equality only if u.. =0) .

Under the assumption that D remains positive (5) will also hold in practice,

It is this monotonic decrease in each diagonal element which makes it unneces.

sary to rearrange rows and columns. The argument is worth reviewing. The

dreaded element growth is defined as

W gn s|max k^/max kO)| .
n ' . . 11 ' „ aB '

m,i,j ,J a,3 p

For positive definite matrices

(7) ^li/TO±l,,ax(kirkjj>
and so, by (5),

(8) q = fmax kW,
aa

gn = (max kjm;/max k ) < 1 .
m,i a

Note that one permutation of K (to PTKP) might yield asmaller E (term
by term) than another but all permutations produce equally satisfactory E's

in the sense that HEII/IIAII is tiny. This possibility has not received much

attention because, when used at all, permutations are selected for the more

important goal of keeping down the number of nonzero elements as the reduc

tion proceeds.



As long as no overflow occurs the elements of L may be arbitrarily

large: it is the size of the k^, m=1,... ,min(i,j), which affect e..
J ij

as we now show.

The History of the (i,j) Element, i < j.

A typical element k... will be modified in only a few of the n-1 steps
J.L,

of the reduction. Let the m step be one of them. First the multiplier

A.m, m<i, is calculated. The division k^/k^ will not be done
im mi mm

correctly but the error affects e. and not e... The key calculation

replaces k$ by k(m+1) which satisfies

(9) k(m+l) _ Am) Q .(m) (m)
{ } Kij Kij " £imkmj " eij

where e\.' is the error incurred in the multiplication and the subtraction.

In order to relate u... (= klV) to k.. one writes down (9) for m = l,2,...,i-l

and adds:

i-1

I
m=2

k^kP.l-a.^.-eP.) ,
1J u ll Ij 1.1 'Ij ij

k(3> = k(2) - I k<2> -e(2)(10) Kij Kij *i2K2j eij

k(i) - kO-l) , k(i-D -(1-1)
ij ' Kij " *1,1-lK1-l,j " eij

Cancelling \ kry from each side yields
m-9 'J

i-1

(11) k(i) = k(1) - 7 i k(m) - Ye(m)UU Kij kij mi} Sm mj ^eij •

The crucial observation is that since k .' = u . (11) can be rewritten in
mj mj x '

the illuminating form



02) ("»„-•<„-„. •«-H')-

This is equivalent to equation (3) which defined E. It shows that e.. is

simply the sum of the errors made in modifying the (i,j) element of K.

Note that ej^ =0 if either k^ =0 or k^ =0. For sparse
'j mi mj r

matrices the sum over m contains few nonzero terms compared with the

order n.

It remains to consider e\y and the actual roundoff errors made in
the calculation. A careful analysis is given in [4, p, 100] and it is not

relevant to our purposes to reproduce that material. Instead of the true

product £1mumj. the algorithm computes f(^ satisfying

(13) fW =I. u.+y(™>£. u..
ij im mj Mij im mj

Instead of the difference k(^ -fW the algorithm computes

(14) k(m+1) =kW -f(m) Jm)|,(m+1)
U ij ij aij Kij

where \i.m and a\y are complicated but satisfy the simple bounds

where e is the relative precision of the machine; for current computations
-14

e < 10 .In passing we must acknowledge that (14) does not hold for all

North American computers; the appropriate modifications complicate the

analysis without changing its essential features. On substituting (13)

into (14) and comparing with (9) the desired expression is obtained

(16) eW =yW*..u .+aWk(m+1)
U Mij ij mj uij Kij

Equations (12) and (16) give an exact formula for e.., no approximations
ij

(m+1) ,e hl_ __ b „r. ,.14have been made. If icV?1' is huge compared to k.., say 1014k..
J TJ IJ

then
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e.. will (except on rare occasions) be as big as k...
1J y ij

Before proceeding we note:

Case 1: f{™> =0. Then e|m) =0.

Case 2: k|m) =0, fill-in. Then aW =0.
'J ij

Case 3: Exponent^k^) =Exponentff^), cancellation. Then aW =0
1vl 1J 1J

From (16), (12) and (15) comes a reasonable bound on e.., i < j,

namely

1 ij1 - £• ' im mj' m TJ

where the sum is over all m not corresponding to Case 1. If K has band

width 2w+l then the sum has at most w-j+i nonzero terms. The matrix E

is not quite symmetric because of the final division in "£.. = u../u..";

it is necessary to add e|u. .| to the bound in (17) to account for it,

yielding

(18) |e |<ef^'o •• l*^ "-(m+1)
m w m

|e..| <e{Y|£. u .1+ I Ik m+1)|}
1 ji' - £' im mj1 i; ' ij '

Many inferences can be drawn from (17) and (18). This is done in the

next section.

Roundoff error also afflicts the forward elimination and the backsubsti

tution required to complete the solution of the equations. However these

errors are dominated by those in the triangular factorization. To incor

porate them into the analysis one writes

(L+ 6L)y = f+ 6f ,
(19)

(U + 6U)u = y
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where 6L and <5U have the desirable property that they are tiny compared

to L and U, element to element. Consequently

(20) [K-E+(SL)U + L(6.U) + (<5L)(6U)]u = f+6f .

Having said this we shall confine our remarks to E.

To sum up

The effect of all the roundoff errors in the direct solu

tion of Kv = f is to produce a vector u which satisfies the

equation

(K+6K)u = f+5f

with 6K, 6f given by (20), (19), (16), and (12).

The advantage of this formulation is that it puts the errors in the

solution process on the same footing as the other three parts of the FEM

method which are afflicted by roundoff and were mentioned in the introduction.

Each of these effectively makes a perturbation of K, of f, or of both.

Now it is reasonable to ask, for example, whether the errors made in assembling

the stiffness matrix are more damaging than those made in reducing the equa

tions to triangular form or less so.

4- Implications of the Equivalent Perturbation Formulation

The stiffness matrix K is symmetric positive definite and of bandwidth 2w+l

Not all zero elements within the band will be filled in during the reduction

process. Various inferences can be drawn from the form of the expressions

(12) and (16) for the elements of E.

A. Each element e... within the band is a sum of at most 2(w-j+i)

roundoff errors. So much for the accumulation effect which was so dreaded
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in the 1940's.

B. The Hilbert segment phenomenon is explained as follows. It happens

that all tne elements decay during elimination. So the sum in (17) is domi

nated by the first term (m =1); |e..| =ek.,^ .+k(2)| ;ek... since
fn\ « 1• 'J IJ Ij

^ij = ^ij "A11ulj* T'11S ls the size of t^ie error incurred when rounding
numbers to working precision.

C. In general, whenever the (i,j) element shrinks below its original

value and remains below it then e.. is of the order of a unit in the last

place of k...
U

D. The elements I. and u. (= dJL ) do not occur separately in
im mj m jm r J

the analysis. In the absence of overflow or underflow d (a pivot) may

be tiny or l^ (a multiplier) may be huge. Only their product counts and,

in the positive definite case, |£. u .| <(k..k..)1/2 <max k...
IIII IIIJ 1 1 J J A 11

E. Bunch [ ] has given exact, but complicated expressions for the

number of nonzero terms in the sum in (12), (18), and (19), in terms of the

number of nonzeros in each row of K. Our cruder expression (w-j+i) is

not ridiculously pessimistic, see H.

F. For full positive definite matrices in which the reduced matrices

K^ remain positive definite Wilkinson [11] shows

IIEII < 2.5 n3/2dlKll

for the spectral norm, HMO = A (MM). Such results throw away information

in the sense that there are many matrices E which satisfy this inequality

but could not possibly be equivalent perturbations accounting for errors in

triangular factorization. The reason for being content with such norm bounds

is given in 6 below.

G. Equivalent perturbations <SK are very useful for specialists who

wish to compare methods. However the user wishes to know the effect of these
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changes on the solution. Perturbation Theory (see [4]) yields

Theorem. Let Ax = b, (A+6A)(x+6x) = b+6b. If A and A+6A are

invertible and HA" SAO < 1/2 then

II 6x11 fllSAII JUblll
r^2K(A)(TAT+Tb

where k(A) = UAH• HA" [| is the condition number of A in the given norm.

Note that this is not simply an asymptotic result holding only for

infinitessimal <5A and fib.

Since II6KII/IIKII and H6bll/||b!l are small, provided that n2e <1, the

computed solution must be accurate unless k(A) is large. In the FEM case

much better bounds than Wilkinson's general one can be given.

H. For positive definite matrices

U. u .1 = |k(m)k(m)/k(m)l <(k(m)k(m)}1/2 < (k k )^2'̂ lmrnj1 |Kim Kmj ' mm ' - lkii kjj ' - Ckiijj}

|kjf )| <(kjf^.f1 >)1/2 <(kjfk«)1/2 <(k^.k..)172 .

A simpler but cruder bound than (17) on e.. for matrices of bandwidth 2w+l

is

|e |<2f ^kWkW)'/2<^(w-j+i)(k..k..)1/2.
v' ni '' JJ

Thus e^. is always tiny compared with the geometric mean of the associated

diagonal elements. In fact E can be majorized, element by element, by the

special matrix W defined by

J(w-j+i)(k..k )1/2 , j-i <w,
w.. = w.. = < " JJ ~~
nJ J1 n • •L0 J-l > 0 .
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Hence DEB <2ellWil <2ew2max k.., using the spectral norm.
i !'

I. In one important respect, which is rarely mentioned, the equivalent

perturbation SK from the solution process is not similar to the perturbations

corresponding to numerical integration, formation of the global stiffness

matrix, etc. The other sources all give small relative perturbations of the

elements. With, fill-in during the elimination we have e..'s which are tiny
ij J

relative to IIKII but enormous, or «>, compared to k... As shown in G these
v '•I

fill-in errors do not impair Il6ull/llull but some of them do not have a rea

sonable FEM interpretation. They correspond to wiggles in the trial functions

far outside the elements to which they belong.

There is a device for removing this anomaly. 6K is split into a sum

6S +6T where |(6S). J < ew|k. .|, say, and |(6T). .| > ew|k. .|. The equi-
•j ' j i j i j

valent perturbation relation can now be rewritten

(K+6S)u = f+6f-6Tu .

All that remains is to attribute (STu). to one or several of the larger

elements among the |k-fmuml or to f. itself. For example if (6Tu). is

less than the uncertainty in f., for each i, then 6Tu is best regarded

as a further perturbation of f.

J. Often, but not always, the 6K due to errors in the solution pro

cess are less than the inherent uncertainties in the k.. or, more likely,

in f. In such cases the computed u is as good as the data warrants and

the only legitimate question concerns the inherent sensitivity of the solu

tions to perturbations in K from any source.
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5. Estimating the Condition Number

Current programs for solving general nonsingular systems do not deliver

any estimates of the accuracy of the computed solution. A major reason for

this is that, at present, the cost of estimating the condition number is at

least equal to the cost of the solution, either in time or in storage or both

This is a price which users appear to be unwilling to pay. No one knows how

far the cost of estimating k can be reduced.

For FEM problems Fried [5,6] have given very nice, almost computable,
J.L.

a priori bounds. In particular, for energies involving m derivatives, as

h + 0,

k=0(h"2m)

where h is the minimal diameter of an element.

Here we mention some a posteriori techniques, each of which has its

drawbacks. By convention we use the spectral norm. Roundoff will be ignored

here.

At the completion of the calculation there is available

(i) a such that UKII = Xmav(K) < a < (2w+l)maxk..
max — — -jll

(ii) L, D such that LDLT = K

The bandwidth of L is w+1, I=(e,,e2,...,e ).

A. Inverse Iteration (a lower bound on k). Solve Lw = e, e. = ±1,

and Uw = w. The sign is chosen to maximize |w.| for each j. Then

UK"11| >llvll/llell =ilvll/y^n and k(K) >(max k. .)!lvll/,/n.
Cost: 2nw multiplications, 1 n-vector for w and v.

B. Majorizing L" (an upper bound on k). Suppose that U= DLT.
-1 -1 12Then UK 0< IID MIL" !l . The following observation [8] yields an inex

pensive bound on IIL" II^ =max low sum of L"1. Given any lower triangular
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matrix T define a new lower triangular matrix f by

^ =1^1; t.. =-|t..|, i>j.

It can be shown that f" is nonnegative and, element for element

T" <f" . So let e =(1,1,...,1)T and solve Ly =e for y. Then

IIL'VlllL-V^ Woo
KJK) =HKII [IK"1!! <a-llyll2/min u,.OO 00 - " 00' _• JJ

J

Cost: nw multiplications, 1 n-vector for y.

Karasalo [8] points out that for a full triangular matrix these bounds

can sometimes be pessimistic by a factor of 2n . For banded LU factors

the bound cannot be that crude. Anderson [1] offers more complicated but

sometimes better bounds based on the same idea.

C. Iterating on the Residuals [4, p. 109]. This process was invented

for improving the accuracy of computed solutions to ill-conditioned systems.

If the matrix is too ill-conditioned for Gaussian elimination, with the given

precision to arithmetic, to be meaningful then the sequence {x.} will

almost certainly not settle down at all. That information is worth having

and the process can be stopped after four or five steps. Now suppose that
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convergence does occur. It is linear and the convergence factor depends on

the condition number. If convergence is slow (6 or 7 steps) then k must

be large and can be estimated from

k(A) =2tl!x3-x2ll/ilx2-x1H

where x,, x2, x, are the three previous iterates, x3 being the latest.

If convergence is immediate (1 or 2 steps) then k may or may not be

large.

Cost: (2w+l)n double precision operations per iteration. However

K and x2 must be saved.

D. Diagonal Energy Criterion [7], The user is not content to know E,

even in principle, but needs to know the effect of E upon his system. One

measure is the relative change in the strain energy for a displacement vector

x, i.e.

xTEx/xTKx .

From (H) in Section 4 we have |e. .|< 2ew/k..k... Using the Cauchy-
•j 11 j j

Schwarz Inequality we have

(21) |xTEx| <2ew I J /OTT x.x. =2ew( J vCT x.]2
1=1 j=i n JJ iJ I^t n ij

" ? T
< 2ew I k..xf = 2ewx'K.x .

i=l nl n d

By using standard statistical estimates for the expected value of e.(m'
U

Irons replaces w by ,/w. He also suggests that wk.. can be replaced by
(m)2ll/2I k^.' where the sum extends over those m for which k.. changes.

Mil * 1 '

However this estimate is relevant only to perturbations E attributable to
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Gaussian elimination whereas (21) covers all perturbations satisfying

leijl 1 2ewlk1-jl- For example, it would be appropriate to replace 2w by p
to account for the error in assembling the global stiffness matrix. Here p

is the maximum number of elements meeting at a node.

When K is equilibrated so that Krf =I and when x is an eigenvector

for K's smallest eigenvalue X] then Irons' bound is e^f/A, which is a

very good estimate of ec(K) where c is the optimal condition number of K.

In practice we have u, the computed solution, and the estimate becomes

ey/vi uTKdu/u f.iTKdu/uT1
Cost: 3n operations, 1 vector to save f.

6. Optimal Condition Numbers are Irrelevant

A well known result, due to Bauer [2], establishes that Gaussian

elimination, roundoff errors included, is invariant under scaling. More

precisely, if the sequence of pivotal elements is fixed and if the scaling

is done solely with the powers of the number base of the arithmetic unit,

then the fractional parts of the all the floating point numbers which occur

in the algorithm are unchanged if the calculation is repeated on a scaled

system.

A convenient practical consequence of this fact is that, if one is pre

pared to risk that no under/overflow occurs, then there is no need to bother

with scaling positive definite matrices, A more subtle corollary is that

discussion of elimination should employ scaling invariant terms. Now the

condition number with respect to a given norm,

k(A) = IIAMIA"1!! ,

is certainly not invariant. The nearest qualified candidate for a measure

of near singularity is the optimal condition number
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c(A) = min k(DAD)
D

over all positive diagonal matrices.

This is a beautiful example of solving a problem by fiat! In fact it

can be argued that c is simply the measure which makes the results look

their best. There is an alternative approach.

For general linear systems, where it does influence pivot selection,

scaling is regarded as a vexing and difficult problem. This is because the

difficulty j£ not mathematical and cannot be resolved without more information

The task of solving a linear system in noisy arithmetic is not properly set

until the user specifies a suitable norm for measuring the right hand side

(the load vector) and a suitable, possibly different, norm for measuring the

solution (the displacements). Ideally these norms should reflect the users

interest in the problem and they should have the property that vectors of

equal norm should represent states that have equal impact on the user.

Here lies the rub. Most users are not in the habit of formulating their

knowledge of their problem in this formal manner. Nevertheless such speci

fications do resolve the difficulties.

Let ll-lld and D• 0^ be the given norms for displacements and loads,

respectively. The corresponding norm for a stiffness matrix K is then

given by

1KB* emax IIKulL/ilull .
d u?<0 l d

and the correct norm of a flexibility matrix K"1 = F is

IIFII^ =max IIFvIl ./llvIL .
* v#) d £

Finally the sensitivity of the model must be measured by
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Kd;£(K) =iKlJlK-^j .

This measure is also scaling invariant by decree but in amore relevant way

than is c. If K were to be scaled (in fact there is no point in doing so)

this would correspond to a scaling of loads and displacements. This is fine

but it would be meaningless not to change the norms in acorresponding way.

When this is done properly the new condition number turns out to be identical

to the old condition number, as it should if this measures the nearness to

singularity of K for the user's purpose.

The formal verification iof these remarks is left as an exercise for the

interested reader.

Although this viewpoint clears up the difficulty of choosing the right

condition number it is very much a pure mathematician's solution. The proper

matrix norms are well defined but how are they to be constructed? We have

no answer to that question.

Another reasonable scaling is to choose D so that the absolute uncer

tainty in each element of DKD or of Df is constant.
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