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ABSTRACT

The presence of control constraints, because they are non-differen-

tiable in the space of control functions, makes it difficult to cope with

terminal equality constraints in optimal control problems. Gradient pro

jection algorithms, for example, cannot be easily employed. These diffi

culties are overcome in this paper by employing an exact penalty function

to handle the cost and terminal equality constraints and using the control

constraints to define the space of permissible search directions in the

search direction sub-algorithm. The search direction sub-algorithm is,

therefore, more complex than the usual linear program employed in feasible

directions algorithms; the sub-algorithm (approximately) solves a convex

optimal control problem to determine the search direction, the accuracy of

the approximation, in the implementable version of the algorithm being

automatically increased to ensure convergence.
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I. INTRODUCTION

This paper deals with optimal control problems with control and

terminal equality constraints. The combination of these two types of

constraints makes it difficult to obtain efficient algorithms. Algo

rithms of the standard penalty function type are, of course, easily developed,

but are usually computationally expensive. Of course, in the absence of

control constraints, the obvious analogues of finite dimensional algo

rithms may be employed, example of these being the gradient projection

algorithms and the multiplier methods, both the versions which require,

at each iteration, exact minimization of the extended Lagrangian and

these which do not. Because of the non-differentiability of the control

constraints (in the space of control functions) it is difficult to extend

these algorithms to cope with the problem considered in this paper.

To illustrate the approach taken in the paper consider the problem

P with one equality constraint, i.e., the problem of minimizing g (u)

subject to the terminal equality constraint g (u) = 0 and to the control

constraint u eL*[0,1] and u(t) eUfor all t e [0,1]. g°(u) = h°(xu(l))

and g (u) = h (xu(l)), x11 being the solution of the system differential

equation due to control u (and specified initial condition). h° and h1

are continuously differentiable, ft is convex and compact and the system

differential equation satisfies standard assumptions.

We deal with the terminal equality constraint by considering the

alternative problem P of minimizing y (u) 4 max{g°(u)/c + g1(u),

g (u)/c - g (u)} subject to the control constraint. The alternative

problem Pc is equivalent to the original problem P in the sense that there

exists a finite c such that a solution for P is also a solution for P.
c

Ignoring for the moment the problem of choosing c, consider problem

-2-



Pc* Tlie nature of tne cost function (the maximum of a set of continuous

functions) requires special attention. If the current control is u, a

search direction sc(u) must be ascertained which is both a descent direc

tion of the cost and is such that u + s (u) satisfies the control con-
c

straint. (Because of the convexity of ft, u + As (u) then satisfies the

control constraint for all X e [0,1]. A suitable candidate for the search

direction is the s which solves

g1^) - y(u) +<(l/c)Vg°(u) + Vg^iO.s ),

-g^u) -Y(u) +<(l/c)Vg°(u) - Vg^u), s>
8 (u) = min max
c s

subject to the constraint that u+s satisfies the control constraint,

where y(u) A max{g (u), -g (u)}. Thus the control constraint is handled

in a natural fashion by incorporating it into the search direction sub-

problem. This sub-problem is, admittedly, more complex than usual, but

is, nevertheless, a standard convex optimal control problem for which

several algorithms (with proven convergence) exist. The version of the

algorithm which solves this sub-problem exactly is called 'conceptual1.

In the 'implementable' version of the algorithm the above problem is solved

approximately (in a finite number of iterations), the degree of approxima

tion being automatically increased as the algorithm converges.

We turn now to the choice of the parameter c, a topic which has been

somewhat neglected (and even misunderstood) in the literature. It is, of

course, not sufficient to establish the existence of a finite c such that

P and P are equivalent; a means must be provided to increase c to a suit

able value. Incrementing c at each iteration is not satisfactory, as c

will then become excessively large causing the same computation difficulties

that occur in penalty function methods. Hence c must be chosen to satisfy
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some test depending on the current control u; the test can be defined by

t (u) £ 0. Various heuristic choices of the test function t for algo-
c c

rithmsincorporating a parameter c have appeared in the literature. How

ever, there do exist conditions that t should satisfy which ensure
c

convergence of the algorithm, and these are restated in Theorem 1. Roughly

speaking, these are: (i) for each c, the function t is continuous in u;

(ii) if u is desirable (i.e., satisfies a necessary condition of opti

mally) for P and the test t (u) < 0 is satisfied, then u is desirable for
c c —

P and (iii) for each permissible control u there exists a neighborhood N

of u and a finite c such that the test t (u) < 0 is satisfied for all u
c

* *

in the neighborhood N and all c ^ c . The second condition is an obvious

requirement of the test function; the first and third conditions ensure

that the algorithm does not jam up at undesirable points and are the

conditions always ignored in the heuristic literature.

In many algorithms the test function t is related fairly directly

to properties of the problem, e.g., where local convexity is required (as

in multiplier methods) to the positive definiteness of a Hessian matrix or,

in exact penalty function algorithms, to the (approximate) multipliers, see [3].

However, obtaining a test for the problem considered in this paper was rela

tively difficult. The considerations involved can be appreciated by referring

to Fig. 1 which shows the (reachable) set W of values attained by (g°(u),g1(u))

as u ranges over the constraint set. Clearly y = (g°(u), g1^))1 is the

optimal point in the reachable set and so u is the required solution of P.

Two sets of constant cost contours of y are shown for c = c. and c = c0

Clearly the solution of P (minfy =y /c9 + y^ly eW}) is also the
2 °2 ~ 2 1solution of P. On the other hand, min{y = y /c. + y |y e W} occurs at

_ Cl
y, corresponding to a control u which does not satisfy the equality constraint
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(i.e., g (u) = y ^0). Clearly, the minimum value of c that is satisfac

tory is that defining the slope of the supporting hyperplane to W passing

through y. However, it is not obvious how to employ this fact to obtain

a test function satisfying the conditions given above. Also, determining

the slope of a supporting hyperplane to a reachable set, indirectly defined

by the control constraint, is computationally expensive. Instead we

propose a test function t (u) 4 9 (u) + y(u)/c which is easily calculated

and which can be proved(with some difficulty) to satisfy the required

conditions. If the equality constraint is not satisfied, then y f 0, and

the test requires that c be large enough so that 6 (u) <_ -y(u)/c < 0.

9 (u) = 0 is a necessary condition of optimality for problem P .

The complete algorithm is specified in Algorithms 1 (conceptual) and

2 (implementable) in §4 and is based on the Algorithm Model described 5.n

§2. The map A , which specifies an algorithm (sub-algorithm 1) for solving

P is presented in §3, and the test function t in §2. The map A. requires,
Cj ° J
in its conceptual version, exact solution of the search direction sub-

problem (determination of 0 ) defined above; hence an implementable version

of A., requiring only approximate solutions of P (sub-algorithm 2) is
3 °j

also presented in §3. It is shown in §4 that both version of the complete

algorithm have the property that all accumulation points (in the L^ sense)

are desirable (satisfy necessary condition, of optimality). Since such

accumulation points need not exist, it is shown in §5 that the complete

algorithm produces sequences which always have accumulation points in the

sense of control measures, and that such accumulation points satisfy

(relaxed) necessary conditions of optimality. A useful corollary is that

the growth of the parameter c, must be bounded. The complete algorithm is,

to the authors' knowledge, the only algorithm, with established convergence,
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t
for solving the problem considered.

II. THE PROBLEM AND BUILDING BLOCKS FOR AN ALGORITHM

In this section, we define the control problem P, an equivalent

problem P without terminal equality constraints but involving a parameter

c, and present an Algorithm Model which solves P. This Algorithm Model

incorporates a sub-algorithm for solving P , a test function t and a procedure

for increasing c until the test t (u) _< 0 is satisfied. Finally we

propose a concrete test function t and show that it has the required

properties. We consider optimal control problems of the following type

min{g°(u)|g:i(u) = 0, j= 1,2,....m, u^ G} (2.1)

where

GA(u6Lwr [0,l]|u(t) Gft for all t € [0,1]} (2.2)

gj(u) Ahj(xU(i)), j = 0,1,2,...,m (2.3)

and x : [0,1] -* E.n is the solution of

x(t) = f(x(t), u(t),t) a.e. on [0,1] (2.4)

x(0) = C (2.5)

We begin by making three standard assumptions which will later be

supplemented with a kind of constraint qualification.

ti r 1 n

Assumption 1: The function f:H x K. x ]R -*- m and the functions

tr • H ->• 1R , j = 0,l,2,...,m, are continuously differentiable.

Assumption 2; There exists an M £ (0,«>) such that

!lf(x,u,t)ll < M(l + Hxll) (2.6)

for all (x,u,t) ein x ft x [0,1]. n

t
With the exception, of course, of classical penalty function methods which
drive the penalty to infinity and which have poor computational properties.
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These two assumptions ensure that all the derivatives we shall need

exist, that the solutions to the differential equations exist and, if ft

is compact, that they for equicontinuous families of functions in Ln [0,1].

Assumption 3; The set ft is compact and convex. a

We propose to solve problem (2.1) by making use of the exact penalty

function, c max {|gJ(u)|} ,for the equality constraints for which a suit-
j-l-m

able, finite value of c>0 will be constructed by the algorithm. This leads

to a family of problems P ,
c

Pc :min{Yc(u)|u G G} (2.7)

where

Y (u) Ag (u)/c + max |gJ(u)| (2.8)
j=l-m

If we now define g , for j = ra+1, m+2, ..., 2m by

gj4in(u) = -gj(u) j= 1,2,...,m (2.9)

then

Y(u) A max |gJ (u) |
j=l-m

= max gJ(u) (2.10)
j=l-2m

and

where

Y (u) = max g^(u) (2.11)
c j=l-2m c

i^(u) Ag°(u)/c +gj(u), j=1,2,...,m (2.12a)
and -j+m. A ~j ( . „ (2.12b)

gq {.u) = gc(u) j = 1,2,. .. ,m v '

We shall make various uses of the following two functions from G

into ]R :

We write j = 1 - m for j E {1,2,...,m}, etc.
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0(u) A min max {gj(u) - y(u) + <Vgj (u) , s > } (2.13)
sGS(u) j=l-2m l

and

6 (u) A min max {gJ (u) - y (u) + <Vg^ (u) ,s > }
C s£S(u) j=l-2m ° c c 2

= min max {gJ (u) - y(u) + <Vg (u)/c
sGS(u) j=l-2m

+Vgj(u),s >2) (2.14)

where for any u E G,

S(u) A {s|s + u e G} (2.15)

is the set of permissible search directions.

Also,

<x,y>2Al <x(t), y(t) >dt (2.16)

denotes the L^ scalar product, and VgJ(u), j= 0,..,m is defined by:

Vgj(u)(t) -|£ (xU(t), u(t), t)T A^(t) (2.17)
with A. being the solution of the adjoint equation

Ht) ="If (xU(t)' u(t)' t)T xU(t) <2'18>

A(l) =Vhj(xU(l)) (2.19)

7gc^u^» 3 = It2,...,2m, is similarly defined. We recall (see e.g., [1])

that <Vg3(u), s>2 defines the L* [0,1] Frechet differential of g^,

j = 0,1,...m; similarly <Vg3(u),s > defines the Lr [0,1] Frechet

differential of gJ, j = 1,2,...,2m.

We now impose a constraint qualification for the constraints

specified by gJ, j = l,2,...,m and G; the qualification is analogous to

the well known constraint qualification of linear independence of the equality
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and active inequality constraints, but is more indirect because of the

nature of the constraint set G. Let I , I2,...,I m denote the following

sets:

I. 4 ^!>2»3,...,m}

I2 A {m+1,2,3,... ,m}

I, A (1» m+2,3,...,m}

I, A {m+1, m+2,3,...,m}

I- A {1, 2, m+3,...,m}

I2m A {m+1, m+2, m+3,...,2m} (2.20)

let & (the class of all such sets) be defined by:

$*A {I±|i =1,2,...,2m} (2.21)
A* ±1 i2 i2mHence, if I = {i ,i ,... ,i2m} £^ the set of constraints {g ,g ,...g }

cannot include both gJ and -gJ = gJ for any j £ {1,2,.... ,m}. If m = 2,

$ ={{1,2}, {3,2}, {1,4}, {3,4}} corresponding to the following sets of
12 12 12 12

constraints: {{g ,g }, {-g ,g }, {g ,-g }, {-g ,-g }}. Note that neither

11 9 9 /-v* ^
{g »~8 } nor {g ,-g } belong to the set$ . Finally, for each I£ ,Q ,

for each c > 0, we define the functions <{> : G -* R, $ : G -* It by:

^(u) = min max {g^(u) -y(u) +<Vgj(u),s >9} (2.22)
sGs(u) jGl l

ll(u) = min max {gj(u) - Y(u) +<Vg°(u)/c + Vgj (u) ,s >} (2.23)
C ses(u) j€l 2

For any uQ?, let I(u)£$ be such that gJ (u) 21 0 for all jGI(u) and

gj(u) <0 for all j£l(u), j= 1,2,...,2m, and let $(u) A (I(u)}. Note

that if y(u) = 0, then ,^(u) = ,Q . Our constraint qualification can now be
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stated.

Assumption 4: For all u^G, for all 1^ (u), <f> (u) < 0. n

The nature of the qualification can be appreciated from a few simple

examples. If m = 1, Assumption 4 states that at all u£G, there exists a

1 2 1permissible search direction reducing the maximum of g and g = -g .

($* ={{1}, {2}}, ,()(u) ={1} if g1^) > $(u) ={2} if gX(u) <0). If

m = 2, Assumption 4 states there exist permissible search directions which

reduce, for example, max{g (u),g (u)} if g1(u) >0 and g3(u) = -g2(u) > 0,

so that $(u) = {1,3}.

Proposition 1: Let assumptions 1-4 be satisfied. For all u^G such that

Y(u) > 0, 6(u) < 0.

Proof:

It follows from the definitions of 0 and <f> that for any u^G and any

ie$(u),

6(u) = min maxJmax gJ (u) - y(u) + <VgJ (u) ,s > ;
ses(u) LjGl l

max gj(u) - y(u) +<Vgj(u),s >0} (2.24)
jGiC 2J

where I denotes the complement of I with respect to the set {1,2,...,2m}.

Let s (u) denote the minimizing s in the definition of <J> (u) and let

a (u) A max{g^(u)|jGic}. Clearly aX(u) <0for all I^,^(u). Setting

s = as (u) is the right hand side of equ. (2.24) yield:

6(u) < minmaxJ a(|)I(u),aI(u) -y(u) +' amax <Vgd (u) ,sI(u) >0l (2.25)
otG[0,l] [ jGic 2J

Since (J> (u) < 0 and o (u) - y(u) <_ -y(u) < 0 for all Ie$(u), it follows

that 9(u)<0, which completes our proof. °

Proposition 2: Let assumptions 1-4 be satisfied. If u ^ G is optimal
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then there exist multipliers if; ,^ ,...,^m G ]R such that
m

<Vg°(u) +22 *J Vgj(G), s> >0 (2.26)
j=l l

for all s G s(u).

Proof:

It follows from Theorem 2.3.12 of [2] that the ray R={y GlR11*"1!
y=3(-l,0,...,0)T, B>0} inm**1 is separated from the set W={y G;Rm+1|
y =<VgJ(u),s >2, j=0,1,...,m, sGs(u)} i.e., that there exist multi

pliers \\> ,i|» ,...,^m GlR, not all zero, with ty >_ 0 such that:
m

<Ag°(u) +2 ^j Vgj(u), s> >0 (2.27)
j=l l

for all sG s(u). If ^ = 0, then not all of the multipliers if*1,^2,... ,i^m

are zero and:

m m

Jill^ (roan iliJ ^\)a^(?y\ a>Zl ^J<Vgj(u), s>2 =£M<(sgn ^j)Vgj(u), s>0 >0 (2.28)
j=l j=l

for all s £ S(u), where sgn is defined by:

sgn(x) = -1 if x < 0

= 1 if x >_ 0.

Now, since y(u) = 0, we have g3 (u) = 0, j= 1,2,...,2m so that $(u) = ,()*.

From assumption 4:

<J> (u) = max <VgJ (u), s (u) >0 <0
j€l 2

for all 1^0/ ,where, as before, s (u) denotes the minimizing s in eqn. (2.22)

Recalling that -g3(u) = g3 (u), j = l,2,...,m, we see that there exist an

I £ 3 such that:

max <(sgn ^) Vg^ (u), s (u) > <0 (2.29)
j=l-m

-11-



This contradicts eqn. (2.28). Hence \\i > 0 and may be normalized to

unity.

Corollary 1: If assumptions 1-4 hold and uGGis optimal, then:

min{< Vg (G) ,s > <Vgj(u),s >2 =0, j =l,...,m, s € S(G)} =0 (2.30) *

Corollary 2: If assumptions 1-4 hold and u € G is optimal, then there

19m
exist no multipliers ty ,ij> ,...,ij> G 3R, not all zero, such that:

m

Z-r ^J<Vgj(u), s> = 0 (2.31)
j=l l

for all s £ S(u) n

Equation (2.30) is a weak form of the minimum principle for the problem

considered.

Our Algorithm will find controls u £ G satisfying y(u) = 0 and the con

clusion of Proposition 2, i.e., controls in the desirable set A defined as follows:

A A {u G g|y(u) = 0 and (2.26) is satisfied} (2.32)

For the family of problem P in (2.7), we define the corresponding desirable

sets

f\ *

Ac A (u e G|6c(u) = 0} (2.33)

It is easy to see by a straightforward generalization of Theorem (1.2.8)'

in [6] that if u is optimal for (2.7) then u G A . We state this fact as
c

Proposition 3: Suppose that u is optimal for problem P (2.7) then

u ^ A . n
c

We also have the following result.

Proposition 4: Suppose u € A, then there exists a c > 0 such that 0 (u) = 0
— c

for all c > c.
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Proof:

2
For any u £ G, we define R(u) Ci by

9 1 * '

R(u) A{y^l y = max {gJ(u) - y(u) + <VgJ(u),s > }
j=l-2m

y2 =<Vg°(u),s >2; s e S(u)} (2.34)

Then we see that for any c > 0,

0 (u) = min (-y2 + y1) (2.35)
C y^R(u) c

Let s £ S(u) be arbitrary and y(s) the corresponding element in R(u), i.e.,

2
2 0 j=l-2m

y (s) = <Vg (u),s > Then, since y(u) = 0 (gJ(u) =0, j = l,...,2m):

y1(s) = max <Vgj(u),s> (2.36)
j=l-2m

r r

Now, since s £ L [0,1], s £ Lo[0,l] and we can express s in the form
00 ^

y(s) = (y1(s), y2(s))T where y1(s) max gj(u) - y(u) + <Vgj(u),s >

m

s =2 aj(s) Vgj(u) +c(s) (2.37)
j=l

where <VgJ (u), a(s) >0 = 0 for j = 1-m, (and hence also for j = l-2m).
2

Consequently,
m

y1(s) = max 2 ak(s) <Vgj (u), 7gk(G) > (2.38)
j=l-2m k=l

Let T'be amxm matrix with jkth element <VgJ (u), Vg (u) >2 and let
19 TYI T

a = (a ,a ,...,a ) . Then, setting d(s) = Ta(s), we see that

y1(s) = max {dj(s), -dj(s)}
j=l-m

= lld(s)H = llra(s)ll > 0 (2.39)
00 00 —
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Now assumption 5 implies that the functions Vg (u), j = l,2,...,m are

linearly independent and hence the matrix T must be nonsingular.

Consequently,

a(s) = r"1 Ta(s) (2.40)

and hence

Ila(s)ll < Or"1! Hra(s)ll
00 *~" 00 00

= llr"1!! y1(s) (2.41)
00

Next, making use of (2.26) and (2.37) we get,

m

2(s) =<Vg°(u),s >9 >£-i|;j<Vgj(u),s )
j=l

= <TiJ/, a(s) >

> -mllr^ll ' Ha(s)ll
T CO CO

>-mllrij;!^ ilr"1!^ y1(s) (2.42)

Setting c A mil Til; II llr II , we see that
r— 00 CO

-^y2(s) +y1(s) >0 (2.43)

for all c > c, for all s G S(u), i.e. (c.f. (2.35)) 0 (u) = 0 for all c > c
c —

(since the zero functions is in S(ii)). n

We propose to construct our algorithm in conformity with an Algorithm

Model presented in [3] and stated below for ease of reference. The model

00

requires a strictly monotonically increasing sequence {c.}. n (e.g., the

sequence generated by c.,- = c.-No, o)>0 or by c.M = mc, w>1) together with
3+l 3 J+l J

corresponding sequences of costs {y.}. rt, y. Ay and desirable setsJ 3=0' 'j = 'cj
CO

{A.}, q, A. 4 A : A. is the set of desirable points for the problem
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Pcj: min{y.(u)|u E G}. The model also requires a sequence of test functions
00

tt.}. 0 and a sequence of iteration functions {A.}" mapping G into G. A
J J J J-0 j

defines an algorithm for finding desirable points for P .: all accumulation

points of any sequence (u^^q satisfying ui+1 EA.^), i=0,1,2,... lie
in A..

3

Given u E G, the Alogirthm Model utilizes the iteration function A
1 j

lf S^V - ° to 8enerate a new control u E A.(u ) and increases j (and

therefore c ) if t.(u.) > 0. The Model employs two counters, i and i:

{u } is the sequence of controls generated by the model and {u } is a
1 j

sequence made up of elements of {u } which contains that subset of {u }

corresponding to increases inc., so that t.(u.) > 0. A particular u. may
J J J i

appear many times in {u }. An example of a sequence generated by the model

is:

(c = cQ) tQ(u0

t0(u3

(c = Cl) tl(u3

(c = c2) ^^3

c2(u4
t2(u5

(c = c3) t3^u5

_< 0, determine u E A-.(un)

<_ 0, determine u« *= An(u.)

_< 0, determine u_ E AQ(u2)

> 0, set ufi= u.., c = c-

> 0, set u^ = u3, c = c2

<_ 0, determine u, E A2(u~)

£ 0, determine u,. E A«(u.)

> 0, set u« = u-, c = c.

<_ 0, determine ufi £ A~(u,-)

etc. Theorem 1 gives conditions under which accumulation points of {u.}

are desirable for the original problem.

Algorithm Model

Data: u E G.

Step 0: Set i = 0, j = 0
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Step 1

Step 2

Step 3

Step 4

If t.(u.) > 0 go to Step 2; else go to Step 3

Set u. = u., set j = j+1 and go Step 1.

Compute a u E A.(u. )

If Y.j(u) < y.(w±) set u - = u, i = i+1 and go to Step 1;

else stop. n

Note that c is increased to a satisfactory value in the loop com

prising Steps 1 and 2.

The following convergence result, given in [3], is required.

Theorem 1: Suppose: (i) For each j, A. is such that any accumulation point

u of an infinite sequence {u.}? n constructed according touJM £ A.(uJ
i i=0 ° i+1 j i

and satisfying, for all i, Y-(u.+1),< Y-(u.) lies in A. (i.e. u E A.), and
J ITJ- J 1 J j

that Y.(uf) > Y4(u) for any uf £ A. (u ) implies that u G A.. (ii) The test
3 ~ 3 3 3

functions t (•), j = 0,1,2,..., are continuous. (iii) For j = 0,1,2,...,

*U G^j^j^ -°* C A" ^iv^ For everv u* eGtnere exists an integer j*
such that if u, -*- u* (in the L sense) then, for some krt, t.(u,) < 0 for

k 00 » Ojk —

all t >^ kQ, for all j >^ j*. Under these assumptions, (i) if the algorithm

model constructs a finite sequence {u.}. n (so that {u.} is also finite)
1 i=0 j

then the last element, uk, is in A. (ii) If the Algorithm Model

constructs a finite sequence {u.} and {u.} is infinite, then every L
J 1 • «»

accumulation point u* of {u±} is in A. (iii) If the sequence {u.} is

infinite, then it has no L^ accumulation points. n

In the next section we shall propose an algorithm (A. in the Algorithm

Model) for solving the problems P . Here we define a set of test functions
CJ

tt.J.=0 and show that they satisfy the properties required in Theorem 1,

under (ii, (iii) and (iv).

For any c > 0 we define the test function t : G •+ IR1 bv
c J

tQ(u) A 0c(u) + y(u)/c (2.44)
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Since y is continuous by inspection, to prove that t is continuous, we
c '

must show that §c is continuous. At the same time it is convenient to

establish the continuity of 0, 61 and J1.
Tc

Lemma 1: The functions 0, 0 , <f> ,J1 are continuous on G, for all c > 0,

for all Ie ,()*.

i **1 j ~jProof: Because of Assumptions 1 and 2 the functions g , g , VgJ, Vg ,

j = 0,1,...,m, c ^0, are all continuous. Let u* be any control in G and

00 x

{u } 0 any infinite sequence in G such that u. -*• u* (in the L^ sense).

We first prove that 0 is upper-semi-continuous (u.s.c). There exists

a u* G G such that:

0(u*) = -y(u*) + max (gj(u*) + <Vg3(u*), u* - u* >J (2.45)
j=l-2m

(Clearly u* - u* is the minimizing s € S(u*)in (2.13).) From the

definition of 0 ((2.13)) it follows that:

6(u±) <-y(u±) + max {gj(u±) +<Vgj (u±),u* -u± >2}
j=l-2m

and, hence that

lim 0(u±) <_ lim -Y(u.) + max (gj(u,) + <Vg3(u,), u* - u >i
1 i=l-2m 1 ± 1 Jj=

= 0(u*) (2.46)

where the last equality follows from the continuity of y» g3, Vg >j=l-2m.

Hence 0 is u.s.c. at u*.

We next establish that 0 is lower-semi-continuous (l.s.c). For each

element u. of the sequence {u.}, introduced above, there exists a u. £ G such that:

0(u4) =-y(u.) + max <gj(u.) +<Vgj(u.), u. -u >,} (2.47)
1 i j=l-2m ± X ± 1

Suppose, contrary to what is to be proven, that:

lim 0(u±) = 0(u*) - e
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for some e>0. Then there exists a subsequence, indexed by K C {1,2,3,...},

such that:

0(u±) 5 e(u*) -e

and there exists a K' Cr such that

K1Y(u±) + y(u*)

gj(u±) 5' gj(u*), j=1,2,...,m

<Vgj(ui), u± - u± >2 STaj, j=1,2,...,m

It follows that:

-Y(u*) + max gJ(u*) + a3 = 0(u*) - e
j=l-2m

Hence, there exists an integer i such that

-Y(u*) + max {gj(u*) +<Vgj (u ), u -u>-}
j=l-2m i i 2

=-y(u*) + max {gj(u*) +<Vgj(u*), u -u>
j=l-2m * i 2

+<VgJ(u.) -Vgj(u*), u. -u±>2} <e(u*) -e/2 (2.48)

for all i>iQ, ieK\ Since Vgj (u±) +Vgj (u*) as i-., ±<= K'; it follows
from the second line of (2.48) and the compactness of Q that there exists an
integer ±1 > i such that

-Y(u*) + max {gJ(u*) +<Vgj(u*), u -u>}< 0(u*) _e/2
j—1—2m •*• 12

for all i > i1, ie K\ But this contradicts the fact that:

0(u*) < -y(u*) + max <Vgj(u*), u - u>
j=l-2m i i 2

for all i. Hence

lim 0(u.) = 0(U*), (2<4g)
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i.e. 0 is l.s.c. at u*. Hence 0 is continuous.

The continuity of 0,^, ^ for all c>0, for all ie^*, can be1 I1
C •* ' *c

similarly established.

The following is obvious.

mCorollary: For any c > 0, the function t : L [0,1] -> ]R, defined by
C co

(2.34), is continuous. a

Lemma 2: For any c > 0, the set {u ^ A It (u) < 0} is contained in the
c c —

set A.

Proof: Suppose u € A is such that t (u) <_ 0. Then, by (2.33) 0 (u) = 0
c c c

and, hence, (2.44) implies that y(u) = 0, i.e. that u is feasible. Now,

by (2.14)

5(u) = min max {gj(u) -y(u) +-f <Vg°(G),s >0 +<Vgj(u),s >0 }
c

s^S(u) j=l-2m

0,-
= min

s^S
n {-<Vg (u),s >9 + max <VgJ (u) ,s >J = 0 (2.50)
(u) c Z j=l-2m £

since y(u) = 0, gJ(u) = 0 also for j = 1,2,...,2m). Suppose u £ A. Then

there exists an s € S(u), such that <Vg (u),s >- < 0 and <VgJ(u),s > = 0

for j = 1,2,...,2m. Substituting this s into (2.39) implies that 0 (u) < 0,
c

which is a contradiction. Hence u £ A. n

Lemma 3: For any u £ G there exists a c > 0 such that for any infinite

sequence {u.} in G converging to u (in the L^ [0,1] sense) there exists

and i_ > 0 such that t (u.) < 0 for all i > i-, for all c > c.
i — ci — — 1 —

Proof: Let u and {u } be as stated above. From assumption 4, <j> (u) £-6,

for some 6 > 0, for all IG $(u) . Because of the continuity of c|)

(Lemma 1) , there exists an i >_ 0 such that

*l(v±) 1 -S/2 (2.51)
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for all IG -9(u) for all i>iQ.

As before, let a (u) A max{gJ(u)|j 61 } (Ic being the complement of

I in {1,2,...,2m}). Clearly aX(u) <0 for all IG <f)W • Let s^u) denote
I I

the minimizing s in the definition of (j> (u) (2.22) and s (u) the
c

~I
minimizing s in the definition of <\> (u) (2.23). From the definition

c

T *• T /\4cof <f> , <j>c it follows, for all u GG, all I G^ , all c _> 0, that:

i*(u) £max{gj(u) - y(u) + <(l/c)Vg°(u) + Vgj (u), s1^) >0}
° jei 2

=/(u) +<(l/c)Vg°(u), s^u) >2 (2.52)

Hence, since Q is compact, there exists a M G (0,°°) such that

*c(u) - *I(u) +M/c

for all uGG, all I G$ , all c >0. Let c± =max{4M/6,l}, so that M/c <_
6/4 for all c >_ c-. Clearly,

*c (ui> - ♦* <ui> +M/c <_ - 6/2 + 6/4 =- 6/4 (2.53)

for all c >. c1, all i>iQ, all I G$(u).

(a) Suppose y(u) > 0. Then there exists an i >_ iQ such that for all

i > ±v for all j GIc, for all I G ,^(u) .

gj(u±) - y(u±) <-Y(u)/2 (2.54)

and

Y(u±) < 3/2 y(G) (2.55)

(The first inequality follows from the fact that if IG X)(u), gJ (u) £ 0

for all j G ic, for all u G G, and the fact that
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Y(u±) -»• y(u) as i -> oo). Now, for all I G ^

0_(uJ = min max imax{gj(u ) -y(u ) +<(l/c)Vg°(u ) +<Vgj(u,),s >},
(u) [jGi 1 i i 2c *' ses.

max {g3(Ui) - Y(u ) +<U/c)Vg°(u )

+<Vgd(Ui),s >2)j (2.56)
Substituting as (u) for s yields, for all I G ,() :

M",) 1 min max^a^(u), max{gj(u )-Y(u.) + ab}l (2.57)aG[0,l] [ c x jGlc i ± J

where bAsup |( II Vg° (u) B2/c+Hvgj(u) 02) f! sĤsGS(u), uGG, c>c^ j =1,2,...,m) <«,

and Hyll2 A[<y,y >̂ . Hence, choosing any I G ,()(") and adding y(u )/c to
both terms in (2.57), we obtain

tc(u±) = 0c(u±) + y(u±)/c

< min max^-a6/4 + y(jiA)lc9 max{gJ(u.) - Y(uJ + ab
cxG[0,l] I ± jGlc * ±

u±)/c}|
n max V3y(u)/2c - a6/4, ~y(u)/2 + ab + 3y(u)/2c1 (2.58)
,1] I J

j^l(

+ Y0

<_ min
aG[0

for all i)^, c >_ e^ The first term on the right hand side of (2.58)

is negative if:

a > a1 A6y(u)/6c (2.59)

and the second is negative if

0 <_a < a A Y(u)(l-3/c)/2b (2.60)

Obviously, there exists a c2 _> c1, such that a < 1, and 0 < a < a
2

for all c _> c . Hence, letting a = a ,
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we obtain t (u.) < 0 for all i > i,, all c > c0.
c i — — 1 — z

(b) Suppose now y(u) = 0. Hence, gJ (u) = 0 for j = 1,2,...,2m, $(u) =,Q

and $(u±) C X)(u) for all i. Since IG ,()(u )implies that gJ(u.) <_ 0for

all j G i We see from ecpi. (2.57) that:

0 (u.) <_ min maxfof^u.), -y(u.) + ab} (2.61)
C 1 aG[0,l] c ± i

for all I€$(u ). Since $(1^) C$ for all if we can make use of (2.53)

to obtain

0
c
(u±) <_ min max{-a6/4, -y(u ) + ab} (2.62)

aG[0,l]

for all i >_ 1 , c _> c .

Hence:

t (u ) <_ min max{y(u.)/c - a6/4, ~y(u.) + y(u.)/c + ab} (2.63)
C i aG[0,l] i £ ±

The first term on the right hand side of (2.63) is negative of

a > a^Uj.) A A y(u±)/c6 (2.64)

and the second is negative if

0 <_ a < a2(u±) A Y(u±)(l-l/c)/b (2.65)

Hence, if y(u±) ^ 0, there exists ac >_ c2 such that ct-(u ) <1 and a..(u.) <_ a~(u )

for all i. Hence for all i >_ i such that y(u-) ^ 0, for all c >_ c„,

t (u.) < 0.
c i —

If y(u.) = 0 then t (u.) = 0 (u.) + y(u.)/c < 0 for all c > 0.
i c i c i i —

Combining (a) and (b) we obtain t (uj < 0 for all i > i„ all
c i — — 1

c >_ c. n

We can summarize our findings as follows:
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Theorem 2: Given any monotonically increasing sequence {c.}°°_ , c. > 0,

with c. ->- co , the test functions t A tc# :G •+ R (defined by (2.44))

satisfy the assumption of Theorem 1. n

We can now proceed with the construction of the maps A which define

subalgorithms to solve problems Pc..

III. SUBALGORITHMS FOR min{y (u)lu G G}
c

In this section we present a 'conceptual1 and an •implementablef

algorithm for solving problem Pc and establish convergence.' The following

subalgorithm has a structural relationship with the Topkis-Veinott method

of feasible directions [6] which is analogous to the relationship between the

Demjanov method for min max problems [4] and the Zoutendijk method of

feasible direct ions[5 ]. Its main advantage over Demjanov1 s method is that

it requires only one evaluation of the optimality function 0 (u) per iteration,
c

versus several in the Demjanov version. The evaluation of the opti

mality functions in an optimal control application is much costlier than in

a nonlinear programming problem. Also, we have here a built-in bounded

set G, defining the S(u), rather than the L^ hypercube used in nonlinear

programming. Hence the reasons for preferring a Zoutendijk type algorithm to one of

Topkis-Veinott form, do not transfer from the nonlinear programming situa

tion to optimal control.

For the purpose of simplifying exposition we state the subalgorithm

defining the maps Ac(A ) for solving problem PC(PC.) first in a relatively

simple, but conceptual, form, then in a somewhat more complex, but implement-

able form. In subalgorithm 1 below the map Ac (Aj for c= c^) is defined
s

in steps 0 to 2.
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Subalgorithm 1.

Data: Uq G g, 3G(0,1), c > 0.

Step 0: Set i = 0.

Step 1: Compute 0 (u.) and a corresponding s. G S(u.) (where e was
c i i i c

defined in (2.14)).

Step 2: If 0 (u ) =0, stop; else compute the smallest integer k > 0

such that

k k.

y (u + 3 1 s.) - y (u.) < 3 x0 (u.)/4 (3.1)
ci i ci — ci

Step 3: Set u = u. + 3 s , set i = i + 1 and go to step 1. n

The fact that the subalgorithm is well defined, i.e. (3.1) is always satisfied

with a finite k , can be deduced from the proof the Theorem 3 below, which

states the convergence properties of the subalgorithm.

Theorem 3: Suppose that Subalgorithm 1 construct an infinite sequence

of controls {u } in G . Then every L^ [0,1] accumulation point u of
i=0 U _

this sequence is in A , i.e. 9 (u) = 0.
c c

Proof: We shall prove this theorem using the methods employed in proving

theorem (1.3.9) in [6]. Thus, suppose that uG g is an L^ [0,1] accumu

lation point of {u } and that u G A , i.e. 0 (u) < 0. Then, there

i=0 C ° K. r
exists an infinite subsequence {u } .^ such that u -> u (in L^) and,

because 0 is continuous, there is an integer i such that
c o

0 (u.) < 0 (G)/2 for all i>i , IGr (3.2)
ci — c — o

Now, by definition

0c(u ) = min max { 5 ±(u.) - y(u.) + <Vi ^u.), s>9} (3.3)
C ± Ses(Ui) j=l-2m c x c l c ± 2
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Because the set ft is compact, the functions s G S(u ) are uniformly

bounded. For any j G {1,2,... ,2m}, i >_i , iGR, one of the following

two must hold: either

W "8ci(ui} > ~®c(ui)/2 (3'4)

or

Vui} "*? (ui} - -®c(ui)/2 (3-5)
- iSuppose (3.4) holds. Then because of the continuity of g , y and the

uniform boundedness of the s , there exists an integer kf ^ 0 such that

for all iGR, i > i , k > k?
— o . —

*5Ci(ui +3k s±) -yc(u±) <0c(u±)/4

< 3k0 (u.)/4
~~ c i

<3k§c(u)/8 (3.6)

Next, suppose that (3.5) holds for some jG {1,2,... ,2m}. Then, from (2.14), we
must have

<v8c1(ui)» s±> 2< 0c(u±)/2 (3.7)

Hence, applying a first order Taylor expansion with remainder

we get

icj(u±+ X.8±) -ic\u±)

=X<v£cJ(Ui), s±> 2+J" <Vgj(u± +£As±) - Vgj(u±), s±>2 dX
< X9 (u.)/2 + supll Vgu(« + U sj - Vg^ujll lis J

C ± ?G[0,1] * ± i - i- (38)

Since it follows from assumptions 1 and 2 that gJ and Vg ^, j=0,l,...m,

are continuous in L [0,1], there exists an integer k" >_k*,
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finite, such that for all k >_ k"

icJ(u± +3ks±) - yc(u±) <icj(u± T3ks±) - gcj(u±) <3k ec(u±)/4

< 3k 0 (u)/8 (3.9)
~ c

Hence, combining (3.9) with (3.6) we conclude that for all i > i , iGK
— o

VUi +^ si} "Yc(ui} -^ ®c(ui)M
< 3k 0 (u)/8 (3.10)
— c

and hence that k <_ k" for all i >_ i , iGK. Consequently, for all iGK,

irJu...) -Y„(u.) <(S i9 (i)/8 <6k" 9 (G)/8 A -6 <0 (3.11)
C ITJ. C X — C — C —

Note that (3.10) also shows that the subalgorithm is well-defined. Now,

(y (u_j)} is a bounded, monotonically decreasing sequence which must con-
~ a ~ K ~

verge to y (u) since y (u.) ->• y (u) . But
c c 1 c

Yc(G) "Yc(Ui }" L *c(ui+l} "^i*
° iGK

i>i
— o

+ £ vu±+iY.(»,A1) " Y.K) (3.12)
cx 1

iGK

i>i
— o

It now follows from (3.11) that y (u) = - °°, which is clearly a contradiction

of the boundedness of y (•) on G and hence we must have u^A , i.e. 8 (u) = 0. n
c c c

Subalgorithm 1 suffers from the drawback that it is only a conceptual

algorithm because the evaluation of 0 (u ), which can be carried out by

means of the Meyer-Polak algorithm [6] requires an infinite number of

interactions. We now state an implementable version. This version com-
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putes approximations 0 ' (u ) and 0" (u) to 0 (uj and direction vec-
*-»*. A c,e i c i

tors s satisfying, for a given e >0,

5c,e(ul)i5c<ul)i8c,e<Ui) (3.13)

^c'.^V -Sc(ui>^e (3-14)

'cW =.mf,{ 8CJ(V " Yc(u )+<Vg J(u.) , • >}(3.15)
j=l-2m l--L=i c i i ^

The details of the computation of § • § " and s. are given in the
c c i

Appendix.

Subalgorithm 2:

Data: "n G G, 3G(0,1), c > 0, e > Q.
u o

Step 0: Set i = o e = e .
t o

Step_l: Compute 0^ (u^ and acorresponding vector s± by means of sub-
algorithm 3 (see Appendix).

Step 2i If §c",e (ui} -~e> 8° to steP 35 else set e=e/2 and go to step 1,
SteP 3i Compute.the smallest integer k such that

S k, / <Yc(u± +31s±) -Yc(u±) <3±0c,e (V
k

Step__4: Set u±+1 =u± +3 s±, set i=i+1and go to step 1. n

The adjustment of e in subalgorithm 2 is based on the algorithm model

(1.3.26) in [6] which can also be used to prove the theorem below, in a
reasonably straightforward manner.

The°rem 4: (i) SuPP°se that subalgorithm 2constructs an infinite sequence
of controls in G. Then-every L* [0,1] accumulation point uof this sequence

Is in Ac, i.e. §c(u) =0. (ii) if subalgorithm 2jams up at au±, cycling
in steps 1 and 2, then u G A . H

i c

k. k

sj - y (u.) < 3 f 0r.£(u-i>/4 (3.16)

k,
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Theorems 3 and 4 are relatively weak results because the set G is not

Lro [0,1] compact and hence there is no guarantee that a sequence [u.] __

constructed by subalgorithms 1 or 2 has L^ [0,1] accumulation points.

However, assumptions 1 and 2 and the compactness of ft quarantee that the

corresponding sequence of trajectories {x }. n> constructed according to

(2.4), (2.5), always has accumulation points x* in L [0,1]. The tra

jectories x*(») are absolutely continuous and can be realized by a relaxed

control. In section V we shall show that all the limit trajectories x*(-)

together with the generating relaxed controls satisfy an optimality con

dition for the relaxed optimal control problem corresponding to the optimal

control problemP (2.7). This is a stronger result than theorems 3 and 4.

IV. THE COMPLETE ALGORITHM

Since an implementable version requires modification of the test

functions t defined in §11 as well as some further control of the pre-
c

cision parameter e in Subalgorithm 2, resulting in a considerable in

crease in complexity, we shall first state our algorithm in a conceptual

form and then in an expanded implementable form. The convergence of the

conceptual form follows from theorem 1. We shall omit a proof of con

vergence of the implementable version since it is a straightforward but

tedious exercise. In both cases, we make use of a function C: 1R -> 3R

to generate the sequence {c } according to c ,. = £(c ), e.g. e - = c + 1.
j J"**-*- J J"*"-'' 3

We use the abbreviated notation y., 0., t. instead of y » 9 » t
3 J 3 cj c. c.
J J J j j j

Algorithm 1 (Conceptual Version)

Data: u G G, 3G (0,1), t >0, cQ > 0, C: TR +3R .

Step 0: Set i = 0, j = 0.

ui Ui i iStep 1: Compute x , A ,gJ(u±), Vg (u±), j= 0,l,2,...,m, y(u±), 0.(u±),
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s^S^), tj(u±) according to (2.4) ,(2.17)-(2.19) ,(2.3) ,(2.10) ,(2.14) ,(2.44)
Step 2: If t.(u±)£ 0, go to step 3; else go to step 5.

Step 3: If §.(u ) = 0, stop; else compute the smallest integer k > 0

such that

k k

Yj(^i.+ 3is1) - ^(u^ <eiijCu^M (4.1)

Comment: The computation of k requires that the differential equation

(2.4) be integrated once for each value of k - 0,1,2,... tried

until (4.1) is satisfied.

k.
Step 4: Set u = u + 3 s., set i = i+1 and go to step 1.

Step 5: set c = C(c.), set j = j+1 and go to step 1.0 f n

Since we have already shown that all the blocks of algorithm 1 satisfy

the assumptions of theorem 1, we can summarize its convergence properties,

as follows.

Theorem 5: Consider a sequence of controls {u } constructed by algorithm 1.

(i) If the sequence (u }. n is finite, then its last element u, (•) satisfies
GO

(2.21), i.e. u, G A. (ii) If the sequence {u.} _ is infinite and the

indices j remain bounded by some j <», i.e. j < j for all j, then every

Lm(0,l] accumulation point u of {u.} . n is in A . (iii) If the sequence
i i—U

{u.} is infinite and j -*00, then {u } has at least one subsequence which

has no L [0,1] accumulation points. n

In the next section, we shall see that in the topology of relaxed

controls case (iii) of theorem 5 cannot arise and hence only cases (i)

and (ii) are of importance.

Before leaving this section, we present an implementable version of

t Note there is no need to store the subsequence {uj which was defined in the
Algorithm Model for the sake of proofs only. ^
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Algorithm 1, based on Subalgorithm 2. Since we shall now be using approxi

mations §" to 0 , the test functions t also must be modified, which we
c,e c c '

propose to do as follows: For any e > 0, c > 0,

'c.e00 *9c,e(u) +^m^{Y(u),T} -e (4.2)

where t > 0.

This leads to the following implementable version.

Algorithm 2. (Implementable version.)

Data: uQ €G, 3€(0,1), x>0, cQ >0, e0 >0, £: ]R X-• H1.

Step 0: Set i= 0, j = 0, e= eQ.

u. u .

•SteP 1: Compute x1, A ;g3 (u±), Vg3 (u±), j=0, 1, ••, m, yO^),

^j^V' ^^^i*' ^.e^l*' accordin8 to (2.4),(2.17)-(2.19),(2.3),(2.10),
(3.13)-(3.15), (4.2).

Step 2: If t (u ) <_ 0, go to step 3; else go to step 6.

Step__3: If 9V e(u±) <. - e, go to step 3; else set e = e/2 and go to

step 1.

Step 4: Compute the smallest integer k > 0 such that

k. k

• y.(u± +3\) -Yj(u±) <3 5jfe(u±)/4 (4.3)

ki
Step 5: Set u.

i+1
= ui + 3. s^ set i = i + 1 and go to step 1.

Step 6: Set c.j+1 = C(c.), set j = j+1 and go to step

By making use of Algorithm Model (1.3.26) in [6], Theorem 1 and the
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various results established for the conceptual version, we can deduce,

with some effort, the following not altogether surprising result.

Theorem 6: (i) If Algorithm 2 jams up at a control u., cycling in steps

1 to 3, then u G A.

(ii) If Algorithm 2 constructs an infinite sequence of controls {u.}°°_n

and the index j remains bounded, i.e. j <_ j for all j, then every Lr[0,l]

accumulation point u of {u.} is in A.

(iii) If Algorithm 2 constructs an infinite sequence of controls {u.}. „
i i=0

00

and the index j -»• » as i -»• «, then {u.} Q contains at least one sub-
r

sequence which has no L [0,1] accumulation points. n

Again, as in the case of the conceptual algorithm 1, we shall see in the

next section that case (iii) above, cannot arise in the- control measures topology

and hence only cases (i) and (ii) of Theorem 6 are of importance.

V. CONVERGENCE IN THE SENSE OF CONTROL MEASURES

We now present an analysis of our algorithm in a more abstract, but

also more satisfying setting, namely, in the sense of convergence of control

measures. In doing so, we follow the methodology proposed in Williamson and

Polak [7]. The reason for turning to relaxed controls is that, unlike in

r -
L^i.0,1], a sequence of bounded relaxed controls always has accumulation

points. Hence, case (iii) in Theorem 6 can be ruled out, i.e. we can show that

the index j remains bounded. Furthermore, as we shall see, the accumulation

points generated by our algorithm satisfy an appropriate optimality condition

for the relaxed optimal control problem, which we are about to define. We

begin with a few definitions and results which are standard in the relaxed

control literature (see e.g. [8], [9]).

Let V be the set of probability measures on ft(y G y^Jq dy(u) = 1) •
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For any continuous function <f»: »n xnx [0,1] + mP, the corresponding

relaxed function <J> : Rn xy x [0,1] is defined by+

*r(x,y,t) = J<J)(x,u,t)dy(u)
(5.1)

A relaxed control is any function y: [0,1] + y. A relaxed control is

said to be measurable if for any polynomial p(u) in (the components of) u,

the function 0: [0,1] •> mis measurable, with 0(t) =p (y(t)) = fp(u)

dv(t)(u). Let G be the set of measurable relaxed controls, then the re

laxed optimal control problem (corresponding to (2.6)) is

*in{£ (v)|ii(y) =0, j=l,2,.-,m, yGG} (5.2)

where

v

gJ(y) =hj(x (1)), j=0, 1,2,..,m
(5.3)

and x~: [0,1] -> IRn is the solution of

x(t) = fr(x(t),y(t),t) a.e. on [0,1]

x(0) = 5.

(5.4)

(5.5)

In addition to (5.4), (5.5), we define also a set of adjoint systems

defining the functions A~: [0,1] - mn, j = 0,1,2,..,m, as solutions of

^(t) ="(H) (x""(t)>Y(t),t)TX(t)

v

(5.6)

X(l) =VhJ(x~(i)). (5.7)

We now collect some relevant results and definitions.

+
Note that we use here the symbols 0, cj>, A for different objects than in the
preceding section. This should cause no difficulty because of the entirely
different context.
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Proposition 5: If y G G and <f>: fix [0,1] -> Hp is continuous, then the

function 0: [0,1] -]RP definitely 0(t) ^<j>r(y(t),t) =Jfi(}>(u,t)dv(t) (u)
is measurable. o

For a proof, see Young [8] p. 290.

Proposition 6: Under Assumptions 1-3, there exist absolutely continuous
y v

functions x , A~ j = 0,l,2,..,m, which are the unique solutions of the

system (5.4)-(5.7). n

For a proof, see Young [9] p. 291-292, 298.

Proposition 7: Under Assumptions 1-3, there exists a 6 G (0,«>) such

that for all t G [0,1],

v

*~(t) ex (5.8)

v

*T(t) G x, j = 0,1,2,..,m, (5.9)

where

X^ {£ Gmn|ll£li £6} (5.10)

This proposition can be deduced from a similar result in [11].

We shall say (see [8], [9]) that an infinite sequence {y.} in G

converges to y G G in the sense of control measures (i.s.c.m.) if for

every continuous function <j>: ft x [0,1] -»• IR and every subinterval A of

[0,1],

f4> (v (t),t)dt + /<j) (y*(t),t)dt (5.11)
JL r ~x ± r

as i -»* «.

The following result follows directly from Lemma 1 in Williamson and
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Polak [7].

Proposition 8: Let £: X x ft x. [0,1] -»• W, with W a bounded subset of

]RP, be continuous inXxfl and measurable in [0,1]. If x.: [0,1] -»• X

i = 1,2,3,.., converge uniformly to x on [0,1] and u G G, i = 1,2,3,...,

converge to u* G G i.s.c.m., then for each subinterval A of [0,1]

jAr(xi(t), Ui(t),t)dt +jir(x*(t),u*(t),t)dt (5.12)

It is now straightforward to show, using propositions 2, 3 and 4 that

Corollary : Under Assumptions 1-3, if {y.} is an infinite sequence .in
it

G converging to y , i.s.c.m., then the corresponding sequences of

~i Yi
trajectories {x }, {X } 1 = 0,l,2,..,m, converge uniformly on [0,1] to
* * J

v v
x > ^ >j = 0,1,..,m respectively. «

Now, before proceeding further, we note that for any u G G and

s G s(u), j = 0,1,2,...,2m

<Vgj(u),s >2 =<Vhj(xU(l)),zU'U+S(l) > (5.13)

where zU,U S: [0,1] •> IRn is the unique solution of

z(t) =|f (xU(t),u(t),t)z(t) +|f (xU(t),u(t),t)s(t) (5.14)

z(0) = 0. (5.15)

Hence, if we define

R(u) = {zU'W(l)|(w-u) G S(u)} (5.16)
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then we see that the functions 0 and 0 can be rewritten as
c

0(u) = min max hj(xu(l)) - y(u) + <Vhj (xUQ) ,z > (5.17)
zGr(u) j=l-2m

0 (u) = min max hj(xU(l)) - Y(u) +<(1/c)Vh°(xU(l))
C zGR(u) j=l-2m

+ Vh3(xU(l),z > (5.18)

Y>w n
Consequently, we introduce the functions £ : [0,1] -> IR , with

y G G and w G G, defined as the unique solutions of

v v

z(t) = (f ) (x~(t),v(t),t)z(t) + (f) (x~(t),y(t),t)w(t)

v

- (f. (x~(t),v(t),t) (5.19)
r

z(0) = 0, (5.20)

where

cf»(x,u,t) ^fu(x,u,t)u (5.21)

]Rn
Defining the set value map R: G •*• 2

u,w

R(u) = {z~ (i).|u G G, w G G} (5.22)

we can define extensions of 0 and 0 as follows: Let y: G -*• IR,
c

0: G -> IR, and, for c > 0, 0 : G -* IB, t : G -* ]R, be defined by

A a ' . . V
Y(y) = max . gJ(y) = max gJ (v) hJ(x~(D) (5.23)

j=l-2m ~ j=l-2m
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A i v .v
6(y) = min max (hJ(x~(l)) - Y(v) + <VhJ(x~Q),z >} (5 24)

zeR(v) j=l-2m

0c(y) = min max {hJ(x~(l)) -Y+<(1/c)Vh°(x~(i) +Vhj(xY(i)),z> >
z^Rfr) j=l-2m i

(5.25)

tc(y) £8c(v) +Y(v)/c (5-26)

It is easy to show that if y is optimal for the relaxed problem corresponding

to P then 0(y) =0 and if v is optimal for the recaped penalized problem,

(corresponding to Pc), then §c(y) =0. It now follows directly from

Corollary 1(which also applies to the functions z^) that if {v }°° is
~i i=0

asequence in Gconverging i.s.c.m. to av* G G, then the set R(y )- R(y*) in

the Hausdorff metric, and hence it follows easily that 0(Vj) -»• 0 (v )+ 0 (v*)
~i c~ i c ~

(for any c) and tc(y±) + tc(y*), i.e. all these functions are sequentially

continuous in the topology of relaxed controls. We thus obtain the analogies of

Lemmas 1and 2. Similarly, tracing through the proof of Lemma 3, we find that

we can substitute relaxed controls for controls in G to conclude that for

any y* GGthere exists ac* >0such that if v±-y* i.s.c.m., then there
exists an iQ > 0 such that t (y.) <0 for all i > i and c > c*

C "X. — O — *

Now, with each (ordinary) control u± GGgenerated by our algorithms

we can associate the relaxed control u. G G which is wholly concentrated

at u±(t), i.e.,

jT / m d[Ii(t^u) =i•'{u (t) > x
i^ ;/ (5.27)

Since as we have just seen, all the functions which we have used and
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which were l£[0,l] continuous are also sequentially continuous i.s.c.m., it is
quite straightforward to establish the following results, by essentially

retracing the steps in the proofs of Theorems 3, 4, 5 and 6.

Theorem 7: Suppose that {u±}™=Q is an infinite sequence of (ordinary)

controls constructed by Subalgorithm 1 or Subalgorithm 2. Let {u.}°°_

be the associated sequence of relaxed controls. Then every accumulation

point u of {ui}i=0, i.s.c.m., satisfies 0 (u) =0. n

Theorem 8: Suppose that C^}^ is an infinite sequence of (ordinary)

controls constructed by Algorithm 1 or Algorithm 2 and let {u\}°°_ be

the associated sequence of relaxed controls. Then there exists an index

3 < « such that j <_ j throughout the computation, and every accumulation

point uGGof {u^h^Q, i.s.c.m., satisfies for some multipliers

4> , j = l,2,...,m, the optimality condition

m

uGA={u Gg|Y(u) =0; <Vh°(x~(D) +Y] i|>jVhj (x~Q) ,z >>0,
j=l

V z G R(u)} (5.28)

Note that case (iii) of Theorems 5 and 6 is ruled out in Theorem 8^because

any infinite subsequence of {u±} must have accumulation points i.s.c.m..

Thus, by carrying out our analysis in terms of relaxed controls we have

reaped two benefits: we have eliminated the need to establish that

LJ0,1] accumulation points will exist for the sequences constructed,

and we have also been able to show that the growth of the penalty c.

cannot be unbounded.
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VI CONCLUSION

In this paper we have shown how to solve an optimal control problem

with control and terminal equality constraints. The terminal equality

constraints are handled by defining an equivalent control problem with

control constraints but without terminal equality constraints. This is

done by defining an exact penalty function involving a parameter c. The

two problems are equivalent if c is sufficiently large (but finite). The

control constraint is handled by incorporating it as a constraint in the

search direction subproblem. The complete algorithm incorporates an

inner loop to increase the parameter c to a satisfactory value. It is

shown that accumulation points, both in the L sense and in the sense

of control measures, satisfy necessary conditions of optimality; accumu

lation points, in the sense of control measures, always exist for the

control problem considered. This fact is used to show that the sequence

of parameters {c } produced by the algorithm is finite. Except for

algorithms of the penalty function type, no other algorithms with

proven convergences, for this class of problems are known to the

authors.
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APPENDIX

The conceptual version of the algorithm requires at each iteration

the determination of a search direction Sc(u) which is a solution of:

6(u) = min max gj (u) -Y(u) +<d/c)Vg°(u) + Vgj(u),s >2
c sGs(u) j=l~2m

= min nU(s) (Al)
sGS(u) C

where, for each u G G, c > 0, nu: S(u) •* IRis defined as follows:

nU(s) ^ max {gj(u) -Y(u) +<(l/c)Vg°(u) + Vgj(u),s >^ (A2)
c j<=l-2m

Consider the reachable set RU in K defined by:
c

RU A {f e]R2mkJ =gj(u) -y(u) +<(l/c)Vg°(u) + Vgj(u),s > ,
c '

j = l,...,2m s G s(u)}

=u em2mUJ =gj(u) -Y(u) +<(i/c)vh°(xu(i)) +vhj(xu(D),
zu,u+s(1)> j = ljt.<j2m, sGS(u)}

(A3)

where zU,U+S, defined in (5.13), (5.14), is the solution of a linear

time varying differential equation due to a "control" s. it is well

known that RU is convex and compact. Eq. (Al) can be rewritten in the
c

form:

0 (u) = min max £ <M)
c

*-GR£ j=l-2m
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This is a standard convex control problem for which several algorithms

exist. These algorithms make use of the fact that points on the boundary
9m

of RU can be easily determined; more precisely, given any vector d G "R ,
c

the point £U(d) in RU which maximizes <d,£ > can be easily determined,

the jC component of £U(d) being given by:

Au

u,u + s (d)

d"(d))j = gj(u) -Y(u) +<(l/c)Vh°(xU(l)) + Vhj(xU(l)), z ° (D>

(A5)

j = l,...,2m, where the search direction s"(d) G s(u) satisfies (by the

Pontyagih Minimum Principle), for all t G [0,1]:

<sU(d)(t), BU(t)XU(t,d) > <<w-u(t), BU(t)X*(t,d) > (A6)
c c *"*

for all w G ft. B : [0,1] -»• IR is defined by:
u

Bu(t) = fu(xU(t), u(t), t) (A7)

and XU(-,d): [0,1] + 3Rn is the solution of eqn. (2.18) with boundary
c

condition:

2m

X(l) =Y] dj[(l/c)Vh°(xU(l)) +Vhj(xU(l))] (A8)
j=l

The problem defined by (Al) is convex, and we can use this fsict to

obtain an approximation to this problem to any required degree of accuracy

in a finite number of iterations. We shall employ the Meyer-Polak al

gorithm, described in (5.3.14) in [6], modified so that the algorithm

terminates when the desired accuracy is attained. The algorithm employs

two sets, RU, defined above, and the set D^(a) defined, for all aG 3R,
c c
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by:

DU(a) 4 {n G m2m|nj e [(bV, a], j=l,...2m} (A9)
cx ' ' c

where:

(bU)j £ £u(e.) J (A10)
v c cN j'

for j = 1,... 2m, where e denotes the j unit vector in IR- . Let

bu G IR denote the vector whose j component is (b ) . The two sets
c c

Ru, DU(a) are illustrated in Fig. 2.
c c

The Meyer-Polak algorithm determines the infimum value of a such

that RU H Du(a) f d> and, hence, 0 (u) and the corresponding search
c c c

direction s (u) (the minimizing s in (Al)). The modified algorithm
c

yields, for a given e > 0 (e is the precision parameter) approximations

0f (u), e" (u) to 6 (u), and a search direction s£(u) G s(u) satisfying:
c,e c,e c c

9T (u) = < 0 (u) < 5" (u) (All)
c,e — c — c,e

0M (u) - §' (u) < e (A12)
C,G C.E —

e" (u) = nu(iE(u)) (Ai3)
c,e cv cs

— £

Thus the algorithm yields a search direction s (u) such that

0 (u) G [nu(i£(u) - e, n"(i£(u)].
c c c c c

In the algorithm description which follows £ denotes a point in

RU and n a point outside RU. At iteration i of the algorithm:

0* (u) = max irj (A14)
c,e j=l-2m
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r (u) = max K{ (A15)
j-l-2m

The algorithm terminates when 0 (u) - Q* . (u) < e
c,ev/ c,ev/—

Subalgorithm 3.

(Truncated version of Meyer-Polak algorithm)

Data: uGg, e>0, c>0.

Step 0: Set i = 0, set sQ = 0.

Set £0 = (g1^) - Y(u), ...., g2m(u) - Y(u))T
Set nn = bU.

0 c

Step 1: If lln. - £.11 < E.
£— 'i loo- >

set 0* (u) = lln. II ,
c,ev ' 'i oo»

set §" (u) = hj 3
c,e i «>'

set s. = s (u) ,
i c

and stop.

Step 2: Set a. = n. - £..
c— 1 1 *i

Set I. = iU(o.) .
1 c 1

Set s, = s (a.) .
i c 1

Compute a n.. which solves

min{!lnIIJ <c., n > = <6±,l±>}.

Step_3: Compute ^±+± G[q, f±], n^ E [r]±, ^±] such that:

"Ci+1 ~ni+l!l =minCfle-TiB|e G[q, l±], nG[n±, ^}
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Set s.,_ = s. + (s. - s.) £. - C-.J/UC - 4.U.
i+l 1 l ii l+l l l

Set i = i+1.

Go to Step 1. •

Note that s is the search direction corresponding to £. in the

sense that £. is.that point in R generated by s., i.e.

4 =Sj(u) -Y(u) +<(l/c)Vg°(u) +Vgj(u), s± >2 (A16)

for j = 1,...,2m.

The following result follows directly from the proven convergence

of algorithm(5.3.14) in [6] by identifying C with R and^(a) with

D (a) and a with a. Since Dg. - n.H -»• 0 in the original algorithm it

follows that ils.-n.il -> 0 and hencethat 0 (u) - 0* (u) < e/2 after
i i °° c,e c,e —

a finite number of iterations.

Proposition. For any u G G, any c > 0, any e > 0 such that 0 (u) < 0
c

there exists a finite integer k (u) such that Subalgorithm 3 terminates

—E
in k (u) iterations yielding a search direction s (u) G s(u) and bounds

0" (u) satisfying (A11)-(A13). n
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2 / _oyMg°(u))

y'(g'(u))

v =b>a

y =yVc+y-a



D" (a)
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