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ABSTRACT

The presence of control constraints, because they are non-differen-
tiable in the space of control functions, makes it difficult to cope with
terminal equality constraints in optimal control problems. Gradient pro-
jection algorithms, for example, cannot be easily employed. These diffi-
culties are overcome in this paper by eﬁploying an exact penalty function
to handle the cost and terminal equality constraints and using the control
constraints to define the space of permissible search directions in the
search direction sub-algorithm. The search direction sub-algorithm is,
therefore, more complex than the usual linear program employed in feasible
directions algorithms; the sub-algorithm (approximately) solves a convex
optimal control problem to determine the search direction, the accuracy of
the approximation, in the implementable version of the algorithm being

automatically increased to ensure convergence.
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I. INTRODUCTION

This paper deals with optimal control problems with control and
terminal equality constraints. The combination of these two types of
constraints makes it difficult to obtain efficient algorithms. Algo-
rithms of the standard penalty function type are, of course, easily developed,
but are usually computationally expensive. Of course, in the absence of
control constraints, the obvious analogues of finite dimensional algo-
rithms may be employed, example of these being the gradient projection
algorithms and the multiplier methods, both the versions which require,
at each iteration, exact minimization of the extended Lagrangian and
these which do not. Because of the non-differentiability of the control
constraints (in the space of controlifunctions) it is difficult to extend
these algorithms to cope with the problem considered in this paper.

To illustrate the approach taken in the paper consider the problem
P with one equality constraint, i.e., the problem of minimizing go(u)
subject to the terminal equality constraint gl(u) = 0 and to the control
constraint u ¢ Li[O,l] and u(t) ¢ Q for all t ¢ [0,1]. go(u) = ho(xu(l))
and gl(u) = hl(xu(l)), x° being the solution of the system differential
equation due to control u (and specified initial condition). h0 and h1
are continuously differentiable, 2 is convex and compact and the system
differential equation satisfies standard assumptions.

We deal with the terminal equality constraint by considering the
alternative problem Pc of minimizing ?c(u) é:max{go(u)/c + gl(u),
go(u)/c - gl(u)} subject to the control constraint. The alternative
problem Pc is equivalent to the original problem P in the sense that there

exists a finite ¢ such that a solution for Pc is also a solution for P.

Ignoring for the moment the problem of choosing c, consider problem
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Pc’ VThe nature of the cost function (the maximum of a set of continuous
functions) requires special attention. If the current control is u, a
search direction §c(u) must be ascertained which is both a descent direc-
‘tion of the cost and is such that u + §c(u) satisfies the control con-
straint. (Because of the convexity of @, u + Agc(u) then satisfies the
control constraint for all A € [0,1]. A suitable candidate for the search
direction is the s which solves
gl(u) - y(u) + ((l/c)Vgo(u) + Vgl(u),s )s

9 (u) = min max
¢ s gl ) - v + ((@/e)velw) - vglw),s)

subject to the constraint that ut+s satisfies the control comnstraint,

where y(u) é:max{gl(u), -gl(u)}. Thus the control constraint is handled

in a natural fashion by incorporating it into the search direction sub-
problem. This sub-problem is, admittedly, more complex than usual, but

is, nevertheless, a standard convex optimal control problem for which
several algorithms (with proven convergence) exist. The version of the
algorithm which solves this sub-problem exactly is called 'conceptual'.

In the 'implementable' version of the algorithm the above problem is solved
approximately (in a finite number of iterations), the degree of approxima-
tion being automatically increased as the algorithm converges.

We turn now to the choice of the parameter ¢, a topic which has been
somewhat neglected (and even misunderstood) in the literature. It is, of
course, not sufficient to establish the existence of a finite ¢ such that
Pc and P are equivalent; a means must be provided to increase ¢ to a suit-
able value. Incrementing c at each iteration is not satisfactory, as c¢
will then become excessively large causing the same computation difficulties

that occur in penalty function methods. Hence c must be chosen to satisfy



some test depending on the current control u; the test can be defined by
tc(u) < 0. Various heuristic choices of the test function t, for algo-
rithms incorporating a parameter c have appeared in the literature. How-
ever, there do exist conditions that tc should satisfy which ensure
convergence of fhe algorithm, and these are restated in Theorem 1. Roughly
speaking, these are: (i) for each ¢, the function t. is continuous in u;
(i11) 1if u is desirable (i.e., satisfies a necessary condition of opti-
mality) for P and the test tc(u) < 0 is satisfied, then u is desirable for
P and (iii) for each permissible control u* there exists a neighborhood N*
of u* and a finite c* such that the test tc(u)_i 0 is satisfied for all u
in the neighborhood N and all c g_c*. The second condition is an obvious
requirement of the test function; the first and third conditions ensure
that the algorithm does not jam up at undesirable points and are the
conditions always ignored in the heuristic literature.

In many algorithms the test function tc is related fairly directly
to properties of the problem, e.g., where local convexity is required (as
in multiplier methods) to the positive definiteness of a Hessian matrix or,
in exact penalty function algorithms, to the (approximate) multipliers, see [3].
However, obtaining a test for the problem considered in this paper was rela-
tively difficult. The considerations involved can be appreciated by referring
to Fig. 1 which shows the (reachable) set W of values attained by (go(u),gl(u))

<

as u ranges over the constraint set. Clearly y =‘(g0(ﬁ), gl(ﬁ))T is the

we

optimal point in the reachable set and so u is the required solution of P.

Two sets of constant cost contours of ?c are shown for ¢ = 2 and ¢ = ¢,y
Clearly the solution of Pc (min{:y'c = y2/c2 + y1|y € W}) is also the

2 2
solution of P. On the other hand, min{Yc = y2/cl + ylly € W} occurs at

1
Y, corresponding to a control u which does not satisfy the equality constraint



(i.e., gl(ﬁ) = ;1 # 0). Clegrly,the minimum value of ¢ that is satisfac-
tory is that defining the slope of the supporting hyperplane to W passing
through §. However, it is not obvious how to employ-this fact to obtain
a test function satisfying the conditions given above. Also, determining
the slope of a supporting hyperplane to a reachable set, indirectly defined
by the control constraint, is computationally expensive. Instead we
propose a test function tc(u) ézéc(u) + y(u)/c which is easily calculated
and which can be proved (with some difficulty) to satisfy the required
conditions. If the equality constraint is not satisfied, then y # 0, and
the test requires that c¢ be large enough so that éc(u) < =y(u)/e < 0.
5c(u) = 0 is a necessary condition of optimality for problem Pc.

The complete algorithm is specified in Algorithms 1 (conceptual) and
2 (implementable) in §4 and is based on the Algorithm Model described in
§2. The map A., which specifies an algorithm (sub-algorithm 1) for solving

|
P is presented in §3, and the test function t. in §2. The map Aj requires,

c
injits conceptual version, exact solution of the search direction sub-
problem (determination of éc) defined above; hence an implementable version
of Aj’ requiring only approximate solutions of Pc. (sub-algorithm 2) is
also presented in §3. It is shown in §4 that boti versibn of the complete
algorithm have the property that all accumulation points (in the L_ sense)
are desirable (satisfy necessary condition, of optimality). Since such
accumulation points need not exist, it is shown in §5 that the complete
algorithm produces sequences which always have accumulation points in the
sense of control measures,‘and that such accumulation points satisfy
(relaxed) necessary conditions of optimality. A useful corollary is that
the growth of the parameter c, must be bounded. The complete algorithm is,

|

to the authors' knowledge, the only algorithm, with established convergence,
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for solving the problem considered.+

II. THE PROBLEM AND BUILDING BLOCKS FOR AN ALGORITHM

In this section, we define the control problem P, an equivalent
problem Pc without terminal equality constraints but involving a parameter
c, and present an Algorithm Model which solves P. This Algorithm Model
incorporates a sub-algorithm for solving Pc’ a test function tc and a procedure
for increasing c until the test tc(u)4§ 0 is satisfied. Finally we
propose a concrete test function tc and show that it has the required

properties. We consider optimal control problems of the following type

wmin{g®(w) gl () = 0, 5 = 1,2,...,m, u € c} (2.1)
where

¢ Afu€L. [0,1]]u(t) €2 for all t € [0,1]} (2.2)

g AnEW), j=0,1,2,...,n (2.3)

and x" : [0,1] » R" is the solution of

x(t) = f(x(t), u(t),t) a.e. on [0,1] (2.4)

x(0)

il
oy

(2.5)

We begin by making three standard assumptions which will later be

supplemented with a kind of constraint qualification.

1

Assumption 1l: The function f : R x ]Rr x R- +R" and the functions

n . BP’*-IG} j=0,1,2,...,m, are continuously differentiable.

o
Assumption 2: There exists an M € (0,x) such that

£ (x,u,t) < M(1 + lxll (2.6)
for all (x,u,t) €ER™ x @ x [0,1]. =

tooe .
With the exception, of course, of classical penalty function methods which

drive the penalty to infinity and which have poor computational properties.
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These two assumptions ensure that all the derivatives we shall need
exist, that the solutions to the differential equations exist and, if Q
is compact, that they for equicontinuous families of functionsin L: [o,11.

Assumption 3: The set @ is compact and convex. u

We propose to solve problem (2.1) by making use of the exact penalty
y t
function, ¢ max {|gJ(u)|} » for the equality constraints for which a suit-
j-1-m
able, finite value of ¢>0 will be constructed by the algorithm. This leads

to a family of problems Pc’

P, min{§c(u)|u € G} (2.7)

where

vy (u) é:go(u)/cv + max |gj(u)| (2.8)
¢ j=1-m

If we now define gj, for j = ml, m2, ..., 2m by

&™) = g §=1,2,....m (2.9)
then
Y(u) & max |gd(w]
j=l-m
= max gl (u) (2.10)
j=1-2m
and
Y () = max gl (2.11)
j=1-2m .
where
éi(u);g /e +glw), 3=1,2,...,m (2.122)

and .3 2.12b
gf:m(u) 4 ( )

~82(w) j = 1,2,...,m

We shall make various uses of the following two functions from G

into ]Rl:

+We write j =1 - m for j € {1,2,...,m}, etc.
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8(u) A min max {gj(u) - y(u) + (ng(u),s )2} (2.13)

"~ s€S(u)  j=1-2m
and
8 (u) A min max {g3(u) - v (u) +{(vgI(u),s ).}
c s€S(u) j=1-2m c c c 2
= min max {gj(u) - y(u) + (Vgo(u)/c
s€S(u) j=1-2m
+ Vg (u),8) )} (2.14)
where for any u € G,
S(u) A {s|s + u € G} (2.15)

is the set of permissible search directions.

Also,

1
(x,y )2 é:s (x(t), y(t) }dt (2.16)
0

denotes the L2 scalar product, and VgJ(u), j=0,..,m 1s defined by:

Vel (®) = 3¢ @), u), of Aj® (2.17)

with A? being the solution of the adjoint equation

A(E) = - g—f{ (e, ult), £)T Aa%¢) (2.18)
A1) = vhI (x(1)) (2.19)

v§g(u), j=1,2,...,2m, is similarly defined. We recall (see e.g., [1])
that (ng(u), s)z defines the LZ [0,1] Frechet differential of gj,
j-= Q,l,...m; similarly (Véi(u),s )2 defines the Li [0,1] Frechet
differential of éi, j=1,2,...,2m.

We now impose a constraint qualification for the constraints

3

specified by g°, j = 1,2,...,m and G; the qualification is analogous to

the well known constraint qualification of linear independence of the equality

~



and active inequality constraints, but is more indirect because of the

nature of the constraint set G. Let Il’ 12,...,Izm denote the following

sets:

I. A{1,2,3,...,m}
I, A {m1,2,3,...,m}
I,A{1, m2,3,...,m}

I, A {mHl, m2,3,...,m}

4 =
I, A {1, 2, m#3,...,m}
Im 4 {mHl, m+2, mH3,...,2m} ‘ (2.20)

*
let 9 (the class of all such sets) be defined by:

9 {r,li=1,2,...,2"% (2.21)

* i i im
: . 1 2 2
Hence, if I = {11,12,,,,,12m} 69 the set of constraints {g ~,g “,...8 }

cannot include both gj and -gj = gj-hn for any j € {1,2,....,m}. If m = 2,
O =1{1,2}, 13,2}, {1,4}, {3,4}} corresponding to the following sets of
constraints: {{gl,gz}, {-gl,gz}, {gl,—gz}, {-gl,—gz}}. Note that neither
. {gl,-gl} nor {gz,-gz} belong to the set.g*. Finally, for each I € ,9*,

for each ¢ > 0, we define the functions ¢I : G+R, E)‘I: : G>R by:

¢I(u) £ min max {gj(u) - y(u) + (ng (u),s ?
s€S(u) j€I

9} (2.22)

)]

min max {gj (u) - y(u) + (Vgo(u)/c + ng (u),s )2} (2.23)
s€S(u) jE€I

b2 ()
For any uSG, let I(u)eg* be such that gj (u) > 0 for all j€I(u) and
gj(u) < 0 for all j¥#I(u), j = 1,2,...,2m, and letQ(u) A {I(u)}. Note
that if y(u) = 0, then ,g(u) = ,9*. Our constraint qualification can now be
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stated.

I .
Assumption 4: For all uSG, for all T€(Q (u), ¢ (u) < 0. a

The nature of the qualification can be appreciated from a few simple
examples. If m = 1, Assumption 4 states that at all uSG, there exists a.

permissible search direction reducing the maximum of gl and g2 = —gl.

(9% = 111y, 1233, Q@ = {1} 1f ghw) > Qeu) = {2} if gh(u) < 0). If

m = 2, Assumption 4 states there exist permissible search directions which
reduce, for example, max{gl(u),g3(u)} if gl(u) > 0 and g3(u) = -gz(u) > 0,
so that J(u) = {1,3}.

Proposition 1: Let assumptions 1-4 be satisfied. For all uSG such that

Y(u) > 0, 6(u) < O.
Proof:

It follows from the definitions of 6 and ¢I that for any uSG and any

€9,

8(u) = min maX{max gj (u) - y(u) + <ng (v),s )2;
s€S(u) JE€I

max gj(u) - y(u) + (ng(u),s )2}- (2.24)
j€rc

where I denotes the complement of I with respect to the set {1,2,...,2m}.
Let sI(u) denote the minimizing s in the definition of ¢I(u) and let

oI(u) max{gj(u)ljelc}. Clearly GI(u).i 0 for all iEQQ(u). Setting

A
s = asI(u) is the right hand side of equ. (2.24) yield:

8(u) < minmax a¢I(u),oI(u) - y(u) + o max <ng(u),sI(u) )2}' (2.25)
a€[0,1] jE€I¢

Since ¢I(u) < 0 and OI(u) - y(u) < ~y(u) < 0 for all F5$)(u), it follows

that 6(u)<0, which completes our proof. H

Proposition 2: Let assumptions 1-4 be satisfied. If u € G is optimal
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then there exist multipliers wl,wz,...,wm € R such that

m .
Coglciy + 20 od vl @y, s), >0 (2.26)
j=1

for all s € S(u)-

Proof:

It follows from Theorem 2.3.12 of [2] that the ray R = {y €I§m+1|

y = B(-l,O,...,O)T, g > 0} in B i separated from the set W = {y ERm-l-ll

yJ+1 = (vgj({}),s )2, j=0,1,...,m, s€s(u)} i.e., that there exist multi-
pliers wo,wl,...,wm € R not all zero,with wo > 0 such that:
m
( wOVgo(ﬁ) + Z v ved (b)), s>2 >0 (2.27)
j=1

0

for all s € S(u). If y 0, then not all of the multipliers wl,wz,...,wm

are zero and:

m
> v, 5),
j=1 j=

m

lel< (sgn ¢j)\7gj(ﬁ), s>2 >0 (2.28)
1

for all s € S(u), where sgn is defined by:

sgn(x) -1 if x< 0

= 1 if x > 0.

~ i, - ~ *
Now, since y({i) = 0, we have gl (a) = 0, j=1,2,...,2m so that &)@;):: é) .

From assumption 4:
¢ (u) = max (Vg” (u), s (u) 5 < 0
€I
9* I
for all I € » where, as before, s (u) denotes the minimizing s in eqn. (2.22).

j+m

Recalling that —gJ(ﬁ) =g "(u), j =1,2,...,m, we see that there exist an

*
I€E &) such that:

max ¢ (sgn v3) vgd (@), sT@ ) <o (2.29)
j=1l-m

-11-~-



This contradicts eqn. (2.28). Hence wo > 0 and may be normalized to
unity. H

Corollary 1: If assumptions 1-4 hold and u € G is optimal, then:
min{(VgO(ﬁ),s >2 (ng(ﬁ),s >2 =0, j=1,...,my s €S(u)} =0 (2.30) =

Corollary 2: If assumptions 1-4 hold and u € G is optimal, then there

exist no multiplien;¢l,¢2,...,wm € R, not all zero, such that:

m
E v vgd (&), s>2 =0 (2.31)
i=1

for all s € S(a) o

Equation (2.30) is a weak form of the minimum principle for the problem

considered.

Our Algorithm will find controls u € Gsatisfying Y(u) = O and the con-

clusion of Proposition 2, i.e., controls in the desirable set A defined as follows:

A A {3 €G|ly(u) = 0 and (2.26) is satisfied} (2.32)

For the family of problem Pc in (2.7), we define the corresponding desirable

sets

A, A{uE c|ac<a> = 0} o (2.33)

It is easy to see by a straightforward generalization of Theorem (1.2.8)
in [6] that if u is optimal for (2.7) then u € Ac' We state this fact as

Proposition 3: Suppose that u is optimal for problem Pc (2.7) then

a€a . H
c
We also have the following result.

Proposition 4: Suppose u € A, then there exists a ¢ > 0 such that 5c(ﬁ) =0

for all ¢ > c.

-12-~



Proof:

For any u € G, we -define R(u) C]R2 by

R(u) A {y €1R2 y1 max {gj(u) - y(u) + (ng(u),s )2}
: j=1-2m

2
y

(v’ (u),s Y)3 s € 5(u) (2.34)

Then we see that for any ¢ > 0,

6.(w) = min G%VZ + 1) (2.35)
YER (u)

Let s € S(u) be arbitrary and y(s) the corresponding element in R(u), i.e.,
2 - ~ 3
y() = (y'(s), y2(s)T where y'(s) max gl (w) - v(® +(vgl(w,s?,,

2 0, j=1-2m -
y (s) =(vg (u),s >2. Then, since y(a) = 0 (g7 (@) =0, j=1,...,2m):

yi(s) = max (vg (a),s ), (2.36)
j=1-2m :

r
Now, since s € L:[O,ll, s € L2[0,1] and we can express s in the form

m

s = ad (s) vgd (@) + a(s) (2.37)
=

where (ng(ﬁ), a(s) )2 =0 for j = 1-m, (and hence also for j = 1-2m).

Consequently,
m
yl(s) = max }E: ak(s) <VgJ(ﬁ), ng(ﬁ) )2 (2.38)
j=1-2m k=1

Let T ‘be a mxm matrix with jkth element <VgJ(ﬁ), ng(ﬁ) )2 and let

1 2 m)T”

a= (a,a",...,a Then, setting d(s) = Ta(s), we see that

yi(s) = max {d(s), -d3(e)}
j=1l-m
= la(s)!_ = lra(s)ll > 0 (2.39)

-13-



Now assumption 5 implies that the functions VgJ(G), j=12,...,m are
linearly independent and hence the matrix T' must be nonsingular.

Consequently,

a(s) =T ~ Ta(s) (2.40)
and hence

la(s)! -1

a(s)lm < ir !Im ||I‘a(s)um

= "I‘_]'"co yl(s) (2.41)

Next, making use of (2.26) and (2.37) we get,

m
yz(s) = (vg%),s Y, 2 Z—wj< vegd (3),s >2
i1

Ty, a(s)?

|v

—allryl_ la(s)l_

—nfirgl_ 7M1 yles) (2.42)

|v

i

Setting ¢ A mliryl It , we see that

%-yz(s) + yl(s) >0 (2.43)

for all c 3_8, for all s € S(u), i.e. (c.f. (2.35)) ec(ﬁ) =0 for all ¢ 3_6
(éince the zero functions is in S(u)). H
We propose to construct our algorithm in conformity with an Algorithm
Model presented in [3] and stated below for ease of reference. The model
requires a strictly monotonically increasing sequence {cj};=0 (e.g., the
sequence generated by cj+1 = cj+m, w>0 or by cj+1 = wcj, w>1) togethgr with
corresponding sequences of costs {;j};=0’ ?j:g ?cj and desirable se;s

{Aj};=0’ Aj AA s Aj is the set of desirable points for the problem
J

14—



ch: min{§j(u)[u € G}. The model also requires a sequence of test functions

{tj};=0 and a sequence of iteration functions {Aj};.o=0 mapping G into G. Aj

defines an algorithm for finding desirable points for Pc_: all accumulation
- |
. E [ = .
p01qts of any sequence {ui}i=0 satisfying'ui+l Aj(ui)’ i ‘ 0,1,2,... lie
in A,.
J

Given uy € G, the Alogirthm Model utilizes the iteration function Aj
E I3 .
if tj(ui) < 0 to generate a new control Ui Aj(ui) and increases j (and
therefore cj) if tj(ui) > 0. The Model employs two counters, i and j:
{ui} is the sequence of controls generated by the model and {Ej} is a
sequence made up of elements of {ui} which contains that subset of {ui}

corresponding to increases in cj, so that tj(ﬁj) > 0. A particular u, may

i

appear many times in {Gj}. An example of a sequence generated by the model

is:

(c co) to(uo) < 0, determine u, € Ao(uo)

to(ul) < 0, determine u, € Ao(ul)

to(uz) < 0, determine u, € Ao(uz)
to(u3) > 0, set GO= Uz, € = ¢

(c =cp) tl(u3) > 0, set El =uy, c=c,

(c = c2) t2(u3) < 0, determine u, € Az(u3)
ty(u,) < 0, determine ug € Az(u4)
tz(us) > 0, set 52 = ug, € = C4

(c = c3) t3(u5) < 0, determine u, € A3(u5)

etc. Theorem 1 gives conditions under which accumulation points of {ui}

are desirable for the original problem.

Algorithm Model

Data: Y, € G.

Step O: Set 1 =0, j=0.
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Step 1: If tj(ui) > 0 go to Step 2; else go to Step 3.

Step 2: Set Gj = u,, set j = j+1 and go Step 1.
: S

Step 3: Compute a u Aj(ui)

Step 4: If Yj(u) < yj(ui) set u = u, i = i+l and go to Step 1;

i+l
else stop. "
Note that ¢ is increased to a satisfactory value in the loop com-
prising Steps 1 and 2.
The following convergence result, given in [3], is required.
Theorem 1: .Spppose:(i) For each j, Aj is such that any accumulation point
U of an infinite sequence {ui}:=0 constructed according to LI € Aj(ui)
and satisfying, for all i, §j(ui+1),< ;j(ui) lies in Aj (i.e. v € Aj)’ and
that §j(u') 2_;j(u) for any u' € Aj(u ) implies that u € Aj. (ii) The test
functions tj(°), j=20,1,2,..., are continuous. (iii) For j = 0,1,2,...,
{u € Ajltj(u) <0} CA. (div) For every u* € G there exists an integer j*
such that if u > u* (in the L sense) then, for some ko, tj(uk) < 0 for
all t z_ko, for all j > j*. Under these assumptions, (i) if the algorithm

model constructs a finite sequence {ui}§=0 (so that {u,} is also finite)

3
then the last element, s is in A. (ii) If the Algorithm Model
constructs a finite sequence {Gj} and {u;} is infinite, then every L
accumulation point u* of {ui} is in A. (iii) If the sequence {ﬁj} is
infinite, then it has no L_ accumulation points. 1

In the next section we shall propose an algorithm (Aj in the Algorithm
Model) for solving the problems ch. Here we define a set of test functions
{tj};=0 and show that they satisfy the properties required in Theorem 1,
under (ii, (iii) and (iQ).

For any ¢ > 0 we define the test function tc: G ~» Df'by

t (wa 5c(u) + y(u)/c (2.44)

-16-



Since y is continuous by inspection, to prove that tC is continuous, we

must show that ec is continuous. At the same time it is convenient to

establish the continuity of 6, ¢I and $I.
c

~

. ~ I
Lemma 1: The functions o, 6c, $, ¢£ are continuous on G, for all ¢ > O,

for all I € .9*.
J

Proof: Because of Assumptions 1 and 2 the functions g-, éga Vg

1, w8,

j=0,1,...,my ¢ >0, are all continuous. Let u* be any control in G and

{

ui}:=0 any infinite sequence in G such that u, + u* (in the L_ sense) .

i
We first prove that 6 is upper-semi-continuous (u.s.c). There exists

a u* € G such that:

8(u*) = -y(u*) + max {gj(u*) + (ng(u*), u* - u* )2} (2.45)
j=1-2m

(Clearly u* - u* is the minimizing s € S(u*)in (2.13).) From the

definition of 0 ((2.13)) it follows that:

O(ui) j_-y(ui) + max {gj(ui) + (ng(ui), u¥x - uy )2}
j=1-2m

and, hence that

Tim 9(ui) 5_1?5 [-y(ui) + j=?f§m{gj(ui) + (VgJ(ui), u* - uy )2}

= e(u*) . (2.46)

where the last equality follows from the continuity of v, gJ,-VgJ, j=1-2m.
Hence 6 is u.s.c. at u*.
We next establish that 6 is lower-semi-continuous (l.s.c.). For each
element uy of the sequence {ui}, introduced above, there exists a Gi € G such that:
= - {J (vod
6 (u,) Y(ui) + max g (ui) + (vg

(ui), Gi -uy >2} (2.47)
j=1-2m

Suppose, contrary to what is to be proven, that:

1lim e(ui) = 0(u*) - ¢
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for some €>0. Then there exists a subsequence, indexed by K C {1,2,3,...}

such that:
6(a,) Ko - ¢
and there exists a K' C K such that
Kl
Y(ui) > y(u¥)
T . K' N
g ) > g, j=1,2,...,n
K' j

(ng(ui), Gi -y )2 o', j=1,2,...,m

It follows that:

~y(u*) + max gJ (u*) + o) = B(u*) - ¢
j=1-2m

Hence, there exists an integer io such that

-y(u*) + max {gj(u*) + (ng(u ), u )

- u) .}
j=1-2m i i

z

= -y(u*) + max {gd(u*) +{(vgd@u*), a. - u)
X i~ Y%
j=1-2m

+ (ngCui) - ng(U*), ai - ui>2} < 8(u*) - g/2

b

(2.48)

for all i > io, i € K'. Since VgJ(ui) - ng(u*) as i > =, i €K'; it follows

from the second line of (2348) and the compactness of Q that there exists an

integer il > iO such that

Y@+ max () + (gl ), B - ) J< o) - o2

j=1-2m
for all 1 >1i
0(u*) < -y(u*) + max (vgi(ur), 3. - u))
- . i i2
j=1-2m
for all i. Hence

lim 6(u,) = 6(u%),
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i.e. 6 1s 1l.s.c. at u*. Hence 0 is continuous.
The continuity of éc’ ¢I, &)z for all ¢ > 0, for all I € 9*, can be
similarly established. ' ' n
The following is obvious.
Corollary: For any ¢ > 0, the function t.: L:: [0,1] » R, defined by
(2.34), is continuous. | H
Lemma 2: For any ¢ > 0, the set {u € Acltc(u) < 0} is contained in the
set A.
Proof: Suppose u € A, is such that tc(ﬁ) < 0. Then, by (2.33) 5c(ﬁ) =0

and, hence, (2.44) implies that y(u) = 0, i.e. that u is feasible. Now,

by (2.14)
a (o) = i = 1 0, h P )
8 (u) = min_ max {g (u)-y(u)+c (vg (u),s)2+(\7g (u),s 2}
¢ s€S(u) j=1-2m
= min_ {—1- (VgO(G),s )2 + max (ng(ﬁ),s )2}= 0 (2.50)
s€s(u) © j=1-2m

singe vy(u) = 0, gj (u) = 0 also for j = 1,2,...,2m). Suppose u & A. Then
there exists an s € S(u), such that (Vgo(ﬁ),g )2 < 0 and (ng (v),s )2 =0
for j = 1,2,...,2m. Substituting this s into (2.39) implies that éc(a) <0,
which is a contradiction. Hence u € A. H
Lemma 3: For any & € G there exists a ¢ > 0 such that for any infinite
sequence {ui} in G converging to u (in the L: [0,1] sense) there exists

for all ¢ > c.

and i, > 0 such that tc(ui) <0 for all i > i,

1
Proof: Let u and {ui} be as stated above. From assumption 4, ¢I(1-1) < =6,

for some § > 0, for all I € 9(5)- Because of the continuity of ¢I

QLemma 1), there exists an 1y 2 0 such that

o' (u,) < -8/2 _ (2.51)
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for a1l T € Q) for all 1 > 1.
As before, let UI(u) A max{gj (w)|j € I} (I° being the complement of

I in {1,2,...,2m}). Clearly OI(u) <0 for all I € -9(!1)- Let SI(U) denote

the. minimizing s in the definition of ¢I(u) (2.22) and §z(u) the

minimizing s in the definition of ¢, (u) (2.23). From the definition

. %
of ¢I, ¢z it follows, for all u € G, all I G.g »all ¢ > 0, that:

&;i(u) < méx{ gj (u) - y(u) +¢ (1/c)VgO(u) + ng (u), sI(u) )2}
j€1
= o7 + (/e W, sTw ), (2.52)

Hence, since Q is compact, there exists a M € (0,*) such that
~I I, .
9. (u) < ¢7(u) + Mec

*
for all u €G, all I 69, all ¢ > 0. Let ¢, = max{4M/§,1}, so that M/c <

8/4 for all ¢ > ¢ Clearly,

10

B (u) <ot ) M < -8/2+ §/4 = - 5/4 (2.53)

for all ¢ > c;» 81l i >4, allI€ 9(5).

(a) Suppose y(u) > 0. Then there exists an il > io such that for all
i>1), for all j € 1%, for all I € Q).

gl (u) - v(u) < -y(@/2 (2.54)
and

Y(uy) < 3/2 v (u) (2.55)

(The first inequality follows from the fact that if I E.Q(G), gj (u) <0

for all j € 1%, for all u € G, and the fact that
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- , A%
Y(ui) + y(u) as 1 > »). Now, for all I € 9

8 (u) = min ma g3 (u,) —y(u,) + (Ve)vgl(u,) +(vgdu.),e) J,
NCH Sesx‘(;u) x{?énlcg u) -y(y c)Vg ui) g(ui)s 2

max {gj(ui) - y(ui) + < (l/c)Vgo(ui)
j€r | ,
+ (vgd (w),s )2}} (2.56)

. ) *
Substituting as(I:(u) for s yields, for all I € 9 :

- ~1 j
6 (u,) < min max {ad (u,), max{g’ (u )-y(u,) + ab} (2.57)
¢ 1 a€[0,1] { ¢ jert 1 i y

where b A sup{(quo(u) HZ/C + "ng(u) [|2)f|s||2

s€S(u), uSG, c 2c¢, 3= l,2,...,m}< @,

1/2 -
and ||y||2 A Ky,y )2] / . Hence, choosing any I € .Q(u) and adding Y(ui) /e to
both terms in (2.57), we obtain '

£ (u) = éc(ui) + y(u)/e

< min max {-a6/4 + Y(ui)/c, .ma%c{gj (ui) - y(ui) + ab
a€[0,1] j€1

+ v (ui) /c}}

< min max {3y(ﬁ)/2c - a8/4, -y(u)/2 + ab + 3y(\-1)/2c} (2.58)
a€[0,1]

for all i > il, c>c The first term on the right hand side of (2.58)

1°

is negative if:

a > a A6y(u)/sc (2.59)

1

and the second is negative if
0 <a<a Avy(l-3/c)/2b ~ (2.60)

‘Obviously, there exists a c > cy» such that a, <1, and 0 < a, < a

2 1 1 2

for all ¢ > Cye Hence, letting o = @
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we obtain tc(ui) <0 for all 1 > i all c > c

1’ 2°
(b) Suppose now y(u) = 0. Hence, gl(u) = 0 for j = 1,2,...,2m, .Q(G) =-9
and Q(u)) C Q@) for all i. since I € O(u,) implies that g’ (u) < 0 for

all j € 1€ we see from equ. (2.57) that:

~

ec(ui) < oze11[%111]' max{a&f:(ui), -Y(ui) + ab} (2.61)

*
for all I 5.9(111). Since .Q(ui) Cc \9 for all i, we can make use of (2.53)

to obtain

~

8 (

. ui) < min max{-a8/4, -Y(ui) + ab} (2.62)

"~ o€[0,1]
for all i > i, ¢ 2 Cy-
Hence:

t (u,) < min max{y(u,)/c - a8/4, -y(u,) + y(u,)/c + ob} (2.63)
c i «€[0,1] i i i

The first term on the right hand side of (2.63) is negative of
@ > a,(u) Ad Y(ui)/65 (2.64)
and the second is negative If
0 < a < ay(u) A v(u)(1-1/e) /b | (2.65)

Hence, if y(ui) # 0, there exists a ¢ > c, such that ozl(_ui) < 1 and al(ui) < az(ui)
for all i. Hence for all i > il such that Y(ui) # 0, for all c > Cq5
tc(ui) < 0.

1f Y(ui) = 0 then tc(ui) = Bc(ui) + y(ui)/c < 0 for all ¢ > 0.

Combining (a) and (b) we obtain tc(ui) <0 for all i > i, all
c>c. H

We can summarize our findings as follows:
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[+

Theorem 2: Given any monotonically increasing sequence {cj}j=0’ cj > 0,

with cj + o , the test functions tj A tcj : G+ R (defined by (2.44))

satisfy the assumption of Theorem 1. _ e
We can now proceed with the construction of the maps A, which define

A

subalgorithms to solve problems ch.

III. SUBALGORITHMS FOR min{§c(u) |u € G}

In this section we present a 'conceptual' and an 'implementable’
algorithm for solving problem'Pc and establish convergence.” The following
subalgorithm has a structural relationship with the Topkis-Veinott method
of feasible directions [6] which is analogous to the relationship between the
Demjanov method for min max problems [4] and the Zoutendijk method of
feasible directions[5]. Its main advantage over Demjanov's method is that
it requires only one evaluation of the optimality function 5c(u) per iteration,
versus several in the Demjanov version. The evaluation of the opti-
mality functions in an optimal control application is much costlier than in
a nonlinear programming problem. Also, we have here a built-in bounded
set G, defining the S(u), rather than the L_ hypercube used in nonlinear
programming. Hence the reasons for preferring a Zoutendijk type algorithm to one of
Topkis-Veinott form, do not transfer from the nonlinear programming situa-
tion to optimal control.

| For the purpose of simplifying exposition we state the subalgorithm
defining the maps Ac(Aj) for solving problem Pc(ch) first in a relatively
simple, but conceptual, form, then in a somewhat more complex, but implement-
able form. In subalgorithm 1 below the map A, (Aj for ¢ = cj) is defined

in’steps 0 to 2.
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Subalgorithm 1.

Data: u, €6, BEW0,1), c>0.
Step 0: Set i = 0.

R a € n
Step 1: Compute Oc(ui) and a corresponding s S(ui) (where 6, was

i
defined in (2.14)).

~

Step 2: 1If Gc (ui) =0, stop; else compute the smallest integer ki_i 0

such that
~ ki ki~
VoG +87s) - v, (w) <876 (u)/4 (3.1)
ki
Step 3: Set gl =09y + B Sy» set 1 =1+ 1 and go to step 1. x

The fact that the subalgorithm is well defined, i.e. (3.1) is always satisfied
with a finite ki’ can be deduced from the proof the Theorem 3 below, which
states the convergence properties of the subalgorithm.

Theorem 3: Suppose that Subalgorithm 1 construct an infinite sequence

of controls {ui} ®  in Go. Then every L: [0,1] accumulation point u of
i=0

this sequence is in Ac, i.e. 5c(ﬁ) = 0.

Proof: We shall prove this theorem using the methods employed in proving
theorem (1.3.9) in [6]. Thus, suppose that u € G is an L: [0,1] accumu~
lation point of {ui}oo and that u & Ac, i.e. éc(ﬁ) < 0. Then, there

i=0

exists an infinite subsequence {“1}'i€k such that u LS u (in LZ) and,

i

because 5c is continuous, there is an integer io such that
-~ -~ ~_ E .
ec(ui) :_Bc(u)lz for all i_iio, i€K (3.2)
Now, by definition

éc(ui) = min .Tax { éci(ui) - ?c(ui) + (Véci(ui), s)2} (3.3)
s eS(ui) j=1-2m
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Because the set Q 1is compact, the functions s € S(ui) are uniformly
bounded. For any j € {1,2,...,2m}, i_>_io, i €K, one of the following

two must hold: either
oA ~i ~ )
yc(ui) - ch(ui) > - ec(ui)/z . (3.4)
or
- ~i ~
You) - 8.7 (u) < -8 _(u)/2 | (3.5)

Suppose (3.4) holds. Then because of the continuity of éci, Ye and the
uniform boundedness of the s 1 there exists an integer k' > 0 such that

for all i€K, i > io, k > k'

~ i k ~
g, (ui + B Si) - Yc(ui)

|A

ec(ui)/4

| A

k-
876, (u)/4
< 85_d)/8 (3.6)

Next, suppose that (3.5) holds for some j€{1,2,...,2m}. Then, from (2.14), we

must have

~ 4 -
<
(Vgc (ui), Si) e ec(ui)/Z (3.7)
Hence, applying a first order Taylor expansion with remainder

we get

~ 3 i
g, (ui + Asi) 8. (ui)

l .
g, e+ [y + e s - vl s, ae

)/2 + supll vg"(u
£€[o0,1]

|A

5 i
A8 (u +EXs) - Vg (“1)“,“51"m

i i

(3.8)

Since it follows from assumptions 1 and 2 that §_J and vgcj, §=0,1,...m,
are continuous in L: [0,1], there exists an integer k" > k',
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finite, such that for all k > k"
~ 3 k _ =z ~ 3 k _ 213 k
g, (ui + B Si) Yc(ui) <8, (ui +8 si) g, (ui) < B ec(ui)/4

<85 (/8 (3.9

Hence, combining (3.9) with (3.6) we conclude that for all i >1i, i€K

. k - k =
wrc(ui +B8 s -y (uy) <8 Oc(ui)/é
<858 _(0)/8 (3.10)

and hence that ki < k" for all i > io, i€K. Consequently, for all i€K,

i>14,

k
~ ~ i ~ ,a k" ~ -
Ye(ug) = v (uy) <876 (u)/8 <8 6 (/8 -6<0 (3.11)
Note that (3.10) also shows that the subalgorithm is well-defined. Now,
{?c(ui)} is a bounded, monotonically decreasing sequence which must con-
~ A . ~ K ~ -~
verge to Yc(u) since Yc(ui) > yc(u). But
Yo - Yc(uio) D DIRACHERACH
i €K
i>1
)
+ z Yc(ui+1) - Y (uy) (3.12)

i €K
i>1
- 0

It now follows from (3.11) that ;c(ﬁ) = - o, which is clearly a contradiction
of the boundedness of ?c(‘) on G and hence we must have GEEAC, i.e. §c(ﬁ) = 0.
Subalgorithm 1 suffers from the drawback that it is only a conceptual
algorithm because the evaluation of éc(ui), which can be carried out by

means of the Meyer-Polak algorithm [6] requires an infinite number of

interactions. We now state an implementable version. This version com-
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. Xt an ~ ¥ -
putes approxlmation§ ec e(ui) and ec,€ (ui) to ec(ui) and direction vec

H]

tors 8 satisfying, for a given € >0,

-~

8 :e(ui) 5_5c(ui)

Ia

o 6" (ui) . | (3.13)

C,E

eé:e(ui) —_éc(ui) <€ (3.14)

an = ~ ] - ~ 3 .
ec,s(ui) -jz;f;;gc (ui) yc(ui) +~(Vgc (gi), si)z} (3.15)

The details of the computation of 6c', éc" and s, are given in the

Appendix.

Subalgorithm 2:

Data: uoe G, BE(0,1), c > 0, €, > 0.

Step 0: Set i = oT € = eo.

Step 1: Compute éé'e (ui) and a corresponding vector 8 by means of sub-
9
algorithm 3 (see Appendix).

Step 2: If 6" (u) < - €, 80 to step 3; else set € = €/2 and go to step 1.
Stéep < c,e i/ =

Step 3: Compute.the smallest integer ki such that
k k
- i = <alsp (u,)/4 (3.16)
Yc(ui + B Si) Yc(ui) <B T 0cetd
ki
Step 4: Set LA u, + B Sys set 1

i+ 1 and go to step 1. H

The adjustment of € in subalgorithm 2 is based on the algorithm model
(1.3.26) in [6] which can also be used to prove the theorem below, in a
reasonably straightforward manner.

Theorem 4: (1) Suppose that subalgorithm 2 constructs an infinite sequence
of controls in G. Then -every L: [0,1] accumu}ation point u of this sequence
1g in Ac’ i.e. éc(ﬁ) = 0. (i1) If subalgorithm 2 Jams up at a ug, cycling
in stépSI and 2, then uy € Ac . o
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Theorems 3 and 4 are relatively weak results because the set G is not
Lz [0,1] compact and hence there is no guarantee that a sequence [ui] :
constructed by subalgorithms 1 or 2 has L: [0,1] accumulation points.
However, assumptions 1 and 2 and the compactness of @ quarantee that the
corresponding sequence of trajectories {xuif;=0, constructed accordiné to
(2.4), (2.5), always has accumulation points x* in L: [0,1]. The tra-
jectories x*(+) are absolutely continuous and can be realized by a relaxed
control. In section V we shall show that all the limit trajectories x*(°)
together with the generating relaxed controls satisfy an optimality con-

dition for the relaxed optimal control problem corresponding to the optimal

control problemPc (2.7). This is a stronger result than theorems 3 and 4.

IV. THE COMPLETE ALGORITHM

Since an implementable version requires modification of the test
functions tc defined in §II as well as some further control of the pre-
cision parameter e in Subalgorithm 2, resulting in avconsiderable in-
crease in complexity, we shall first state our algorithm in a conceptual
form and then in an expanded implementable form. The convergence of the
conceptual form follows from theorem 1. We shall omit a proof of con-
vergence of the implementable version since it is a straightforward but
tedious exercise. 1In both cases, we make use of a function z: R -+ R
=¢c, + 1.

341 = g(cj), e.g. ej+l 3

, t, instead of ; R ) s £t .
C
S °5 %y %

to generate the sequence {c,} according to ¢

3

We use the abbreviated notation y,, 0

h |
Algorithm 1 (Conceptual Version)

‘Data: uoe G, BE(0,1), t >0, cg > 0, z: R>R.
Step 0: Set i =0, j = 0.

u u

Step 1: Compute x i, A i, gj(ui), Vgi(ui), j =0,1,2,...,m, Y(ui), 5j(ui),
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s; € S(“i)’ tJ. (“1) according to (2.4),(2.17)-(2.19),(2.3),(2.10),(2.14),(2.44).

Step 2: If tj(ui)f_o, go to step 3; else go to step 5.

Step 3: 1If 6j(ui) = 0, stop; else compute the smallest integer ki >0
such that |
ki ki
Yj(ui'+ 8 Si) - yj(ui) <8 ej(ui)/4 (4.1)

Comment: The computation of k, requires that the differential equation

i
(2.4) be integrated once for each value of k = 0,1,2,... tried

until (4.1) is satisfied.
k

Step 4: Set W TY +8 isi, set 1 = i+l and go to step 1.
Step 5: set cj+1 = c(cj), set j = j+1 and go to step 1.0 + =

Since we héve already shown that all the blocks of algorithm 1 satisfy
the assumptions of theorem 1, we can summarize its convergence properties,
as follows.

Theorem 5: Consider a sequence of controls {ui} constructed by algorithm 1.
(2.21), i.e. w € A. (ii) If the sequence {ui}:=0 is infinite and the

(i) If the sequence f{u is finite, then its last element uk(°) satisfies

indices j remain bounded by some j* <o, i.e. j < j* for all j, then every
Li[o,l] accumulation point-ﬁ of {ui}£10 is in A. (iii) If the sequence
{ ui} is infinite and j +«, then { ui} has at least one subsequence which
has no L:[O,l] gccumulation points. n

In the next section, we shall see that in the topology of relaxed
controls case (iii) of theorem 5 cannot arise and hence only cases (i)
and (ii) are of importance.

Before leaving this section, we present an implementable version of

t+ Note there is no need to store the subsequence {u} which was defined in the
Algorithm Model for the sake of proofs only.
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Algorithm 1, based on Subalgorithm 2. Since we shall now be using approxi-
mations 52 . to éc, the test functions t, also must be modified, which we
>

propose to do as follows: For any ¢ > 0, ¢ > 0,

£, (@ a oy () + % min{y(u),t} - ¢ (4.2)

where T > 0.

This leads to the following implementable version.
Algorithm 2. (Implementable version.)

Data: uOGG,BG(O,l),t>O,c >0, eo>0, zz: R >R,

0

Step 0: Set i =0, j =0, € = ¢,..

u u
. 1 . .
Step 1: Compute x ~, A °; gJ(ui), VgJ(ui), j=0,1, =005 m, v(uy),

é;,e(ui)’ s; G,S(ui)’ tj,e(ui)’ according to (2.4),(2.17)-(2.19),(2.3),(2.10),
(3.13)~(3.15), (4.2).

Step 2: 1If tj e(ui) < 0, go to step 3; else go to step 6.
b

Step 3: If 53 e(ui) X - €&, go to step 3; else set € = ¢/2 and go to
b

step 1.

Step 4: Compute the smallest integer ki > 0 such that

k -k
~ i ~ i~n
Yy (u, +8 s;) - Yj(ui) < B ej’e(ui)/é (4.3)
. ki
Step 5: Set Ui T Yy + B. s;» set i = i+ 1 and go to step 1.
. = i = 9 a
Step 6: Set cj+1 C(Cj), set j j*+1 and go to §tep 1.

By making use of Algorithm Model (1.3.26) in [6], Theorem 1 and the
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various results established for the conceptual version, we can deduce,

with some effort, the following not altogether surprising result.

Theorem 6: (i) If Algorithm 2 jams up at a control ugs cycling in steps

1 to 3, then uy € A.

(ii) 1If Algorithm 2 constructs an infinite sequence of controls {ui}:=0
and the index j remains bounded, i.e. j f_j* for all j, then every LZ[O,l]

accumulation point u of {ui} is in A.

(iii) If Algorithm 2 constructs an infinite sequence of controls {ui}:=0

and the index j + » as i + o, then‘{ui}:=0 contains at least one sub-

sequence which has no L: [0,1] accumulation points. H
Again, as in the case of the conceptual algorithm 1, we shall see in the

next section that case (iii) above, cannot arise in the. control measures topology

and hence only cases (i) and (ii) of Theorem 6 are of importance.

V. CONVERGENCE IN THE SENSE OF CONTROL MEASURES

We now present an analysis of our algorithm in a more abstract, but
also more satisfying setting, namely, in the sense of convergence of control
measures. In doing so, we follow the methodology proposed in Williamson and
Polak [7]. The reason for turning to relaxed controls is that, unlike in
LZ[O,l], a sequence of bounded relaxed controls always has accumulation
points. Hence, case (iii) in Theorem 6 can be ruled out, j.e. we can show that
ﬁhe index j remains bounded. Furthermore, as we shall see, the accumulation
points generated by our algorithm satisfy an appropriate optimality condition
for the relaxed optimal control problem, which we are about to define. We
begin with a few definitions and results which are standard in the relaxed
control liferature (see e.g. [81, [9]).

Let V be the set of probability measures on Q(y € Y‘”ﬂ’; dv(u) = 1).
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For any continuous function ¢ R™ x @ x (0,11 » H{p, the corresponding

relaxed function ¢r: R x V x [0,1] is defined by+

¢, (x,v,t) 2 J;(x,u,t)dy(u) (5.1)
Q

A relaxed control is any function v: [0,1] » V. A relaxed control is

said to be measurable if for any polynomial p(u) in (the components of) u,

the function 6: [0,1] + Ris measurable, with a(t) 4 Pr(Y(t)) = fP(ll)
Q

dv(t) (u). Let G be the set of measurable relaxed controls, then the re-

laxed optimal control problem (corresponding to (2.6)) is

min{gwlgtw) = 0, § = 1,2,--,m, y € ¢} (5.2)
where
. A L3 v
g 2l @), 5=0, 1,2,...n (5.3)
v

and x : [0,1] » R? is the solution of

§(t)

fr(x(t),y(t),t) a.e. on [0,1] (5.4)

x(0)

il

E. (5.5)

In addition to (5.4), (5.5), we define also a set of adjoint systems
: v
defining the functions A;: [0,1] » IRn, j=20,1,2,..,m, as solutions of

1]

‘o v
@ = - (35) & @,u,0%w (5.6)
r

.Y
A = vl (x @), (5.7)

We now collect some relevant results and definitions.

+Note that we use here the symbols 9, ¢, A for different objects than in the
preceding section. This should cause no difficulty because of the entirely

different context. :
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Proposition 5: If v € G and ¢: Q x [0,1] » RP is continuous, then the

function 6: [0,1] ~» rP definitely 6(t) 4 ¢r(Y(t)’t) = J;¢(u,t)dv(t)(u)

is measurable. H

For a proof, see Young [8] p. 290.

Proposition g: Under Assumptions 1-3, there exist absolutely continuous

v v !
functions x , A;’ j=20,1,2,..,m, which are the unique solutions of the
system (5.4)-(5.7). H

For a proof, see Young [9] p. 291-292, 298.

Proposition 7: Under Assumptions 1-3, there exists a § € (0,) such

that for all t € [0,1],

v

x (t) €X (5.8)

v

AJT(t) €X, j =0,1,2,..,m, (5.9)
where ‘

x 8 (g e mY|lell < 5} (5.10)

This proposition can be deduced from a similar result in [11].
We shall say (see [8], [9]) that an infinite sequence {Yi} in G

converges to y* € G in the sense of control measures (i.s.c.m.) if for

every continuous function ¢: @ x [0,1] + IR and every subinterval A of

[0,1],
[¢r(yi(t),t)dt > {¢r(y*(t),t)dt (5.11)
as i +» =,

The following result follows directly from Lemma 1 in Williamson and
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Polak [7].

Proposition 8: Let 2: X x @ x.[0,1] +~ W, with W a bounded subset of

IRp, be continuous in X X Q and measurable in [0,1]. If‘xi: [0,1] - X

i=1,2,3,.., converge uniformly to x* on [0,1] and u, €6, i=1,2,3

converge to g* € G i.s.c.m., then for each subinterval A of [0,1]

{zr<xi(c>, u, (8),£)de > -Afnr(x*m,g*(t),c)dt

It is now straightforward to show, using propositions 2, 3 and 4 that

9oy

(5.12)

Corollary : Under Assumptions ]-3, if {v;} is an infinite sequence in

G converging to y*, i.s.c.m., then the corresponding sequences of
v v
trajectories {x i}, {Aji} 1=0,1,2,..,m, converge uniformly on [0,1]
* *

v v
X |, Aj

Now, before proceeding further, we note that for any u € G and

s J =0,1,..,m respectively. u

s €S(u), j=0,1,2,...,2n

(ng(u),s )2 = (th(xu(lD,zu’u+S(]) )
where zu,u+s: [0,1] ~» R" is the unique solution of

26) = 2 @0),um, 020 + L *o),u®), 080

"
o

z(0)
Hence, if we define

R(w = {z""Y(1) | (w-u) € s(u)}
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then we see that the functions 6 and 5c can be rewritten as

6(u) = min max hj(xu(l)) ~ y(u) + (th(xu(l),z ) (5.17)
-Z€R(u) j=1-2m .

5w = min  max WMD) - v(w +{(@WevR & 1))
zER(u) j=1-2m v

+ vhd (x" @),z ) (5.18)
VoW n
Consequently, we introduce the functions z : [0,1] - IR , with
v € G and w € G, defined as the unique solutions of
v b4
2(t) = (£))  (x (£),v(e),t)z(t) + (£) (x (t),v(t),t)w(t)
r r
v
= ¢I’(x (t)aY(t),t) (5.19)
z(0) = 0, (5.20)
where
¢(x,u,t) 4 fu(x,u,t)u (5.21)
~ ]Rn
Defining the set value map R: G = 2
Rw) = {z= @)]|u€G, wEQG} (5.22)
we can define extensions of 6 and 5c as follows: Let y: G+ R,
8: G > IR, and, for c > 0, éc; G- R Ec: 9 + R, be defined by
- A ~3 . . v
Y(@) 2 max . gl(v) = max gl (v) W (x (1) (5.23)

j=1-2m - j=1-2m
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" v . v
8(v) & min  max (I (x (D) - Yo + (vnd (x 1),z ) (5.24)
z€R(v) j=1-2m

. v v . v
6 (v) & min max {h)(x (1)) - 7 + ((1/c)vhO(x (1) + vnd (x"(1)),2 )
¢ ZR(v) j=1-2m -
- (5.25)
£ 28 W + @) /e (5.26)

It is easy to show that if § is optimal for the relaxed problem corresponding
to P then 6(?) = 0 and if v is optimal for the recaped penalized problem,

(corresponding to Pc), then éc(G) = 0. It now follows directly from
v,W

~

) that if ~v. )}

Corollary 1 (which also applies to the functions z viti=0 is

a sequence in G converging i.s.c.m. to a y* € G, then the set ﬁ(yi) - ﬁ(y*) in
the Hausdorff metric, and hence it follows easily that §(Yi) -> écgvi) > éc(y*)
(for any c¢) and Ec(yi) > Ec(y*), i.e. all these functions are sequentially
continuous in the topology of relaxed controls. We thus obtain the analogies of

Lemmas 1 and 2. Similarly, tracing through the proof of Lemma 3, we find that

we can substitute relaxed controls for controls in G to conclude that for
any y* € G there exists a ¢* > 0 such that if v, Y* i.s.c.m., then there
exists an io > 0 such that tc(Yi)-f-o for all i z_io and ¢ Z.c*.

Now, with each (ordinary) control uy € G generated by our algorithms
we can associate the relaxed control gi € G which is wholly concentrated

at ui(t), i.e.,

du, (t =
-[ui(t)} 5, (0@ =1 | (5.27)

Since as we have just seen, all the functions which we have used and
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which were L:[O,l] continuous are also sequentially continuous i.s.c.m., it is
quite straightforward to establish the following results, By essentially

retracing the steps in the proofs of Theorems 3, 4, 5 and 6.

Theorem 7: Suppose that {ui}:=o is an infinite sequence of (ordinary)
controls constructed by Subalgorithm 1 or Subalgorithm 2. Let {gi}:=0
be the associated sequence of relaxed controls. Then every accumulation

~ co . ~ ~ - u
point u of {gi}i=0’ i,s.c.m., satisfies ec(g) = 0.

Theorem 8: Suppose that {ui}:=0 is an infinite sequence of (ordinary)
controls constructed by Algorithm 1 or Algorithm 2 and let {§1}2=o be
the associated sequence of relaxed controls. Then there exists an index

j* < = such that j i_j* throughout the computation, and every accumulation

point § € G of {gi}izo, i.s.c.m., satisfies for some multipliers

wJ; j 1,2,...,m, the optimality condition

m

i X u i 4u
A& {ueglrw = 05 (vl (1) +Y vmlew,:) 20,

j=1

e
Mm

¥ z € R(u)} (5.28)

Note that case (iii) of Theorems 5 and 6 is ruled out in Theorem 8 .because
any infinite subsequence of {§i} must have accumulation points i.s.c.m..
Thus, by carrying out our analysis in terms of relaxed controls we have
reaped two benefits: we have eliminated the need to establish that
Li[O,l] accumulation points will exist for the sequences constructed,

and we have also been able to show that the growth of the penalty cj

cannot be unbounded.
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VI CONCLUSION

In this paper we have shown how to solve an optimal control problem
with control and terminal equality constraints. The terminal equality
constraints are handled by defining an equivalent control problem with
control constraints but without terminal equality constraints. This is
done by defining an exact penalty function involving a parameter c. The

‘two problems are equivalent if c is sufficiently large (but finite). The

control constraint is handled by incorporating it as a constraint in the
search direction subproblem. The complete algorithm incorporates an
inner loop to increase the parameter ¢ to a satisfactory value., It is
shown that accumulation points, both in the L_ sense and in the sense

of control measures, satisfy necessary conditions of optimality; accumu-
lation points, in the sense of control measures, always exist for the
control problem considered. This fact is used to show that the sequence
of parameters {cj} produced by the algorithm is finite. Except for
algorithms of the penalty function type, no other algorithms with

proven convergences, for this class of problems are known to the

authors.
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APPENDIX

The conceptual version of the algorithm requires at each iteration

the determination of a search direction sc(u) which is a solution of:

5 ()= min  max g (W) - y(w) + ¢ (1/0)7g0%w) + vgl (w,s ),

s€S(u) j=1-2m

min  N°(s) (A1)
s€S (u) ¢ '

where, for each u € G, ¢ > 0, H2= S(u) +~ IRis defined as follows:

e

) & max (gl @ - y(w + (/0w + 78 (w80 ) (42)

j=1-2m

Consider the reachable set Rz in Iizm defined by:

RZ e IRzmlE.j = gl (W - y(u) +< 1/e)vg’(w) + vl () ;s Y oo
j=1,...,2m 8 €S(u}
e r®e = P - v +Caonlet @) + watan,
28y 3 =1,...,2m, s €5(w)}
(A3)
where z?%"S . defined in (5.13), (5.14), is the solution of a linear

time varying differential equation due to a "control" s. It is well

known that Rz is convex and compact. Eq. (Al) can be rewritten in the

form:

éc(u) = min max gj (A4)
EER.  j=1-2m
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This is a standard convex control problem for which several algorithms
exist. These algorithms make use of the fact that points on the boundary
of Rz can be easily determined; more precisely, given any vector d € Elzm,
the point Ez(d) iﬁ Rz which maximizes (d,£ ) can be easily determined,
the jth component of E:(d) being given by:
wu + ;u(d)A
@@ = W -y + Ca/am’at @) + matan, - <oy

(A5)

j=1,...,2m, where the search direction éu(d) € S(u) satisfies (by the
¢ y

Pontyagin Minimum Principle), for all t € [0,1]:
(520 (0, BUOAL(E,D) ) < (wmu(e), BU(DA(£,d) ) (46)
for all w € Q. Bu: [0,1] ~» R™T is defined by:

B (1) 2 £ (6, u(e), ©) . a7

and AZ(-,d): [0,1] -+ R"™ is the solution of eqn. (2.18) with boundary

condition:
2m
@ = )0 daem et @) + watan) (a8)
371

The'problem defined by (Al) is convex, and we can use this fact to
obtain an approximation to this problem to any required degree of accuracy
in a finite number of iterations. We shall employ the Meyer-Polak al-
gorithm, described in (5.3.14) in [6], modified so that the algorithm
terminates when the desired accuracy is attained. The algorithm employs

two sets, R:, defined above, and the set Dz(a) defined, for all a € R,
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by

) & (n € RP[od € (DT, al, 3 = 1,...m) (49)
where:
wHI & ) : (A10)
75 & i

2m

for j = 1,... 2m, where e, denotes the jth unit vector in IR Let

]

h|
b: € nizm denote the vector whose jth component is (bz) . The two sets
Rz, Dz(a) are illustrated in Fig. 2.

The Meyer-Polak algorithm determines the infimum value of a such
that R: N Dz(a) # ¢ and, hence, éc(u) and the corresponding search
direction §c(u) (the minimizing s in (Al)). The modified algorithm
yields, for a given € > 0 (e is the precigion parameter) approximations

§' (u), 8" (u) to 6 (u), and a search direction ;e(u) € S(u) satisfying:
c,€ > c c

1 - -1t

8 e =<6 <6, (w (A11)
..:;,'e(u) - é‘C,S(u) i € (AlZ)
~Z’€(u) = nz(gz(ll)) (A13)

Thus the algorithm yields a search direction Ei(u) such that

~ u,~€ u,~¢
6, () € [N (s (u) - e, n (s (w].
In the algorithm description which follows { denotes a point in

Rz and n a point outside Rz. At iteration i of the algorithm:

~t j
8 (u) = max _  n (Al4)
C,€ j=1-2m i .
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~11

Gc’e(u) = max gi ‘ (Al5)

j=1-2m

The algorithm terminates when 5" (u) - 5'. (u) < e,
' o g c,e * c,e - "

Subalgorithm 3.

(Truncated version of Meyer-Polak algorithm)
Data: u€G,e>0,c>0.

Step 0: Set i = 0, set 8o = 0.

W -y, ... g®w) - y@nT,

t =
Se 50
= u
Set n0 bc'
Step 1: If Iny - .0 <,
S |
set ec,e(u) = Hniﬂm,
~11 - i
= f& . ll
set ec,e(u) lEi s
—-€

set sy = sc(u),

and stop.

Step 2: Set o; =N, - Ei'

Set £, = Eg(ci)-

wi
]

Au
Seg i sc(Gi).
Coﬁpute a ﬁi which solves

min{"n"mj (ci, n) = (ci,gi >3},
Step 3: vCompute Ei+i € [&;, Ei], Ny € [0y, ﬁi] such tha;;'
18141 = nygq! = mintle-nl]z € [, .1, n €[n,, ﬁi]}
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Set S;41 = 54 + (si = si) £y - gi+1"/"gi - 51":
Set i = i+l

Go to Step 1. - I , n

Note that S is the search direction corresponding to Ei in the

sense that Ei is. that point in‘RZ generated by Si’ i.e.

e = g -y + (Wl + v, s, ), (A16)

for 3 = 1,...,2m.

The following result follows directly from the proven convergence
of ‘algorithm(5.3.14) in [6] by identifying C with Rz andCIQ(a) with
DZ(a) and o with a. Since "Ei - ni" -+ 0 in the original algorithm it

~1 ~1 .
follows that ﬂgi - niﬂm + 0 and hencethat ec,e(u) -6, E(u) < €/2 after

b

a finite number of iterations.

Proposition. For.any u € C, any ¢ > 0, any € > 0 such that éc(u) <0
there exists a finite integer kc 8(u) such ﬁhat.Subalgorithm 3 terminates
2
in kc e(u) iterations yielding a search direction Ei(u) € S(u) and bounds
9

6: _(u) satisfying (Al1)-(A13). ' n
s

bl



y2(g°(u))

~

'}; =y2/c+y'=a
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