

Copyright © 1976, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

INGRES REFERENCE MANUAL — VERSION 6.1

by

K. Youssefi, N. Whyte, M. Ubell, D. Rles,
P. Hawthorn, B. Epstein, R. Berman and E. Allman

Memorandum No. ERL-M579

20 December 1977 (revised)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

/

§ §@@§ § e e • §
§ § e e § @§ @@§@ @@@@ @@@

VERSION 6.1

REFERENCE MANUAL

12/20/77

by

Karel Youssefi

Nick Whyte
Mike Ubell

Dan Ries

Paula Hawthorn

Bob Epstein
Rick Berman

Eric Allman

INTRODUCTION*INGRES) 12/19/77 INTRODUCTION*INGRES)

This manual is a reference manual for the INGRES data base
system. It documents the use of INGRES in a very terse
manner. For learning how to use INGRES refer to the docu
ment called "A Tutorial on INGRES".

This manual is subdivided into four parts:
Quel: describes the commands and features which are

used inside of INGRES.

Unix: describes the INGRES programs which are execut
able as unix commands.

Files: describes some of the important files used by
INGRES.

Error: lists all the user generatable error messages
along with some elaboration as to what they mean
or what we think they mean.

Each entry in this manual has one or more of the following
sections:

NAME section

This section repeats the name of the entry and gives an
indication of its purpose.

SYNOPSIS section

This section indicates the form of the command (state
ment). The conventions which are used are as follows:

Upper case names are used to indicate reserved
words. When entering actual INGRES commands,
these words need not be typed in upper case.

Lower case words indicate generic types of infor
mation which must be supplied by the user.
In the DESCRIPTION section the legal values
for these names are described.

Square brakets ([]) indicate that the enclosed
item is optional.

Braces ({}) indicate an optional item which may
be repeated.

DESCRIPTION section

This section gives a detailed description of the entry
with references to the reserved words and generic names
used in the SYNOPSIS section.

EXAMPLE section

This section gives one or more examples of the use of
the entry. Most of these examples are based on the two
relations:

emp(name,sal,mgr,bdate)
and

newemp(name,sal,age)

- 2 -

INTRODUCTION*INGRES) 12/19/77 INTRODUCTION*INGRES)

SEE ALSO section
This section gives the names of entries in the
which are closely related to the current entry.

manual

DIAGNOSTICS section
This section describes error messages and warning diag
nostics specific to the particular command which may
not be completely transparent to the user.

BUGS section

This section indicates known bugs
the command.

or deficiencies in

To start using INGRES you must be entered as an INGRES user.
The INGRES administrator does this by entering you into the
"users" file (see users(files)). See the section
ingres(unix) to start using INGRES. The sections
quel(quel) and monitor(quel) will direct you in how to
INGRES.

on

on

use

ACKNOWLEDGEMENTS

We would like to acknowledge the people who have worked
on INGRES in the past.

William Zook, Peter Rubinstein, Peter Kreps, Gerald
Held, James Ford.

- 3 -

TABLE OF CONTENTS(INGRES) 12/19/77 TABLE OF CONTENTS(INGRES)

APPEND(QUEL) - append tuples to a relation
APPEND [TO] relname (target_list) [WHERE qual]

COPY(QUEL) - copy data into/from a relation from/into a UNIX

COPY relname ({domname = format {, domname = format }})
direction "filename"

CREATE(QUEL) - create a new relation
CREATE relname (domname = format {, domname = format })

DELETE(QUEL) - delete tuples from a relation
DELETE tuple_variable [WHERE qual]

DESTROY(QUEL) - destroy existing relation(s)
DESTROY relname {, relname}

HELP(QUEL) - get information about how to use INGRES
HELP [relname]["section"] {,relname}{,"section"}

INDEX(QUEL) - create a secondary index on an existing rela
tion.

INDEX ON relname IS indexname (domain! { ,domain2 })

MODIFY(QUEL) - convert the storage structure of a relation
MODIFY relname TO storage-structure [ON key I {. key2}]
[WHERE [FILLFACTOR = n] [[,] MINPAGES = n] [[,] MAXPAGES
= n]

MONITOR(QUEL) - interactive terminal monitor

PRINT(QUEL) - print relation(s)
PRINT relname {, relname}

QUEL(QUEL) - QUEry Language for INGRES

RANGE(QUEL) - declare a variable to range over a relation
RANGE OF variable IS relname

REPLACE(QUEL) - replace values of domains in a relation
REPLACE tuple_variable (target_list) [WHERE qual]

RETRIEVE(QUEL) - retrieve tuples from a relation
RETRIEVE [[INTO] relname] (target_list) [WHERE qual]

SAVE(QUEL) - save a relation until a date.
SAVE relname UNTIL month day year

COPYDB(UNIX) - create batch files to copy out a data base
and restore it.

copydb [-uxx] database full-path-name-of-directory {re
lation}

- H -

TABLE OF CONTENTS(INGRES) 12/19/77 TABLE OF CONTENTS*INGRES)

CREATDB(UNIX) - create a new data base
creatdb [-uxx] [+-c] [-e] [-m] dbname

DESTROYDB(UNIX) - destroy an existing database
destroydb [-s] [-m] dbname

EQUEL(UNIX) - Embedded QUEL interface to C
equel [-d] file.q {file2.q}

GEO-QUEL(UNIX) - GEO-QUEL data display system
geoquel [<flags>] dbname

INGRES(UNIX) - INGRES relational data base management system
Ingres [<flags>] dbname [process_table]

PRINTR(UNIX) - print relations
printr [<flags>] database relation ...

PURGE(UNIX) - destroy all expired and temporary relations
purge [-f] [-a] [-p] [-s] [-w] [+w] {database}

RESTORE(UNIX) - recover from an INGRES or UNIX crash,
restore [-a] [-s] [-w] [+w] {database}

SYSMOD(UNIX) - modify system relations to predetermined
storase structures

SYSMOD [-s] [-w] [+w] dbname {RELATION} {ATTRIBUTE}
{INDEXES}

USERSETUP(UNIX) - setup users file
.../bin/usersetup [pathname]

- 5 -

APPEND(OUEL) 12/19/77 APPEND(OUEL)

NAME

append - append tuples to a relation

SYNOPSIS

APPEND [TO] relname (target_list) [WHERE qual]

DESCRIPTION

Append adds tuples which satisfy the qualification to rel
name. Relname must be the name of an existing relation.
The target_list specifies the values of the attributes to be
appended to relname. The domains may be listed in any ord
er. Attributes of the result relation which do not appear
in the target_list as result_attnames (either explicitly or
by default) are assigned default values of 0 for numeric at
tributes or blank for character attributes.

Values or expressions of any numeric type may be used to set
the value of a numeric type domain, with conversion to the
result domain type taking place. Numeric values cannot be
directly assigned to character domains. Conversion from
numeric to character can be done using the "ascii" operator
(see quel). Character values cannot be directly assigned to
numeric domains. Use the "intl", "int2", etc. functions to
convert character values to numeric (see quel(quel)).

The keyword "ALL" can be used when it is desired to append
all domains of a relation.

EXAMPLE

/* Make new employee Jones work for Smith */
range of n is newemp
append to emp(n.name,n.sal,mgr="Smith",bdater1975-n.age)

where n.name = "Jones"
/* Append the newempl relation to newemp */

range of nl is newempl
append to newemp(nl.all)

SEE ALSO

quel(quel), retrieve(quel), copy(quel)

DIAGNOSTICS

Use of a numeric type expression to set a character type
domain or vice versa will produce diagnostics.

BUGS

Duplicate tuples appended to a relation stored as a "paged-
heap" (unkeyed, unstructured) are not removed.

- 6 -

COPY(QUEL) 1/5/77 COPY(QUEL)

NAME copy - copy data into/from a relation from/into a UNIX file.

SYNOPSIS ^ u f . ^ f.«r.«afr 1-1 v
COPY relname ({domname = format {, domname = format n)

direction "filename"

DESCRIPTION , ^ . «4.or,/<or.H itntyCopy moves data between INGRES relations and standard UNIX
files. Relname is the name of an existing relation. In
general domname identifies a domain in relname. Format in
dicates what format the UNIX file should have for the
corresponding domain. Direction is either "into" or "from".
Filename is the full UNIX pathname of the file.

On a copy "from" a file to a relation, the relation cannot
have a secondary index, it must be owned by you, and it must
be updatable (not a secondary index or system relation}.

The formats allowed by copy are:

i1,12,14 - The data is stored as an integer of length 1, 2,
or 4 bytes in the UNIX file.

f4,f8 - The data is stored as a floating jointJjuibw (ei
ther single or double precision) in the UNIX rile.

cl,c2,...,c255 - The data is stored as a fixed length string
of characters.

cO - Variable length character string.

d0,d'l,...,d255 - Dummy domain.

Corresponding domains in the relation and the UNIX file do
not have to be the same type or length. Copy will convert
as necessary. When converting anything except character to
character; copy checks for overflow. When converting from
character to character, copy will blank pad or truncate on
the right as necessary.

The domains should be ordered according to the way they
should appear in the UNIX file. Domains are matched accord
ing to name, thus the order of the domains in the relation
and in the UNIX file does not have to be the same.

Copy also provides for variable length strings and dummy
domains. The action taken depends on whether it is a copy
-iSto" or a copy "from". Delimiters for variable length
strings and for dummy domains can be selected from the list
of:

- 7 *

COPY(QUEL) 1/5/77 COPY(QUEL)

nl - new line character
tab - tab character
sp - space

nul or null - null character
comma - comma

colon - colon

dash - dash

lparen - left parenthesis
rparen - right parenthesis
x - any single character fx»

The special meaning of any delimitor can be turned off by
preceeding the delimitor with a "\lf.

When the direction is FROM, copy appends data into the rela
tion FROM the UNIX file. Domains in the INGRES relation
which are not assigned values from the UNIX file are as
signed the default value of zero for numeric domains, and
blank for character domains. When copying in this direction
the following special meanings apply:

cOdelim - The data in the Unix file is a variable length
character string terminated by the delimitor "delim".
If "delim" is missing then the first comma, tab, or
newline encountered will terminate the string. The
delimitor is not copied.

For example:

pnum=cO string ending in comma, tab, or nl.
pnum=cOnl - string ending in nl.
pnum=cOsp - string ending in space.
pnum=cOZ - string ending in the character »Zf.

A delimitor can be escaped by preceeding it with a "\".
For example, using name = cO, the string "Blow\, Joe,"
will be accepted into the domain as "Blow, Joe".

dOdelim - The data in the Unix file is a variable length
character string delimited by "delim". The string is
read and discarded. The delimitor rules are identical
for "cO" and "dO". The domain name is ignored.

dl ,d2,...,d255 - The data in the Unix file is a fixed length
.character string: The string is read and discarded.
The domain name is ignored.

When the direction is INTO, copy transfers data INTO the
UNIX file from the relation. If the file already existed,
it is truncated to zero length before copying begins. When
copying in this direction, the following special meanings
apply: *

-8- .'-)
(•

COPY(QUEL) 1/5/77 COPY(QUEL)

cO - The domain value is converted to a fixed length charac
ter string and writted into the Unix file. For charac
ter domains, the length will be the same as the domain
length. For numeric domains, the standard INGRES
conversions will take place as specified by the M-i",
"-f", and "-c" flags (see ingres(unix)).

cOdelim - The domain will be converted according to the
rules for cO above. The one character delimitor will
be inserted immediately after the domain.

dl ,d2,...,d255 - The domain name is taken to be the name of
the delimitor. It is written into the Unix file 1
times for dl, 2 time for d2, etc.

dO - This format is ignored on a copy "into".

dOdelim - The "delim" is written into the file. The domain
name is ignored.

If no domains appear in the copy command (i.e. copy relname
() into/from "filename") then COPY automatically does a
"bulk" copy of all domains using the order and format of the
domains in the relation. This is provided as a convenient
shorthand notation for copying and restoring entire rela
tions.

EXAMPLE

/* Copy data into the emp relation */
copy emp(name=c10,sal=f4,bdate=i2,mgr=c10,xxx=d1)

from "/mnt/me/myfile"

/* Copy employee names and their salaries into a file */
copy emp(name=cO,comma=dl ,sal=cO,nl=d'l)

into "/mnt/you/yourfile"

SEE ALSO
append(quel), create(quel), ingres(unix)

DIAGNOSTICS
There are many possible user errors. They attempt to be
self-explanatory. In addition several "warnings" can appear
after a copy is complete. On a copy "from" a warning is is
sued if a duplicate tuple is found, if a character domain
contains non-printing (ie. control characters) characters,
and if a domain read using the "cO" format had to be trun
cated.

- 9 -

COPY(QUEL) 1/5/77 COPY(QUEL)

BUGS

Copy stops operation at the first error.

When specifying "filename", the entire UNIX directory path
name must be provided, since INGRES operates out of a dif
ferent directory than the user's working directory at the
time INGRES is invoked.

- 10 -

CREATE(QUEL) 3/10/77 CREATE(OUEL)

NAME
create - create a new relation

SYNOPSIS
CREATE relname (domname = format {, domname = format >)

DESCRIPTION
Create will enter a new relation into the data base. The
relation will be "owned" by the user and will be set to ex
pire after seven days. The name of the relation is relname
and the domains are named domname1, domname2, etc. The
domains are created with the type specified by format. For
mats are of the form Xn where X is a character (i, f, or c)
and n is an integer (1 to 255). The type of the domain may
be integer (i), floating (f), or character (c). and the
length of the domain may be 1,2 or 4 for integers; 4 or 8
for floating; or I to 255 for characters.

The relation is created as a paged-heap with no data ini
tially in it.

A relation can have no more than 49 domains. A relation
cannot have the same name as a system relation.

EXAMPLE
/* Create relation emp with domains name, sal and bdate »/

create emp(name = c10, salary = f4, bdate s 12)

SEE ALSO
save(quel), destroy(quel), copy(quel), append(quel)

DIAGNOSTICS
If the user already owns a relation with the same name as
relname, a diagnostic is issued and the create is aborted.

BUGS

DELETE(QUEL) 3/10/77 DELETE(OUEL)

NAME

delete - delete tuples from a relation

SYNOPSIS

DELETE .tuple_,variable [WHERE qual]

DESCRIPTION

Delete,removes tuples which satisfy the qualification from
the. relation that they belong to. The tuple_variable must
have been declared in a range statement to range over an ex
isting relation. Note that delete does not have a
target_list. Also note that the delete command requires a
tuple variable from a range statement and not the actual re
lation name. If the qualification is not given, the effect
is to delete all tuples in the relation. The result is a
valid, but empty relation.

EXAMPLE

/* Remove all employees who make over $30,000 */
range of e is emp
delete e where e.sal > 30000

SEE ALSO

quel(quel), range(quel), destroy(quel)

DIAGNOSTICS

BUGS

- 12 -

y

DESTROY(QUEL) 11/7/77 DESTROY(QUEL)

NAME

destroy - destroy existing relation(s)

SYNOPSIS

DESTROY relname {, relname}

DESCRIPTION

Destroy removes the relations from the data base. Only the
relation owner may destroy a relation. A relation may be
emptied of tuples but not destroyed using the delete state
ment or the modify statement.

If the relation being destroyed has secondary indices on it,
the secondary indices are also destroyed. Destruction of
just a secondary indice does not affect the primary relation
it indexes.

EXAMPLE

/•Destroy the emp relation */
destroy emp
destroy emp, parts

SEE ALSO

create(quel), delete(quel), index(quel), modify(quel)

DIAGNOSTICS

BUGS

- 13 -

HELP(QUEL) 11/7/77 HELP(QUEL)

NAME

help - get information about how to use INGRES

SYNOPSIS

HELP [relname]["section"] {,relname}{ /'section"}

DESCRIPTION

: HELP may be used to obtain information about any section of
.-'• this .manual, the content of the current data base, or a

.specific relation in the data base. The legal forms are as
follow:

HELP "section" - Produces a copy of the specified section of
- •;. the INGRES Reference Manual, and prints it on the stan-

••• dard output device.

HELP - Gives information about all relations that exist in
the current database.

HELP relname - Gives information about the specified rela
tions.

HELP "" - Gives the table of contents.

EXAMPLE

help
help "help" /* prints this page of the manual */
help "quel"
help emp
help emp, parts, "help", supply

SEE ALSO

DIAGNOSTICS

Cannot find manual section " ... "

Relation " " not found

BUGS
Alphabetics appearing within the section name must be in
lower-case to be recognized.

- 14 -

INDEX(OUEL) 3/10/77 INDEX(QUEL)

NAME

index - create a secondary index on an existing relation.

SYNOPSIS

INDEX ON relname IS indexname (domain I { ,domain2 })

DESCRIPTION

Index is used to create secondary indices on existing, rela
tions in order to make retrieval and update with secondary
keys more efficient. The secondary key is constructed from
relname domains 1, 2,...,6 in the order given. Only the
owner of a relation is allowed to create secondary indices
on that relation.

In order to maintain the integrity of the index, users will
NOT be allowed to directly update secondary indices. Howev
er, whenever a primary relation is changed, its secondary.
indices will be automatically updated by the system. Secon
dary indices may be modified to further increase the access
efficiency of the primary relation. When an index is first
created, it is automatically modified to an ISAM storage
structure on all its domains. If this structure is undesir
able, the user may override the default ISAM structure by
using the n-n" switch (see Ingres), or by entering a modify
command directly.

If a modify or destroy command is used on relname all secon
dary indices on relname are destroyed.

Secondary indices on other indices, or on system relations
are forbidden.

EXAMPLE

/* Create a secondary index called "x" on relation "empH */
index on emp is x(mgr,sal)

SEE ALSO

copy(quel), destroy(quel), modify(quel)

BUGS

At most 6 domains may appear in the key.

The copy command cannot be used to copy into a relation
which has secondary indices.

The default structure ISAM is a poor choice for an index un
less the range of retrieval is small.

- 15 -

MODIFY(QUEL) 12/2/77 MODIFY(QUEL)

NAME

modify — convert the storage structure of a relation

SYNOPSIS

MODIFY relname TO storage-structure [ON keyl {, key2}]
[WHERE [FILLFACTOR = n] [,MINPAGES = n] [,MAXPAGES = n]]

DESCRIPTION

Relname is modified to the specified storage structure. On
ly the owner of a relation can modify that relation. This
command is used to increase performance when using large or
frequently referenced relations. The storage structures are
specified as follows:

isam - indexed sequential storage structure
cisam - compressed isam
hash - random hah storage structure
chash - compressed hash
heap - unkeyed and unstructured
cheap - compressed heap
heapsort - heap with tuples sorted and duplicates re-

.>/ moved
cheapsort - compressed heapsort
truncated - heap with all tuples deleted

The paper "Creating and Maintaining a Database in INGRES"
(ERL Memo M77-7D discusses how to select storage structures
based on how the relation is used.

The current compression algorithm only suppresses trailing
blanks in character fields. A more effective compression
scheme may be possible, but tradeoffs between that and a
larger and slower compression algorithm are not clear.

If the ON phrase is omitted when modifying to isam, cisam,
* hash or chash, the relation will automatically be keyed on
the first domain. When modifying to heap or cheap the ON
phrase must be omitted. When modifying to heapsort or
cheapsort the ON phrase is optional.

When a relation is being sorted (isam, cisam, heapsort and
cheapsort), the primary sort keys will be those specified in
the ON phrase (if any). The first key after the ON phrase
will be the most significant sort key and each successive
-key"specified will be the next most significant sort key.
An domains not specified in the ON phrase will be used as
least significant sort keys in domain number sequence.

FILLFACTOR specifies the percentage (n can vary from 1 to
100) of each primary data page that should be filled with
tuples under ideal conditions. FILLFACTOR may be used with
isam, cisam, hash and chash. Care should be taken when us
ing,large fillfactors since a non-uniform distribution of
key values could cause overflow pages to be created, and

- 16 -

MODIFY(QUEL) 12/2/77 MODIFYCQUEL)

thus degrade access performance for the relation.

MINPAGES specifies the minimum number of primary pages a
hash or chash relation must have. MAXPAGES specifies the
maximum number of primary pages a hash or chash relation may
have. MINPAGES and MAXPAGES must be at least one. If both
MINPAGES and MAXPAGES are specified in a modify, MINPAGES
cannot exceed MAXPAGES.

Default values for FILLFACTOR, MINPAGES and MAXPAGES are as
follows:

FILLFACTOR MINPAGES MAXPAGES
hash 50 10 no limit
chash 75 1 no limit
isam 80 NA NA
cisam 100 NA NA

EXAMPLES
/* modify the emp relation to an indexed

sequential storage structure with
"name" as the keyed domain */

modify emp to isam on name

/* if "name" is the first domain of the emp relation,
the same result can be achieved by */

modify emp to isam

/* do the same modify but request a 60 occupancy
on all primary pages */

modify emp to isam on name where fillfactor =60

/* modify the supply relation to compressed hash
storage structure with "nura" and "quan"
as keyed domains */

modify supply to chash on num, quan

/* now the same modify but also request 75 occupancy .
on all primary, a minimum of 7 primary pages
pages and a maximum of 43 primary pages */"

modify supply to chash on num, quan
where fillfactor = 75, minpages r 7,
maxpages =43

/* again the same modify but only request a minimum
of 16 primary pages */

modify supply to chash on num, quan
where minpages =16

- 17 -

MODIFY(QTJEL) 12/2/77 MODIFY(QUEL)

/* modify parts to a heap storage structure */

modify parts to heap

./.* modify parts to a heap again, but have tuples
sorted on "pnum" domain and have any duplicate
tuples removed */

modify parts to heapsort on pnum

SEE ALSO

sysmod(unix)

- 18 -

MONITOR(QUEL) 12/15/77 MONITOR(QUEL)

NAME

monitor - interactive terminal monitor

DESCRIPTION
The interactive terminal monitor is the primary front end to
INGRES. It provides the ability to formulate a query and
review it before issuing it to INGRES. If changes must be
made, one of the UNIX text editors may be called to edit the
query buffer.

Messages and Prompts. The terminal monitor gives a variety
of messages to keep the user informed of the status of the
monitor and the query buffer.

As the user logs in, a login message is printed. This typi
cally tells the version number and the login time. It is
followed by the dayfile, which gives information pertinant
to users.

When INGRES is ready to accept input, the message "go" is
printed. This means that the query buffer is empty. The
message "continue" means that there is information in the
query buffer. After a \go command the query buffer is au
tomatically cleared if another query is typed in, unless a
command which affects the query buffer is typed first.
These commands are \append, \edit, \print, and \go. For ex
ample, typing

help parts
\go
print parts

results in the query buffer containing

print parts

whereas

help parts
\go
\print
print parts

results in the query buffer containing

help parts
print parts

An asterisk is printed at the beginning of each line when
the monitor is waiting for the user to type input;

Commands.. There are a number of commands which may be en-

- 19 -

MONITOR(QUEL) 12/15/77 MONITOR(QUEL)

tered by the user to affect the query buffer or the user's
environment. They are all preceeded by a backslash ("\"),
and all are executed immediately (rather than at execution
time like queries).

Some commands may take a filename, which is defined as the
first significant character after the end of the command un
til the end of the line. These commands may have no other
commands on the line with them. Commands which do not take
a filename may be stacked on the line; for example

\date\go\date

will give the time before and after execution of the current
query buffer.

\r
\reset

\P
\print

\e

\ed
\edit

\editor

\g
\go

\a
\append

\time
\date

\s

Erase the entire query (reset the query buffer).
The former contents of the buffer are irretrieve-
ably lost.

Print the current query. The contents of
buffer are printed on the user's terminal.

the

Enter the UNIX text editor (see ED in the UNIX
Programmer's Manual); use the ED command 'w' fol
lowed by 'q' to return to the INGRES monitor. If
a filename is given, the editor is called with
that file instead of the query buffer. The moni
tor first tries to call the program
/usr/bin/ingres_ed, and if that fails, calls
/bin/ed. It is important that you do not use the
"e" command inside the editor; if you do the (ob
scure) name of the query buffer will be forgotten.

Process the current query. The contents of
buffer are transmitted to the parser and run.

the

Append to the query buffer. Typing \a after com
pletion of a query will override the auto-clear
feature and guarantees that the query buffer will
not be reset.

Print out the current time of day.

- 20 -

MONITOR(QUEL)

\sh

\shell

\q
\quit

\cd

\chdir

\i

\include
\read

\w

\write

12/15/77 MONITOR(OUEL)

Typing a control-d will
shell and return to the

is a filename specified,
as a shell file which is
as the parameter M$1M.
, an interactive shell is
first tries to call

that fails, it calls

Escape to the UNIX shell,
cause you to exit the
INGRES monitor. If there
that filename is taken

run with the query buffer
If no filename is given
forked. The monitor

/usr/bin/ingres_sh. If
/bin/sh.

Exit from INGRES.

Change the working directory of the monitor to the
named directory.

Switch input to the named file. Backslash charac
ters in the file will be processed as read.

Write the contents of the query buffer to the
named file.

\<any other character>
Ignore any possible special meaning of character,
following '\». This allows the 'V to be input as
a literal character. (See also quel(quel) -
strings). It is important to note that backslash
escapes are sometimes eaten up by the macro pro
cessor also; in general, send two backslashes if
you want a backslash sent (even this is too
simplistic [sigh] - try to avoid using backslashes
at all).

Macros. Version 6.1 of INGRES introduces a powerful macro
facility which is still experimental. When additional user
tests are completed and the design of the macros frozen,
they will be released.

It will be possible to define macros which will allow abbre
viations for keywords and whole commands. For example, mac
ros can be defined which will expand

r p parts
ret (p.all) w p.pnum =5

to

range of p is parts

- 21 -

MONITOR(QUEL) 12/15/77 MONITOR(QUEL)

retrieve (p.all) where p.pnum =5

or expand

get all from parts

to

range of x is parts
retrieve (x.all)

When macros are fully implemented, several commands to sup
port them will appear. Also, the macros will superceed cer
tain other features; notably, the ingres_ed and ingres_sh
features will be replaced by a feature to allow selection of
editor and shell on a per-user basis.

Initialization. At initialization (login) time a number of
initializations take place. First, a macro called "{path
name}" is defined which expands to the pathname of the
INGRES subtree (normally "/mnt/ingres"); it is used by sys
tem routines such as demodb. Second, the initialization
file .../files/startup is read. This file is intended to
define system-dependent parameters, such as the default edi
tor and shell. Third, a user dependent initialization file,
specified by a field in the users file, is read and execut
ed. This might be used to define certain macros, execute
common range statements, and soforth. Finally, control is
turned over to the user's terminal.

An interrupt while executing either of the initialization
files restarts execution of that step.

Flags. Certain flags may be included on the command line to
INGRES which affect the operation of the terminal monitor.
The -a flag disables the autoclear function. This means
that the query buffer will never be automatically cleared;
equivalently, it is as though a \append command were insert
ed after every \go. Note that this means that the user must
explicitly clear the query buffer using \reset after every
query. The -d flag turns off the printing of the dayfile.
The -s flag turns off printing of all messages (except er
rors) from the monitor, including the login and logout mes
sages, the dayfile, and prompts. It is used for executing
"canned queries", that is, queries redirected from files.

SEE ALSO

ingres(unix)
quel(quel)

- 22 -

MONITOR(QUEL) 12/15/77 MONITOR(QUEL)

DIAGNOSTICS

go

continue

You may begin a fresh query.

The previous query is finished and you
are back in the monitor.

The query is being processed by INGRES.

You have entered the UNIX text editor.

You have escaped to the UNIX shell.

BUGS

Executing . . .

»ed

»sh

Funny character nnn converted to blank
INGRES maps non-printing ASCII charac
ters into blanks; this message indicates
that one such conversion has just been
made.

- 23 -

PRINT(QUEL) 11/7/77 PRINT(QUEL)

NAME

print - print relation(s)

SYNOPSIS

PRINT relname {, relname}

DESCRIPTION

Print displays each relation specified in entirety oh the
terminal (standard output). The formats for various types
of domains can be defined by the use of switches when INGRES
is invoked. Domain names are truncated to fit into the
specified width. See Ingres for details.

EXAMPLE

'••/» Print the emp relation */
print emp
print emp, parts

SEE ALSO

ingres(unix), retrieve(quel), printr(unix)

DIAGNOSTICS

BUGS

Print does not handle long lines of output correctly - no
wrap around.

Print should have more formating features to make printouts
more readable.

Print should have an option to print on the line printer.

- 24 -

QUEL(QUEL) 12/16/77 QUEL(QUEL)

NAME
quel - QUEry Language for INGRES

DESCRIPTION
The following is a description of the general syntax of
QUEL. Individual QUEL statements and commands are treated
separately in the document; this section describes the syn
tactic classes from which the constituent parts of OUEL
statements are drawn.

I. Comments

A comment is an arbitrary sequence of characters bounded on
the left by "/*" and on the right by "*/" :

/* This is a comment */

2. Names

Names in QUEL are sequences of no more than 12 alphanumeric
characters, starting with an alphabetic. Underscore (_) is
considered an alphabetic. All upper-case alphabetics ap
pearing anywhere except in strings are automatically and
silently mapped into their lower-case counterparts.

3. Keywords

The following identifiers are reserved for use
and may not be used otherwise:

abs all and

any append ascii

atan avg avgu

by concat copy

cos count countu

create delete destroy
exp float4 float8

from gamma help
in index intl

int2 int4 into

is log max

min mod modify
not of on

onto or print
range replace retrieve

save sin sqrt
sum sumu to

until where

- 25 -

as keywords

QUEL(QUEL) 12/16/77 QUEL(QUEL)

4. Constants '

There are three types of constants, corresponding to the
three data types available in QUEL for data storage.

4.1. String constants

Strings in QUEL are sequences of no more than 255 arbi
trary ASCII characters bounded by double quotes (" ").
Upper case alphabetics within strings are accepted
literally. Also, in order to imbed quotes within
strings, it is necessary to prefix them with '\' . The
same convention applies to '* itself.

Only printing characters are allowed within strings.
Non-printing characters (i.e. control characters) are
converted to blanks.

4.2. Integer constants

Integer constants in QUEL range from -2,147,483,647 to
+2,147,483,647. Integer constants beyond that range
will be converted to floating point. If the integer is
greater than -32,768 and less than 32,768 then it will
be left as a two byte integer. Otherwise it is convert
ed to a four byte ^integer.

4.3. Floating point constants

Floating constants consist of an integer part, a decimal
point, and a fraction part. Scientific notation is not
presently accepted. They are taken to be double-
precision quantities with a range of approximately
-10**38 to 10**38 and a precision of 17 decimal digits.

5. Attributes

An attribute is a construction of the form:

variable.domain

Variable identifies a particular relation and can be thought
of as standing for the rows or tuples of that relation. A
variable is associated with a relation by means of a RANGE
statement. Domain is the name of one of the columns of the
relation over which the variable ranges. Together they make
up an attribute which represents values of the named domain.

6. Arithmetic operators

Arithmetic operators take numeric type expressions as
operands. Unary operators group right to left; binary
operators group left to right. The operators (in order of

- 26 -

QUEL(QUEL) 12/16/77 QUEL(QUEL)

descending precedence) are:

+,- (unary) plus, minus
** exponentiation
*,/ multiplication, division
+,- (binary) addition, subtraction

Parentheses may be used for arbitrary grouping. Overflow
and divide by zero are NOT checked on integer operations.
Overflow, underflow, and divide by zero on floating point
numbers are checked only if the appropriate machine hardware
exists and has been enabled. Arithmetic overflow and divide
by zero are not checked on integer operations. Floating
point operations are checked for overflow, underflow, and
divide by zero only if the appropriate machine hardware ex
ists and has been enabled.

7. Expressions (a_expr)

An expression is one of the following:

constant

attribute
functional expression
aggregate or aggregate function
a combination of numeric expressions and

arithmetic operators

For the purposes of this document, an arbitrary expression
will be refered to by the name "a_expr".

8. Formats

Every a_expr has a format denoted by a letter (c, i, or f
for character, integer, or floating data types respectively)
and a number indicating the number of bytes of storage occu
pied . Formats currently supported are listed below. The
ranges of numeric types are indicated in parentheses.

cl - c255 character data of length 1-255 characters

i1 1-byte integer (-128 to +127)
i2 2-byte integer (-32768 to +32767)
i4 4-byte integer (-2,147,483,648 to +2,147,483,647)
f4 4-byte floating (-10**38 to +10**38,

7 decimal digit precision)
f8 8-byte floating (-10**38 to +10**38,

17 decimal digit precision)

One numeric format can be converted to or substituted for

any other numeric format.

- 27 -

QUEL(QUEL) 12/16/77 QUEL(QUEL)

9. Type Conversion.

When operating on two numeric domains of different types,
INGRES converts as necessary to make the types identical.

When operating on an integer and a floating point number,
the integer is converted to a floating point number before
the operation. When operating on two integers of different
sizes, the smaller is converted to the size of the larger.
When operating on two floating point number of different
size, the larger is converted to the smaller.

The following table summarizes the possible combinations:

i1 12 14 f4 f8

11 - 11 12 14 f4 f8
12 - 12 12 14 f4 f8
14 - 14 14 14 f4 f8
f4 - f4 f4 f4 f4 f4
f8 - f8 f8 f8 f4 f8

INGRES provides five type conversion operators specifically
for overriding the default actions. The operators are:

int1(a_expr) result type 11
int2(a_expr) result type 12
int4(a_expr) result type 14
float4(a_expr) result type f4
float8(a_expr) result type f8

The type conversion operators convert their argument
a_expr to the requested type. A_expr can be anything
including character. If a character value cannot be
converted, an error occures and processing is halted.
This can happen only if the syntax of the character
value is incorrect.

Overflow is not checked on conversion.

10. Target_list

A target list is a parenthesized, comma separated list of
one or more elements , each of which must be of one of the
following forms:

a) result_attname IS a_expr

Result_attname is the name of the attribute to be
created (or an already existing attribute name in
the case of update statements.) The equal sign ("=")
may be used interchangeably with IS. In the case
where expr is anything other than a single attri-

- 28 -

QUEL(QUEL) 12/16/77 QUEL(QUEL)

bute, this form must be used to assign a result name
to the expression.

b) attribute

In the case of a RETRIEVE, the resultant domain will
acquire the same name as that of the attribute being
retrieved. In the case of update statements (AP
PEND, REPLACE), the relation being updated must have
a domain with exactly that name.

Inside the target list the keyword "all" can be used to
represent all domains. For example:

range of e is employee
retrieve (e.all) where e.salary > 10000

will retrieve all domains of employee for those tuples which
satisfy the qualification. "All" can be used in the target
list of a retrieve or an append. The domains will be in
serted in their "create" order; that is, the same order they
were listed in the create statement.

11. Comparison operators

Comparison operators take arbitrary expressions as operands.

< (less than)
<= (less than or equal)
> (greater than)
>= (greater than or equal)
= (equal to)
!= (not equal to)

They are all of equal precedence. When comparisons are made
on character attributes, all blanks are ignored.

12. Logical operators

Logical operators take clauses as operands and group left-
to-right:

not (logical NOT; negation)
and (logical AND; conjunction)
or (logical OR; disjunction)

NOT has the highest precedence of the three. AND and OR
have equal precedence. Parentheses may be used for arbi
trary grouping.

13. Qualification (qual)

A qualification consists of any number of clauses connected

- 29 -

QUEL(QUEL) 12/16/77 QUEL(QUEL)

by logical operators. A clause is a pair of expressions
connected by a comparison operator:

a_expr comparison_operator a_expr

Parentheses may be used for arbitrary grouping,
cation may thus be:

clause
NOT qual
qual OR qual
qual AND qual
(qual)

14. Functional expressions

A functional expression consists of a function name followed
by a parenthesized (list of) operand(s). Functional expres
sions can be nested to any level. In the following list of
functions supported (n) represents an arbitrary numeric type
expression. The format of the result is indicated on the
right.

A qualifi-

abs(n)
ascii(n)

atan(n)
concat(a,b)

cos(n)
exp(n)
gamma(n)
log(n)
mod(n,b)

sin(n)
sqrt(n)

same as n (absolute value)
character string (converts numeric

to character)
f8 (arctangent)
character (character concatenation.

see 16.2)
f8 (cosine)
f8 (exponential of n)
f8 (log gamma)
f8 (natural logarithm)
same as b (n modulo b. n and b must

be 11, 12, or 14)
f8 (sine)
f8 (square root)

15» Aggregate expressions

Aggregate expressions provide a way to aggregate a computed
expression over a set of tuples.

15.1. Aggregation operators

The definitions of the aggregates are listed below.

count - (14) count of occurrences
countu - (14) count of unique occurrences
sum - summation

sumu - summation of unique values
avg - (f8) average (sum/count)
avgu - (f8) unique average (sumu/countu)

- 30 -

QUEL(QUEL) 12/16/77 QUEL(QUEL)

max - maximum

min - minimum
any - (i2) value is 1 if any tuples satisfy

the qualification, else it is 0

15.2. Simple aggregate

aggregation_operator (a_expr [WHERE qual])

A simple aggregate evaluates to a single scalar value.
A_expr is aggregated over the set of tuples satisfying
the qualification (or all tuples in the range of the ex
pression if no qualification is present). Operators sum
and avg require numeric type a_expr; count, any, max and
min permit a character type attribute as well as numeric
type a-expr.

Simple aggregates are completely local. That is, they
are logically removed from the query, processed
separately, and replaced by their scalar value.

15.3. "any" aggregate

It is sometimes useful to know if any tuples satisfy a
particular qualification. This can be done by using the
aggregate "count" and checking whether it is zero or
non-zero. Using "any" instead of "count" is more effi
cient since processing is stopped if possible the first
time a tuple satisfies a qualification. "Any" returns 1
if the qualification is true and 0 otherwise.

15.4. Aggregate functions

aggregation_operator (a_expr BY by_domain
{, by_domain} [WHERE qual])

Aggregate functions are extensions of simple aggregates.
The BY operator groups (i.e. partitions) the set of
qualifying tuples by by_domain values. For more than
one by_domain, the values grouped by are the concatena
tion of individual by__domain values. A_expr is as in
simple aggregates. The aggregate function evaluates to
a set of aggregate results, one for each partition into
which the set of qualifying tuples has been grouped.
The aggregate value used during evaluation of the query
is the value associated with the partition into which
the tuple currently being processed would fall.

Unlike simple aggregates, aggregate functions are not
completely local. The "by-list", which differentiates
aggregate functions from simple aggregates, is global to
the query. Domains in the "by list" are automatically
linked to the other domains in the query which are in

- 31 -

QUEL(QUEL) 12/16/77 QUEL(QUEL)

the same relation.

Example:
/* retrieve the average salary for the employees working
for each manager */
range of e is employee
retrieve (e.manager, avesal=avg(e.salary by e.manager))

15.5 Aggregates on Unique Values.

It is occasionally necessary to aggregate on unique
values of an expression. The "avgu", "sumu", and "coun-
tu" all remove duplicate values before performing the
aggregation. For example:

count(e.manager)

would tell you how many occurrences of e.manager exist.
But

countu(e.manager)

would tell you how many unique values of e.manager ex
ist.

16. Special character operators

There are three special features which are particular to
character domains.

16.1 Pattern matching characters

There are four characters which take on special meaning
when used in character constants (strings):

* matches any string of zero or more characters,
? matches any single character.
[..] matches any of characters in the brackets.

These characters can be used in any combination to form
a variety of tests. For example:

where e.name = "*" matches any name.
where e.name = "E*" matches any name starting with

"E".

where e.name = "*ein" matches all names ending
with "ein"

where e.name = "*[aeiou]*" matches any name with
at least one vowel,

where e.name = "Smith?" matches any six character
name starting with "Smith",

where e.name = "[A-J]*" matches any name starting
with A,B,..,J.

The special meaning of the pattern matching characters

- 32 -

QUEL(QUEL) 12/16/77 QUEL(QUEL)

can be disabled by preceding them with a "\". Thus "*"
refers to the character "*". When the special charac
ters appear in the target list they must be escaped.
For example:

title = "*** ingres ***"

is the correct way to assign the string "*»* ingres ***"
to the domain "title".

16.2 Concatenation

There is a concatenation operator which can form one
character string from two. Its syntax is
"concat(field1, field2)". The size of the new character
string is the sum of the sizes of the original two.
Trailing blanks are trimmed from the first field, the
second field is concatenated and the remainder is blank

padded. Concat can be arbitrarily nested inside other
concats. For example:

name = concat(concat(x.lastname, ","), x.firstname)

will concatenate x.lastname with a comma and then conca
tenate x.firstname to that.

16.3 Ascii (numeric to character translation)

The ascii function can be used to convert a numeric
field to its character representation. This can be use
ful when it is desired to compare a numeric value with a
character value. For example:

retrieve (...)
where x.chardomain = ascii(x.numdomain)

Ascii can be applied to a character value. The result
is simply the character value unchanged. The conversion
format is determined by the printing format (see
ingres(unix)).

SEE ALSO

range(quel), retrieve(quel), append(quel), delete(quel),
replace(quel), ingres(unix)

BUGS

The maximum number of variables which can appear in one
query is 6.

Scientific notation cannot be used for floating point con
stants.

- 33 -

QUEL(QUEL) 12/16/77 QUEL(QUEL)

Numeric overflow, underflow, and. divide by zero is not
detected.

When converting numeric to numeric overflow is not chocked.

- -3H -

RANGE(QUEL) 11/7/77 RANGE(QUEL)

NAME

range - declare a variable to range over a relation

SYNOPSIS

RANGE OF variable IS relname

DESCRIPTION

Range is used to declare variables which will be used in
subsequent QUEL statements. The variable is associated with
the relation specified by relname. When the variable is
used in subsequent statements it will refer to a tuple in
the named relation. A range declaration remains in effect
for an entire INGRES session (until exit from INGRES), until
the variable is redeclared by a subsequent range statement,
or until the relation is removed with the destroy command.

EXAMPLE

/* Declare tuple variable e to range over relation emp */
range of e is emp

SEE ALSO

quel(quel), destroy(quel)

DIAGNOSTICS

BUGS

Only 10 variable declarations may be in effect at any time.
After the 10th range statement, the least recently refer
enced variable is re-used for the next range statement.

- 35 -

REPLACE(QUEL) 3/10/77 REPLACE(QUEL)

NAME

replace - replace values of domains in a relation

SYNOPSIS
REPLACE tuple_variable (target_list) [WHERE qual]

DESCRIPTION
Replace changes the values of the domains specified in the
target_list for all tuples which satisfy the qualification.
The tuple_variable must have been declared to range over the
relation which is to be modified. Note that a tuple vari
able is required and not the relation name. Only domains
which are to be modified need appear in the target_list.
These domains must be specified as result_attnames in the
target_list either explicitly or by default (see QUEL).

Numeric domains may be replaced by values of any numeric
type (with the exception noted below). Replacement values
will be converted to the type of the result domain.

EXAMPLE
/* Give all employees who work for Smith a 10 raise •/

range of e is emp
replace e(sal = 1.1*e.sal) where e.mgr s "Smith"

SEE ALSO

quel, range

DIAGNOSTICS
Use of a numeric type expression to replace a character type
domain or vice versa will produce diagnostics.

BUGS

- 36 -

RETRIEVE*QUEL) 3/10/77 RETRIEVE(OUEL)

NAME

retrieve - retrieve tuples from a relation

SYNOPSIS

RETRIEVE [[INTO] relname] (target_list) [WHERE qual]

DESCRIPTION

Retrieve will get all tuples which satisfy the qualification
and either display them on the terminal (standard output) or
store them in a new relation.

If a relname is specified, the result of the query will be
stored in a new relation with the indicated name. A rela
tion with this name owned by the user must not already ex
ist. The current user will be the owner of the new rela
tion. The relation will have domain names as specified in
the target__list result_attnames. The new relation will be
saved on the system for seven (7) days unless explicitly
saved by the user until a later date.

The keyword "ALL" can be used when it is desired to retrieve
all domains.

If no result relname is specified then the result of the
query will be displayed on the terminal and will not be
saved. Duplicate tuples are not removed when the result is
displayed on the terminal.

The format in which domains are printed can be defined at
the time ingres is invoked (see ingres(unix)).

If a result relation is specified then the default procedure
is to modify the result relation to an CHEAPSORT storage
structure removing duplicate tuples in the process.

If the default CHEAPSORT structure is not desired, the user
can override this at the time INGRES is invoked by using the
"-r" switch (see ingres).

EXAMPLE

/* Find all employees who make more than their manager */
range of e is emp
range of m is emp
retrieve (e.name) where e.mgr = m.name

and e.sal > m.sal

/* Retrieve all domains for those who make more
than the average salary */

retrieve into temp (e.all) where e.sal > avg(e.sal)

- 37 -

RETRIEVE*QUEL) 3/10/77 RETRIEVECOUEL)

SEE ALSO

<modify(quel)', ' quel(quel), range(quel), save(quel),
ingres(unix)

DIAGNOSTICS

BUGS

- 38 -

SAVE(QUEL) 3/10/77 SAVE(QUEL)

NAME

save - save a relation until a date.

SYNOPSIS

SAVE relname UNTIL month day year

DESCRIPTION

Save is used to keep relations beyond the default 7 day life
span.

Month can be an integer from one through twelve, or the name
of the month, either abbreviated or spelled out.

Only the owner of a relation can save that relation. There
is an INGRES process which typically removes a relation im
mediately after its expiration date has passed.

The actual program which destroys relations is called purge.
It-, is not automatically run. It is a local decision when
expired relations are removed.

System relations have no expiration date.

EXAMPLE

/* Save, the emp relation until the end of February 1987 */
save emp until feb 28 1987

SEE ALSO

retrieve(quel), create(quel), purge(unix)

DIAGNOSTICS

bad month, day, or year
not the owner

system relation

BUGS

.- 39 -

COPYDB(UNIX) 3/17/77 COPYDB(UNIX)

NAME

copydb - create batch files to copy out a data base and re
store it.

SYNOPSIS

copydb [-uxx] database full-path-name-of-directory {rela-
.tion}

DESCRIPTION

Copydb creates two files in the directory. Copy.out, which
contains Quel instuctions which will copy all relations
owned by the user into files in the named directory, and
copy.in, which contains instructions to copy the files into
relations, create indexes and do modifies. The files will
have the same names as the relations with the users Ingres
id tacked on the end. (The directory MUST NOT be the same
as the data base directory as the files have the same names
as the relation files.) The -u flag may be used to run
copydb with a different user id. (The fact that copydb
creates the copy files does not imply that the user can
necessarily access the specified relation). If relation
names are specified only those relations will be included in
the copy files.

Copydb is written in Equel and will access the database in
the usual manner. It DOES NOT have to run as INGRES.

EXAMPLE

chdir /mnt/mydir
copydb db /mnt/mydir/backup
ingres db <backup/copy.out
tp r1 backup
rm -r backup

tp x1
ingres db <backup/copy.in

DIAGNOSTICS

The copydb program will give self-explanitory diagnostics.
If "too many indexes" is reported it means that more than
ten indexes have been specified on one relation. The con
stant can be increased and the program recompiled. Other
limits are set to the system limits.

BUGS

Copydb assumes that indexes which are Isam do not need to be
remodified. Copydb cannot tell if the relation was modified
with a fillfactor or minpages specification. the copy.in
file may be edited to reflect this.

- 40 -

CREATDB(UNIX). 3/17/77 CREATDB(UNIX)

NAME

creatdb - create a new data base

SYNOPSIS

creatdb [-uxx] [+-c] [-e] [-m] dbname

DESCRIPTION

Creatdb creates a new INGRES data base, complete with the
necessary directory structure and system relations. The
data base administrator (DBA) for the new data base is set
to the identity of the user who issued the CREATDB command
or the user with code "xx". All system relations are owned
by the DBA. Only the INGRES user may use the -u flag.

The -c flag is used if the data base is for a single user
and no concurrency control is needed. Note that even if
users of the same data base only update their private rela
tions, they still share the same system catalogs and thus
require concurrency control. Therefore, the -c flag must
only be used for a truly single user data base.

The -e flag indicates that the data base already exits and
CREATDB is being used to modify the concurrency control op
tion as specified by +-c. In this case +c will cause con
currency control to be enforced. The -c flag will turn con
currency control off.

The INGRES superuser must authorize a user to execute the
creatdb command by setting the 000001 bit in the status
field of the users file for that user.

The -m flag is used when the Unix directory for the new da
tabase already exists. This is useful when a database will
be on a separate mounted Unix file system.

EXAMPLE

creatdb demo

creatdb -uav erics_db

SEE ALSO

demodb(unix)
destroydb(unix)
users(files)

DIAGNOSTICS

illegal database name — database name is not a legal name,
i.e., it is more than 14 characters long, or it begins
with a non-alphabetic character, or it has a non-
alphanumeric character in it.

database already exists — the database name you have speci
fied has already been used.

you may not access this database — this database name is

- 41 -

CREATDB(UNIX) 3/17/77 CREATDB(UNIX)

not permitted to you based on the contents of the users
file,

you are not allowed this command — the status entry in the
users file does not have creatdb permission set.

- 42 -

DESTROYDB(UNIX) 3/17/77 DESTROYDB(UNIX)

NAME

destroydb - destroy an existing database

SYNOPSIS

destroydb [-s] [-m] dbname

DESCRIPTION
Destroydb will remove all reference to an existing database.
The directory of the database and all files in that directo
ry will be removed.

To execute this command the current user must be the data
base administrator for the database in question, or must be
the INGRES superuser and have the -s flag stated.

The -m flag causes destroydb not to remove the Unix directo
ry. This is useful when the directory is a separate mounted
Unix file system.

EXAMPLE
destroydb demo
destroydb -s erics_db

SEE ALSO

creatdb(unix)

DIAGNOSTICS

invalid dbname— the database name specified is not a valid
name.

you may not reference this database — the database may ex
ist, but you do not have permission to do anything with
it.

you may not use the -s flag — you have tried to use the -s
flag, but you are not the INGRES superuser.

you are not the dba — someone else created this database.
database does not exist -— this database does not exist.

- 43 -

EQUEL(UNIX) 2/12/76 EQUEL(UNIX)

NAME

equel - Embedded QUEL interface to C

SYNOPSIS

equel [-d] file.q ...

DESCRIPTION

Equel provides the user with a method of interfacing the
general purpose programming language "C" with INGRES. It
consists of the equel precompiler and the equel object li
brary.

The precompiler is invoked with the statement:
equel [-d] file.q ...

where file.q is the source input file name, which must end
with ".q". The output is written to the file "file.c". The
-d flag causes additional debug information to be printed at
run time, see below. As many files as wished may be speci
fied. The output files may than be compiled using the C
compiler:

cc file.c ... -lq
The f'-lq" requests the use of the equel object library.

All equel routines and globals begin with the characters
"II", and so all globals variables and procedure names of
the form IIxxx are reserved for use by equel.

Equel commands are indicated by lines which begin with a
double pound sign .("#•#"). Other lines are simply copied as
is. All normal INGRES commands may be used in equel and
have the same effect as if invoked through the Interactive
terminal monitor. Only retrieve commands with no result re
lation specified have a different syntax and meaning. Also,
the following equel commands are permissable.

ingres [ingres flags] data_base_name
This command has the same effect as invoking INGRES
from the UNIX shell. It is not permissible to execute
this command twice without an intervening ## exit.
Each flag should be enclosed in quotes to avoid confu
sion in the Equel parser:

ingres "-fi*f10.2" "-1212" demo

exit

Exit simply exits from INGRES. It is equivalent to the
\q command to the teletype monitor.

int C-variable {, C-variable} ;
long C-variable {, C-variable} ;
float C-variable {, C-variable} ;
double C-variable {, C-variable} ;
char *C-variable {, C-variable} ;

- 44 -

EQUEL(UNIX) 2/12/76 EQUEL(UNIX)

char C-variable[integer] {, C-variable[integer]} ;
These commands all declare C-variables. They may be
used as normal variables in the C language, and may
also be used in equel statements. The variables are
global with respect to equel, but obey the normal C
scope rules. All variables must be declared before be
ing used. Anywhere a constant may appear in an INGRES
command, a C-variable may appear. The value of the C-
variable is substituted at execution time. If a vari
able of one of the char types is used almost anywhere
in a equel statement, the contents of that variable is
used at object time. For example:

char *dbname;
dbname = "demo";
ingres dbname

will cause INGRES to be invoked with data base "demo".

The format of retrieve without a result relation is modified

to:

retrieve (C-variable=a_fcn {, C-variable=a_fcn})
[WHERE qual] {
C-code

}
This statement causes the "C-code" to be executed once for

each tuple retrieved, with the "C-variable"s set appropri
ately. Numeric values of any type are converted as neces
sary. No conversion is done between numeric and charactor
values. (The normal Ingres ascii function may be used for
this purpose.)

INGRES and run-time EQUEL errors cause the routine Ilerror
to be called, with the error number and the parameters to
the error in an array of string pointers as in a C language
main routine. The error number will be printed with the er
ror parameters. In addition if the "-d" flag was set the
file name and line number of the error will be printed.
This information is useful in debugging but can take up pro
cess space. If the error was from INGRES (error number >=
2000) then Ilerrflag is set so that retrieves will terminate
properly. The user may write an Ilerror routine to look up
the messages in .../files/error?, or do other tasks.

Interrups are caught by equel, if they are not being ig
nored. This insures that the rest of Ingres is in sync with
the Equel process. There is a function pointer, Ilinter-
rupt, which points to a function to call after the interrupt
is caught, the user may use this to service the interupt.
It is initialized to "exit" and is called with -1 as its ar
gument. For example:

extern int *IIinterrupt;
extern reset();

setexit();

- 45 -

EQUEL(UNIX)• 2/12/76 EQUEL(UNIX)

Ilinterrupt = &reset();
mainloopO;

SEE ALSO

..,/demo/equeltut.q
C manual

ingres(UNIX)
quel(QUEL)

FILES
.../files/error? can be used by the user to decifer
Ingres error numbers, /lib/libq.a run time library.

BUGS
The C-code embedded in the tuple-by-tuple retrieve operation
may not contain additional QUEL statements or recursive in
vocations of INGRES.

There is no way to specify an 11 format c-variable.

Single QUEL statements can expand to more than one c state
ments. Equel should bracket the expression with braces.

- 46 -

GEO-QUEL(UNIX) 12/15/77 GEO-QUEL(UNIX)

NAME

geoquel - GEO-QUEL data display system

SYNOPSIS

geoquel [<flags>] dbname

DESCRIPTION

This is the UNIX command which is used to invoke GEO-QUEL.
Dbname is the name of an existing data base.

The format of the graphic output depends upon the type of
terminal in use. GEO-QUEL will look up the terminal type at
login time and produce output appropriate for that terminal.
If the terminal in use is incapable of drawing graphic out
put then a display list is generated for a Tek 4014 but will
only be displayed if the results are saved with SAVEMAP and
then re-displayed.

The optional <flags> may be combinations of thsse:

-s Don't print any of the monitor messages, including
prompts. This is inclusive of the dayfile.

-d Don't print the dayfile.
-a Disable the autoclear function in the terminal moni

tor.

-tf Set the terminal type to T. T can be gt40, gt42,
4014 for DEC'S GT40-GT42, and Tek's 4014.

EXAMPLE

geoquel demo
geoquel -d demo
geoquel -s demo < batchfile

SEE ALSO

GEO-QUEL reference manual

DIAGNOSTICS

The diagnostics produced by GEO-QUEL are intended to be
self-explanatory. Occasional messages may be produced by
INGRES; for an explanation of these messages see the INGRES
system documentation.

- 47 -

INGRES(UNIX) 3/17/77 INGRES(UNIX)

NAME

ingres - INGRES relational data base management system *

SYNOPSIS

ingres [<flags>] dbname [process_table]

DESCRIPTION

This is the UNIX command which is used to invoke INGRES.
Dbname is the name of an existing data base. The optional
flags have the following meanings (a "+-" means the flag may
be stated "+x" to set option x or "-x" to clear option x.
"-" alone means that "-x" must be stated to get the x func
tion) :

+-U: Enable/disable direct update of the system relations
and secondary indicies. You must have the 000004 bit
in the status field of the users file set for this flag
to be accepted. This option is provided for system de
bugging and is strongly discouraged for normal use.

-uXX: Pretend you are the user with code XX (found in the
users file). This may only be used by the DBA for the
database or by the INGRES superuser.

-cN: Set the minimum field width for printing character
domains to N. The default is 6.

-iLN: Set integer output field width to N. L may be 1, 2,
or 4 for il's, i2's, or i4's repectively.

-fLXM.N: Set floating point output field width to M charac
ters with N decimal places. L may be 4 or 8 to apply
to f4's or f8's respectively. X may be e, E, f, F, g,
G, n, or N to specify an output format. E is exponen
tial form, F is floating point form, and G and N are
identical to F unless the number is too big to fit in
that field, when it is output in E format. G format
guarantees decimal point alignment; N does not. The
default format for both is n10.3-

-vX: Set the column seperator for retrieves to the terminal
and print commands to be X. The default is vertical
bar.

-r-M: Set modify mode on the RETRIEVE INTO command to M. M
may be "isam", "cisam", "hash", "chash", "heap",
"cheap", "heapsort", or "cheapsort", for ISAM,
compressed ISAM, hash table, compressed hash table,
heap, compressed heap, sorted heap, or compressed sort
ed heap. The default is "cheapsort".

- 48 -

INGRES(UNIX) 3/17/77 INGRES(UNIX)

-nM: Set modify mode on the INDEX command to M. M can take
the same values as the "-r" flag above. Default is
isam.

+-a: Set/clear the autoclear option in the terminal monitor.
It defaults to set.

+-b: Set/reset batch update. Users must the 000002 bit set
in the status field of the users file to clear this
flag. This flag is normally set. When clear, queries
will run slightly faster, but no recovery can take
place. Queries which update a secondary index automat
ically set this flag for that query only.

+-d: Print/don't print the dayfile. Normally set.

+-s: Print/don't print any of the monitor messages, includ
ing prompts. This flags is normally set. If cleared,
it also clears the -d flag.

•f-w: Wait/don't wait for the database. If the +w flag is
present, INGRES will wait if certain processes are run
ning (purge,restore, and/or sysmod) on the given data
base. Upon completion of those processes INGRES will
proceed. If the -w flag is present, a .message is re
turned and execution stopped if the data base is not
available. If the +-w flag is omitted and the data
base is unavailable, the error message is returned if
INGRES is running in forground(more precisly if the
standard input is from a terminal). Otherwise the wait
option is invoked.

Process_table is the pathname of a UNIX file which may be
used to specify the run-time configuration of INGRES. This
feature is intended for use in system maintenance only, and
its unenlightened use by the user community is strongly
discouraged.

Note: It is possible to run the monitor as a batch-
processing interface using the '<', '>♦ and 'Sf operators of
the UNIX shell, provided the input file is in proper
monitor-format.

EXAMPLE

ingres demo
ingres -d demo
ingres -s demo < batchfile
ingres -f4g12.2 -i.13 +b -rhash demo

- 49 -

INGRES(UNIX) 3/17/77 INGRES(UNIX)

SEE ALSO

monitor(quel)
users(files)

DIAGNOSTICS

too many options to Ingres — you have stated too many flags
as ingres options.

invalid user —• in using the "-u" flag, you have given a
user code which does not exist.

bad flag format — you have stated a flag in a format which
is not intelligible, or a bad flag entirely.

too many parameters to ingres — you have given a database
name, a process table name, and "something else" which
ingres doesn't know what to do with.

no database name specified — you have failed to give a da
tabase name.

improper database name —the database name is not legal.
you may not access this database — according to the users

file, you do not have permission to enter this database.
you are not authorized to use these flags — one or more of

the flags you have specified require a special permis
sion which you do not have.

cannot access database — the database which you. have speci
fied does not exist.

you may not use the -u flag — you are not the DBA for the
database specified.

- 50 -

PRINTR(UNIX) 3/17/77 PRINTR(UNIX)

NAME

printr - print relations

SYNOPSIS

printr [<flags>] database relation {relation}

DESCRIPTION

Printr prints the named relation(s) out of the database
specified, exactly like the PRINT command.

Flags accepted are -u, +-w, -c, -i, -f, and -v. Their mean
ings are identical to the meanings of the same flags in
INGRES.

SEE ALSO

ingres(unix)
print(quel)

DIAGNOSTICS

bad flag — you have specified a flag which is not legal or
is in bad format,

you may not access database — this database is prohibited
to you based on status information in the users file,

cannot access database — the database does not exist.

- 51 -

PURGE(UNIX) 7/25/77 PURGE(UNIX)

NAME

purge - destroy all expired and temporary relations

SYNOPSIS

purge [-f] [-a] [-p] [-s] [-w] [+w] {database}

DESCRIPTION

Purge goes through named databases and deletes system tem
porary relations and miscellaneous files. If the -p flag is
stated, it also deletes expired user relations.

You must be the DBA to execute this command, or state the -s
flag and be the INGRES superuser.

If the -f flag is present all unrecognized files are deleted
otherwise their existence is just reported. If no database
names are specified, all databases for which you are the DBA
are purged. If the -s flag is stated, all databases are
purged if no specific databases are mentioned. If the -a
flag is stated, you are asked before each database whether
or not you want to purge that database. A response begin
ning "y" is yes; anything else is no.

If the data base is being used while Purge is working errors
may occur, so Purge will lock the data base while it is be
ing processed. If a data base is busy Purge will report
this and go on to the next data base, if any. If standard
input is not a terminal Purge will wait for the data base to
be free. If -w flag is stated Purge will not wait, regard
less of standard input. The +w flag causes Purge to always
wait.

EXAMPLES

purge -p +w tempdata
purge -a -f

SEE ALSO

save(quel)
restore(unix)

DIAGNOSTICS

who are you? —• you are not entered into the users file,
not ingres superuser — you have tried to use the -s flag

but you are not the INGRES superuser.
you are not the dba — you have tried to purge a database

for which you are not the DBA.
cannot access database — the database does not exist.

- 52 -

PURGE(UNIX) 7/25/77 PURGE(UNIX)

BUGS

-53 -

RESTORE(UNIX) 7/25/77 RESTORE(UNIX)

NAME

restore - recover from an INGRES or UNIX crash.

SYNOPSIS

restore [-a] [-s] [-w] [+w] {database}

DESCRIPTION

Restore is used to restore a data base after an INGRES or
UNIX crash. It should always be run after any abnormal ter
mination to ensure the integrity of the data base.

In order to run restore, you must be the DBA for the data
base you are restoring or the INGRES superuser and specify
the -s flag.

If no databases are specified then all databases for which
you are the DBA are restored. If the -s flag is specified
then all databases are restored.

If the -a flag is specified you will be asked before restore
takes any serious actions. It is advisable to use this flag
if you suspect the database is in bad shape. Using
/dev/null as input with the -a flag will provide a report of
problems in the data base. If there were no errors while
restoring a database, purge will be called* with the same
flags that were given to restore, to remove unwanted files
and system temporaries. Restore may be called with the -f
and/or -p flags for purge. Unrecognized files and expired
relations are not removed unless the proper flags are given.
In the case of an incomplete destroy, create or index re
store will not delete files for partially created or des
troyed relations. Purge must be called with the -f flag to
accomplish this.

Restore locks the data base while it is being processed. If
a data base is busy Restore will report this and go on to
the next data base. If standard input is not a terminal Re
store will wait for the data base to be free. If the -w
flag is set Restore will not wait regardless of standard in
put. If +w is set it will always wait.

Restore can recover a database from an update which had fin
ished filling the batch file. Updates which did not make it
to this stage should be rerun. Similarly modifies which
have finished recreating the relation will be completed (the
relation relation and attribute relations will be updated).
If a destroy was in progress it will be carried to comple
tion, while a create will almost always be backed out. Des
troying a relation with an.index should destroy the index so
restore may report that a secondary relation has been found
with no primary.

- 54 -

RESTORE(UNIX) 7/25/77 RESTORE(UNIX)

EXAMPLE

restore -f demo

restore -a grants < /dev/null

DIAGNOSTICS
All diagnostics are followed by a tuple from the attribute,
relation or indexes relations.

"No relation for attribute(s):" the attributes listed have
no corresponding entry in the relation relation

"No primary relation for index:" the tuple printed is the
relation tuple for a secondary index for which there is
no primary relation. The primary probably was des
troyed the secondary will be.

"No indexes entry for primary relation:" the tuple is for a
primary relation, the relindxd domain will be set to
zero. This is the product of an incomplete destroy.

"No indexes entry for index:" the tuple is for a secondary
index, the index will be destroyed. This is the pro
duct of an iacomplete destroy.

"RELNAME is index for:" an index has been found for a pri
mary which is not marked as indexed. The primary will
be so marked. This is probably the product of an in
complete index command. The index will have been
created properly but not modified.

"No file for:" There is no data for this relation tuple, the
tuple will be deleted. If, under the -a option, the
tuple is not deleted purge will not be called.

"No. secondary index for indexes entry:" An entry has been
found in the indexes relation for which the secondary
index does not exist (no relation relation tuple). The
entry will be deleted.

SEE

purge(unix)

- 55 -

SYSMOD(UNIX) 12/8/77 SYSMOD(UNIX)

NAME

sysmod - modify system relations to predetermined storage
structures.

SYNOPSIS

SYSMOD [-s] [-w] [+w] dbname {RELATION} {ATTRIBUTE} {INbEXES}

DESCRIPTION

SYSMOD will modify the relation, attribute and indexes rela
tions to hash unless at least one of the RELATION, ATTRIBUTE
or INDEXES parameters are given, in which case only those
relations given as parameters are modified. The system re-»
lations are modified to gain maximum access performance when
running INGRES. The user must be the data base administra
tor for the specified database, or be the INGRES superuser
and have the -s flag stated.

SYSMOD should be run on a data base when it is first created
and periodically thereafter to maintain peak performance.
If many relations and secondary indices are created and/or
destroyed, SYSMOD should be run more often.

If the data base is being used while Sysmod is running, er
rors will occur. Therefore, Sysmod will lock the data base
while it is being processed. If the data base is busy, Sys
mod will report this. If standard input is not a terminal
Sysmod will wait for the data base to be free. If -w flag
is stated Sysmod will not wait, regardless of standard in
put. The +w flag causes Sysmod to always waitt

The system relations are modified to hash; the relation re
lation is keyed on the first domain, the indexes and attri
bute relations are keyed on the first two domains. The re
lation and attribute relations have the minpages option set
at 10, the indexes relation has a minpages value of 5.

SEE ALSO

modify(quel)

- 56 -

USERSETUP(UNIX) 3/17/77 USERSETUP(UNIX)

NAME

usersetup - setup users file

SYNOPSIS

.../bin/usersetup [pathname]
(normally executable by INGRES super-user only)

DESCRIPTION

The /etc/passwd file is read and reformatted to become the
INGRES users file, stored into .../files/users. If pathname
is specified, it replaces "...".

After running usersetup, the users file must be editted.
Any users who are to be authorized to execute the creatdb or
demodb commands must have the 000001 bit in the fifth field
of the file set. Any users who are to be permitted to over
ride batch update with the -b flag must have the 000002 bit
set. Users who are to be permitted to use the -U flag to
directly update system relations and secondary indicies must
have the 000004 bit set. To disable a user from executing
INGRES entirely, completely remove her line from the users
file.

As UNIX users are added or deleted, the users file will need
to be editted to reflect the changes. For deleted users, it
is only necessary to delete the line for that user from the
users file. To add a user, you must assign that user a code
in the form "aa" and enter a line in the users file in the

form:

name:cc:uid:gid:status:flags:proctab:::databases
where name is the user name (taken from the first field of
the /etc/passwd file entry for this user), cc is the user
code assigned, which must be exactly two characters long and
must not be the same as any other existing user codes, uid
and gid are the user and group ids (taken from the third and
fourth fields in the /etc/passwd entry), status is the
status bits for this user, normally 000000, flags are the
default flags for INGRES (on a per-user basis), proctab is
the default process table for this user (which defaults to
"=proctab6.0"), and databases is a list of the databases
this user may enter. If null, she may enter all databases.
If the first character is a dash ("-"), the field is a comma
seperated list of databases which she may not enter. Other
wise, it is a list of databases which she may enter.

The databases field includes the names of databases which

may be created. When a database is created, there is no way
of protecting access to it, except by contacting the INGRES
superuser.

Usersetup may be executed only once, to initially create the
users file.

- 57 -

USERSETUP(UNIX) 3/17/77 USERSETUP(UNIX)

SEE ALSO

ingres(unix)
passwd(V)
users(files)

bugs •.,•:..
It should be,able to bring the,users file up to date.

- 58 -

(
B
>

f
Q
>

<0
>

<Q
>
<Q
>
(Q
>
CQ
>

(Q
)

<
B
>

O
S
)

<Q
>
<8
>
(
Q
>
(
Q
)
(
Q
>
(
Q
>
fQ
>

w
<
B
>

c
f0
>
*B
>
(Q
>
(Q
>
fQ
>
(
Q
>
fQ
>

*X
J

*T
3

<
a
>
f
Q
)
(
Q
>
C
Q
>
f
B
>
f
8
>

p
j

r
o
>

<
Q
>

T
—

±
«
g

O
f
Q
>

<
B
>

H
«

r
o

(
F

r
o
>

C
O

}
(
Q
>

O
\

T
W

fB
>
(Q
>
(Q
>

ff
t

o
r

r
o

0
5

>
*

<
o

H
*

H
M

v
.

O
<Q
>
*0
>
fQ
>
fQ
>
<Q
>
<Q
>
f8
>

H
"

-
o

s
(
Q
>

<
Q
>

B
-
4

<
Q
>
f
Q
)

(
Q
>

0
)

O
N

"
d

(
Q
>

(
Q
>

f
Q
>

3
M

(
Q
>

<
Q
)
(
Q
>

r
*

<8
>
<0
>
(Q
>
(Q
>
(Q
>
(Q
>
(Q
>

r
a
>

(
Q
)

<
Q
>

r
a

<
Q
>

(
f
t

w

<
B
>

f
Q
)

(
Q
>

INTRODUCTION) 11/18/76 INTRODUCTION()

NAME

INGRES support files

DESCRIPTION

The directory .../files contains a number of files necessary
to run INGRES and its support software. This documentation
describes the format and use of these files. .

- 2 -

DAYFILE(FILES) 12/19/77 DAYFILE(FILES)

NAME

..,/files/dayfile6.1 - INGRES login message

DESCRIPTION

The contents of dayfile reflect user information of general
system interest, and is more or less analogous to /etc/motd
in UNIX. The file has no set format; it is simply copied at
login time to the standard output device by the monitor if
the -s or -d options have not been requested. Moreover the
dayfile is not mandatory, and its absence will not generate
errors of any sort; the same is true when the dayfile is
present but not readable.

- 3 -

DBTEMPLATE(FILES) 1/14/77 DBTEMPLATE(FILES)

NAME

.../files/dbtemplate - database template

DESCRIPTION

This routine contains the template for a database used by
creatdb.. It has a set of entries for each relation to be
created in the database. The Sets of entries are seperated
by a blank line. Two blank lines or an end of file ter
minate the file.

The first line of each set of entries is the name of the re
lation. The second through last lines contain the domain
type, a tab, and the domain name.

The first set of entries must be for the relation catalog,
and the second set must be for the attribute catalog.

EXAMPLE

relation

c12 relid

c2 relowner

11 relspec
11 relindxd

attribute

c12 attrelid

c2 attowner

c12 attname

(other relation descriptors)

SEE ALSO

creatdb(UNIX)

- 4 -

ERROR(FILES) 11/13/76 ERROR(FILES)

NAME
.../files/error? - files with INGRES errors

DESCRIPTION
These files contain the INGRES error messages. There is one
file for each thousands digit; hence, error number 2313 will
should be in file error2.

Each file consists of a sequence of error messages with as
sociated error numbers. When an error enters process one,
the appropriate file is scanned for the correct error
number. If found, the message is printed; otherwise, the
first message parameter is printed.

Each message has the format <errnum> <TAB> <message>
<tilde>. Messages are terminated by the tilde character
(it-it) # The message is scanned before printing. If the se
quence "56n" is encountered (where n is a digit from 0 to 9),

* parameter n is substituted, where %0 is the first parameter.

The parameters can be in any order. For example, an error
message can reference %2 before it references %0.

SEE ALSO

error(UTIL)

EXAMPLE
1003 line 560, bad database name J1~
1005 In the purge of $1,
a bad 560 caused execution to halt~
1006 No process, try again.~

- 5 -

PIPES.H(FILES) 8/31/76 PIPES.H(FILES)

NAME

pipes.h - interprocess pipe format

SYNOPSIS

include ".../source/pipes.h"

DESCRIPTION

Pipes.h is the header file for using rdpipe, wrpipe, and
proc_error. It contains the defined constants for the
buffer size, the statuses of the blocks being passed, and
the struct for piping data from one process to another.

There are four statuses with which a block can be passed,
N0RM_STAT (normal status), LAST_STAT (last block of command
or message), SYNC_STAT (for synchronizing delete signals),
and ERR_STAT (for synchronizing the processes in the event
of an error).

As for the struct, there are 8 bytes (WDJJSIZ) of header in*
fo, a 120 byte (PBUFSIZ) buffer, and an index for the next
available spot in the buffer. Upon writing this struct only
HDRSIZ + PBUFSIZ bytes are written. In the header there are
two bytes, exec_id and func_id, that are used by the pro
grams, a full word for the""error number, err_id, a byte for
the status of the current block, hdrstat, and a byte with
the number of signfleant characters in the buffer.

SEE ALSO

rdpipe(UTIL)
wrpipe(UTIL)
proc_error(UTIL)
proctab(FILES)

- 6 -

PROCTAB(FILES) 3/17/77 PROCTAB(FILES)

NAME

.../files/proctab6.1

DESCRIPTION
The contents of .../files/proctab6.1 describe the internal
configuration of its object code programs to the INGRES con
trol system. Each line (where 'line' is defined in the
text-editor sense) has a special meaning. Lines 1 through
5, respectively, are full UNIX pathnames of those sites
wherein the initial overlay program, decomposition process,
one variable query processor, parser, and terminal monitor
may be found. The sixth line is the full pathname of the
sort program used in modify to ISAM. Subsequent lines are
of the form

cmdname:ef
where cmdname is the name of a valid QUEL command, e is the
code character of the process which handles the command.
The current code characters are:

* ovqp
$ decomp (for historical reasons)

Anything else is taken to be an overlay (ie. DBU). The code
character is appended to the last character of the pathname
for the overlay process. F is the index of the associated
command in the calling sequence for the process. Hence, a
line of the form

helpraO
would signify to INGRES that the help command may be found
in /mnt/ingres/bin/overlaya, indexed by argument number 0.
The maximum number of such lines is regulated by the mani
fest constant MAXPR0C, defined in the parser.

- 7 -

STARTUP(FILES) 12/13/77 STARTUP(FILES)

NAME

./files/startup - INGRES startup file

DESCRIPTION

This file is read by the monitor at login time. It is read
before the user startup file specified in the users file.
The primary purpose is to define a new editor and/or shell
to call with the \e or \s commands.

SEE ALSO

monitor(quel)
users(files)

- 8 -

USERS(FILES) 12/13/77 USERS(FILES)

NAME

.../files/users - INGRES user codes and parameters

DESCRIPTION

This file contains the user information in fields seperated
by colons. The fields are as follows:
* User name, taken directly from /etc/passwd file.
* User code, assigned by the ingres super-user. It must be

a unique two character code.
* UNIX user id. This MUST match the entry in the

/etc/passwd file.
* UNIX group id. Same comment applies.
* Status word in octal. Bit values are:

000001 creatdb permission
000002 permits batch update override
000004 permits update of system catalogs
100000 ingres superuser

* A list of flags automatically set for this user.
* The process table to use for this user.
* An initialization file to read be read by the monitor at

login time.
* Unassigned.
* Comma seperated list of databases. If this list is null,

the user may enter any database. If it begins with a
•-♦, the user may enter any database except the named
databases. Otherwise, the user may only enter the named
databases.

EXAMPLE

ingres:aa:5:2:177777:-d:=special:/mnt/ingres/ingres.init::
guest:ah:35:1:000000:::::demo,guest

SEE ALSO

initucode(UTIL)

- 9 -

THE INGRES ERROR MESSAGES

This document describes the error returns which are possible from

the INGRES data base system and gives an explanation of the prob

able reason for their occurrence. In all cases the errors are

numbered nxxx where n indicates the source of the error. Basi

cally,

1 = equel preprocessor

2 = parser

4 = decomposition and one variable query processor

5 = data base utilities

For a description of these routines the reader is referred to

"The Design and Implementation of INGRES". The xxx in an error

number is an arbitrary identifier.

The error messages are stored in the file ..,/files/errorn, where

n is defined as above. The format of these files is the error

number, a tab character, the message to be printed, and the tilde

character («-»») to delimit the message.

In addition many error messages have "56i" in their body where "i"

ERROR MESSAGES - 1 - April 6, 1977

is a digit interpreted as an offset into a list of parameters re

turned by the source of the error. This indicates that a parame

ter will be inserted by the error handler into the error return.

In most cases this parameter will be self explanatory in meaning.

Where the error message is thought to be completely self explana

tory, no additional description is provided.

ERROR MESSAGES - 2 - April 6, 1977

EQUEL ERRORS

1000 In domain %0 numeric retrieved into char field.~

Equel does not support conversion at run-time of numeric
data from the data base to character string representa
tion. Hence, if you attempt to assign a domain of numer
ic type to a C-variable of type character string, you
will get this error message. To convert numerics to
characters use the "ascii" function in QUEL.

1001 Numeric overflow during retrieve on domain 560.""

You will get this error if you attempt to assign a numer
ic data base domain to a C-variable of a numeric type but
with a shorter length. In this case the conversion
routines may generate an overflow. For example, this er
ror will result from an attempt to retrieve a large
floating point number into a C-variable of type integer.

1002 In domain 560, charactor retrieved into numeric variables

This error is the converse of error 1000.

ERROR MESSAGES - 3 - April 6, 1977

PARSER ERRORS

2100 line 560, Attribute '561' not in relation '562' ~

This indicates that in a given line of the executed
workspace the indicated attribute name is not a domain in
the indicated relation.

2101 line 560, Logical operations are not allowed in the target
list"

This indicates that a logical operator (and, or, not) is
used as part of the target list of a QUEL statement.
This is not allowed.

2102 line 560, No operations on characters allowed""

This indicates that an attempt was made to perform an ar
ithmetic operation on a character domain or character
constant. For example, "character" » 2 is not an al
lowed operation.

2103 line $0, Function type does not match type of attribute
'3M'~

This error will be returned if a function expecting
numeric data is given a character string or vice versa.
For example, it is illegal to take the SIN of a character
domain.

2105 line 560, You must rename 'tid' when it appears in the
target list""

The reserved symbol "tid" (tuple identifier) cannot be
the name of a domain. Consequently, it must be renamed
when used as part of the target list. Tid is used for
debugging system code.

2106 line 560, Data base utility command buffer overflow"

This error will result if a utility command is too long
for the buffer space allocated to it in the parser. You
must shorten the command or recompile the parser.

2107 line %0, You are not allowed to update this relation: 561"

This error will be returned if you attempt to.update any
system relation or secondary index directly in QUEL
(such as the RELATION relation). Such operations which
compromise the integrity of the data base are not al
lowed.

ERROR MESSAGES - 4 - April 6, 1977

2108 line 560, Invalid result relation for APPEND '561'**

This error message will occur if you execute an append
command to a relation that does not exist, or that you
cannot access. For example, append to junk(...) will
fail if junk does not exist.

2109 line 560, Variable '561' not declared in RANGE statement"

Here, a symbol was used in a QUEL expression in a place
where a tuple variable was expected and this symbol was
not defined via a RANGE statement.

2111 line 560, Too many attributes in key for INDEX""

A secondary index may have no more than 6 keys.

2117 line 560, Invalid relation name '561' in RANGE statement**

You are declaring a tuple variable which ranges over a
relation which does not exist.

2118 line 560, Out of space in query tree - Query too long"

You have the misfortune of creating a query which is too
long for the parser to digest. The only options are to
shorten the query or recompile the parser to have more
buffer space for the query tree.

2119 line $0, MOD operator not defined for floating point or
character attributes'"

2120 line 560, no pattern match operators allowed in the target
list*"

2121 line 560, Only character type domains are allowed in CON-
CAT operator*"

2123 line 560, '561.all' not defined for replace*"

This message should be self explanitory.

2500 syntax error on line 560
last symbol read was: 561*"

A 2500 error is reported by the parser if it cannot oth
erwise classify the error. One common way to obtain this
error is to omit the required parentheses around the tar
get list. The parser reports the last symbol which was
obtained from the scanner. Sometimes, the last symbol is
far ahead of the actual place where the error occurred.
The string "EOF" is used for the last symbol when the

ERROR MESSAGES - 5 - April 6, 1977

parser has read past the query.

2501 The token '561', on line 560, cannot follow a 562 command,
therefore the command was not executed*"

Indicates that the symbol following a RETRIEVE, APPEND,
REPLACE, or DELETE command was not the start of a new
command or the end of the query buffer. In general, this
error catches misspelled keywords in the qualification,
however, a legal command followed by a misspelled command
name will not be run.

2700 line 560, non-terminated string"*

You have omitted the required string terminator (") .

2701 line 560, string too long**

Somehow, you have had the persistence or misfortune to
enter a character string constant longer than 255 charac
ters.

2702 line 560, invalid operator**

You have entered a. character which is not alphanumeric,
but which is not a defined operator, for example, •'"?".

2703 line 560, Name too long '561'""

In INGRES relation names and domain names are limited to
12 characters.

2704 line 560, Out of space in symbol table - Query too long**

2705 line 560, non-terminated comment"*

2707 line 560, bad floating constant: $1**

Your floating constant is too large or too small. Howev
er, this error is not currently checked.

2808 line 560, control character passed in pre-converted
string**

In EQUEL a control character became embedded in a string
and was not caught until the scanner was processing it.

ERROR MESSAGES - 6 - April 6, 1977

OVQP ERRORS

4100 OVQP query list overflowed""

This error is produced in the unlikely event that the
internal form of your interaction requires more space in
the one variable query processor than has been allocated
for a query buffer. There is not much you can do except
shorten your interaction or recompile OVQP with a larger
query buffer.

4101 numeric operation using char and numeric domains not al
lowed"*

Occasionally, you will be notified by OVQP of such a type
mismatch on arithmetic operations. This only happens if
the parser has not recognized the problem.

4102 unary operators are not allowed on character values'"

This error will be produced if you use an expression such
as "+ "string""

4103 binary operators cannot accept combinations of char and
numeric fields"*

4104 cannot use aggregate operator "sum" on character domains**

4105 cannot use aggregate operator "avg" on character domains'*

4106 the interpreters stack overflowed — query too long""

4107 the buffer for ASCII and CONCAT commands overflowed**

4108 cannot use arithmetic operators on two character fields""

4109 cannot use numeric values with CONCAT operator"*

4110 floating point exception occurred.*"

If you have floating point hardware instead of the float
ing point software interpreter, you will get this error
upon a floating point exception (underflow or overflow).
Since the software interpreter ignores such exceptions,
this error is only possible with floating point hardware.

4111 character value cannot be converted to numeric
due to incorrect syntax."*

When using intl, int2, int4, float4, or float8 to convert
a character to value to a numeric value, the character

ERROR MESSAGES - 7 - April 6, 1977

4199

value must have the proper syntax. This error will oc-
cure if the character value contained non-numeric charac
ters.

you must convert your 6.0 secondary index before running
this query!"*

The internal format of secondary indices was changed
between versions 6.0 and 6.1 of INGRES. Before deciding
to use a secondary index OVQP checks that it is not a 6.0
index. The solution is to destroy the secondary index
and recreate it.

ERROR MESSAGES - 8 - April 6, 1977

DECOMP ERRORS

4602 query involves too many relations to create aggregate
function intermediate result.**

In the processing of aggreagte functions it is usually
necessary to create an intermediate relation for EACH ag
gregate function. Since each relation requires a
separate file a situation can be created where decomp re
quires more open files than are available in your UNIX
installation. You must either break the interaction
apart and process the aggregate functions separately or
you must recompile UNIX to support more open files per
process.

4603 Query involves too many relations for available file
descriptors"*

Same general problem as 4602. The only solution is to
reduce the number of variables in your interaction by
breaking it apart or recompile UNIX.

4610 Query too long for available buffer space (qbufsize) .**

This will happen if the internal form of the interaction
processed by decomp is too long for the available buffer
space. You must either shorten your interaction or
recompile decomp. The name in parenthesis gives the
internal name of which buffer was too small.

4612 Query too long for available buffer space (sqsize).**

4613 Query too long for available buffer space (stacksiz)"*

4614 Query too long for available buffer space (agbuf)."*

ERROR MESSAGES - 9 - April 6, 1977

DATA BASE UTILITIES ERRORS

5001 PRINT: bad relation name 560~

You are trying to print a relation which doesn't exist.

5102 CREATE: duplicate relation name 560**

You are trying to create a relation which already exists.

5103 CREATE: 560 is a system relation**

You cannot create a relation with the same name as a sys
tem relation. The system depends on the fact that the
system relations are unique.

5104 CREATE 560: invalid attribute name 561"

This will happen if you try to create a relation with an
attribute longer than 12 characters.

5105 CREATE 560: duplicate attribute name %r

Attribute names in a relation must be unique. You are
trying to create one with a duplicated name.

5106 CREATE 560: invalid attribute format "562" on attribute 561"

The allowed formats for a domain are d-c255, i1, i2, i4,
f4 and f8. Any other format will generate this error.

5107 CREATE %0: excessive domain count on attribute 561""

A relation cannot have more than 49 domains. The origin
of this magic number is obscure. This is very difficult
to change.

5108 CREATE 560: excessive relation width on attribute 561**

The maximum number of bytes allowed in a tuple is 498.
This results from the decision that a tuple must fit on
one UNIX "page". Assorted pointers require the 14 bytes
which separates 498 from 512. This "magic number" is
very hard to change.

5201 DESTROY: 560 is a system relation**

The system would immediately stop working if you were al
lowed to do this.

5202 DESTROY: 560 does not exist or is not owned by you*"

ERROR MESSAGES -10- April 6, 1977

5300 INDEX: primary relation does not exist"*

5301 INDEX: more than maximum number of domains'"

A secondary index can be created on at most six domains.

5302 INDEX: invalid domain 560"

5303 INDEX: relation 560 not owned by you"*

5304 INDEX: relation "60 is already an index**

5305 INDEX: relation 560 is a system relation** Secondary in
dices cannot be created on system relations.

5401 HELP: relation 560 does not exist"*

5402 HELP: cannot find manual section ""60""

Either the desired manual section does not exist, or your
system does not have any on-line documentation.

5500 MODIFY: relation 560 does not exist"

5501 MODIFY: you do not own relation "60"

5502 MODIFY 560: you may not provide keys on a heap"

5503 MODIFY 560: too many keys provided"

5504 MODIFY 560: cannot modify system relation"

5507 MODIFY 560: duplicate key "%V*~

5508 MODIFY 560: key width (561) too large for isam"

When modifing a relation to isam, the sura of the width of
the key fields cannot exceed 245 bytes.

5510 MODIFY 560: bad storage structure "**1"~

The valid storage structure names are heap, cheap, isam,
cisam, hash, and chash.

5511 MODIFY 560: bad attribute name "561""

5512 MODIFY 560: "561" not allowed or specified more than once"

5513 MODIFY 560: fillfactor value 561 out of bounds"

5514 MODIFY 560: minpages value 561 out of bounds"

ERROR MESSAGES - 11 - April 6, 1977

5515 MODIFY 560: "561" should be "fillfactor" or "minpages""

5516 MODIFY 560: maxpages value 561 out of bounds"

5517 MODIFY 560: minpages value exceeds maxpages value"

5600 SAVE: cannot save system catalog "560""

System relations have no save date and are guaranteed to
stay for the lifetime of the data base.

5601 SAVE: bad month "560"" This was a bad month for INGRES.

5602 SAVE: bad day "560""

5603 SAVE: bad year »560"~

5604 SAVE: relation 560 does not exist or is not owned by you"

5800 COPY: relation 560 doesn't exist"

5801 COPY: attribute 560 in relation 561 doesn't exist or it has
been listed twice"

5803 COPY: too many attributes"

Each dummy domain and real domain listed in the copy
statement count as one attribute. The limit is 150 at
tributes.

5804 COPY: bad length for attribute 560. Length="56l""

5805 COPY: can't open file 560"

On a copy "from", the file is not readable by the user.

5806 COPY: can't create file 560"

On a copy "into", the file is not creatable by the user.
This is usually caused by the user not having write per
mission in the specified directory.

5807 COPY: unrecognizable dummy domain "560""

On a copy "into", a dummy domain name is used to insert
certain characters into the unix file. The domain name
given is not valid.

5808 COPY: domain 560 size too small for conversion. There
were 562 tuples seccessfully copied from 563 into 564"

ERROR MESSAGES - 12 - April 6, 1977

When doing any copy except character to character, copy
checks that the field is large enough to hold the value
being copied.

•

5809 COPY: bad input string for domain 560. Input was "561".
There were 562 tuples successfully copied from 563 into 564"

*

This occurs when converting character strings to integers
* or floating point numbers. The character string contains

something other than numeric characters
(0-9,+,-,blank,etc.).

* 5810 COPY: unexpected end of file while filling domain 560.
There were 561 tuples successfully copied from 562 into %3~

5811 COPY: bad type for attribute 560. Type="561"~

The only accepted types are i, f, c, and d.

5812 COPY: The relation "560" has a secondary index. The
index(es) must be destroyed before doing a copy "from""

Copy cannot update secondary indices. Therefore, a copy
"from" cannot be done on an indexed relation.

5813 COPY: You are not allowed to update the relation 560"

You cannot copy into a system relation or secondary in
dex.

5814 COPY: You do not own the relation 560."

You cannot use copy to update a relation which you do not
own. A copy "into" is allowed but a copy "from" is not.

5815 COPY: An unterminated "cO" field occurred while filling
domain 560. There were 561 tuples successfully copied from
562 into "63"

A string read on a copy "from" using the "co" option can
not be longer than 1024 characters.

5816 COPY: The full pathname must be specified for the file
560"

The file name for copy must start with a "/".

5817 COPY: The maximum width of the output file cannot exceed
1024 bytes per tuple"

«

The amount of data to be output to the file for each tu
ple exceeds 1024. This usually happens only if a format

ERROR MESSAGES - 13 - April 6, 1977

was mistyped or a lot. of large dummy domains were speci
fied.

ERROR MESSAGES - 1.4 - April 6, 1977

'#

'n&

	Copyright notice 1976
	ERL-579

