
 

 

 

 

 

 

 

 

 

Copyright © 1976, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



ON FUZZINESS AND LINGUISTIC PROBABILITIES

by

Hung T. Nguyen

Memorandum No. ERL-M595

14 June 1976

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



ON FUZZINESS AND LINGUISTIC PROBABILITIES

Hung T. Nguyen

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

1. Introduction

In a recent paper [12], L. A. Zadeh introduced the concept of

linguistic probabilities. In this note, we examine this concept in

greater detail and explore its relations with fuzziness in measure

theory, and the application of the extension principle of Zadeh [12]

to operations on the space of probability distribution functions. As

a preliminary, we shall review some of the basic concepts in the theory

of fuzzy sets which are relevant to our analvsis.

2. Fuzzy Sets and the Extension Principle

2.1 Notation

Let U be a set. We denote by ^(U) the collection of all subsets

of U. If A G r(U), then 1 is the membership function of A, defined

by:

1A : U -•• {0,1}

fl if u
»)-

10 if u
V

€ A (2-11)

* A

We denote by ^(U) the collection of all fuzzy subsets of U. Each A6

^P(U) is characterized by its membership function u :U -• [0,1], and
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we write symbolically

= IyA(u)/u ,A =

~U

signifying that A is the union of fuzzy singletons u (u)/u.
A

An order relation in ^(U) is defined by:

A£B<*uA<uB (2.13)

If A,B e ^(U), then we define:

AUB " ^AUB^A^B (2-14)

A°B * VB =PAAliB (2.15)

where V and A stand for maximum and minimum respectively. With these

operations, P(U) is a (complete) distributive lattice with minimal

element <J> (u =0), and maximal element U (]iTT=l) •

2.2 Fuzzy Negation

Since the unit interval [0,1] is a distributive lattice, which is

not complemented, it follows that ^P(U) is not complemented. If we

define the relative pseudo-complement of a fuzzy set A relative to a

fuzzy set B, we obtain a Brouwerian lattice, as shown in [2]. But, in

fuzzy logic, the complement or, equivalently, the fuzzy negation of a

fuzzy set A, denoted by A , is defined by:

(2.12)

y - l - u.

AC A
Although obvious, it is important to note that A is not a comple

ment or a pseudo-complement of A in the algebraic sense. However, the

operation A -»• A satisfies the following two properties of the complement
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operation in an arbitrary distributive lattice (with maximal and minimal

elements):

(AC)C = A (involution) (2.22)

ACB=*AC D B° (order reversing) (2.23)

Thus, the definition of fuzzy negation is motivated by the fact that the

unit interval [0,1] is a complete, distributive lattice with order

reversing involution: x -»• 1 - x.

2.3 Reverse and Dual

If A and B are two subsets of the real line JR (or more generally,

of ]Rn), then

A©B = {a - b|a G A, b e B} (2.31)

Now if A and B are fuzzy subsets of 1R, then it is natural to

define A 0 B as the fuzzy subset of 1R characterized by:

MA0B(X) = V f^A(u)AyB(v)] (2.32)
'(u,v) e m2

{.u - V = X

In particular, if A = {t}, then

Mt©B(x) = yB(t"x) <2-33>

which implies that t0 B is the fuzzy symmetrical set of B with respect

to the point t/2.

Let U be a bounded invertal in ]R, say U = [a,b], and A G^fa.b];

then by the reverse of A we mean the fuzzy set A* defined by:
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V(u) = Va+b~u) > V* e fa,b] (2.34)

i.e.

A* = (a+b)0A (2.35)

Note that in the case of IR, we define A* as:

yA*(u> = V~u) , Vu G IR (2.36)

In the case of U = [0.1] (and, more particularly, in application to

linguistic truth-values and linguistic probabilities [12]), we have:

uA*(u) = UA(l-u) , uG [0,1] (2.37)

In this case, A* is called the dual of A [1], Note that A* ± AC, but

the operation A •+ A* is also an ordered reversing involution (with

respect to the extended order relation of ^p[0,l], via the extension

principle [12], as will be described in greater detail in Sec. 2.5).

2.4 Fuzzy Relations

If U = U x ... x u , then an n-ary fuzzy relation in U is a fuzzy

subset of U.

If R (resp. S) is a (binary) fuzzy relation in X x Y (resp. Y x z),

then the (max-min) composition of R and S is the fuzzy relation R»S in

X x Z characterized by:

uRoS (x,z) = V^ [uR(x,y)A Us(y,a)] (2.41)

Note that if R and S are nonfuzzy relations, then:

R ° S = {(x,z) G X x Z|3 y G Y such that (x,y) G R and (y,z) G S} (2.42)
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Note also that RoS can be expressed in terms of fuzzy projections

as follows:

Let R and S be fuzzy subsets of X x Y x Z characterized by:

u-(x,y,z) = uR(x,y) (2.43)

y-(x,y,z) = us(y,z) (2.44)

The projection T of R O S on X x z, is defined by:

RjXx.z) = V^RfJs(x»y»z) (2.45)
yGY

then we have:

RoS = T = Pr(ROS).
Xxz

2.5 Extension Principle

The theory of fuzzy sets provides a basis for the development of

computation techniques for the manipulation of magnitudes which are

expressed in linguistic rather than numerical terms. A device that is

particularly useful for this purpose is the extension principle [12],

which provides a natural way of extending operations defined on U to

More specifically, let f be a mapping from U to V, and let A G^P(U),
/>+

with A expressed symbolically as:

A=JuA(")/u (2.51)

where y is the membership function of A.

Then the image of A, f(A), is defined to be:
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f(A) =JuA(u)/f(u) (2.52)

where f(u) G V.

More generally, if * is a binary operation in U x v, with values in

W, and A G <P(U), BG ^(V), then

=JuA(u)Ay]A *B= lyA(u)Ayfi(v)/u*v (2.53)
W

For example, if A,B G ^P(IR); then

A+B= |yA(x)AyB(y)/x+y (2.54)

The extension principle may be used to extend the usual order

relation on the real line M to ^(R) [12]. This order relation on

CP (]R) extends also the usual order relation in interval analysis [5].

A concept which plays a basic role in the applications of the

extension principle is that of a fuzzy restriction [12]. Informally, if

X is a variable taking values in U, then a fuzzy restriction, R(X),

associated with X is a fuzzy relation in U,which acts as an elastic

constraint on the values that may be assigned to X. Thus, if small is

a fuzzy subset of 3R characterized by the membership function u :

ffi.-»- [0,1], then the fuzzy proposition "X is small" translated into

R(X) = small

which implies that the proposition in question induces a fuzzy restriction

on the values of X which is given by small. In this sense, a variable X

is fuzzy if it is associated with a fuzzy restriction.

In the case of fuzzy variables, a concept which is analogous to

that of dependence in the case of random variables, is the concept of
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interaction [12]. More specifically, the fuzzy variables X,,...,X are
1 n

non-interactive under the restriction R(X.,...,X ) iff
1 n

R(Xlf...,Xn) = R(XX) x... XR(X ) (2.55)

where X denotes the cartesian product of fuzzy sets [12].

As an illustration, consider the propositions: "X- is A" and "X is

B" where AG <^>(U), BG Cp(V).

These propositions translate into:

R[a(Xx)] =A , R[b(X2)] =B (2.56)

where a(X^ and b(X2) are implied attributes of X. and X respectively.

Thus, X1 and YL are non-interactive iff:

R(a(X1),b(X2)) = A x B (2.57)

i.e.

Va(Xl)?MX2)) =Vu) A»»W (2-58)
Remark: In general, for each (u,v) G U x V, the degree of compatibility

of (u,v) with R(a(X ),b(X )) is a function of y.(u) and u (v), say
•*• ^ A B

f(yA(u),yfi(v)). Thus the non-interaction of X and X implies that:

f(yA(u),ufi(v)) = yA(u) A yB(v). (2.59)

It is shown in [1] that the non-interaction of X and X corresponds

to the property of non-compensation of the function f. More precisely,
2

a function f : [0,1] -+ [0,1] is said to have the non-compensation

property if:

for all aG [0,1], there do not exist (x,y) G [0,1]2 such that:

•7-



(i) x A y < a < xVy

(ii) f(x,y) = f(a,a).

Examples: f(x,y) = x a y» f(x,y) = x v y

Note that the functions f(x,y) = xy, f(x,y) = —^ do not have this

property. As shown in [1], under suitable conditions on f, if f has

the non-compensation property, then f is necessarily of the form

f(x,y) = x A y.

2.6 Operations on the Space of Probability Distribution Functions

Recall that a probabilistic metric space is an ordered triple

(S,9£t) such that [8]:

(tT: S xS + A (space of probability distribution functions F

such that F(0) = 0)

(i) ^(P.q) = en ~ P=q (where e =1 .)
0 ° ]0, +M

(ii) ^(p.q) =^(q.p)

(iii) v3Rp,r) _> x(9Rp,q),(ry(q,r)) where t is a triangle function (a

suitable binary operation on A )

If t is the convolution operation, then (iii) is Wald's inequality.

If x is of the form:

xT((F,G)(x) = Sup F(F(u),G(v)) (2.61)
u+v=x

where T is a t-norm, then (iii) is Menger's inequality. It is shown

in [9] that the operation t is derivable from an operation on random

variables, namely, addition, using the technique of copulas. A similar

result can be obtained from the fuzzy set point of view, using the
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Given F, G G A , formally F and G define two fuzzy subsets A and B

of the real line by putting

F - MA , G = V

Using the extension principle, addition of fuzzy sets A and B is

defined as:

A+B=|yA(xy\yB(y)/x+y (2.62)

By the definition of the union of fuzzy sets, we have:

i.e.

PA+B(Z) = V 2[yA(x)A Vy)]' (2'63)
r(x,y)G!R

lx+y=z

xA(F,G)(z) = yA+B(z) (2.64)

Thus, the operation ta corresponds to the addition of fuzzy subsets

of the real line.

Remark: If X and Y are real random variables, with distributions F ,

F respectively, then their joint distribution 1L~ is of the form:

E^y) = CXY(Fx(x),Fy(y)) (2.65)

where Cw is a connecting copula of X and Y [9]. If X and Y are inde-

pendent, then C (x,y) = x • y.
A.JL

If X and Y are fuzzy variables, with fuzzy restrictions R(X), R(Y)

respectively, then X and Y are non-interactive iff:

f[yR(x)(x),WR(Y)(y)] =.iR(x>Y)(x,y) =PR(x)(x)A uR(y) W• (2-66)
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Let X and Y be two real random variables such that X = f(Y) or

Y = f(X), with f strictly increasing. Consider X and Y as fuzzy

variables with fuzzy restrictions:

MR(X) S FX ' WR(Y) 5FY (2'67)

Then the fuzzy variables X and Y are non-interactive iff the fuzzy

restriction R(X,Y) is characterized by:

•W.Y) 5"xY (2'68>

because here we have: C (x,y) = x A y [9].

3. Fuzziness in Measure Theory

3.1 The concept of a measure may be extended to fuzzy sets in a variety

of ways. In particular, in [10] and [13], a fuzzy measure is defined as

a mapping from a collection of fuzzy subsets to the real line which has

most of the basic properties of an ordinary measure. More specifically,

a measure m on a o-algebra 'J\ of fuzzy subsets of a set fi is a mapping

from <Jx to 1R such that:

(i) A,B G Jk and AC B=» m(A) <_ m(B)

(ii) mW = 0

(iii) VA,B ejk, m(A) + m(B) = m(AUB) + m(AnB)

(iv) If A is an increasing sequence in (j4, then:

m(UA ) = lim m(A ).
n n

n n-x»

It can readily be shown that, for fuzzy measure, monotone continuity

is stronger than o-additivity.

3.2 An alternative definition of fuzzy measure is given in [11] as
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follows:

Let (tt*Jb be a measurable space. A fuzzy measure of (Q,oA) is a

mapping g : J{ + [0,1] such that:

(i) g(<J>) = 0, g(fi) = 1

(ii) A,B Go4 and A C B=> g(A) < g(B)

(iii) (A ) °° in lA and monotone, then: lim g(A ) = g(lim A )
n •*• n v n

n-x» n-*»

In this definition, the value g(A) may be interpreted as a subjective

measure expressing the grade of fuzziness of the set A.

A fuzzy measure g is said to be F-additive if VA,B Gc_A g(AUB) =

g(A) V g(B).

These fuzzy measures bear a resemblance to a special class of

capacities, namely strong capacities [6].

Examples: The Dirac measure at a point uu G fi :6 .

If f : Q •*• [0,1], the A -*• sup f(a)) is such a measure. Formally, a
A

probability measure is also a fuzzy measure in the above sense.

3.3 Let (Qt^Jv be a measurable space. By a fuzzy event, we mean a

fuzzy subset A of J] such that its membership function u is (^A-measurable.
A.

Probability measure is extended to fuzzy events in [13] as follows:

Let P be a probability measure on (fl,(j4). Denote by u^ the

o-algebra of fuzzy events. Then P is extended to uA by putting:

AGlA , P(A) =JuA(o))dP(o))

Thus: P :lA -*» [0,1].

As a simple illustration of this extension, let ft = {w, t...,u } be
1 n

a finite set with the uniform probability measure P. Let A G ^(ft),
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then the fuzzy proportion

n

i=l

n

n

is defined by

Remark: The number |A| = J]y (u,) is called the power of A[12]. More

1=1 r^generally, if ft is an arbitrary set, the power of A G ^(ft) may be viewed

as the result of an extension of the counting measure on ft. More pre

cisely, the power of AG ^P(ft) ,is given by £ yA(w) is S is countable
^SA

and +» if not, where S is the support of A, i.e., S = {oj : yA(uO $ 0}.
A A A

3.4 In generalized information theory [4], the information associated

with an event A is interpreted as the information provided by a proposition

(in the spirit of statistical mechanics) of the form "The state is in the

set A." A natural way of extending this concept of generalized informa

tion to fuzzy sets is the following [7]:

Recall that an information measure is a mapping J from a lattice

X (<_, A,V, minimal element 0, maximal element 1) to ]R such that:

(i) x <_ y =» J(x) >_ J(y).

(ii) J(0) =* +» , J(l) = 0

(iii) There exists F : R. x R -»- R such that:

J(xvy) = F(J(x),J(y)) if x A y = 0.

Examples:

a) Let (ft^A,P) be a probability space. The Wiener-Shannon information

measure on X = cjA is defined by:

Aejk, J(A) =cLog p~y , c>0.
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_ x _x

F(x,y) = Sup{0, -c Log [e c+ e c]}.

b) Let m be the counting measure on an infinite set ft. Define J : X

£pfo) + ]R+ by:

J(A) = 1
m(A)

F(x,y) = 1/x + 1/y

c) Let D be the Hausdorff dimension on [0,1], and 6 : [0,1] •* 3R , con

tinuous, strictly decreasing with 9(0) = +» and 6(1) = 0.

Define J on X = ^([0,1]) by

J(A) = 9[D(A)].

F(x,y) = x A y (This is so because, for all A,B C [0,1], D(AUB) =

D(A) VD(B).)

Given a measurable space (ft^^A), we denote L$ the lattice of fuzzy

subsets (of ft) A such that y. is (j4-measurable. Let J be an information

measure on^, then an information measure for fuzzy events, i.e. <JK9

can be defined as an information measure J on the functional lattice

^LA) =i\ :AG lA}, such that:

i(lA) =J(A) for all AG'i.

Example:

Let ft = [0,1], and (ft)tGr0 ii a family of functions f : [0,1] •+

[0,1], such that:

ft(t) = 1 , VtG [0,1].

For example: f x ._ _
r ' — if 0 < x < t

For tG ]0,1[ , f„(x) =<
j^£ if t<x<1
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and: f0(x) = 1 - x

f1(x) = x.

The mapping: AG^[0,1] -»• f G[0,1][0,1] defined by:

f (x) = sup f (x) (3.41)
A tGA t

is such that:

(i) f = 0
9

(ii) f = 1 on A.

(iii) ACB=>f <f .

Thus this mapping induces a 6-closure operator [3] (left«continuous)

on [0,1]:

6(A,c0 = {x : fA(x) > a] (3.42)

We denote by ^(6) the a-algebra generated by 9 (i.e. by 9(A,a),

AC [0,1], a G [0,1].). Let J be an information measure on ([0,1] ,^(6)),

with F(x,y) - x A y.

For A in^B(9), define:

J(u ) = Inf [aVJ(A)] (3.43)
A aG]0,l] a

where A^ = {x : y.(x) j> a} G^P(9).

Then J is an information measure on ^(^ (8)) with F(x,y) = xA y

and J(1A) =J(A), VA G^e).

4. The Concept of Linguistic Probabilities

As in the case of the conventional concept of measure, the fuzzy

measures defined in the preceding section take real numbers as their
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values. The notion of linguistic probabilities, on the other hand,

represents a substantial departure from this convention. In what follows,

we shall examine this notion in great detail and discuss the problem of

the computation of the expectation of a linguistic random variable.

4.1 Let (ft,(j4,P) be a probability space. If A G ^J\ and P(A) is unknown,

we consider P(A) as a numerical variable taking values in [0,1]. The

linguistic variable associated with A, denoted by P(A), has P(A) as its

base variable; that is, each value assigned to P(A) represents a fuzzy

restriction on P(A). Thus, with each event A we associate a parameter

taking values in a subclass of ^[0,1], which implies that P(A) takes

values in a (countable) set W C 4-10,1], where each element of W is a
—- «

fuzzy subset of [0,1] whose label belongs to a term-set T(P) [12]; P(A)

= I, I G W, signifies that I is a fuzzy restriction on P(A), and I is

A

called a linguistic probability value. In effect, this means that P

may be viewed as a multi-valued mapping from cA to W.

Let X be a random variable, taking values in a finite set U =

{u, ,...,u } C1R. With each event (X=u.), we associate a linguistic
In i

variable P., with p. = P(X=u.) as base variable. Each n-uple (A.,...,
i ri i 1

A ), where A. is a linguistic value assigned to P , constitutes a
n i i

linguistic probability assignment list associated with X. A collection

of such lists will be referred to as a linguistic probability distribu

tion of X. A random variable X which is associated with a linguistic

probability assignment list is called a linguistic random variable.

Note also that each list (A ,... ,A ) may be subject to different

constraints [see 4.2]. As an example, the linguistic uniform assignment

list of X may be expressed as

-15-



Ill II

in

"1" 1
where — is a fuzzy subset of [0,1] labeled "close to —."

n n

4.2 Let X be a linguistic random variable taking values in U = {u.,...,u }

C 1R , with linguistic probability assignment list (A.,...,A ). By
1 n

linguistic expectation of X (with respect to this list), we mean the

expression:

E(X) = u.A. + ... + u A . (4.21)
linn x '

The meaning of (4.21) may be deduced from the extension principle.

Specifically, note first that each fuzzy subset A of [0,1] is a fuzzy

restriction on a variable p . For this reason, the interaction between

the A is related to the existence of constraints on the base variables

p , which are expressed by

SC[0,l]n , S= {(P-.....PJlp.+.-.+p =1} (4.22)
l n ' ± n

If A^^ are non-interactive (apart from the constraint (4.22)) then

the restriction imposed by (A.,...,A ) is characterized by:

y(Xl,...,xn) a A (X ) n 1 (X ,x ) . (4.23)
(A1,...,An) Li=l Ai iJ S X n

Thus, by using the extension principle, we see that E(X) is a fuzzy

subset of the real line characterized by:

Mf(X*Z)= ^ . )e [0>1]n (4.24)
l n

x,+.. .+x = 1 •
I n

u,x,+.. .+u x = z
II n n

-16-
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Remark:

More precisely, the notion of linguistic expectation might be for

mulated in the setting of measure theory as follows:

Recall that the Minkowski's addition of two subsets A and B of I

(or more generally of 1R ) is defined by:

A fc B = {a + b|a G A, b G B} . (4.25)

If A and B are fuzzy subsets of IR, then we define the sum A 0 B by:

UA*B(x) = V [yA(u) A VV)] 'VxG m* (4*26)f(u,v) G 3R2
\u + v = x

On the other hand, for £G]R and £ ^ 0, we define the fuzzy set £.A

by:

M£A(x) =yA(f) , Vx Gm (4.27)

and we put 0.A = {0}.

Let u (i=l,...,n) be real numbers (^0), and A (i=l,...,n) be fuzzy

subsets of [0,1]. We extend each A to a fuzzy subset of ]R, still denoted

by A , by putting:

y (x) = 0 if x f [0,1].
. i

Using (4.26) and (4.27), we can then define the fuzzy subset (of ]R)
n

$ u.A. by:
i=l 1

Vx G ]R , y (x) = V
' n '

UiAi j(x1,...,xn)G]Rn
n

Exi=xi=l x

-17-
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f
V

(xlf...,x ^m1

r n x -j

A *A (TT>
Li=l Ai Ui .

n

~G [0,1], i=l,...,n

(p ,...,p )G[0,l]n
i. n

n

EVi = xi=l 1 1

In the case of a linguistic probability distribution, we have to

add, at least, the constraint p, + ... + p = 1(S). Thus:
1 n

Vx G ]R , y (x) =

$ u.A,,
i=l X i

V

(pl'"*,Pn)eS
(4.29)

4.3 It is pointed out in [12] that the computation of linguistic expecta-

tion E(X), i.e. the determination of its membership function u-, v,
E(X)*

reduces to the solution of a nonlinear programming problem with linear

constraints.

More specifically, let the objective function, defined on [0,l]n, be:

n

f(Pl,...,Pn) - Ay (p >
i=l i

(4.31)

then, for each given x G ]R, the determination of the value of y-, v(x)
E(x)

leads to the problem:
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Maximize f(p-,...,p ) (4.32)
n

Apart from the constraint (S) on the base variables, in general

there exist (fuzzy) constraints induced by fuzzy relations between the

2
A , for example if Q is a fuzzy relation in [0,1] , and A. and A are

such that A = Q o A . (Note that this composition reduces to the max-

min matrix product when A and Q have finite supports.) In such a case,

we are faced with the problem of optimization under fuzzy constraints

(for this problem, see [14]), for example, consider a mathematical

program:

Max{f(x), x G A} (4.33)

where f : DC]R -*-]R, ACD and the constraint is interpreted as the

condition x G A. We may have

A = (x G D : g(x) > 0} (4.34)

where g : D ->• 3R .

If the relation j> is replaced by a binary fuzzy relation F in 11 ,

i.e. a fuzzy subset of R , then the feasible region A becomes a fuzzy

subset of D, defined by:

yA(x) = yp(g(x),0) , VxG D (4.35)

Thus, in the case where the base variables p are constrained by a
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fuzzy relation, T, we have:

Max f(p.,... 'V
subject to:

f*
£p± =i
i=l x

i=l x x

L T

i.e.

(4.36)

Max yT(P;L,...,pn) •f(P;L,...,pn) (4.37)

Subject to:

-20-



\ *

REFERENCES

[1] R. E. Bellman and L. A. Zadeh, "Local and Fuzzy Logics," Memorandum

ERL-M584, University of California, Berkeley (1976).

[2] A. De Luca and S. Termini, "Algebraic properties of fuzzy sets,"

Jour. Math. Anal, and Appl., 40, pp. 373-386 (1972).

[3] M. J. Frank, "Probabilistic topological spaces," Jour. Math. Anal.

and Appl., 34, pp. 67-81 (1971).

[4] J. Kampe de Fefiet and B. Forte, "Information et probabilite," C. R.

Acad. Sc, Paris, 265A, pp. 110-114, pp. 142-146, pp. 350-353 (1967).

[5] R. E. Moore, Interval Analysis, Prentice-Hall (1966).

[6] H. T. Nguyen, "Sur les mesures d'Infomation de type Inf.," Lecture

Notes in Math, no. 398, pp. 62-75, Springer-Verlag (1974).

[7] H. T. Nguyen, "Sur 1'information et les ensembles flous." Communica

tion at the meeting. Information Theory and Questionnaires, Lyon,

France, June 1975 (to appear).

[8] B. Schweizer and A. Sklar, "Statistical metric spaces," Pacific J.

Math., vol. 10, no. 1, pp. 313-334 (1960).

[9] B. Schweizer and A. Sklar, "Operations on distribution functions

not derivable from operations on random variables," Studia. Math.

52, pp. 43-52 (1974).

[10] R. E. Smith, "Measure Theory on Fuzzy Sets," Thesis, Dept. of Math.,

Univ. of Saskatchewan, Saskatchewan, Canada (1970).

[11] M. Sugeno, "Theory of Fuzzy Integrals and its Applications," Thesis,

Tokyo Inst, of Tech., Tokyo, Japan (1974).

[12] L. A. Zadeh, "The concept of a linguistic variable and its application

to approximate reasoning," Memorandum ERL, M411, Univ. of Calif.,

Berkeley (1973). [Published in three parts in Information Sciences

-21-



1975: 8, pp. 119-249; 8, pp. 301,357; 9, pp. 43-80.]

[13] L. A. Zadeh, "Probability measures of fuzzy events," Jour, Math.

Anal, and Appl., 23, pp. 421-427 (1968).

[14] L. A. Zadeh, "Fuzzy sets and systems," Proc. Symp. on Systems Theory,

Poly. Inst, of Brooklyn, pp. 29-39 (1965). **

-22-

* /-•


	Copyright notice 1976
	ERL-595

