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ABSTRACT

The structure of the optimal spatial pattern of production is studied

when there are dependencies among production units which can be described

by a Leontief technology with substitute techniques, and when there is a

single marketplace of final demand, the CBD. Transportation cost is

proportional to distance. The various goods are produced in rings.

There are a finite number of patterns in which these rings are arranged,

and they can be obtained by a finite algorithm. The particular pattern

depends on the final demand. Hence there is no 'Non-Substitution'

theorem. 'Reswitching1 of techniques can occur, that is, in an optimal

pattern a technique may be operated at large and small distanced from

the CBD, but not at intermediate distances; this contradicts prevailing

beliefs about optimal capital/land profiles.
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1. INTRODUCTION

In this paper we study the spatial structure of production in a

model described by the following elements.

a) Space. This is a featureless plane at the center of which is the

center business district (CBD) of fixed radius uQ _> 0. Land outside the

CBD, at distances u _> un, is denoted exclusively to production. No pro

duction occurs within the CBD.

b) Commodities. There are n goods indexed j - l...n whose production is

considered. There are two other goods. First, there is land. Land is

not produced but it is essential for production of the other goods. The

amount of land available for production at distance u is 0(u) > 0.

Secondly, there is a composite commodity called corn which is available

everywhere. Corn serves as a standard and as an input for producing trans

portation. Land has an opportunity cost of rA units of corn per unit area.

c) Transportation. To transport each unit of good j over one unit distance

requires t. units of corn, t. > 0, j = l...n.

d) Technology. A Leontief technology with intermediate goods and with

substitute techniques, but without joint production, is available for

producing goods j = l...n.

A vector QB (Qr..Q)' >0 of final demands at the CBD is specified.

There is a variety of patterns in which the production can be

organized so as to meet the final demand Q at the CBD. This variety stems

from two sources. Firstly, the substitute possibilities imply that the

set of production techniques can be operated in different combinations of

levels to produce the same demand Q. Secondly, the same combination of

levels of techniques can be located in different arrangements over space
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inducing different transportation flow between production units and between

them and the CBD. Each pattern incurs costs of transportation and the

opportunity cost of land devoted to production. The optimal pattern is

the one which minimizes this cost. In the paper properties of the

optimal pattern are related to the production technology and transport

costs.

Earlier, Schweizer-Varaiya [1976] made a complete study of the

optimal pattern for the special case where there are no substitute tech

niques. (There are then n techniques with technique j being the only one

which produces good j. Therefore, the first source of variation in pro

duction patterns mentioned above is absent). Those of their results

which are relevant to this paper may be summarized in this manner. To

begin with, note that, since transportation occurs radially, different

goods will be produced in different sets of concentric rings. Then, in

an optimal pattern, which is unique,

(A) there are exactly n different rings (in some 'degenerate' cases

there may be fewer than n rings.)

(B) if the different goods are ordered according to the rule "i

precedes j if net production of good i occurs closer to the

CBD than production of j," then this ordering is determined by

the technology and transport costs and is independent of Q.

(Of course, the sizes of the rings vary with Q.)

(C) all transportation moves towards the CBD, i.e., no outwards

shipments of intermediate or final goods can occur.

Properties (A), (B) show that the order in which goods are optimally

produced, and hence the order in which different techniques are employed,

-3-



is a unique "invariant" of the system and depends only on production tech

nology and transport costs.

When substitute techniques are available there is no such single

optimal order. Instead,

(A') there is a finite set of optimal orderings such that in

every optimal pattern the techniques must be employed according to one

of these.

Thus the invariant is now this finite set of optimal orderings.

Once again this invariant set is determined solely by production conditions;

however, the particular order which prevails in an optimal pattern depends

upon the demand Q. (Thus different Q can lead to very different land use

patterns.)

In some of these optimal orderings a remarkable phenomena can be

observed. It can happen that a particular technique is employed in a set

of disjoint rings, i.e., the technique may be efficient at small and large

distances while being inefficient at intermediate distances. Thus if one

identifies the use to which a piece of land is put with the technique of

production adopted on it, then there is no simple relation between land

use and input. In particular, if capital is defined in terms of the produc

tion technique used, such well-known results as "capital/land and output/land

ratios decline with distance" need not hold when both substitute techniques

and intermediate goods are present. Similarly, real estate terms like

"highest and best use of land" can be ambiguous.

Property (C) listed above continues to hold for the model used here.

Also it is the case that optimal production patterns can be sustained as

competititve equilibria with land rents and f.o.b. prices for goods at

every distance.
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The paper is organized in the following manner. In the next section,

some notation is introduced together with some reformulations of the

fundamental theorems of Leontief systems. Section 3 consists of the

optimality theorem. In section 4 it is shown that the set of optimal

pattern coincides with a finite set of patterns, called the efficient

patterns, when the shape of the city is ignored. In sections 5 and 6

the finite set of quasi-efficient patterns is studied. This set is

interesting since it contains the efficient patterns and since it can be

generated by a finite algorithm. Section 7 deals with the case where

there are no substitute techniques. The three examples in section 8

illustrate the most important points raised in the paper. Some proofs

are collected in the Appendix.
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2. NOTATION AND PRELIMINARY RESULTS

J = {l...n}, index set of produced commodities.

B C r is the finite set of techniques available for producing j.

Suppose technique b = (b-.. .b )' (regarded as a column vector)

in B is operated at level x > 0. Then b.x > 0 units of j are
j j

produced and as inputs, b x £ 0 units of good i, i ^ j, and x

units of land are needed.•

B A B, U...U B .
= 1 n

BCb denotes a subset of B as well as the matrix consisting of the

column vectors b £ B. The order in which these vectors are

arranged will be clear from the context.

0(B) 4 (j| 3 bG Bwith bi >°* is the set of g°ods which can be

produced using techniques in B. If B = {b} consists of a

single technique, then 0(b) = 0({b}).

1(B) A J - 0(B).

For B C B, B , respectively B_, denotes the sub-matrix of B consisting

of all rows.j such that j e 0(B), respectively jGl(B). Thus

B =
Bo
. . <

BI

(this last notation is symbolic since the rows of BQ

need not be the leading rows of B.)

For any vector z, z ^ 0 means all its components are non-negative;

z > 0 means z >^ 0 and z ^ 0; z » 0 means all its components

are positive R^ A {z €Rn|z >_ 0}
D2.1 B is productive iff ^x >0 such that BQx » 0. (This is an exten

sion of the usual notion.)

D2.2 B is Leontief iff 0(B) = J and |b| = n (|b| = number of elements in B.)
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Let B C b and set CAB. Let k(Jl) be the number of rows

(columns) of C. Then 0(C) C J has k elements which will be used

to index components of (row) vectors in R . Similarly the I columns

of C, denoted by c, will be used to index component of (column)

vectors in R .

L2.1 Suppose C is Leontief. Then C is productive iff C is nonsingular

-1and C ^ 0 i.e. all its elements are non-negative.

Pf See Nikaido [1968] p. 90. n

D2.3 Let p€ Rk, pe/, Then tt(p,$,C) € R is the vector with components

*.(P,3,C) = max{pc - B |c e C, 0(c) = j}, j e 0(c).
j *»

The proofs of L2.2 and L2.4 below can be constructed using the

results and methods of Gale [1960], Chapter 9.

L2.2 The following conditions on C are equivalent.

(a) C is productive.

(b) 3 C C C such that C is productive and Leontief.

(c) 3 xG R+ such that Cx >:> °'
(d) 3 pS R* 3 3G Rl such that ir(p»e»c) » 0. n

L2.3 Suppose C is productive. Then

(a) V$ G r* Vtt € r there exists a unique pG R^ such that
T *T* •

ir(p,$,C) = IT.

(b) Furthermore if tt(p,3,C) > 0 then p > 0 (if all the elements of

C are non-zero then p >> 0). n

L2.4 Suppose that all Leontief subsystems of C are productive. Then

V$ S R*, Vtt G R there is at most one p€ R such that Ti(p,B,C) = ir

The assumptions A- and A2 are imposed throughout.
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Al B is productive.

A2 All coefficients of B are non-zero.

A2 means that every product is directly needed as an input to produce

every other product. This eliminates the need to consider separately

in the proofs some "degenerate" situations. Of course, since the

magnitudes of these coefficients can be arbitrarily small, the

economic significance of the propositions is not reduced.

L2.5 Suppose p^R" and B C g are such that pB » 0. Then B is productive

and p. > 0 for j G 0(B).

Pf From L2.2(d) it follows that B is productive. The remainder of

the assertion follows from A2 and L2.3(b) n

L2.6 Suppose B C B and d G Rn with d > 0 for j 6l(B) are such that

dB ^ 0. Then

(a) d > 0.

(b) If either d. > 0 for some j € 1(B), or dB ^ 0, then d > 0 for

j e o(b).

Pf (a) follows from L2.3(b), and (b) from L2.3(b) and A2. «

L2.7 Suppose B C b is productive and p £ R . Then there is a unique

t G R* denoted t_(p) such that (2.1), (2.2), (2.3) hold.

(2.1)

(2.2)

(2.3)

Vb e B, tfi(p)b <_ p.

Vj G 0(B), 3 b£ BnB such that tfi(p)b = p.

vj e Kb), [tB(p)]j = ty
Futhermore if j G 0(B) then [t_(p)]. is strictly increasing in p.

^ Tb "
Pf The matrix B is partitioned as B = ... , and each column b

b.

of B as b Partition the transportation cost vector in a
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similar manner as t = [t-It-]. Set -$ = tTB . Then B ^. 0 since

the coefficients of B are non-positive. By L2.3 there is a unique

vector tQ >_ 0 such that it (t0,B,BQ) = p for each j G 0(B) = 0(B).

Setting t = [tn!tT] proves the first part of the assertion. To

prove the second part let p. < p« and set d = t^CPo) " 'b^i^* 'J^ien

d. = t. - t = 0 for j G 1(B) and so, by L2.3(b) and A2, d. > 0 for
J J J 3

j € 0(B). n

-9-



3. OPTIMAL ALLOCATIONS

An allocation is a specification of production plans x(u) for

each distance u, together with a specification of transportation

flows of the various goods, such that the demands for intermediate

inputs at each u, and the final demand Q at the CBD, are met. A

production plan at u is merely the set of activity levels at which

each activity must be operated; thus x(u) = {x, (u)|b ^ B}. The

transporation flow can consist of flow towards the CBD as well as

flow towards the periphery since a priori one cannot assert that

the latter flow will be absent in an optimal allocation. A precise

definition follows.

D3.1 An allocation (with final output Q) is a 4-tuple w = (u,x(0 ,f(•) ,♦(•))

where (i) u >_ un is the maximum distance at which production occurs,

(ii) x(u) = {x^(u)|b G B}, x(u) >0 is the production plan at u,

ufl <u<u, (iii) f(u) G Rn, respectively <J>(u) G Rn» is the amount

of net local production at u which is shipped towards the CBD,

respectively away from the CBD; and such that these feasibility

conditions are satisfied:

a) 0 < Z x, (u) < 8(u), un < u < u,

b) y(u) A B x(u) = I x, (u)b = f(u) + <j)(u), uft <_ u £ u,
b^ D

c) if s(u) is obtained from the differential equation

(3.1) s(u) if^(u) =-f(u), s(u) =0,

then s(u) >_ 0, uQ <_ u <_ u and s(uQ) = Q,

d) if a(u) is obtained from the differential equation

(3.2) d(u) = <f>(u), <j(uq) = 0,
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then o(u) ^ 0, uft £ u £ u.

Condition a) states that land devoted to production at u can

not exceed the available land 8(u); b) states that commodity flows

originating at u equal the net production y(u) at u. The material

balance conditions c) and d) can be deduced from Fig. 3.1.

The cost incurred by an allocation u> is the sum of the trans

port cost and the opportunity cost of land,

(3.3) C(u>) A
fu

t[s(u) + a(u)]du +
u

u 1
r. 1 x(u)du .

0 u0

D3.2 An allocation u>* = (u*, x*(-), f*(«)» <!>*(•)) is optimal if C(a>*) £ C(w)

for all allocations w (with final output Q).

T3.1 (Optimality conditions) w* is optimal if and only if there exists an

absolutely continuous price system p*(u) _> 0, un £ u £ u*, such that

the following conditions are satisfied:

a) For uQ £ u £ u*

(3.3) [p*(u)B-rAl]x*(u) = Max{ [p*(u)B-r.l]x|x>0, Z x, £6(u)}A~ A- b^g b

b) If s*(u), a*(u) are the solutions of (3.1), (3.2) correspond

ing respectively to f*(u), <|>*(u), then for ufi £ u £ u* and j = l...n,

(3.4) s*(u) > 0 implies o*(u) = 0

f-t. if s*(u) > 0

(3.5) p*(u) =< +tj if s*(u) <0

L^f-tj, -Htj] if s*(u) =o*(u) =0

Here 1 denotes the vector all of whose components equal 1 so that 1 x(u) =
Z Xfc(u) which is the amount of land at u necessary for production at level
x(u).
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c) At the edge of the city

(3.6) [p*(u*)B-rAl]x*(u*) = 0,

(3.7) o(u*) = 0

Pf See Appendix 1. n

The optimality conditions have a straightforward economic

interpretation. (3.3) asserts that x*(u) is the maximum profit

activity vector when p*(u) is the vector of f.o.b. prices, provided

that the profit/land ratio exceeds r in which case all available

land, 6(u), is used for production. If this ratio is less than rA>

then x*(u) = 0. According to (3.6), at the edge of the city the

ratio equals r . It will be shown later that the profit/land ratio

declines with distance (a consequence of these conditions which is

not at all obvious), so that, in fact, all available land between

un and u* is indeed used for production as might be expected

intuitively. (3.5) is a version of the condition first observed by

Samuelson [1952], It asserts that if it is optimal at u to ship the

jth good inwards (outwards), then the price of j must decrease

(increase) at the rate of the transport cost; on the other hand, to

prevent arbitrage the prices cannot change faster than the transport

cost. (3.4) merely asserts that it cannot be optimal to simultaneously

ship a good inwards and outwards. From these conditions it is not

evident that it is not optimal to have outward shipment of goods,

although this cannot occur at u* due to (3.7).

These optimality conditions also give some information about

the pattern of the optimal production. This will be presented later.

For the moment the economic interpretation given above immediately

i
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leads to two corollaries of interest.

C3.1 The system of f.o.b. prices p*(u), uQ £ u £ u*, and land rents r*(u)

given by

(3.8) r*(u) = [e(u)]"1 p*(u)Bx*(u)

sustains the optimal allocation u>* as a competitive allocation.

Pf With these rents and prices x*(u) is a maximum profit activity

vector and the maximum profit (after payment of land rents) equals

zero. The result follows. n

C3.2 Let p*(u), r*(u) be a price and rent system which sustain w* as in T

3.1. Let 03 be any other optimal allocation. Then p*, r* also

sustain to.

Pf See Appendix 2. n
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4. EFFICIENT PATTERNS

The optimality conditions cannot be solved to obtain an optimal

allocation. This is due to the fact that (3.5) is a differential

correspondence and not a differential equation, hence the conditions

do not give a classical boundary value problem as normally arises

in calculus of variations or optimal control theory. A more refined

analysis is necessary in which a finite set of patterns (called

'efficient patterns' below) is introduced a priori and the optimality

conditions are then used to show that optimal allocations must

belong to this set.

To motivate the consideration of efficient patterns make the

intuitive hypothesis that for u < u*, [p*(u)B-r l]x*(u) > 0, that is.

only at the city's margin is the net profit zero (cf. (3.6)) whereas

all intra-marginal locations yield positive profits. By (3.3), it

will then be the case that

(4.1) p*(u)Bx*(u) = Max{p*(u)Bx|x >_ 0, lx £ 9(u)>, 1 x*(u) = 8(u),

i.e. x*(u) contains only those techniques operated at a positive

level which show the most profit, and all available land is devoted

to production. In terms of

(4.2) r*(u) A Max{p*(u) b|b <E B} , B*(u) A {b G S|p*(u) b = r*(u)},

the first condition in (4.1) says that x*(u) > 0 only if b G B*(u).

B*(u) is the subset of activities of B which are most profitable

at u. Since p*(u) changes continuously with u, and since B is finite,

therefore as u decreases from u* to u B*(u) will change discretely

i.e. it will be a piecewise constant function of u. At this point

make the second hypothesis that B*(u) changes only a finite number
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of times for u £ [u0,u*]. That is, there is a set of distances

1 2 N -un < u- < ... < uN 4 u* and subsets B ,B ,...,B of B such that

(4.3) B*(u) =Bk , uk_x <u<ufc, k=1,...,N

Production will then be arranged in N concentric rings with tech

niques from B being employed in the kth ring Ov. i> u, ). At the

boundary of a ring, say u, , it must be that

k V+1(4.4) B*(ufc) =BK UBm , k=1,...,N-1.

This follows from the definition (4.2) of B*(u) and the continuity

of p*(u). Note that the number of rings N, and hence the number of

1 N
production patterns B ,...,B , cannot yet be fixed.

The next step is to study (3.5) to see how p*(u) can vary with

u. This will, through (4.2), also help to restrict the possible

production patterns. Start with the hypothesis that within each

ring the rates of change of p*(u) is constant, and let

(4.5) tk A-p*(u) , iv -i <u <u. , k= 1,...N.

k -
Because of (3.5) it must be that -t £ t £ t. Let

N

(4.6) pN Ap*(u*) and pk 4 pN + Z (u0-u0 -)t£ , k=0,...,N-l
£=k+l * *~±

so that, because of (4.5), p*(u, ) = p . Since p*(u) is constant

inside each ring therefore, from (3.5) and (3.8), f*(u) is also

constant within each ring. Let

(4.7) p 4 f*(u) , u, - < u < u. , k = 1,...,N,

N

(4.8) rN A r. and rk A rN + tZ (u -u )p* ,k=0,... ,N-1,
A *=k+l * iL~1

k:
so that r*(u.) = * • From (4.2) it follows that
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(4.9) rk =Max{pk b|b e B> , k=0,...,N.

1 N
The final step is to relate the production pattern B ,...,B

0 N 0 N
to the prices and rents p ,...,p and r ,...,r . First note from

(4.4) that B C B (ufc) and B C B (u. -) that is the techniques in

B must be most profitable at both u, and u, -. Hence

(4.10) rk =pV r^1 =pk~h for bG Bk , k= 1,...,N.

Secondly, in each ring k all the Inputs needed for production using

k k
techniques in B , that is the commodities I(B ), must be imported

from the 'outer' rings k+l,...,N or the 'inner' rings l,...,k-l,

Ak
and hence these inputs must be produced there. Let S C j= {l,...,n>

Ak
be the commodities imported from the outer rings, and Z C j the ones

imported from the inner rings. Then

(4.11) I(Bk) C sk U Ek , k=l,...,N.

Ak
Now, if j G S then this commodity must have been produced in some

o

outer ring £>k i.e., j £ 0(B ), and it must have been shipped

across the intervening rings k,...,l. Let S (£ ) denote the set of

commodities which are shipped inwards (outwards). Then it must be

that

N

(4.12) sk = u [o(B^)nskn,„nsi] , k=i,...,N
*=k+l

and a similar argument shows that

k-1

(4.13) zk = u [o(b£) n zl n ... n zk] , k = i,...,n/;
1=1 v

" k
Next, in each ring k there must be at least one output j £ 0(B ) which

is produced at a positive level and this output must be shipped either

inwards or outwards, hence
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(4.14) o{^) n [(sk n sk_1) u (zk n zk+1)] + + , k= i,...,n

where evidently S° = J, EN+1 = $. Finally, by (3.5) there is a
k k k

relation between the t and S , Z , namely

(4.15) Sk ={j|tk =tj} ,Ek =(j|tk =-tj} , k=1,...,N.

An efficient pattern {Bk, tk, pk>, k = 1,...,N is any sequence

which satisfies the conditions derived above.

D4.1 A sequence {Bk, tk, pk}, k= 1,...,N is an efficient pattern if for

each k, Bk C g, -t £ tk £ t, p € R, and if there are distances

un < u < ... < ul, and p > 0, such that the following conditions
0 1 N ~

are satisfied:

Let

pk =pN + 2 (uf-uf Jt\ rk =rN + Z (uru£_1)p£, k=0,...,N-1
Jl=k+1 *=k+l

Nwith r = rA, and let
A

Sk ={j|tj =I.) , Sk -(j|tj =-tj} , k=1,...,N,

sk= u [0(b£) nskn ... n s£], sk = u [o(b*) n z% n ...
£=k+l *=1

n zk] , k = 1,...,N;

then, p _> 0 for each k and

(4.16) b€ B <*• pb = r and p ~ b = r , k=l,...,N

(4.17) b£ Bk =• p1^ £rk and pk-1b £ r1^"1 , k=l,... ,N

(4.18) I(Bk) C sk U Zk , k=l,...,N

(4.19) p(Bk) n [(sk nsk_1) u (zk n zk+1)] / 4, , k-1 n.
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k k k
L4.1 Suppose {B , t , p } , k=l,...,N, is efficient. Then for each k

(4.20) je sk => tk = t. , je ik => tk = -t.
3 3 3 3

(4.21) b€ Bk => tkb = pk

(4.22) be Bk, b£ Bk_1 => tk_1b < p*"1

(4.23) be Bk_1, b £ Bk => t\ > pk

k k
Pf (4.20) follows from the definition of S , Z and the fact that

Ak Ak k
these are contained in S , Z respectively. If b G B then, by

(4.16), (p ~ -p )b =r~ -r . But p -p = (^"^.^t »

k-1 k kr -r = (u,-u, 1)p , so that substitution yields (4.21). If

b€Bk and b£ Bk_1 then, by (4.16) and (4.17), (p^-p^b <r*"1-^
k-L. k-1

and so t b < p proving (4.22). The last assertion is proved in

a similar manner. n

T4.1 Suppose {Bk, tk, pk}, k=l,...,N, is efficient. Then

N li- Tf+1 k k+1 k k+1
(4.24) p > 0, p > p and equality holds only if B* = B , t = t

k
(4.25) B is productive for each k

(4.26) Ek = <j> for each k

(4.27) N £ N where N is a number depending only on B

Pf First (4.24) and (4.25) will be proved by backward induction on

N N ,- N
k. Consider the case k = N. By (4.16) p b = r - r. >, 0 for b ^ B

f N
and so by L2.2 B is productive.1 Next partition B as 0 (using the

N N Nnotation of §2) and similarly partition t as [t^tj] so that

N N _ N N N N
*• B " t0B0 + tIBI

L2.2 applies when r > 0. If r = 0 the argument needs to be modified

as in the proof of C4.2.
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N N NBy (4.21) tV = pi so that

(4.28) tQBQ -pi- tjBj .

Now by (4.18) I(BN) C sN U ZN, but §N = (f> so that I(BN) C £N; hence,

by (4.20) t® =-t and since B £0therefore -tjB £0. Suppose
pN £0. Then from (4.28), t^ £0and so, by L2.2, t® £0. But

TW-1 N N
by (4.19), since Z = <J> therefore 0(B) H S i <{>. Hence there

N N Nexists j € 0(B) such that t > 0 which contradicts tQ £ 0. Hence

p > 0.

Next assume that (4.24), (4.25) hold for k+l,...,N and consider

k k
the case k. Let {p , r } be the sequence of prices and rents in

k N I &
D4.1. Since r = r + Z (u -u )p and since p > 0 by the

£=k+l
k k, k

induction hypothesis, therefore, r > 0. By (4.16) pH> = r for

b^B and so by L2.2 B is productive, proving (4.25). To prove

(4.24) assume in contradiction that

(4.29) pk < pk+1

and set d = tk - tk+1. Then, by (4.29), (4.21), (4.23),

(4.30) dBk « 0.

Now, by (4.18), I(Bk) C §k U ik. if jG l(Bk) nSk then jG Sk nSk+1

and so tk = tk+1 = t. and so d. = 0; whereas if jG Z then jG Z
3 3 3 3
V - V k+1 - k+1and so t. = -t. and so d. = t* - t, = -t. - t. < 0. Thus
3 3 JJJ 3 3~

(4.31) d £ 0 for jG I(Bk).

From (4.30), (4.31) and L2.6 it follows that

(4.32) d < 0 for jG 0(Bk).

On the other hand, by (4.19), there exists j G o(B ) such that either
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ie Sk or iG Ek n Ek+1. In the first case tk = t. and so d >0
k k+1 -

contradicting (4.32), and in the second case t = t = t so that
J J J •

d. = 0 again contradicting (4.32). Hence (4.29) must be false thus

proving the first part of (4.24). To prove the second part suppose

k 1
P = P

k . , Jc k+1

k k+1. Then, instead of (4.30), one has dB = 0 which implies

d = 0 since B is productive and so t = t . But then from (4.16),

(4.17) Bk = Bk+1. Thus (4.24), (4.25) are proved.

Next (4.26) will be proved by forward induction on k. For k=l

certainly E1 = <J>. Now assume that E = <(> and consider the case for

k+1. Then

(4.33) zk+1 =0(Bk) n Ek n Ek+1.

Furthermore, by (4.18) I(Bk) CSk and so, by (4.20), t -t^ >0for
je I(Bk). Now, by (4.21), t\ =pk >0. Hence by L2.6 t.. >0for

jG0(Bk) which implies that Ek n0(Bk) = <J>. By, (4.33) this implies

Z*+1 = <f>. Thus (4.26) is proved.

It remains to prove (4.27). By L2.4 and L2.7 for each triple

(Bk, Sk, Ek) there are at most two pairs (t, p) fulfilling (4.21),
k — k

and the conditions t. = t., j e S and t = -t , j € E and (4.14).
J J 3 3

k k k
Since there are only a finite number of distinct (B , S , E ) and

since repetition is eliminated by (4.24) therefore (4.27) follows, n
*0

R4.1 Note that in the proof of (4.24), (4.25) the condition E = 4> was

not used. This means that even if 'imports' from the CBD were

permitted, (4.24), (4.25) continue to remain valid. In particular,

rents decline with distance from the CBD even if imports are permitted,

C4.1 Suppose {Bk, t\ pk}, k= 1,...,N is efficient. Then t » 0 for

each k.
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Pf Since Ek = <j> by (4.26) therefore, by (4.18), I(B )C s and so

tk = t. >0 for jG I(Bk). By (4.21) tV* = p1 1» 0so that by
3 3

L2.6 tk >0 for jG 0(Bk). n
j

C4.2 Suppose {Bk, tk, pk}, k = 1,...,N is efficient. Then {B ,t,p}
- - N

is uniquely determined by B, t, and the boundary price p is the

N N N N
unique multiple of t , p - At such that Xp = r . Furthermore

v a t,N Nv N
for b £ B t b < p .

AN "N • NN
Pf In the outermost ring both E = $ and S = <J> so that I(B ) = §

N N N
and 0(B ) = J. Therefore B , p satisfy

bG BN =» pNb = rA
r A

bG B => pNb < rA
— A

V. G J, bn n B. ^
N A >— — i N iBy L2.3 these conditions determine p uniquely. Let B = {b G Bjp b = r^i

N * N N
By L4.1 B , B, t and p satisfy

(4.34) b G BN => tNb = pN

(4.35) bG B, b £ BN => tNb < pN

(4.36) V. G o(BN) = 0(B) =J, 3 bG BN OB. such that t\ = pN

N N
By L2.7 these conditions uniquely determine t as a function of p ,

tN = tN(pN) and [tN(pN)] is strictly increasing in pN. By (4.19),

there is jG 0(BN) for which [tN(pN)]. = t . Hence by the strict
N

monotonicity p is uniquely determined by

p = max{p|t (p) £ t}
N

Next, from (4.34), (4.35) and the uniqueness of p it follows that

pN =-| tN. Finally, if pN » 0then BN =Bwhereas if pN =0then
P

A __ ! N N N
B = B. In either case therefore t b < p for b % B . n
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From the discussion at the beginning of this section and from

T4.1 it follows that every optimal allocation yields an efficient

pattern.

T4.2 Let x*(u), un £ u£ u*, be an optimal allocation and let p*(u) , r*(u)

be the corresponding price and rent functions. Then there is an

k k k
efficient pattern {B , t , p }, k = 1,...,N, and distances

un < u- <...< u^ = u* such that for each k and u,-i < u < u^,

-x*(u) >0 o bG Bk

p*(u) = -tk « 0, p(u*) = pN

ir*(u) =-pk <0, r(u*) =rA

In particular, all transportation flows towards the CBD; prices

decline with u; and the rent is a declining, convex function of u.

Pf Only the last statement needs a proof which follows from the

fact that p > p >...> p according to (4.24) °

Thus every optimal allocation gives rise to an efficient

pattern. To study the converse proposition consider an efficient

k k K
pattern {B , t , p }, k = 1,...,N, and the associated distances

A

u~ < u„ <...< u A u. Construct the price function p(u) with
0 1 n =

* - N
p(u) = p , and

(4.37) p(u) =-tk , uk-1 <u<i^, k<= 1,...,N

One can also attempt to construct production plans x(u), uQ £ u £ u
ksuch that in the kth ring u, , < u < u,, ^(u) > 0 only if bG B

and 1 x(u) = 8(u). However, these plans will not in general yield

an allocation since the material balance conditions (3.1), (3.2) may

not be able to be satisfied. But It seems reasonable to expect that
K
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A

if the amount of land available for production, 6(u), were adjustable

then x(u) would give an allocation and such an allocation would be

optimal for the new 'geography' 6(u).

T4.3 Let {Bk, t\ pk), k = 1,...,N, be an efficient pattern and let
At

un < u- <.. .< vl, = u, be associated distances. Then there exists

(a) a geography of the form

e(u) =ek >o, uk_1 <u<ufc

(b) an allocation w = (u, x(-), f(0, $(•)) which is optimal for

this geography and such that the production plans x(«) have the form

with

A/ \ - kx(u) = x

x£ >0 -> bGBk,

and such that commodities are not transported towards the periphery,

J(u) = 0

Pf (The idea of the proof is to assume 6, x have the specified form

k k-i A
and to obtain relations among the {6 }, {x > such that oj satisfies

(3.1), (3.2) with } =0.) Let Sk, etc. be as in D4.1, and define

(4.38) K(k,j) = {l\l >kand jG 0(B*) n Sk H.. .D s^}

Let Q > 0 be any final demand vector such that

(4.39) Q. > 0 ~ K(N,j) t <J>

k k ,Next a sequence {Q , x }, k = 1,...,N, will be constructed

inductively with Q = Q and with these properties:

(i) x£ =0 if bGBk, Qk+1 =Qk -Bxk >0,
(ii) 3 J G °(B ) such that Q. > 0

k

j

-23-
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k k
(iv) x _> 0 is chosen depending on Q such that

r .

Q. if K(k,j) = {k}

[ixk] --(
-| Qk if K(k,j) 3{k,k+l} and Qk >0

<0with xk >0 for bG Bk H B. if K(k,j) 3 {k,k+l} and Qk =0
b 3 3

0 if jG 0(Bk) and jG sk
V-

To prove the existence of such a sequence begin by noting that

k k
since B is productive (by T4.1) therefore if Q > 0 then there always

V k
exists x > 0 such that (iv) holds. Such x must have the property

(4.40). [B xk]. <0 if jG l(Bk)

The verification of (i)-(iii) proceeds by induction on k. For

1 ~ ~1
k=l, Q = Q and so (iii) follows from (4.39). Since E = <j> by T4.1,

therefore 0(B1) H S1 ^ <J> and so there exists jG 0(B ) such that

K(l, j) ^ <J> which proves (ii), finally (i) follows from (iv).
k+1 k - k

Now assume that (i)-(iv) are verified for k and let Q = Q - B x .

Then Qk+1 >0 and so (iv) holds and this implies (i). To check (iii)

suppose K(k+1, j) = <j>. Then, from (4.38), either K(k,j) = (j) or

k - k
K(k, j) = {k}. In the first case Q. = 0 by (iii) and [B x ] = 0 by

J -J

(iv) and so Qk+1- [B xk]. =0 also; in the second case, by (iv)
J J

[B xkl = Qk and so again Qk+1 = 0. Thus (iii) is verified. Finally
3 3 3

k+1to verify (ii) suppose in contradiction that Q. =0 for every

jG 0(Bk+1). By (iv) this is possible only if for each jG 0(B ),

jGS^"1, so that 0(Bk+1) nS^1 =<f>. But since Ek+1 = ♦'by T4.1
therefore by (4.19) 0(Bk+1) H sk+1 = <fr. Thus (ii) is verified.

k kHaving obtained the sequence {Q , x }, k = 1,...,N, define
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1 k
k 1x

Wi

Now consider the allocation u> = (0, x(-), f(-), J(O) where for

"k^i <u<\ *<u) =x»f(u> =B' xk, J(u) =0. It is easy to
verify that the transportation flow s(u) defined by (3.1),

s(u) = -£(u), s(G) = 0

satisfies s(u) > 0. Furthermore s(u,) = Q , and so s(un) = Q.

Hence w is feasible for the geography 9. Furthermore if p(u) is

defined by (4.36), then it is immediate that it satisfies the

optimality condition of T3.1. If follows that co is optimum.
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5. THE CANONICAL PATTERN

In the previous section it was shown that the set of efficient

patterns is an "invariant" of the technology B and transport coefficients

t. It is a minimal invariant in the sense that up to an arbitrary

geography this set characterizes all optimal allocations (T4.2,T4.3).

Furthermore this set is finite (see (4.27)). Unfortunately the definition

D4.1 does not appear to yield a finite algorithm to determine this set.

This is because the conditions in D4.1 on the variables u..,...,u

seem not to be verifiable by a finite algorithm.

In the next section a method is proposed to enumerate a finite

set of sequences which contains all the efficient ones. Some preliminary

results are collected here.

V \r \r k k-1
L5.1 Suppose {B ,t ,p }, k=l...N, is efficient. Fix k and let B = B Ufi

k-1 k—1 k-1
M = 0(B ), p = p , t = t . Then {M,t,p} is a solution

(not necessarily unique) to the relations (5.1)-(5.3).

(5.1) b G B => tb £ p

(5.2) j G m <* j G 0(B) and max{tb|b G b H b.} = p

(5.3) 0£ t£ t, t. = t. for j G m and ^J e M witn t- = *••

Pf (5.1) and (5.2) follow from (4.21), (4.22). Since t^1 » 0
- k-1

by C4.1 therefore 0 £ t £ t. If j G m then j G i(b ) and so

by (4.26), (4.18) jG s^1 so that tk-1 = t.. By (4.19), (4.26)

there exists j G s and so t. = t.. „
3 3 n

Recall the definition tB(p) introduced in L2.7. By L5.1 the
D

set B in L5.1 is a member of ^o introduced below.
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D5.1 45 is the set of all subsets B C b such that B is productive and

tB(0) < t.

D5.2 For BG^ ,t(B) > 0, p(B) ^ 0 are defined by the conditions:

t(B) = tg(p(B)), p(B) =max{p|0£ tfi(p) <_ t}. (Note that

[t(B)L = t for at least one j G 0(B).)

k k k lr \r
L5.2 Suppose {B ,t ,p }, k = 1...N, is efficient. Then t = t(B ),

P = p(B ).

Pf By T4.1 p >0, tk >0, tk >0and tk = t. for jG I(Bk).
— 3 3

k k
Hence, by L2.7 t = t ,(p ). By T4.1 and (4.19) there is

B*

j G 0(B ) such that t. = t.. Since [t ,(p )]. increases strictly
3 3 b J

k k i -monotonically with p , therefore p - max{p|t ,(p) £ t}.
B

D5.3 A sequence {B }, k = 1...N, is called efficient if {Bk,t(Bk),p(Bk)},

k = 1...N, is an efficient pattern.

Because of L5.1, given B G 45, it is natural to study the solutions

{M,t,p} of (5.1)-(5.3).

T5.1 Let BG^B . There are exactly m solutions {My,ty,py},

\i = l...m of (5.1)-(5.3) where m depends on B. These can be

arranged so that

(5.4) M1 Cm2 C...CiP

(5.5) t >t >...>t »0;p >p >...>pm>0

(5.6) MP ={j GMP+1|tjy+1 <t }
(5.7) tP = ty+1<>ty+1=t

3 3 3 3

(5.8) lP = 0(B), t1 = t.

In particular m £ |0(B)| £ n (|0(B)| = number of elements in 0(B))

Pf The last statement is immediate from (5.4). The proof of the

remainder is conducted in a series of steps.
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Step 1 It is claimed that given M c 0(B) there is at most one pair

(t,p) satisfying (5.1)-(5.3).

To prove this, note that by L2.7, for each M, p, there is at

most one vector t, denoted t(M,p) satisfying (5.1)-(5.3).

Furthermore, (5.3) and L2.7 uniquely specify p as p(M) where

p(M) = max{p|t(M,p) £ t}

Thus t = t(M,p(M)), p = p(M) give the unique pair. Note that

if My is determined, then ty = t(My,p(My))

Step 2 It is claimed that if M c 0(B), M c 0(B) give pairs (t,p) and

(t,p) respectively, then

(5.9) P _> P => t _> t

(5.10) p = p => M = M

(5.11) p > P =» t. > t. for j G m
3 3

(5.12) p > p => M C ii.

To prove this set BM £ <b G Bltb =P>> d£t- t. By (5.3)
M

if i 2 M, d = t - t > 0, and if p > p then dBM > 0. By
J,jJJ- ~ M~

L2.6(a), d _> 0 proving (5.9). By (5.9) if p = p, then t = t

and so M = M because of (5.2), thus proving (5.10). The proof

of (5.11) is similar to that of (5.9) using L2.6(b). Finally

let p > p and suppose there is a j G M, j G m. Then, by (5.3)

t = t > t . But by (5.11) t. > t. which is a contradiction.
3 3 - 3 3 3

Hence M <r M.

Steps 1, 2.together prove (5.4), (5.5) and, once (5.6) is proved

they imply (5.7). Furthermore by (5.11), (5.12)

(5.13) My_1 CMy - {j|ty = t.}
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Step 3 It is claimed that (5.6) holds

Let M denote the right-hand side of (5.13). Set

By = {b G B|0(b) G My}. Then {My,ty,py} is a solution

of (5.1)-(5.3) (with B replaced by By.) Set

B= {b G By|0(b) G ft}. Then by L2.7 t-(py>/ = tU £ t. Let
B

p = max{p|tr;(p) < t}. Then p > py and t = t~(p) > t . Hence
B o

{M,t,p} is another solution of (5.1)-(5.3) (with B = By). Now

if bGB-By, then tb =tj(p)b £ tg(py)b =tyb £ py <p.
Therefore {ft,t,p} is a solution of (5.1)-(5.3). But this

is possible only if ft =My_1, t= ty-1, p= py~ ,thus proving

(5.13).

Step 4 It is claimed that (5.8) holds.

Since BG^ therefore t(0) £ t. Set pm =max{p|tB(p) £t},

tm = tD(pm) and M* = 0(B). Then by L2.7 {rf\tm,pm} is a
B

solution of (5.1)-(5.3). Finally set t = t, p = max{t b| G b},

M1 ={j| 3b G °(b) with °^b) =Jand tlb = pl}- Evidently
{M^t^p1} is a solution of (5.1)-(5.3).

The theorem is proved. n

Theorem T5.1 permits the introduction of the following notation.

D5.4 For BG^B let By = {b G B |tyb = py}, u = 1.. .m, where

{My,ty,py} is the y-th "solution" in T5.2. For convenience
m—1

define F(B) = Bm and G(B) = B " . (Note that m depends on B).

For B = B, the notation By, My etc. is used and the sequences

{By,ty,py}, u = l...m and {By}, u = 1...m are called the

canonical pattern and canonical sequence respectively.

L5.3 The operators F, G satisfy the following properties

(5.14) 0(F(B)) = 0(B)

(5.15) F(F(B)) = F(B)
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(5.16) If {Bk}, k= 1...N, is efficient, then BN = F(B), BN =G(B )

Pf (5.14) is a consequence of (5.8) and D5.4. From Step 4

in the proof of T5.1 it is seen that for any B G 4>

F(B) = {b G B|t(B)b = p(B)}

where t(B), p(B) are defined in D5.2. (5.15) is then immediate.

From C4.2 it follows that B = F(B). Finally suppose b G B .

Then t(B)b < p(B) and so from (4.16) bG b*1""1, hence BN-1 C BN.

But then by T5.1 B^1 = G(BN). n

If B is a Leontief technology without substitute techniques and

if {B }, k = 1...N, is efficient then as shown in §7 below,

N-2 r- N-l N -
B c B , which turns out to be equivalent to G(B ) = G(B).

Unfortunately, when substitute techniques are present this need

not hold (see §8). Mathematically, this is what creates most

of the difficulties. From an economic viewpoint this implies

that the Non-Substitution theorem need not hold when space is

introduced.

The canonical pattern is not always efficient. However it does

have the following attractive properties.

T5.2

(a) If BG^Band py >p(B) >py+1 then 0(B) C My and t(B) > ty

(b) If the canonical pattern is not degenerate i.e., if

|By| = |0(B )| for every u, then it is a subsequence of an

efficient pattern; whereas if it is degenerate then there exists

By C By with 0(By) = 0(By) and such that {By}, y = l...m, is

a subsequence of an efficient sequence.

Pf See Appendix. " „
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D5.5 An efficient sequence {B }, k = 1...N, is called maximal if

it is not a strict subsequence of another efficient sequence.

R5.2 From the viewpoint of qualitative theory it must be considered

a central problem in connection with von Thiinen models to

determine all the maximal sequences generated by a technology B

and transport costs t. This is because these sequences yield

the most complex land use patterns possible. In general,

given B and t, there may be more than one maximal sequence

(cf. §8, Example 1). However when B contains no substitute

technique there is only one maximal sequence (T7.1).

For future reference the following relation between the initial

and final segments of the canonical sequence and every maximal

sequence is useful.

T5.3 Let {B }, k = 1...N, be a maximal sequence and {B }, y = l...m,

m, «N -m _N-1 «m-l -, ,-mN
the canonical sequence. Then B =B,B =B = G(.B ;,

B1 C B1, OiB1) =(KB1) and t1 A t(BX) = t.

Pf See Appendix. 0
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6. THE QUASI-EFFICIENT SEQUENCES

The algorithm proposed here enumerates a finite set of sequences

which contains all the efficient ones.

D6.1 For BG^B let A(B) A {b G B|t(B)b _> p(B)} and write, B+B

if either B = G(B) or B = F(B u {b}) for some b G A(B).

D6.2 Let o denote the smallest family of subsets B C B which

satisfy (6.1), (6.2),

(6.1) F(B)G£

(6.2) BGfiand B+B =• BG £>.

(The definition makes sense since the intersection of two

families satisfying (6.1), (6.2) also satisfy them.)

k,
D6.3 A sequence {B }, k = 1...N, is quasi-efficient if it is a

subsequence of a sequence {Ey}, y = l...m, such that Ey G £>,
,,1 „1 ^m N
E = B , E = B and

(6.3) E -*• E + ...-• E .

It follows from these definitions that if B G ^ then there

k 1
a quasi-efficient sequence {B }, k = 1...N with B = B and

BN = F(B). Recall D5.2.

L6.1 Suppose A, B are in4?. Set A = {b G A|0(b) G 0(B)}. Suppose

t(B)b _> p(B) for b G A . Then p(A U B) > p(B).

Pf Case 1

Suppose AQ = <J>. Assume p(A ^ B) < p(B) and put d = t(B) - t(A U B) .

Then for b G F(B), db = t(B)b - t(A U B)b >_ p(B) - p(A U b) > 0.

By L2.6 d. > 0 for j G 0(B) = 0(A U B). -But by T5.2[t(A U B)]. = t.

for at least one j G 0(A U B) and so the corresponding d. £ 0.

which is a contradiction. Hence p(A u B) >_ p(B) .
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Case 2 Suppose AQ = A, and set d= tA y fi(p(B)) - tfi(p(B)) = tA y fi(p(B)) - t(B)

Consider b G B = A U F(B). If b G A then db = p(B) - t(B)b £ 0

and if b G F(B) then db = p(B) - p(B) = 0. Hence dB £ 0. Also

if j G i(b) C i(B) then d. = t. - t. = 0. By L2.6 therefore

it follows that d £ 0. Hence t y B(p(B)) £ t(B) £ t. By

definition p(A U B) = max{p|tA y (p) £ t}. Hence p(A U B) _> p(B).

General Case

p(B) £ p(AQ U B) by Case 2 and p(A U B) Cp(aU b) by Case 1.

L6.2(a) If 0(b) G 0(B), then p(BU {b}) > (=) p(B) according as

t(B)b > (£) p(B); furthermore bGF(B>J{b}) if and only if

t(B)b _> p(B).

(b) If 0(b) G 0(B), then p(B U {b}) > (=) [<] p(B) according as

t(B)b > (=) [<] p(B); furthermore b G f(B U {b}).

Pf The method of proof is very similar to that of L6.1. Hence

it is omitted. n

C6.1(a) If B->B then p(B) £ p(B). p(B) = p(B) if and only if

B = F(B U {b}), b G A(B) and t(B)b = p(B) and then t(B) = t(B)

p(B) = p(B), A(B) C A(B).

k IN
(b) If {B }, k = 1...N, is quasi-efficient and N > 1, then B ^ B .

In particular the length of all quasi-efficient sequences is uniformly

bounded.

Pf (a) If B = G(B) then p(B) > p(B) by T5.1. If B = F(B U {b})

for some b G A(B) then p(B) >_ p(B) by L6.1. The remainder of

the assertion follows from L6.2. (b) is an immediate consequence

of (a).
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L6.3 Let BG1^, b. G b, i=1,2. Set B± =F(B U {b±}) and suppose

t(B)b. >_p(B), i = 1,2 and p^) £ P(B ). Then either

t(B1)b2 > p(Bx) or 0(b2) G 0(B).

Pf Set B = F(B U {b ,b2>) and suppose

(6.4) t(B1>b2 < P(Bi>*

Then it must be shown that

(6.5) 0(b2) G 0(B).

Several cases need be distinguished.

Case 1

Suppose t(B )b <p(B2). Then, following the notation of D5.3,

B =By, B2 =BX for some X, y. By L6.2, t(B)b]L >p^) implies
bx G Bx and t(B2)b1 <p(B2) implies b1fB2< Then by T5.1,

p(B1) ^ p(B2). Then, by T5.1 again, X <y and

0(BX) =0(B) U 0(bx) 3 0(B2) =0(B) U0(b2). Hence 0(b2) G 0(B)

proving (6.5).

Case 2

Suppose t(B )b± = p(B2). In this case B2 U {b1} = F(B) and, by

a similar argument to the one above, p(B2) < p(B.^). But by

assumption p(Bx) £ p(B ), so that this case cannot occur.

Case 3

Suppose t(B )b > p(B2). By L6.2 it follows that p(B2) < p(B),

and as in the above p(B) £ p(B^. Hence p(B2) < p(B^^) and this

case cannot occur either. n

L6.4 Let BGSand let AC Bbe such that t(B)b >_ p(B) for bG A.

Then the sequence B, B of length two is quasi-efficient where

B = F(B U A).
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Pf The result is proved by induction on k = |0(B)| - |0(B)|.

Suppose first k = 0. Then 0(A) C 0(B). Let

(6.5) {b1,...,bJl} = {b G A|t(B)b = p(B)}

and put Bx = F(B U {b1}), B2 =F^ U {b2» ,. .. .B^ = F(B£_1 u {b£}).

Then B-*-B. -*B?->-.. .+B and so the sequence B-, B is quasi-efficient.

Also B ^ B if and only if there is bG B such that t(B£)b > p(B£).

Define B£+1 = F(B& U {b}). Then B^+B^ and by L6.2 P(B^) >P(V '

Furthermore 0(B&+1) =0(B). Define A1 ={b G BI r> G B£+1>

t(BJH-l)b - p(BJl+l)}* If Al = ♦ then BA+1 = B# Otherwise
repeat the process above starting with B.+- in place of B .

Eventually this process must stop at some stage m with A = <J>

and Bn, = B. Hence B, B is quasi-efficient,
x/rm

Suppose the assertion is true for k = |0(B)| - |0(B)|, and consider

the case for k+1. Set AQ = {b G A|0(b) G 0(B)} and let b1 G AQ

be such that p(B U {b }) =min{p(B U {b}|b G AQ}, and let B± =F(B U {b^)

By L6.3 if bG B, 0(b) G 0(B1) then t(B;L)b >_ p(B^. Thus,

if Ax = {b G B|t(B1)b >_ p(B1)}, then 0^) U 0^) = 0(B) and

by the induction hypothesis the sequence B., F(B1 U A.^ is quasi-

efficient. But then B, F(B. U A^ and quasi-efficient. It only

remains to show that F(B- Ua), B is quasi-efficient. But this

follows readily using T5.1 and the fact that 0(F(B]L UA^) = 0(B).
n

T6.1 An efficient sequence is quasi-efficient.

k k k
Pf Suppose {B ,t ,p }, k = 1...N, is an efficient pattern. Let

A={b G Bk-1|b G Bk}. By L4.1 t^ =t(Bk)b >, p(Bk). Hence
k—1 k k k—1
B = F(B U A). By L6.4 the sequence B , B is quasi-efficient.

n
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Using T5.1 it is readily seen that

G(B) = F({b G B|0(b) = j and t.(b) ± t.})

Given B G B it is an easy matter to describe a finite computer

algorithm to obtain F(B). Using D6.1, D6.2 it is then possible

to enumerate in a finite number of steps the set of all quasi-

efficient sequences. By T6.1 this includes all the efficient

sequences. However if there are many substitute techniques

it may not be an easy matter to use (4.16), (4.17) to eliminate

the sequences which are not efficient from the quasi-efficient

ones.

C6.2 The canonical sequence is quasi-efficient.

Pf Follows from T5.2(b) and T6.1.
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7. APPLICATION TO THE CASE WITHOUT SUBSTITUTE TECHNIQUES

Suppose B has no substitute techniques and let {B }, y = 1— m

be the canonical sequence. Then by T5.2(a) By c B for each y.

Hence

G(B) = G(F(B))

It is then easy to see that the canonical sequence is the only maximal

sequence. Furthermore the length of the sequence m £ n where n is

the number of commodities.

T7.1 Suppose B has no substitute techniques. Then the CBD price

vector p uniquely determines the land-use pattern.

Pf Let {By,ty,py}, y = l...m, be the canonical pattern. Using

N
the notation of D4.1, and the unique final price vector p

given by C4.2

(7.1) p -pN = Z (u£ -u^ _x)t£
& -~ -L

But using T5.1 it is easy to see that the vectors t ,...,t are

linearly independent, so that (7.1) uniquely determines the size of

the rings (u - u _ .), and hence the land-use pattern.
Z I 1 n

Of course the solutions (u. - u _ -) of (7.1) are non-negative

only if p G p + { £ at |a >_ 0}. If p does not belong to
£ = 1 * *

this set then there is no corresponding equilibrium allocation

which does not import commodities from the CBD.
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8. EXAMPLES

These numerical examples are given to illustrate the arguments

N
given above. Throughout r. = 0. Hence the final price vector p = 0.

1 Al 2 3
In the first example, n = 3 and there are four techniques, b , b , b , b

1 ~1 2 3
with b , b substitute techniques for producing 1, b and b are the

only techniques for producing goods 2 and 3 respectively.

b • K
bx =

5

-1

-3

2 K
b = 4

-1.

, b3 =
-1

-2

5

The transport cost vector is t = [4,3.2,1]. By T5.3 the final two

elements of every efficient pattern are uniquely determined. These

r«4 4 4, ,3 3 3,,
are {B ,t ,p }, IB ,t ,p } where

B4 = {b\b2,b3}, t4 = [1,1,1], p4 = 2

B3 = {b1^2}, t3 = [3.2,3.2,1], p3 = 8.6
3 3 "1 3
B cannot belong to the canonical sequence since t • b = 9.8 > p .

There are exactly two subsets B , i = 1,2 such that B + B . These

are

B21 = {b1} = G(B2) and B22 = {b\b2} =F(B2U{b1}).
21 22

It is immediate that if B + B or if B •> B then

1 ~1
B = B1 = {b1}

Thus all quasi-efficient sequences are subsequences of the two sequences

1 21 3 4 1 22 3 4
(8.1) B ,B ,B ,B and B ,B ,B ,B\

The following points are worth noting:

(i) Both sequences in (8.1) are maximal and efficient.

(ii) The canonical sequence which is easily seen to be the

1 22 4sequence B ,B ,B is quasi-efficient but it is not efficient.

(iii) According to the non-substitution theorem
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(Nikaido [1968], p. 189) the techniques in

4 12 3
B = {b ,b ,b } "dominate" the other techniques. However

when production requires space, there are optimal patterns

*1
in which the "dominated" technique b operates at a positive

level.

In the second example the numerical values are

i r 4i 2 m -2 I'1 3 rrb1 = -l , b2 = 5 , b = 4.5 , bJ = -1
-2J 1-2J 1-3 J L 3.

and t = [5.3,5.2,1]. It turns out that there is only one maximal

12 5 5 12 3
sequence of length five B ,B ,...,B where B = {b ,b ,b },

B4 ={b^b2}, B3 ={b1}, B2 ={b1,^2}, B1 ={b2}. The canonical
12 5sequence on the other hand is B , B , B . The point to note here is

that even when there is exactly one maximal sequence, T7.1 cannot

be generalized to allow for substitute techniques.

In the third and final example the data is

' •lil •sl
" 6
-2

-2"
6

*-l"
-1

-2.8. -2. . 4.

and t = [4,2.5,1]. Again there is only one maximal sequence B ,.,B

where B5 ={b^b^}, B4 ={b\b2}, B3 ={b\b2}, B2 ={b1}, B1 ={b1}
This sequence is also efficient. The crucial point to note is that the

technique b is most profitable in the first ring, and in the fourth

and fifth ring but it is not most profitable in the inner second

and third rings. This is a phenomenon somewhat akin to "double

switching" (Burmeister and Dobbell [1970], p. 245). More importantly,

if capital is measured in such a way that it is determined in terms of

the production technique used, then a high (or low) capital intensive
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technique can be most profitable at small and large distances from the

CBD but not at intermediate distances. This is a surprising result in

light of the usual models employed in von Thunen models in which

capital/land ratios decline with distance from the CBD.
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APPENDIX

1. Proof of T3.1 The necessity of these optimality conditions follows

by applying known results e.g. Hestenes [1966, p. 354], so that only

sufficiency needs to be proved. Let w = (u,x(») ,f(«) ,<{>(•)) be

any other allocation and let s(u) >^ 0, a(u) > 0 be the solutions

of (3.1), (3.2). If u" > u*, let p*(u) = p*(u*) for uG [u*,u].

It will be shown that

(A.l) C(u>*) £ C(a>).

From (3.5) it follows that

p*(u) + t >_ 0 , [p*(u) + t]s*(u) = 0,

-p*(u) + t >_ 0 , [-p*(u) + t]a*(u) = 0.

So that, since s(u) >_ 0 and a(u) _> 0, therefore,

0 = [p*(u) + t]s*(u) + [-p*(u) + t]a*(u)

£ [p*(u) + t]s(u) + [-p*(u) + t]a(u).

Integrating this inequality gives

f"* * r»* - *
0 = p*(u) [s(u) - a*(u)]du + I t[s(u) + a*(u)]du

(A. 2)

0

u

p*(u) [s(u) - o(u)]du +
u.

0

ru

t[s(u) + a(u)]du.
u.

'0 0

Integrating by parts, and using the boundary conditions in (3.1),

(3.2), (3.7) gives

rU*
u*

p*(u) [s*(u) - a*(u)]du = -p*(un)Q +
u0

l0

p*(u) B x*(u)du,

p*(u) [s(u) - a(u)]du = -p(uQ)Q - p(u)a(u)
0

ru

0

p*(u) B x (u)du.
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Substituting these relations into (A.2) yields

(A.3)
ru*fl _

t[s*(u) + a*(u)]du +

U0

•u*

p*(u) B x*(u) <
u,

P - -p*(u) B x(u)du - p*(u)o(u).

Juo

fU

t[s(u) + a(u)]du

Now, from (3.3), for uQ £ u £ u*

(A.4) [p*(u)B - r l]x*(u) = Max{[p*(u)B - r l]x|x > 0, 1 x£ 0(u)} > 0.
A~ A** **

On the other hand if u* < u then since p*(u) = p*(u*) for

u G [u,u*] and because of (3.6), the equality holds in (A.4)

for u G [u,u*]. It follows that whether u* is larger or smaller

than u,

(A. 5)

or

[p*(u)B - r.l]x*(u)du _>
ru

[p*(u)B - rAJ]x(u)du
u.

'0 0

and subtracting this inequality from (A.3) leads to

u* fU* ru

t[s*(u) + a*(u)]du +
u
0

ru

u,

u,

rl x*(u)du < t[s(u) + a(u)]du
A~ —

Ju«

r.l x(u)du - p*(u)o(u),

C(io*) £ C(a>) -p*(u)a(u).

Since p*(u) * 0 and a(u) >_ 0, this implies (A.l). n

2. Proof of C2.2 Let a) = (u,x(«)»f("),<!>(*)) be another optimal allocation,

Then C(a>*) = C(u>). Hence equality must hold in (A. 5) and so it
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must be the case that

[p*(u)B -r l]x(u) =Max{[p*(u)B -rAl]x|x >_ 0, 1 x£ 6(u)}

so that w is sustained by p*, r*.
n

3. Proof of T5.2 The proof of part (a) is essentially the same as

Step 2 in the proof of T5.1. Part (b) is proved by backward induction

=k+l =m j
on y. Assume that the subsequence B ,...,B has been constructed

such that

I* C B£, 0(1*) = 0(B*) for Jl = y+l,...,m
v

and such that it is a subsequence of an efficient sequence B ,

v = 1...N. Let {BV,tV,pV}, v = 1...N be the associated efficient

pattern and u < n1 < ... <u^, p ,...,p ,r ,...,r the associated

distances, prices and rents (see D4.1). Suppose that B = B

for some v. It can be assumed that

pvb £ rV for bG B,

pVb =rV - bG Iy+1

Set B^'1 =G(BV) =G(By+1). Then by (5.6) 0(BV,:L) = 0(By). Let

t*'1 = t(BV,1)» pV,:L = P(BV,:L) and suppose bG Bis such that

tv,1b > pV,:L. Then by (4.24) and part (a) above, bG B- BV' and

0(b) G 0(By). Such b exists if and only if BV' £ By, in which

case choose the b such that

v \k v v
(p + at )b = r + p a

for the smallest a> 0. Set BV'2 = F(BV,:L U {b}). Then again

0(bv»2) = 0(By), and either BV'2 C By or the procedure can be

repeated. Evidently at some step k it must be the case that
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0(BV,k) = 0(By) and BV,k C By. Setting By = BV,k proves the result

for y and part (b) now follows by induction.
n

4. Proof of T5.3 This follows readily from the proof of T5.2.
n
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Inwards commodity How
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^(u)du

— s(uMO

-*-o-(o0}sO , er(u)-» -♦<r(o«du)=o-(u)*ff(u)do -•(r(u)>0

u»du

Outwards commodily flow

Fig. 3.1. Commodity flows in an allocation.
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