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ABSTRACT

The conventional approach to modal reduction is based on the diag-

onization of the coefficient matrix A. It requires the costly computa

tions of the eigenvalues and eigenvectors of the large A matrix. We

present a new approach to modal reduction, along with a computationally

quite efficient and numerically rather stable algorithm. Our algorithm

utilizes elementary transformations and avoids the direct computation

of the. eigenvalues and eigenvectors of A.
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I. INTRODUCTION

In many practical applications, the number of state variables of the

system may be very large, for example, in electric circuits [1] and

power systems [2]. Simplified models of reduced order may have to be

used. Lai and Van Valkenburg [3] have reviewed various existing reduced-

order modeling techniques in a recent paper. Interested readers are

referred to that paper for additional references. Davidson [4] suggested

a reduced-order model which retains only the contributions to the response

by the modes associated with small eigenvalues. This is known as the

modal reduction approach. The modal reduction method has been applied

to the construction of power system dynamic equivalents [5, 6, 7] for

use in stability calculations and dynamic simulations. It is found, how

ever, that the computational savings are not very satisfactory [8]. The

reason is that the computational schemes for modal reduction based on the

conventional approach require the very costly computations of the eigen

values and eigenvectors of the original large matrix. Recently Kokotovic

[9] proposed a method for obtaining reduced-order model from the solu

tion of a Ricatti equation. His procedure does not guarantee that the

reduced-order system has the desired modes. We present a new approach

to modal reduction in this paper, along with a computationally quite

efficient and numerically rather stable algorithm. Our algorithm is

based on elementary matrix transformations and it avoids the costly com

putations of the eigenvalues and eigenvectors of the large matrix of the

original system.

In Section II we use the conventional approach to describe the modal

reduction technique. In Section III we present a theorem, which is the

foundation of our new approach to modal reduction, and provide some
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motivations which lead to our modal reduction algorithm. Our modal

reduction algorithm is described in Section IV. Schemes to further

reduce the total computations are discussed in Section V. In Section VI

we consider the special case such that the original system matrix is

symmetrical and modify the modal reduction algorithm to take advantage

of the symmetry. In the last section we consider an alternative criterion

for mode-retention and present a reduction algorithm.

II. MODAL REDUCTION

1. Conventional approach.

Consider a linear time-invariant system representation

x = Ax+Bu (1)

y = Cx (2)

where x^]R , u€=IR , y€=lR , and the dimensions of the matrices A, B, C

are n*n, nxm, n*p, respectively.

Assume that the eigenvalues of the matrix A are distinct. Let A ,

A0>..., A be the eigenvalues of A and en, e_,...,e be the corresponding
z n 1 /. n

eigenvectors. Let us partition the eigenvalues into two sets

{A,,A0,...A } and {A ,-,...,A . } where n,+n =n. The fundamental
l I n- n-+i ni o •*• ^

matrix Q, consisting of the eigenvectors {e.,e0,...,e }, and its
LI n

inverse P, can be partitioned accordingly.

Q = K : e2i'"en] =

P A q-1
P P

11 12

P P
L 21 22 J

Qll Q12
LQ21 Q22J
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Where Qu and Pu are n^x^, Q22 and ?22 are n^^, Q and P are

nlXn2' ^21 and P21 are n2*nl" Let US Partition x into x and x ,
Q II„
1 2where ^ ^IR and x2 GJR and then partition A, B, and C accordingly.

All A12
A =

LA21 '22

B =

C = K C2]

Now if we make a coordinate transformation

Then (1) and (2) becomes

«2

L92j

P F~l
11 12

P P
21 22 J Lx2

\ 0 V + "P11B1 + F12B2_
0 y s. _P21B1 t P22B2_

\i «12" V
:1C2]

-Q21 Q22. .«2.

(5)

(6)

(7)

(8)

U
(9)

(10)

where A = diag (A , A ,...X ) and A = diag (A .-,..., A . ) are
i- *• n_ ° n_+l ni ?

diagonal matrices.

The transformation (8) changes the basis into one formed by the

eigenvectors ie^*^ ,,,en^ of A* The comPonents of Kare the coordinates

of the vector relative to the new basis' {e-,e„,...e }. Each coordinate
LA n

of £ is called a mode of the system (1). From eq. (9^ it is seen that
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the free system (zero input, u = o) in the new coordinate system, is de

coupled i.e., each mode can be excited independent of the other modes.

Suppose that we neglect the modes corresponding to 5-» then we need

only to solve the following reduced-order system (11) to obtain the mode-

reduced output y.

h " A2*2 + (P21B1 + P22B2)U (11)

^<fe]
52 (12)

y = [en cj • ~ "

The foregoing procedure is known as the modal reduction.

2. Criterion for mode retention.

In practical applications [4 - 7], the modal reduction is applied to

such cases that all the eigenvalues of A have nonpositive real parts.

Consider the eigenvalues which are far from the origin, e.g., A = - a + jio.

They either have large (in magnitude) real part a or imaginary part

a) or both. If a is large, it can be seen from the solution of (9)-(10)

that the contribution of the mode corresponding to such an eigenvalue dies

out fast because of the e factor. If oo is large, since practical sys

tems normally are low-pass filters ' the contribution of such a mode in

the steady state will likely to be very small. Indeed the modes corre

sponding to eigenvalues close to the origin roughly determines the type

of the response which the system will have. Based on these considera

tions the decision in practice is to neglect the modes corresponding to

eigenvalues with large magnitude and to retain the modes corresponding

to eigenvalues of small magnitude.

The elements of the transfer function matrix G(s) = C(sT-A)~T normally
are strictly proper rational functions, hence each element has the pro
perty of a low-pass filter, i.e., G, , (jw) -*• 0 as (o -*• «..
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Comment: Conputational schemes for modal reduction based on the conven

tional approach require the calculations of the eigenvalues and eigen

vectors of the large matrix A, which is a computationally costly task.

Let us now contemplate on the possibility of computational improvements.

It is clear that the essential part of the modal reductic a is to de

couple the modes to be retained from the rest of the modes. However,

the conventional approach using the coordinate transformation (8) does

far more than that. It actually decouples each and every mode, as evi

denced by the diagonal matrix in eq. (9). Therefore it is reasonable

to say that the computations involved in the conventional approach is

more than necessary and improvements are possible. Indeed, we are going

to present a new approach to the problem, along with an algorithm which

avoids the costly computations of the eigenvalues and eigenvectors of A.

III. A NEW APPROACH

1. Foundation

A necessary consequence of decoupling certain modes from the rest

of the modes through a coordinate transformation is that the coefficient

matrix A will be transformed into a block triangular form. Therefore,

let us consider a transformation n = Tx such that A = TAT is block

upper triangular, All A12
0 AA22

, i.e., n9 is decoupled from tu, where

n=Ru (See Fig. 1). Theorem 1 relates the coordinates n and the co

ordinates of the individual modes £. The theorem provides the foundation

for our new approach to modal reduction.

Theorem 1 Consider a linear time-invariant system representation.

x = Ax + Bu (13)
y = Cx (14)
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A, o
o A,

A A

A A
M2I M22

T Q

V.

A A

0 A 22

Fig. 1 Relationships among the coordinate systems x, £ and n



n m
where x£]R , u^TR , y£]R . Assume that the eigenvalues

{A.. ,A„,... ,A } of A are distinct.
l z n

Suppose that a similarity transformation T, i.e.,

H=Tx

transforms (13) into the form

K1 [An Ai2l h
N 1° A22.lh22J L"2

where A-1 is n. xn , A is n„xn , with n.+n9=n, and n =

Bi

LB2J
u

(15)

(16)

Let the eigenvalues of A.- be {A.,...,A }, the eigenvalues of A2„
2

be {A .,...,A . } , and the eigenvectors of A corresponding to the
nl+1 nl+n2

eigenvalues {A ,....,A . } be {e .-,...,e , }.
° n^+1 ni 9 n..+l ni"hl?

Then n9 is related to £9> the coordinates of the vector x relative

to the set of eigenvectors {e ,-,...e . } corresponding to the eigen-
nl+1 nl+n2

values of A99, by a nonsingular trasnformation Q99» i»e.,

n2 ^22^2 (17)

In fact, Q99 is the fundamental matrix of A„9.

Furthermore, the mode-reduced output y, i.e., the output with

contributions only from the modes £„, as defined in eq. (12), is given by:

-1"

(18)
Q12 Q22y = [cx c2]

-1
where C = [C. C ] = CT , Q _ is the solution of the matrix equation

"The eigenvalues of A are identical to the eigenvalues of A =
All A12

22 J
The eigenvalues of A are the union of the eigenvalues of A1 and the
and the eigenvalues of A99.



A11Q12-Q12A " -A12^22 (19)

where A. A diag(A ,...,A ).
2 n»+± 19

Corollary. If a similarity transformation T transforms Eqs. (13), (14)

into the form

Ln2.

11

A22J[n.

•i v [*y = [c.

then the mode-reduced output y is given by

y = c2n2

Remarks

B.

lB2.
u

1) Note that in Eq. (16), n2 is decoupled from n , i.e.,

n2 = A22n2+B2u

(20)

(21)

(22)

Theorem 1 asserts that n an<* ^9 are related through a coordinate

transformation Q22, where ^ corresponds to the modes of A associated

with the eigenvalues of A . Representations (22) and (11) are thus

algbraically equivalent [10, pp. 155-158]. In other words, any

transformation T which transforms A into an upper triangular matrix

decouples the modes associated with the eigenvalues of

A22 from the remainin8 modes. This remarkable implication frees us from

the dependence on the coordinate transformation (8) using the eigen

vectors for model reduction. Theorem 1 indeed opens up a new direction.

fAll A12
0 A22.
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There will be further discussions of the class of transformations T

in sees. 2 and 3.

2) In Theorem 1, the mode-reduced output y is obtained from the solution

of (22), the eigenvectors Q22 of A , and the solution of the n

linear equations in (19), using the expression (18). The eigenvalues

and the eigenvectors of A„9 are needed for the computation, however

it should be pointed out that the dimension of the reduced-order system

n2 is usually much smaller than n. Substantial savings in computation

can be expected. The development of our algorithm is based on Theorem 1.

However in section V we will discuss a scheme which further transforms

A into a block diagonal form so that the Corollary can be applied. For

symmetrical A matrix, discussed in Sec. VI, the Corollary can be directly

applied.

2. The search for T

In view of Theorem 1, the problem of modal reduction now reduces

to the search for a similarity transformation T such that:

(i) A = TAT is block upper triangular, viz.

A =
All A12
0 A22J

(ii) The eigenvalues of A99 correspond to those modes that we want

to retain.

Clearly for different criteria for mode retention, different

similarity transforations will be ut>*jJ The criterion for mode retention

used in this paper, except in Sec. VII, is fc retain those modes associated

with small eigenvalues.

We do not expect any process in finite steps to give us the desired
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transformation T. The reason is simple: For if it were the case, it

would imply that one could find eigenvalues in finite steps and it would

also imply one could solve roots of a general polynomial in finite

steps. This is known to be not possible. Therefore we believe that

we should look for an iterative scheme such that at each iteration a

similarity transformation transforms the matrix A into a form which will

eventually become block upper triangular. One candidate for such a

3
form is the Hessenberg form (Fig. 2). Note that when a subdiagonal

element of a Hessenberg matrix becomes zero, we have a block upper

triangular matrix.

Next we have to determine the exact scheme to be used at each

iteration so that the iterative process will converge and when it

converges, the matrix in the lower right block will have the eigenvalues

that we want to retain.

3. Geometric motivations

In this section we explain the geometric motivations which lead

to the development of our algorithm. We shall use a three-dimensional

case to illustrate the basic ideas involved.

Let {A1,A2,A3} be the (distinct) eigenvalues of the 3x3 matrix A

and {e1»e2»e3^ be the corresponding eigenvectors. Suppose the magnitudes

of \± and A2 are much larger than that of Xy Suppose furthermore that b
is a vector such that

Amatrix AA(a^) is said to be in Hessenberg form, or aHessenberg
matrix, if a±j=0 for i>j+2. The elements a±+1 ±are called subdiagonal
OlQmontrelements.
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X X X X X X X X X X

X X X X X X X X X X

X X X X X X X X X

X X X X X X X X

X X X X X X X

X X X X X X

® X

X

X

X

X

X

X

X

X

X

X

X

X

Fig. 2 An upper Hessenberg matrix becomes block upper triangular

when a subdiagonal element becomes zero.



b= E *± i » *i ^0 for i-1,2,3
i=l

Let us consider the following sequence of vectors:

b, Ab, A2b, A b,...}

(23)

(24)

k _ k
Since A b = 2^ $i^- e-> i.e., the components along the eigenvectors

i=l X X 1

associated with large eigenvalues get enhanced everytime on premultiplying

by A, the normalized vector h

\\M
will converge to the subspace spanned

by the vectors e.. and e_, i.e.,

i"b

llA^H
-*• sp{e1,e2> (25)

On the other hand, let J be the transformation which transforms

T
the pair (A,b) into a Hessenberg matrix H and t=(l,0,0) , i.e.,

and

H =

rhll h12 h13
h21 h22 h23
0 h32 h33

H-gA^r-1

t-^Tb

t = a (26)

(27)

(28)

Geometrically this is simply a change of coordinate system. The

sequence (24) in the new coordinate system is

t "xTb, - Sfu>, XJ A b* ij A b,... } (29)

or

t, Ht, H2t.f H t,...} (30)
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Note that

t = Ht = H H2t
h32h2L

(31)

Therefore the subdiagonal elements of H have the followi g geometric

interpretation: for example, h is proportional to the component of
2
A b along a base vector in the new coordinate system which does not lie

in the span of b and Ab.

New let us shift our attention to the next three vectors in the

sequence (24). More specifically, let us change the coordinate system

so that

Ab =

"1"
A2b =

X

Q X

.0. .0.
Ab = 0 (32)

This can be achieved if we transform the pair (H,Ht) into a Hessenberg

Tmatrix HL = h21 h22 h23
0 h32h33-«

and t±=(1,0,0) . Let CJ" denote such a

transformation. Then the sequence (24) can be written as

cg^b. sr^Ab, vfiih, gr^b,... > (33)

or

(STjt , tx , H^ , H2t;L ,... (34)

where

ci =

J' lo J* h2h21J
(35)

-12-



Let us move to the next three vectors in the next round and the

process is repeated. At the k-th iteration as k becomes large we know

i\ A b

and

sp{e ,e } (36)
'l,v-2

A b

llA^H
*- sp{e ,e } (37)

Ak+2bTherefore the component of along a base vector which does not

Akb Ak+1blie in the span of and will approach zero. In other

IIa'SH Ha^H
words, the (3,2)-th element of the Hessenberg matrix will converge to

zero.

From the above intuitive geometric considerations it is seen that

if we transform the pair (H^I^t ) at each iteration to (IL ,t )

where H^ is Hessenberg and tk+1=(l,0,0)T, the process will converge
to an upper triangular matrix. Moreover the first two coordinates will

correspond to the eigenvectors associated with large eigenvalues A and A

and the last coordinate will correspond to the eigenvector associated with

small eigenvalue A3, which is consistent with our mode-retention criterion.

The foregoing geometric motivations lead to the development of our

modal reduction algorithm to be presented. The initialization and the

convergence of the algorithm will be proved rigorously as theorems.
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VI THE REDUCTION ALGORITHM

We will present an algorithm in section 1 which simultaneously

transforms a matrix into a Hessenberg form and a vector to the form

T
(t,0,...,0) . The condition under which the algorithm works is stated

in Theorem 2. The algorithm for obtaining a reduced-order system is

outlined in section 2, with detailed discussions on various procedures in

sections 3, 4, and 5. Theorem 3 guarantees that the algorithm can always

be initialized. Theorem 4 guarantees the convergence of the algorithm.

An acceleration scheme for the algorithm is discussed in section 6.

The complete version of our modal reduction algorithm is summarized

in sec. 7.

1. Transformation of (A,b) to (H,t).

Theorem 2. Given an n*n matrix A = (a..) and an n-vector b = (3 ,...,3 )T
L3 In

Suppose that {b,Ab,...,A b} spans lRn. Then there exists a non-

singular matrix (Jsuch that

(i) H _ 'JA<J is a Hessenberg matrix

(ii) t A<9Tb is of the form (x,0,...,0)T.

We give a constructive proof of Theorem 2 in the Appendix,

which is based on the algorithm Ht(A,b) to be presented shortly.

The transformations and their inverses, which transform the pair

(A,b) into (H,t), are performed on the matrices B and C, respectively,

in the later application of the algorithm. For ease of later reference

we include them in the following description of the algorithm.

4
It is necessary that A has distinct eigenvalues [10, pp. 169-170].
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Algorithm Ht(A,b)

Step 1 Find 3±, i£{l,2,...,n}, such that IbJ^IgJ for all

i€={l,2,... ,n}. If 3^=0 go to step 9, else continue.

Step 2 Interchange rows 1 and i of b, A and B and interchange

columns 1 and i of A and C.

Step 3 For i=2,...,n, do the following:

6i
Subtract (—)x(row 1) from row i of A and B

Bl
3i

Add (—)x(column i) to column 1 of A and C.
31

Step 4 For j=l,2,...,n-2, do steps 5-7.

Step 5 Find a±l ,i'^j+l,... ,n}, such that la±ti l>laii Ifor ali

i£{j+l,...,n}. If aiii=0» go to step 9, else continue.

Step 6 Interchange rows (j+1) and i? of A and B, and interchange

columns (j+1) and i' of A and C.

Step 7 For i=j+2,...,n, do the following:

a..

Subtract ( J—)x(row j+1) from row i of A and B
aj+l,j

aii
Add (- J—)x(column i) to column (j+1) of A and C.

j+l,j

Step 8 Return H=A and t=(31,0,...,0)T

Step 9 Stop.
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Remarks 1) Steps 2 and 6 are performed in order to have the largest element

as the pivot at steps 3 and 7, respectively, for numerical stability.

All the multipliers, i.e., Or—), ( J—), in the algorithm
Bl aj+l>j

have magnitude less than or equal to 1.

T2) The transformation in step 3 transforms the vector b - (3,>39,...,3 )
T

into the form, (t,0,...,0) . The transformation in step 7 for each

j of step 4 eliminates the elements in the j-th column below the

subdiagonal.

3) Steps 5-7 constitute the method of transforming a matrix to Hessenberg

form by the elementary stabilized transformations [11, pp. 353-369].

There are other methods to perform the same task, e.g., Givens' method

and Householder's method [11, pp. 345-353], which use orthogonal trans

formations. For assymmetric matrices, the total number of multiplications

5 3 10 3
to reduce an nxn matrix to Hessenberg form is essentially -r n , — n ,

o o

10 3
and -7T n , respectively, by the elementary stabilized transformations,

Givens* method, and Householder's method. Therefore we incorporate

the method which has the least number of computations, i.e., by the

elementary stabilized transformations. For symmetric A matrices,

on the other hand, we will use Householder's method (Sec. VI).

2. Outline of the Reduction Algorithm

(1) Initialization

Select a vector b and apply the algorithm Ht(A,b) to produce a

lQ and a vector of Ju~ form tn

«o -ff<A"L

fco -%h

THessenberg matrix Hn and a vector of ui;? form tn = (t,0,...,0) , i.e.,
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At the same time obtain

Bo =%B

Let b = — t =
0 ou O

1

0

.6.

where an =

(2) Iteration

Apply the algorithm Ht(R ,H b ) and denote the output as

^+1 = ^k+lHk^W+1k+1 k^ k+1

k+1 ^k+lHkbkt«- "SLA*

At the same time obtain

Bk+1 =^k+lBk
-1

Cir+i Jlk+1 k+1^k+1

Let bk+1 ak+1 k+1

(3) Termination

Terminate the iterations at k if h^, =0 for
(k) 1

rn

o

0J

where a, ,_ = || t. .-||
k+1

n,+l ~~ w *Mi some ni»
where h^ , i=2,...,n, are the subdiagonal elements of H, .

3. Initialization

The initialization procedure is actually carried out by the following

algorithm IN1(A,B,C). Theorem 3 guarantees that the initialization

procedure can indeed by carried out.
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Algorithm IN1(A,B,C)

Step 1 Pick an arbitrary b $ (0,...,0)T

Step 2 Call Ht(A,b)

If it exits from step 9 of Ht, go to step 3, else go

to step 4.

Step 3 Let the current A,B,C be denoted by

Step 4

A =
-11 A12
0 A22

B =
h
?2

Return HQ=A, BQ=B, CQ=C

S- tSi'923

where Au is j'xj1 and Hessenberg.

Call SIG(A,B,C)

Return (A,B,C)

Algorithm SIG(A,B,C)

Step 1 Duplicate A=A, B=B, C=C

Step 2 Set o=l

Step 3 Set b = (1,0,...,o,...,0),where a is in the (j'+l)-th

position

Step 4 Call Ht(A,b)

If it exits from step 9 of Ht go to step 5; else go to

step 8

Step 5 Let the current A be denoted by

A' =

A1 A*
All A12
0 A^

where A' is kxk and Hessenberg,

-18-



If k>j', go to step 7; else go to step 6.

Step 6 Set a=a+l, A=A, B=B, C=C, and go to step 3.

Step 7 If k=n, go to step 8; else set A=A', B=Bf, C=C', and go to

step 1.

Step 8 Return A,B,C.

Theorem 3. If the eigenvalues of A are distinct, then the algorithm

IN1(A,B,C) will result in a pair (H ,tQ) such that H is Hessenberg
Tand tQ = (x,0,...,0) .

Remark For a single input system we may pick the initial b to be the

coefficient vector of the input. In such a case, when we come to step

3 of INI it means that in terms of the current coordinates all the

components in i>jT are in the uncontrollable subspace. They may be

discarded if only the controllable and observable subspace is of interest.

T
In general we may just as well pick the initial b to be (1,0,...,0) .

4. Iteration

From the outline of the reduction algorithm, we see that the

algorithm Ht is applied to the pair (IL.ILb ) at each iteration.

Note that Hfc is aHessenberg matrix and Hb =(31»39,0,...,0)T has

only two nonzero components. We immediately notice that only one

comparison is needed in Step 1 of the algorithm Ht and only one

operation is needed to transform H-b into the form (x,0,...,0)T.
k k 3-

The corresponding operations on H, , namely, subtracting (—)xrow 1
B.k 32

from row 2 of ^ and adding (—)x(column 2) to column 1 of H,,

a matrix which differs from a Hessenberg matrix only in that

a nonzero element in (3,1) The elimination of the (3,1^
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using step 7will introduce anonzero element in (4,2). Hence,
the operations required to transform this matrix to aHessenberg form
is an elimination process which "chases" down the sub-subdiagonal
elements, h.,n .

1+2 ,i

Taking the advantage of the special structures of Hfc and ^b ,
the algorithm Ht^H^) to be performed at each iteration can be

simplified. We denote the simplified algorithm by ITE.

Algorithm ITE(H ,B ,C )
K. K K

Let the ij-th element of H be denoted by h

Step 1 Let ^hn and 32=h

If I32'>'31I» go to steP 2» else go to step 3.

Step 2 Interchange 3, and 3

Interchange rows 1 and 2 of H, and B
k k

Interchange columns 1 and 2 of H and C

Step 3 Subtract (g-)xrow 1 from row 2 from H, and B
ft 1 k k
32

Add (j-)xcolumn 2 to column 1 of H, and C

Step 4 For i==l,2,... ,n-2, do steps 5-7.

If ^1+2,1^ lhi+i,il S° to step 6; else to step 7.

Step 6 Interchange rows (i+1) and (i+2) of IL and B .

Interchange columns (i+1) and (i+2) of H, and C
h k"Step 7 Subtract (]J±^i)Xrow(i+1) ^ row ( Qf
itl,i Tc k

hi+2 i
Md (lTT17)xcolumn(i+2) to column (i+1) of H and C.

l+l, i k k

Step 8 Return ^-H,, Bk+1=Bk, C,^.

Step 5
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Remarks 1) The total number of multiplications performed on the elements

o

of A in the algorithm ITE is essentially n . Compared with Ht, this

is an order of magnitude less.

2) It is shown in the proof of Theorem 3 that the algorithm INI produces

a vector tQ which has nonzero component along every eigenvector of A.

Consequently at least one of 39 and &, and one of h
*• 1 ItZ ,1

and bi+^ ^ for i=l,2,... ,n-2, will be nonzero. (This can easily

be proved using arguments similar to that in the proof of Theorem 2).

5. Termination

Theorem 4 guarantees the convergence of the reduction algorithm.

Furthermore, it assures that when the algorithm converges the eigenvalues

of the matrix on the lower right block correspond to the modes that we

want to retain, namely, small eigenvalues.

Theorem 4 Given an nxn matrix A whose eigenvalues {X_,X„,...,X }
12 n

are distinct. Suppose that

lX±l>>lXn +jl for a11 ieU,2,...,ni}, je{l,2,...,n2} (38)

where n-j+n^n. Then the application of the reduction algorithm will

result in

lim ,(k)
k-*» hni+l ~° (39)

(k) (k)where {h2 ,...,hn } denote the subdiagonal elements of IL

Furthermore, let A =
1 1
All A12
0 A22 , where A. is n,xn denote the matrix

to which IL converges, then the eigenvalues of L« are {A ,,...,X }K 22 n.j+1' n;L+n2
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Remark From the proof of Theorem 4 in the Appendix we see that the

convergence of our modal reduction algorithm is of the order of

X ,.nj+j
r~j[ • Hence the algorithm will converge fast if A has two

clusters of eigenvalues which are far apart.

6. Acceleration

Suppose that the eigenvalues of A are clustered into two groups,

one centered around 6 and the other a, with S«a, the convergence of

our modal reduction algorithm will be of the order of I—I. If we can
•a'

decrease this ratio faster convergence will result. Now note that

(i) A similarity transformation T which transforms (A-al) into

an upper block triangular form also transforms A into an upper block

triangular form.

(ii) The eigenvalues of (A-al) are (X.-a), i=l,2,...,n, where

*£> i=l,2,...,n are the eigenvalues of A.

In view of these two facts we know that we should in principle

work on (A-al) with a close to 6, in order to accerlerate convergence.

In practice we do not know <S a priori, we have to estimate its value.

We suggest the following practical way of estimating <5. If at the k-th

iteration, an element in the subdiagonal, say h , becomes small

enough, then we expect that clusters of eigenvalues are emerging, and

the last (n-r)x(n-r) block are associated with the small eigenvalues.

The trace of the matrix gives the sum of the eigenvalues. Based on

these considerations te choose our estiuite 6 of 6 as

a. - n

6 =TnZ^y £ h±i (40)
vn J i=r+l X1
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Now let us consider the implementation of this acceleration

scheme. Suppose at the k-th iteration we have a pair (H, ,b, ) and an

estimate 5 of 6. In principle we would consider the pair

(H^-6l,b ) instead, in order to accelerate convergence. We would

transform the pair (1^-61, (1^-41)bj.) to (H^, bfc+1) by <cTw.1, i.e.,

•"fcfl =̂ WV"^!' and bk+l "^V^V But
^+1 = ^k+l1^^ k+l"61' and we have to add 5I to get back our original
matrix, i.e., •Hfcfl =\+1+6I =(3'k+1HkxT"^+1- Therefore for actual
implementation of the acceleration scheme at the k-th step it suffices

to simply transform the pair (l^,(Hk-6I)bfc) to (Hk+1»t ).
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7. Summary

The complete version of our modal reduction algorithm MR(A,B,C)

is summarized below.

Algorithm MR(A,B, C)

Step 1 Call INI (A,B,C)

Return HQ, BQ, CQ

Set k=0

Step 2 If h1 .1 - 0 for some nn, gon-,+l,n., 1' &

Sept 4; else go to Step 3

to

Step 3 Call ITE (H^B ,0^)

Return H^, Bfc+r C^

Set k:=k+l, go to Step 2.

Step 4

Step 5

Step 6

Step 7

All A12

—»*. —\

Bi
Set A = H, =

-° A22.
, B = Bk =

-B2-

where A.., is n1XD1.

,c = ck = [Cj c2]

Find the eignevalues {X ,-,...,X . } and eigenvectors
n-+± n.+n9

q3, j=U...,n2, of A22.

For j = l,...,n9, solve

^ir^+j1^ =-ku^
for pJ.

n.
1 2 "2 ** 12Let Q12 = [p p .... p ] and Q22 = [q q

Solve the reduced-order sy^-em

r,2 = A22n2 + B2u

and obtain the mode-reduced output

y- ll^x&l +c2]n2

-24-
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Remarks 1) Note that after the termination of the iterations, the

resultant A99 in Step 4 is Hessenberg, which can be proceeded immediately,

for example, by the QR-method [ll,Chapter8], for the eigenvalue and

eigenvector calculations in Step 5.

2) The resultant A-., in Step 4 is Hessenberg, thus the coefficient

matrices (A-q-X ,.I), j = l,2,...,n9, are all Hessenberg. This is one

of the desirable forms for linear equations. Indeed the solution of the

linear equations in Step 6 using Gaussian elimination or LU-decomposition

method [ll,Chapter4] will not introduce any fill-in to the elements below

the subdiagonal, even if partial pivoting [11,p.205] is employed. For

Hessenberg matrices it has been shown that complete pivoting has no special

merit [11,p.219]. It is possible to further reduce the total computations

by transforming A.... to a even more sparse form prior to Step 5, we will

discuss these procedures in Sec. V.

3) If there are two clusters of eigenvalues having n.. large ones and n.

small ones (see Eq. (38)), the iterations in Step 2 will terminate as a

result of the convergence to zero of the (n1+l)-th subdiagonal element and

we may thus discard the modes corresponding to the n. large eigenvalues.

If, however, there are more than two clusters, say three clusters of

eignevalues, with n^ very large ones, n2 large ones and n~ small ones.

Depending on the distances between these clusters, the iterations in Step 2

may first exhibit convergence at the (n +l)*th subdiagonal element.

If at the r-th stage of elimination or decomposition, the pivot is selected
from the elements in the first column of the square matrix of order (n-r+1)
in the bottom right-hand corner, then it is called partial pivoting. On the
other hand if pivot is chosen to be the element of maximum magnitude in the
whole of this square matrix of order (n-r+1), then it is called complete
pivoting.
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Suppose we want to discard modes corresponding to the two clusters of

n.. very large and n large eigenvalues, then we may proceed as follows.

Let the return from the algorithm ITE(H, ,B, ,C.) at this point be denoted

by

Hll H12 \r
\ Bk- Ck " Ickl ck23

H
22

B
k2

where H-- is n_xn1. We now take the triple (H92,Bk2,Ck2^ and aPPlv

Steps 1 and 2 of the algorithm MR. This time the iterations in Step 2

will terminate due to the convergence at the (n9+l)-th subdiagonal element

of H99. Let the current return be denoted by

H H Q
eta <x3

0 H
33

B
a

B
3

*Ca C3]

where H is n0xn0. The combining effect is that we have a similarity
aa 2 2

transformation which transforms the original (A,B,C) into

Hll H12 1 H13
H ; H 0
aa , a3

H
33

B.
kl

B

B.

[C. t C CQ]
L kl a 3

where [H, H- ] = H19. Now we have an upper block triangular matrix with

the lower right block corresponding to the n,. modes to be retained.

4) Suppose we are int,rested in responses other than just zero-state

response, the initial condition n9(0) is thei. needed in Step 7. This can

be easily obtained by augmenting B with a column x(0). The return from

Step 3 of the augmenting column in B will be
r\x(0)

Ln2(0)j
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V FURTHER COMPUTATIONAL REDUCTIONS

The linear equations in Step 6 of the modal reduction algorithm MR

are solved n0 times for different coefficient matrices (A-..- X I) havingI 11 n^+j

the same sparsity structure. The number of operations involved in solving

each of the linear equations is related to the number of nonzero elements

in A^. Therefore, if prior to the entrance to Step 5 in MR we perform

additional similarity transformations to bring A.. 1 to a more sparse and

computationally more desirable form while maintaining A as block upper

triangular, then further reduction in computations will be possible. We

will discuss transformations which bring A-- to a tridiagonal matrix and

a Frobenius matrix in Sections 1 and 2, respectively [11,pp.395-409].

In view of the Corollary of Theorem 1, if a similarity transformation

can be found which further transforms A to a block diagonal form then the

computations in Steps 5 and 6 of the algorithm MR can be avoided altogether

We will discuss this approach in Sec. 3.

It should be pointed out that for the methods discussed in this

section, large multipliers may have to be used. Therefore the reduction

in total computation by the application of these methods will be attained

at the risk of numerical instability. Among the three methods, from

numerical point of view we recommend the third method (Sec. 3).

The methods discussed below start with a matrix A =

All A12

0 A22 where

A., is Hessenberg. The algorithm TRIP transforms A-, into a tridiagonal

form and the algorithm FROB transforms A,, into a Frobenius form. The
_______________________

An nxn matrix A = (a-y) is said to be a tridiagonal matrix if all the
elements, except a^+^ i» a±±» and &i,i+l» are zero. A is said to be a
Frobenius matrix if ail the elements, excep ai+1 ± and a.±ny are zero.
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ij-th element of A is denoted by a...

1. Transform A-- to tridiagonal form

Algorithm TRIP(A,B,C)

Step 1 For i = 1,2,..,,n,-l, do steps 2-4.

Step 2 If a± .+1 ^ 0, go directly to step 4;

else go to step 3

Step 3 If i = n-j-1, go to step 5; else do the following:

Add row (i+2) to row i of A and B,

Subtract column i from column (i+2) of A and C.

Step 4 For j = i+2,...,n, do the following

aii
Add ( •*—) x row j to row (i+1) of A and B

ai,i+l

ai*
Subtract ( **—) x column (i+1) from column j of A and C.

ai,i+l

Step 5 Return A, B, C.

Remarks 1) Steps 2-3.guarantee a nonzero pivot a. .,- for i = l,2,...,n-2,
ZL yI •JL

since the subdiagonal elements of the original A-- are nonzero.

2) The elimination process in step 4 is similar to step 7 in the algorithm

Ht. Here we reduce the matrix to lower Hessenberg form instead.

3) The selection of the largest element as pivot (step 6 in Ht) is

inconsistent with the preservation ot ;>•= original upper Hessenberg form.

aiiAs a consequence the multipliers ( J—) in _he algorithm TRIP may have
ai,i+l

magnitude larger than one. This gives rise to the possibility of numerical

instability. This is the risk one takes in order to utilize the tri-

diagonization of A-- for reducing total computations. However the effect
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of a small pivotal element does not propagate for more than three columns

[11,pp.398-399].

4) Suppose we call the algorithm TRIP before Step 5 of the modal

reduction algorithm MR, i.e., replacing step 4 of MR by:

Step 41 Call TRIP (H,^,^)

Return A =

-„_,
- 1

—^ ""

A , A-„ B
11 12 - 1

«, , B =
0 A„„ B«22_ _ 2 J

,o = iclf c2]

Then A-- will be tridiagonal, and A . will have all elements, except

possibly the last two rows, zero. The computations in forming A-9qJ in

Step 6 of MR will thus be reduced. The computations involved in solution

of the n9 linear equations in Step 6 with a more sparse tridiagonal for

(A,,-X .1) will be reduced substantially. Note that when the solution

is carried out by Gaussian elimination or LU-decomposition, it will not

introduce any fill-in if the elimination is performed in its natural

order. If partial pivoting is employed fill-in will be introduced only

along the super-superdiagonals a. .,9
X y _L •_ a

5) If numerical instability is not a problem, one could greatly reduce

the total computation by modifying the algorithm as follows: (i) Tridiagonize

H right after initialization, (ii) Maintain H, tridiagonal at each

iteration. It turns out that the additional computation required to maintain

H, tridiagonal at each iteration is not very much. Since the computation

at each iteration is related to the number of nonzero elements in H, , this

modification could reduce total computation considerably. Indeed the number

of multiplications performed on the elements of A at each iteration to
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transform (H, ,H, b,) to (H.+1 >t) such that _L remains to be tridiagonal

would be approximately in the order of 14 n. However this scheme may

result in poor numerical stability.

2. Transform A _ to Frobenius form

Algorithm FROB (A,B,C).

Step 1 For j = 1,2,...,n,-l, do step 2

Step 2 For i = l,2,...,j, do the following

aii
Substract ( J—) x row (j+1) from row i of A and B

aj+l,j

aii - -
Add ( J—) x column i to column (j+1) of A and C.

aj+l,j

Step 3 Return A, B, C.

Remarks 1) We could similarly eliminate elements of A-2 except the last

column as follows:

Step 31 For j = n-+l,...,n-l, do step 41

Step 41 For i = 1,2,...,__-, do the following:
a.. m

Substract ( J—) x row (j+1) from row i of A and B
aj+l,j

aii
Add ( J—) x column i to column (j+1) of A and C.

3j+l,j

Step 51 Return A, B, C.

2) Since pivoting for size is inconsistent with the preservation of the

aiioriginal upper Hessenberg form, the multipliers ( J—) in the algorithm
aj+l,j

may have magnitude larger than one. Consequently numerical instability is

a risk one takes in applying this method. Although the effect of small
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pivot will not appear in the final Frobenius form [11,p.407], it is

quite common for a serious deterioration in the condition number to take

place [11,pp.408-409] in passing to the Frobenius form.

3) The computations involved in solving the n2 linear equations in

step 6 of the algorithm MR will be greatly reduced once A.,-^ is in

Frobenius form. Note that the diagonal elements of (A-.-.-X +,I), when

Anl is in Frobenius form, are the eigenvalues of A„2, which are small,

hence the use of partial pivoting is advised. In this case the Gaussian

elimination or LU-decomposition will introduce fill-in only in the

superdiagonal a. . -.

3. Transform A to block diagonal form.

The following algorithm BPF, will transform a block upper triangular

matrix A into a block diagonal matrix, as asserted in Theorem 5.

Algorithm BPF (A,B,C)

Step 0 Select a row vector c = (c.,...,c ,0...0) so that c(A-X .-,1)

has at least a nonzero element in the first n_ components.

Step 1 k = 1

Step 2 c:=c(A-Xn +,I)

Step 3 Let c = (Y1»Y2» •••»Yn)

Find y i» j1 e {l,2,...,n-} such that |v_« t| >. |y«| for -H
j 3 3

j G {1,2,...,„-_}

Step 4 Interchange rows 1 and j' of A and B and interchange columns 1

and j' of B and C.
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Step 5 For j = 2,3,...,n, do the following:

YiAdd (—L) x row j to row 1 of A and B
Yl Y.

Subtract •.(—•*-) x column 1 from column j of A and C.

Yl

Step 6 For i = 1,2,...,n,-l, do steps 7-9.

Step 7 Find a..,, j* € {i+1,...,n-}, such that

la4-»l __. Ia--I ^or -11 3 e {i+l,...,n-}

If a,,, = 0 go to step 14;

else continue

Step 8 Interchange rows (i+1) and jf of A and B, and interchange

columns (i+1) and j• of A and C.

Step 9 For j =» i+2,... ,n, do the following

aii
Add ( J—) x row j to row (i+1) of A and B

ai,i+l
a..

Subtract ( J—) x column (i+1) from column j of A and C.
ai,i+l

Step 10 Find a .,, j1 € {n-+l,... ,n}, such that
n,j J.

i ..1 > la .1 for all j € {nn+l,...,n}n^f' — In-j' J «.!»»•»

If a ,, = 0 go to step 15;

else go to step 11.

Step 11 Interchange rows (n-+l) and j* of A and B, and interchange

columns (n^+1) and j' of A and C.

Step 12 For j - n1+2,...,n; do the following .

Add ( ) x row j to row (n-+l) of A and B
n_ ,n-+l
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3 A
nij

Substract ( ) x column (n-+l) from column j of
a ,i Ln1,n1+l

A and C.

Step 13 If k = n2, go to Step 15;

else c:=(l,0,...,0), k:=k+l,

and go to Step 2.

Step 14 Call SIG (A^ ,_£,_*)
~T ~T ~T

Return A--, C,, B-

Go to step 1.

Step 15 Return A, B, C.

Remarks 1) In step 0 usually we can choose c = (1,0,...,0). Since A--

is upper Hessenberg, the existence of a row vector c in step 0 is obvious.

2) Clearly y. ^ 0 in step 3 both in the initialization (k-l) and subsequent

iteration (k>l).

3) The elimination process is considered separately in step 6 and step 10

because we want to preserve the upper block triangular structure of the

matrix A.

Y1 aii4) The multipliers, i.e., (—*L), and ( ), may have magnitude larger
Yl ai,i+l

than one, hence there exists potential numerical instability.

5) For k ^ 2, step 2 means simply to take the first row of (A-X ,,I) as

c. Since A now is in lower Hessenberg form, c has only the first two

components zero. The following steps 4-12 can be simplified, similar to

what we did in the algorithm ITE.
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Theorem 5 Given an block upper triangular matrix

All A12
A -

0 A
22

where eigenvalues of A are distinct, A . is n xn and upper Hessenberg,

and {X ,-,...,X . } are the eigenvalues of A„. The algorithm BPF
n.+i n.+n. 12.

(A,B,C) transforms A into a block diagonal matrix.

Remark If we call the algorithm BPF prior to step 5 of the modal reduction

algorithm MR, we may then apply the Corollary of Theorem 1 and readily

obtain the mode-reduced output y. Thus the algorithm MR may be modified

from step 4 on as follows.

Step 4' Call BPF (Hk>Bk,Ck)

Step 51

Return A =

11
0 " r*i]

0 A22-

-, B =

-*2-

Solve the reduced-order system

n2 = A22n2 + B2U
and obtain the mode-reduced output

y - C2n2

VI. SYMMETRICAL A MATRIX

[c = cx c2]

For the special case that the A matrix in Eq. (1) is symmetric,

orthogonal transformations should be used to preserve symmetry. Therefore,
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we apply Householder transformation [11,pp.290-299] instead of the

elementary stabilized transformations in the algorithm Ht to transform

a matrix into Hessenberg form. The algorithm is described below.

Algorithm SHt (A,b)

Step 1 Find 3.» _L G {l,2,...,n}, such that

|3±l __. |3±l for aU 1e {l,2,...,n}

If 3. = 0 go to step 9;

else go to step 2.

Step 2 Interchange rows 1 and i of b, A, and B, and interchange

columns 1 and i of A and C.

Step 3 For i = 2,...,n, do the following

Subtract (—) x row 1 from row i of A and B.
31

Add (-r-)x column i to column 1 of A and C.
Bl

Step 4 For k = l,2,...,n-2, do steps 5-7

n 0 1/2

S
j=k+l

Step 5 S-(£ a^±)

2K2 =S2 +(sgn akjk+1)akk+1S

Uk+1 ="_,_+_ + (sgn \,k+l>S-
If s=0 go to step 9; else continue

Step 6 For i = 1,...,k, set u. = 0;

for i = k+2,...,n, set u. = a, ..
l ki

1 T
Step 7 P = I x uu

2K
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A:=PAP

B:=PB

C:=CP

T
Step 8 Output H:=A and t = (3,,0,...,0)

Step 9 Stop.

Remark Perhaps it is worthwhile to elaborate on Step 7 of the above

algorithm SHt. Note that it is important to take full advantage of

symmetry. The derivation of the following procedure is straightforward

and can be found in [11,p.292],

Step 7-1 For i = k+1,...,n

n

p. = y_ a. .u.

1 nStep 7-2 a =—r £ uaVa
4-C j=k+l J J

Step 7-3 For i = k+1,...,n

q± = P± - <*u±

)SStep 7-4 ak>k+1:= -<sgtt afc>k+1

For i = k+2,...,n, a, .:_ 0

Step 7-5 For i = k+l,...,n; u = i,...,n

•us,"li_-uiqj-qiu]-
Step 7-6 For i = k+l,...,n; j - l,2,...,m

1 n
>U:"bi1 "~2 ui 2 uoblj 1J 9vZ *• 0=1,-1-1 *
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Step 7-7 For i = l,2,...,p; j = k+l,...,n

1 n
:ij:=Cij "-_ Uj 0|i1Ci^

2K J £=k+l

Remark The total number of multiplications in reducing a symmetric A to

2 3
a tridiagonal form by Householder's Method is essentially -r n compared

, o 12
with -r- n in Givens' reduction, and n square roots compared with -r- n

in the Givens1 Method [11,p.293]. Hence Householder's Method is employed

here.

At each iteration, again by taking advantage of the special structures

of H, and IL b, , the algorithm can be simplified as below.

Algorithm SITE (H,,Bk,C )

Step 1 Let 3, = h-- and 32 = h2l

If |32| > |31| go to step 2; else go to step 3.

Step 2 Interchange 31 and 39

Interchange rows 1 and 2 of H, and B,

and interchange columns 1 and 2 of H, and C. .

62
Step 3 Subtract fe-) x row 1 from row 2 of H. and B.

Add (-r—) x column 2 to column 1 of H, and C.

Step 4 For r = l,2,...,n-2, do steps 5-11.

o*. c / 2 _. 2 xl/2Step 5 s = Car,r+1+ar>r+2)

2K2 =S2 +(sgn arjr+1)a_>r+1S

ur+l = ar,r+l + (sgn ar,r+l)S

Ur+2 " ar,r+2
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Step 6 For 1 = r+1, r+2, r+3, set

Pi = ai,r+lur+l + ai,r+2ur+2;

01 =7^2 (pr+lur+l +Pr+2ur+2>
4K

Step 7 For i = r+1, r+2, r+3, set

qi = P± - au±

Step 8 ar,r+l:= "(sgn ar,r+l)S

ar,r+2:=0

Step 9 For i - r+1, r+2, r+3; j = r+1, r+2, r+3

aij:=aij -V*j " Vj

Step 10 For i = r+1, r+2; j = 1,2,...,m

bij:=bij "̂ 2 ui(ur+lbr+l,j +ur+2br+2'J>
Step 11 For 1 = 1,2,...,p; j = r+1, r+2

Clj:=clj "̂ 2 uj <ci,r+lur+l+ci,r+2ur+2)
Step 12 Return ^ = 1^, Bfe+1 = J^, Ck+1 = Cfc.

For a symmetrical A matrix, if we replace Ht by SHt and ITE by SITE

in our modal reduction algorithm, the iterations will converge to a

block diagonal matrix. Therefore, we may apply the Corollary of Theorem 1

and readily obtain the mode-reduced output y. The modified modal

reduction algorithm for symmetrical A matrix is summarized below.

Algorithm SMR (A,B,C)

Step 1 Call INI (A,B,C), replacing Ht by SHt

Return HQ, BQ, CQ,

Set k«0
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Step 2 If h m - 0 for some n_, go to step 4;
n1_r±,n_ l

else continue

Step 3 Call SITE (Hk»Bk»ck)

Return H^, B^, Cfc+1

Set k:=k+l, go to step 2

Step 4 Set A =

[All 0 'Bl

. 0 A22J
B = »k =

.B2.
,c= ck = [c1 c2]

where A-, is n.xn.., A?9 is n9xn and tridiagonal.

Step 5 Solve the reduced-order system

n2 = A22n2 + b2u

and obtain the mode-reduced output

y = c2n2

VII. ANOTHER MODE-RETENTION CRITERION

Consider a linear time-invariant system

x = Ax + Bu

y = Cx

(41)

(42)

Suppose that the eigenvalues of A are distinct. Let {a-,a_, •. .,ct } be

a given sub-set of the eigenvalues of A. Suppose we want a reduced order

model which retains only the contributions of the modes associated with

{a,,_9,...,a }. The following algorithm will accomplish this in finite

steps, the proof of which can be easily constructed by applying Theorem

3, Lemma 1, and similar arguments in the proof of Theorem 5. Let

t = (1,0,...,0) .
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Algorithm AMR (A,B,C)

Step 1 Call INI (A,B,C)

Step 2

Step 3

Return HQ, BQ, CQ

Set H- = HQ, k=l.

If Vr+l,n-r = °» go step 4;
else go to step 3.

ck= <**-*£>*
Call Ht 0^,0

Return H^, t^

Set k:=k+l, go to step 2

—. •-

All A12
- ->

Step 4 Set A = IL =

_° A22_
, B -

_V
,c=[^ c2]

Step 5 Find the eigenvectors q , j = 1,2,.•.,r, or A99.

Step 6 For j = 1,2,...,r, solve> for i»j

(AirajI)pj =-hi^
1 2x r12 r, , * r l l r.Let Q12 = [p p ,...,p ] and Q22 = [q q ,...,q ]

Step 7 Solve the reduced-roder system

*2 =^22n2 +V
and obtain the mode-reduced output

y=I^Q^Q^ +c2]n2
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APPENDIX

A. Proof of Theorem 1.

Let the k-th column of the n * n matrix Q (resp. Q) be an eigenvec

tor of A (resp. A) corresponding to the eigenvalue A,. From the defi

nition of Q we have AQ = QA where A = diag (An,A0,...A ).
1 _ nj+n2

TAT1 TQ = TQA or A(TQ) = (TQ)A. .We conclude that

Hence

Q - TQ

We may partition both Q and Q as follows

Qll Q12

521 $22

Qll Q12

Q21 Q22

where Q.. and Q- - are n.. x n...

Combining the transformations (8) and (15), we have

n = TQC = Q£

in view of (Al).

By definition we have

Pii lu]\
I 0 A_J I

11 A12| |Q11 Q12
A22J LQ21 Q2£

Qll Q

Q21 ^22

q121 p, oj
Q2J lo A9J

where A, =x = diag (A1,...An ) and A2 = diag (An +1 ,Xn +n )» orn1+n2

All Qll + A12 «21 * ^11 Al

A22 <*2l = «21 Al

All $12 +A12 ^22 =$12 A2

A22 Q22 " Q22 A2

A-l

(Al)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)



Since none of {A ,...,A } is an eigenvalue of A , eq. (A5)
X II- _1_1

implies that Q21 = 0. Eq. (A7) implies that the columns of $ are

eigenvectors of A . Since the eigenvalues of A are distinct, Q
22

is nonsingular.

We may rewrite (A2) as

22 f22

nn

>2J

\l \l
£22J &*

(A8)

hence n2 = ^22^2> where Q . is nonsingular.

The mode-reduced output as defined in (12) can now be expressed as

y = CT T
x12

lQ22J

-1
= CT

y12

L*22J
Q22n2

where we have used eq. (Al) and C9 = Q99n9*

eq. (18). Note also (19) is in fact (A6).

(A9)

Eq. (A9) is the same as

Q.E.D.

B. Proof of Theorem 2.

Given a pair (A,b) the algorithm Ht(A,b) will generate a pair (H,t)

T
such that H is Hessenberg and t = (t,0,...,0) provided it does not

exit from step 9.

We are going to show that if {b,Ab,... ,An" b} spans IR11, the algorithm

Ht(A,b) will never exit from step 9. First notice that it can never

come to step 9 via step 1 because b can not be the zero vector. Now

suppose the algorithm comes to step 9 via step 5, then let the current A

A-2



matrix and b vector be denoted by A and b, respectively, we have

A =
-11 -12

-° *22-

where A^ is j1 xy and Hessenberg. Let the transformations so far be

represented byQ, which is of course nonsingular. Hence

b=9b = (T,0,...,0)T.

--1A-gwar

Note that kh 6 span {b,Ab,... ,Aj '"H) for i> j1, i.e., {b,Ab,... ^'h}
.n

does not span H , which contradicts the assumption that

{b,Ab,...,A b} spans 1R . Q.E.D.

C. Lemma 1. Let H =
Hll H12

LH2i H22-i
, where H - is a k xk upper Hessenberg

matrix with nonzero subdiagonal elements (h2,h ,...,h ); the ij-th

element of H21, (H21)±i> is given below:

(H21>ij "
hk+1 for i - 1, j - k

0 otherwise

(A10)

Suppose that the eigenvalues (A ,A0,...,A ) of H are distinct. Let us
l _ n

denote the corresponding eigenvectors by (v_,v0,...,v ), Let
12 n

b=(1,0,...,0)T. Then h^ =0if and only if

b"J18OivOl Wlth ^i^0 for i =l>2,...,k. (All)

A-3



Moroever (v >va9» •••>vrfl,) are t^ie eigenvectors of H associated with

the eigenvalues of H .

Proof: (<=). The set of k vectors {b,Hb,...,H b} are linearly

independent because h. f 0 for i = 2,...,k. Hence the span of

k-1
lb,Hb,...,H b} is the same as the span of the k linearly independent

vectors {v >v 2,...»v ,}. Clearly any vector in the span of
k—1

{b,Hb,...,H b} has the p-th component, p >_ k+1 zero. Now the vector

H ° = I6ai^aivai is in the span of ^ai'va29* '',vak^» hence in the sPan of
i=l

Ol Ol Ol

.k-1.
{b,Hb,...,H b}, and its (k+l)-th component is h h •••„„. Therefore

\-:+l = 0.

(=*). Let the eigenvectors of H correspond to the eigenvalues

Ol

2

Lvai-J

(Aal,...,Aak) of Hu be denoted by (v^,... >V(Jk) . Let v

by definition

Hll H12
0 H

22J

r 1 •
v .

Ol

2

-vai-

= A
ol

r 1 •

vai

-vai-

(A12)

Since A is not an eigenvalue of H„, v = 0. Thus the k linearly
22' vai

independent set of vectors V"al,... ,v } span the subspace {x=(x ,...,x ) |

x =0, for p>k}. But b = (1,0,...,0) , we may write

b = J8.v,.f;, o*i Ol (A13)

On the other hand, since H is Hessenberg with nonzero subdiagonal

k—1elements, the set of k vectors {b,Hb,...,H b} is linearly independent.

This implies that 8 f 0 for all i = l,2,...,k.

Q.E.D.
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D. Proof of Theorem 3.

Clearly if the algorithm SIG works, then the theorem is proved. We

are going to show that the algorithm SIG works. Specifically, we claim

that

(i) SIG may result in an A' in step 5 such that k > j'.

(ii) SIG will result in an A' in step 5 such that k > jf in no more

than j? iterations of the loop consisting of the steps 3-4-5-6-3.

Let the input to SIG be denoted by A, B, C, where

A =
-11 -12

•° *22-

and A-- is j' xj» and Hessenberg with nonzero subdiagonal. Let

{A ,,...,A ..} and {Artn,...,An/ ,..} be the eigenvalues of An_ and A0_
al aj1 pi 3(n-j') -11 -22

respectively, and {e ,...,e .,} and {eg ,...>eo/n_«i\} De tne corres-
T

ponding eigenvectors of A. Let b = (1,0,..,,0) . We may write

The "only if" part of Lemma 1 implies that

$OJt = 0 for all i G {l,... ,n-j '}
pi

<J) . i 0 for all iG{l j*}
ai

Now let us define

ri

s ^ (0,...,a,0,...,0)

with a in the (j'+l)-th position.

A-5
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We may write

= ) cr6 ,e- + ) 0<bn.e„
A ol ol ,L. y$i 3i
i=l i=l

It can be shown, using similar arguments following eqs. (A4-A7), that

the set of eigenvectors {&al>•••,e ,} spans the first j* coordinates,

hence

or

s ^ span{e _,...,e .,}
r al aj*

4>gi t 0 for some iG {l,... ,n-j »} (A15)

Consider b = b + s, or

b= !<♦,*+«*>« + J a* . (A16)
1=± 1=1

Comparing b with b we notice that because of (A15) new nonzero component

a*$i alon8 some eigenvectors e^ will be introduced. On the other hand,

some components along eai may vanish as a consequence of the possibility

*Ol+ °Qol = ° for some ± E {1'' ••»Jf} ^A17>

If the number of new components introduced is greater than the number

of components vanished, then b has more nonzero components. The "if"

part of Lemma 1 implies that the application of Ht to A and b will then

result in a new upper left Hessenberg block with dimension strictly

greater than j f.
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On the other hand, consider ((b + oQ ), i G {l,. ..,j»} as a function
<J>

rai ai
aiof a. Clearly, if o t - -x—, i = l,...,j\ then ((f> +a0 ,) ^ 0 for all
ai ai ai

i £ {l,.,.,j'}. Since each iteration in the loop (steps 3-4-5-6-3) we

change the value of a, in no more than j' iterations we will come across

a vector b which has more nonzero components of the eigenvectors than b

has.

Consequently the outer loop consisting of the steps 1 through 7 will

terminate eventually when k reaches n. Q.E.D.

E. Proof of Theorem 4.

We are going to apply the "if" part of Lemma 1 to the pair (H. ,b ).

First let us relate the eigenvectors of IL to that of A, and relate the

coordinates of bfc relative to the eigenvectors of IL to the coordinates

of b relative to the eigenvectors of A.

Referring to the notations we used in the outline of the modal

reduction algorithm, we have

\ =^A-i^k

^k^k-l-^O^O1-^1 0UB>

k \ k k-1

ak---a0<^k'"<^'o Ab (A19)

Let us define

^^k-r-'^o (A20)

(k) a

a AVWaO (A2D
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Hence

\ =TkATkX

bk " Tk ~00
a

\The component of b, = T, —Try -long the eigenvector T, e. of IL

. *ixi
is

a
(k) '

Now we claim that

Note that

hence

\ =

0 as k -*• «> for all j > n.,+1
J — 1

0

a ikn 4> A
I -4^T,e,
i=l a

(k) xk&i

n (J>. A.

J |-7vtI 1 M for some MGn(k)
i=l a

(A22)

(A23)

T AT,-1
k k

(A24)

(A25)

(A26)

la(k)|±M J l*iXiliM^XI f°rany ie^-'-V
i=l

Thus, for any j _> n +1,

(J).A.
3 3
(k)

a

< M

*±
_i
At

i
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But

so

<j).A^
J J
(k)

a

A. k

0 as k •> °° for any j 2_ n +1 ,

0 as k -*- °°. Consequently,

nl *.xk

i=l a
(k) Ak"i

(k)
From Lemma 1, we conclude that hV + 0 as k •»• «,

n +1

A =

Furthermore, when H, converges to an upper triangular matrix

A A
All A12

0
22J

, those components for which the

(A29)

(A30)

Vicoordinates ( ,^.) do not vanish, i.e., i = l,2,...,n, will correspond to
a

the modes associated with the eigenvalues of A , as implied by Lemma 1.

Therefore the eigenvalues of A„_ are {A ^,...,A , }.
22 n^+1 ni ?

Q.E.D,

F. Proof of Theorem 5.

Essentially the algorithm BPF does the following. It starts with

~Ta vector cQ and the matrix A . At each k, the algorithm transforms the
T T

pair ^Hk,Ck^' where cfc = (A -A +kI)ck_1 and H = A ,into a pair

(\+1»tk+1) such that Hk+1 is upper Hessenberg and tfe x=(t,0, .. .,0)T.
The transformation at each k is basically the same as in the algorithm

Ht except the first n rows (columns) and the last n rows (columns) are

In order to apply directly our previous results, we will consider the
transpose of A and the column vector Cq, etc., in the proof. However,
in the algorithm we work directly with A and the row vector c, etc.
The transformation there is to bring A to a lower Hessenberg form.
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not allowed to interchange in order to preserve the upper triangular

structure of A. Remarks 1) and 2) following the presentation of the

algorithm BDF indicate that BDF will not break down. We are going to

complete the proof of Theorem 5 in two steps.

(1) Let {f ,...,f } and {f .,,...,f } be the eigenvectors of A
1 n n +1 n

— — I—

corresponding to the eigenvalues of A and A99 respectively. We claim

that if c - I A f such that <f>. J 0 for all i = l,2,...,n, then the
i=l 1

(n +l,n ) element of H ,- is zero.
1 1 n0+lT 2 n n

Consider c = (A -A )cn = J X.4>.f. -A ,. Y (J).f.. So cn does1 n^+1 0 f\ iTi i n-+l ^_ Ti i 1

not have a component along f . Because the way we define c ,
n, nl+1 k
1 n2

c- = I ^4 ^f4- By applying the "if" part of Lemma 1, we prove the
2 i=l x 1 x

claim.

n

(2) We claim that the algorithm will generate a vector c = 7 d).f
0 j , i i

1=1

such that ((). ^ 0 for all i = l,2,...,n.

This becomes obvious once one notices that step 14 in BDF does

exactly the same as step 3 in INI, Therefore the claim can be easily

proved following the proof of Theorem 3. Q.E.D.

A-10


	Copyright notice 1976
	ERL-613

