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FUZZY SETS AS A BASIS FOR A THEORY OF POSSIBILITY
*

L.A. Zadeh

Abstract

The theory of possibility described in this paper is related to the

theory of fuzzy sets by defining the concept of a possibility distribution

as a fuzzy restriction which acts as an elastic constraint on the values that

may be assigned to avariable. More specifically, if F is a fuzzy subset

of a universe of discourse U = {u} which is characterized by its membership

function up, then aproposition of the form "X is F," where X is avaria
ble taking values in U, induces a possibility distribution nx which equates

the possibility of X taking the value u to up(u) <-- the compatibility

of u with F. In this way, X becomes a fuzzy variable which is associated

with the possibility distribution Itx in much the same way as arandom variable
is associated with a probability distribution. In general, a variable may

be associated both with a possibility distribution and a probability distribu

tion, with the weak connection between the two expressed as the possibility/

probability consistency principle.

Athesis advanced in this paper is that the imprecision that is intrinsic

in natural languages is, in the main, possibilistic rather than probabilistic

in nature. Thus, by employing the concept of a possibility distribution, a

proposition, p, in anatural language may be translated into aprocedure

which computes the probability distribution of a set of attributes which are

implied by p. Several types of conditional translation rules are discussed
and, in particular, atranslation rule for propositions of the form X is F is

a-possible, where a is a number in the interval [0,1], is formulated and

illustrated by examples.
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FUZZY SETS AS A BASIS FOR A THEORY OF POSSIBILITY1*

L.A. Zadeh*

1. Introduction

The pioneering work of Wiener and Shannon on the statistical theory of

communication has led to a universal acceptance of the belief that informa

tion is intrinsically statistical in nature and, as such, must be dealt with

by the methods provided by probability theory.

Unquestionably, the statistical point of view has contributed deep

insights into the fundamental processes involved in the coding, transmission

and reception of data, and played a key role in the development of modern

communication, detection and telemetering systems. In recent years, however,

a number of other important applications have come to the fore in which the

major issues center not on the transmission of information but on its mean

ing. In such applications, what matters is the ability to answer questions

relating to the information that is stored in a data base — as in natural

language processing, knowledge representation, speech recognition, robotics,

medical diagnosis, analysis of rare events, decision-making under uncertainty,

picture analysis, information retrieval and related areas.

A thesis advanced in this paper is that when our main concern is with

the meaning of information — rather than with its measure — the proper

framework for information analysis is possibilistic rather than probabilistic

in nature, thus implying that what is needed for such an analysis is not

Computer Science Division, Department of Electrical Engineering and Computer
Sciences and the Electronics Research Laboratory, University of California,
Berkeley, CA 94720. Research supported by Naval Electronic Systems Command
Contract N00039-77-C-0022, U.S. Army Research Office Contract DAHC04-75-G0056
and National Science Foundation Grant MCS76-06693.

^The term possibilistic — in the sense used here — was coined by
B.R. Gaines and L. Kohout in their paper on possible automata [1].
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probability theory but an analogous — and yet different — theory which

2
might be called the theory of possibility.

As will be seen in the sequel, the mathematical apparatus of the theory

of fuzzy sets provides a natural basis for the theory of possibility, play

ing a role which is similar to that of measure theory in relation to the

theory of probability. Viewed in this perspective, a fuzzy restriction may

be interpreted as a possibility distribution, with its membership function

playing the role of a possibility distribution function, and a fuzzy variable

is associated with a possibility distribution in much the same manner as a

random variable is associated with a probability distribution. In general,

however, a variable may be associated both with a possibility distribution

and a probability distribution, with the connection between the two expressi

ble as the possibility/probability consistency principle. This principle —

which is an expression of a weak connection between possibility and probability

— will be described in greater detail at a later point in this paper.

The importance of the theory of possibility stems from the fact that

— contrary to what has become a widely accepted assumption — much of the

information on which human decisions are based is possibilistic rather than

probabilistic in nature. In particular, the intrinsic fuzziness of natural

languages — which is a logical consequence of the necessity to express

information in a summarized form — is, in the main, possibilistic in origin.

Based on this premise, it is possible to construct a universal language in

which the translation of a proposition expressed in a natural language takes
_

The interpretation of the concept of possibility in the theory of possi
bility is quite different from that of modal logic [2] in which proposi
tions of the form "It is possible that..." and "It is necessary that..."
are considered.

Such a language, called PRUF (Possibilistic Relational Universal Fuzzy),
will be described in a forthcoming paper.



the form of a procedure for computing the possibility distribution of a set

of fuzzy relations in a data base. This procedure, then, may be interpreted

as the meaning of the proposition in question, with the computed possibility

distribution playing the role of the information which is conveyed by the

proposition.

The present paper has the limited objective of exploring some of the

elementary properties of the concept of a.possibility distribution, moti

vated principally by the application of this concept to the representation

of meaning in natural lnaguages. Since our intuition concerning the pro

perties of possibility distributions is not as yet well developed, some of

the definitions which are formulated in the sequel should be viewed as

provisional in nature.

2. The Concept of a Possibility Distribution

What is a possibility distribution? It is convenient to answer this

question in terms of another concept, namely, that of a fuzzy restriction

[ 4 ], [ 5 ], to which the concept of a possibility distribution bears a

close relation.

Let X be a variable which takes values in a universe of discourse U,

with the generic element of U denoted by u and

X=u (2.1)

signifying that X is assigned the value u, u e U.

Let F be a fuzzy subset of U which is characterized by a membership

function up. Then F is a fuzzy restriction on X (or associated with X)

if F acts as an elastic constraint on the values that may be assigned to

X -- in the sense that the assignment of a value u to X has the form



X=u: uF(u) (2.2)

where ]ip(u) is interpreted as the degree to which the constraint repre

sented by F is satisfied when u is assigned to X. Equivalently, (2.2)

implies that 1^Up(u) is the degree to which the constraint in question
4

must be stretched in order to allow the assignment of u to X.

Let R(X) denote a fuzzy restriction associated with X. Then, to

express that F plays the role of a fuzzy restriction in relation to X,

we write

R(X) = F . (2.3)

An equation of this form is called a relational assignment equation because

it represents the assignment of a fuzzy set (or a fuzzy relation) to the

restriction associated with X.

To illustrate the concept of a fuzzy restriction, consider a proposi-

a 5
tion of the form p t= X is F, where X is the name of an object, a variable

or a proposition, and F is the name of a fuzzy subset of U, as in

"Jessie is wery intelligent," "X is a small number," "Harriet is blond is

quite true," etc. As shown in [ 4 ] and [ 6 ], the translation of such a

proposition may be expressed as

R(A(X)) = F (2.4)

where A(X) is an implied attribute of X which takes values in U, and

(2.4) signifies that the proposition p £ X is F has the effect of assigning

F to the fuzzy restriction on the values of A(X).
4
A point that must be stressed is that a fuzzy set per se* is not a fuzzy
restriction. To be a fuzzy restriction, it must be acting as a constraint
on the values of a variable.

The symbol A stands for "denotes" or "is defined to be."



As a simple example of (2.4), let p be the proposition "John is young,"

in which young is a fuzzy subset of U = [0,100] characterized by the

membership function

uyoung(u) =]"S(u;.20,30,40) (2.5)

where u is the numerical age and the S-function is defined by [ 4 ]

S(u;<x,3,y) = 0 for u <_a (2.6)

=2(^)2 for a<u<3
vy-a — —

U-Y\2
%Y-a

= 1 for u >_ y

= 1-2{]^L) for 3 < u < y

in which the parameter 3k ^~ is t^e crossover point, that is,

S(3;a,3,Y) = 0.5. In this case, the implied attribute A(X) is Age(John)

and the translation of "John is young" assumes the form:

John is young —> R(Age(John)) = young . (2.7)

To relate the concept of a fuzzy restriction to that of a possibility

distribution, we interpret the right-hand member of (2.4) in the following

manner.

Consider a numerical age, say u = 28, whose grade of membership in

the fuzzy set young (as defined by (2.5)) is approximately 0.7. First, we

interpret 0.7 as the degree of compatibility of 28 with the concept labeled

young. Then, we postulate that the proposition "John is young" converts

the meaning of 0.7 from the degree of compatibility of 28 with young to the

degree of possibility that John is 28 given the proposition "John is young."

In short, the compatibility of a value of u with young becomes converted

into the possibility of that value of u given "John is young."



Stated in more general terms, the concept of a possibility distribution

may be defined as follows. (For simplicity, we assume that A(X) = X.)

Definition. Let F be a fuzzy subset of a universe of discourse U

which is characterized by its membership function uF, with the grade of

membership, yF(u), interpreted as the compatibility of u with the concept

labeled F.

Let X be a variable taking values in U, and let F act as a fuzzy

restriction, R(X), associated with X. Then the proposition "X is F,"

which translates into

R(X) = F , (2.8)

associates a possibility distribution, JI„, with X which is postulated

to be equal to R(X), i.e.,

nx = R(X) . (2.9)

Correspondingly, the possibility distribution function associated with X

(or the possibility distribution function of IL,) is denoted by ttx and

is defined to be numerically equal to the membership function of F, i.e.,

ttx £yp . (2.10)

Thus, ir„(u), the possibility that X = u, is postulated to be equal to

yp(u).

In view of (2.9), the relational assignment equation (2,8) may be

expressed equivalently in the form

nx =F (2.11)

placing in evidence that the proposition p 4 X is F has the effect of

associating X with a possibility distribution IL. which, by (2.9), is



equal to F. When expressed in the form of (2.11), a relational assignment

equation will be referred to as a possibility association equation, with

the understanding that Ex is induced by p.

As a simple illustration, let U be the universe of positive integers

and let F be the fuzzy set of small integers defined by

small integer = 1/1 +1/2 +0.8/3 +0.6/4 +0.4/5 +0.2/6 . (2.12)

Then, the proposition "X is a small integer" associates with X the possi

bility distribution

nx = 1/1+1/2 +0.8/3 +0.6/4 +0.4/5 +0.2/6

in which a term such as 0.8/3 signifies that the possibility that X is 3,

given that X is a small integer, is 0.8.

There are several important points relating to the above definition

which are in need of comment.

First, (2.9) implies that the possibility distribution nx may be

regarded as an interpretation of the concept of a fuzzy restriction and,

consequently, that the mathematical apparatus of the theory of fuzzy sets

— and, especially, the calculus of fuzzy restrictions [ 4 ] -- provides

a basis for the manipulation of possibility distributions by the rules of

this calculus.

Second, the definition implies the assumption that our intuitive

perception of the ways in which possibilities combine is in accord with the

rules of combination of fuzzy restrictions. Although the validity of this

assumption cannot be proved at this juncture, it appears that there is a

fairly close agreement between such basic operations as the union and inter

section of fuzzy sets, on the one hand, and the possibility distributions
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associated with the disjunctions and conjunctions of propositions of the

form "X is F." However, since our intuition concerning the behavior of

possibilities is not very reliable, a great deal of empirical work would

have to be done to provide us with a better understanding of the ways in

which possibility distributions are manipulated by humans. Such an under

standing would be enhanced by the development of an axiomatic approach to

the definition of subjective possibilities — an approach which might be

in the spirit of the axiomatic approaches to the definition of subjective

probabilities [ 7 ], [ 8 ].

Third, the definition of ttx(u) implies that the degree of possibility

may be any number in the interval [0,1] rather than just 0 or 1. In this

connection, it should be noted that the existence of intermediate degrees

of possibility is implicit in such commonly encountered propositions as

"There is a slight possibility that Marilyn is very rich," "It is quite

possible that Jean-Paul will be promoted," "It is almost impossible to find

a needle in a haystack," etc.

It could be argued, of course, that a characterization of an inter

mediate degree of possibility by a label such as "slight possibility" is

commonly meant to be interpreted as "slight probability." Unquestionably,

this is frequently the case in everyday discourse. Nevertheless, there is

a fundamental difference between probability and possibility which, once

better understood, will lead to a more careful differentiation between the

characterizations of degrees of possibility vs. degrees of probability --

especially in legal discourse, medical diagnosis, synthetic languages and,

more generally, those applications in which a high degree of precision of

meaning is an important desideratum.



To illustrate the difference between probability and possibility by

a simple example, consider the statement "Hans ate X eggs for breakfast,"

with X taking values in U = {1,2,3,4,...}. We may associate a possi

bility distribution with X by interpreting 7rx(u) as the degree of ease

with which Hans can eat u eggs. We may also associate a probability

distribution with X by interpreting px(u) as the probability of Hans

eating u eggs for breakfast. Assuming that we employ some explicit or

implicit criterion for assessing the degree of ease with which Hans can

eat u eggs for breakfast, the values of irx(u) and px(u) might be as

shown in Table 1.

u 1 2 3 4 5 6 7 8

TTX(U)

Px(u)

1

0.1

1

0.8

1

0.1

1

0

0.8

0

0.6

0

0.4

0

0.2

0

Table 1. The possibility and probability distributions
associated with X.

We observe that, whereas the possibility that Hans may eat 3 eggs for

breakfast is 1, the probability that he may do so might be quite small,

e.g., 0.1. Thus, a high degree of possibility does not imply a high degree

of probability, nor does a low degree of probability imply a low degree of

possibility. However, if an event is impossible, it is bound to be improba

ble. This heuristic connection between possibilities and probabilities may

be stated in the form of what might be called the possibility/probability

consistency principle, namely:

If a variable X can take the values u^,...,u with respective

possibilities tt = (^.....tt ) and probabilities p=(p^,... ,pp), then

the degree of consistency of the probability distribution p with the
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possibility distribution ir is expressed by

Y =Vl +""+Vn ' (2'13)

It should be understood, of course, that the possibility/probability

consistency principle is not a precise law or a relationship that is intrin

sic in the concepts of possibility and probability. Rather it is an approxi

mate formalization of the heuristic observation that a lessening of the

possibility of an event tends to lessen its probability -- but not vice-

versa. In this sense, the principle is of use in situations in which what

is known about a variable X is its possibility — rather than its probabil

ity — distribution. In such cases — which occur far more frequently than

those inwhichthe reverse is true — the possibility/probability consistency

principle provides a basis for the computation of the possibility distribution

of the probability distribution of X. Such computations play a particularly

important role in decision-making under uncertainty and in the theories of

evidence and belief [ 9 ], [ 10], [ 11 ], [ 12].

In the example discussed above, the possibility of X assuming a value

u is interpreted as the degree of ease with which u may be assigned to

X, e.g., the degree of ease with which Hans may eat u eggs for breakfast.

It should be understood, however, that this "degree of ease" may or may not

have physical reality. Thus, the proposition "John is young" induces a

possibility distribution whose possibility distribution function is expressed

by (2.5). In this case, the possibility that the variable Age(John) may

take the value 28 is 0.7, with 0.7 representing the degree of ease with

which 28 may be assigned to Age(John) given the elasticity of the fuzzy

restriction labeled young. Thus, in this case "the degree of ease" has a

figurative rather than physical significance.
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If p is a proposition of the form p4 X is F which translates into

the possibility association equation

nA(x)-.F (2.14)

where F is a fuzzy subset of U and A(X) is an implied attribute of X

taking values in U, then the information conveyed by p, I(p), may be

identified with the possibility distribution, n.^x, of the fuzzy variable

A(X). Thus, the connection between I(p), IIwjq, R(A(X)) and F is

expressed by

Kp) AnA(x) (2.15)
where

nA(X) =R(A(X)) =F ' (2-16)

For example, if the proposition p 4 John is young translates into

the possibility association equation

nAge(John) =youn9 (2-17)

where young is defined by (2.5), then

KJohn is young) =nAge(John) (2.18)

in which the possibility distribution function of Age(John) is given by

irAge(John)(u) =1-S(u;20,30,40) , ue[0,100] . (2.19)

From the definition of I(p) it follows that if p ^ X is F and

q £ X is G, then p is at least as informative as q, expressed as

I(p) >_ I(q), if F c G. Thus, we have a partial ordering of the I(p)

defined by
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I(X is F) > I(X is G) o FCG (2.20)

which implies that the more restrictive a possibility distribution is, the

more informative is the proposition with which it is associated. For example,

since very tall c tall, we have

I(Lucy is very tall) > I(Lucy is tall)-,

3. N-Ary Possibility Distributions

In asserting that the translation of a proposition of the form

p^ X is F is expressed by

X is F -> R(A(X)) = F (3.1)

or, equivalently,

Xis F-> nA(x) =F, (3.2)

we are tacitly assuming that p contains a single implied attribute A(X)

whose possibility distribution is given by the right-hand member of (3.2).

More generally, p may contain n implied attributes A,(X),...,A (X),

with A.(X) taking values in U., i = l,...,n. In this case, the transla

tion of p 4 X is F, where F is a fuzzy relation in the cartesian

product u = U, * ••• *U , assumes the form

XisF-v R(A1(X),...,An(X)) =F (3.3)

or, equivalently,

x1sF^n(A1w--Vx»"F (3'4)
where RfA^X),... ,A (X)) is an n-ary fuzzy restriction and n^A (x),...,a (X))

is an n-ary possibility distribution which is induced by p. Correspondingly,
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the n-ary possibility distribution function induced by, p is given by

%(« IL(X))(U1 Un} =yF{ul un} • l"y—»J 6U•
(3.5)

where yp is the membership function of F. In particular, if F is a

cartesian product of n unary fuzzy relations F.j,...,F , then the right-

hand member of (3,3) decomposes into a system of n unary relational

assignment equations, i.e.,

Xis F— RCA^X)) =F1 (3.6)

R(A2(X)) = F2

R(An(X)) = Fn .

Correspondingly,

n(A1(X),..,,An(X))=IIA1(X)X---xnAn(X) ^7)
and

"(A^X) An(X))(uV—un) -\M^] \W{^ (3-8)
where

irA (x)(u.) =uF (u^ , u. eU., i=l,...,n (3.9)

and * denotes min (in infix form).

As a simple illustration, consider the proposition p4 carpet is large,

in which large is a fuzzy relation whose tableau is of the form shown in

Table 2 (with length and width expressed in metric units).

6If F and G are fuzzy relations in U and V, respectively, then their carte
sian product FxG is a fuzzy relation in UxV whose membership function is
given by yp^^v) =vp(u) 'vUq(v).
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large width length u

250 300 0.6

250 350 0.7

300 400 0.8

400 600 1

Table 2. Tableau of large.

In this case, the translation (3.3) leads to the possibility associa

tion equation

n,...(width(carpet),length(carpet)) " arge (3,10)

which implies that if the compatibility of a carpet whose width is, say,

250 cm and length is 350 cm with "large carpet" is 0.7, then the possibility

that the width of the carpet is 250 cm and its length is 350 cm — given

the proposition p 4 carpet is large — is 0.7.

Now, if large is defined as

large = widex long (3.11)

where long and wide are unary fuzzy relations, then (3.10) decomposes into

the possibility association equations

nwidth(carpet) =w1de
and

nlength(carpet) =long

where the tableaux of long and wide are of the form shown in Table 3.



15

wide width y long length y

250 0.6 300 0.6

300 0.7 350 0.7

350 0.8 400 0.8

•

400 1 500 1

Table 3. Tableaux of wide and long.

Marginal Possibility Distributions

The concept of a marginal possibility distribution bears a close rela

tion to the concept of a marginal fuzzy restriction [ 4 ], which in turn

is analogous to the concept of a marginal probability distribution.

More specifically, let X=(X] Xn) be an n-ary fuzzy variable
taking values in U=U-, x... xUn, and let nx be apossibility distribu
tion associated with X, with irx(ur...,un) denoting the possibility

distribution function of II...

Let qk (ir...»ik) be asubsequence of the index sequence (l,...,n)
and let X, x be the q-ary fuzzy variable X^ £(X.. ,...,Xi ). The
marginal possibility distribution nx is a possibility distribution

associated with X/ x which is induced by nx as the projection of nx

U, x A u. x...xu. . Thus, by definition,
(q) " ">! \

on

n,

l(q)
£ Proj,, n (3.12)

(q)

which implies that the probability distribution function of X^ j is related

to that of X by

IT.

(q)
(q) u(ql) X

(3.13)
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where u, xk {u. ,...,ui ), q' £(j-,,...,Jm) is asubsequence of (l,...,n)
which is complementary to q (e.g., if n=5 and q£ (i-j,i2) = (2,4),

then q' = (j\,j?,jo) = (1,3,5), u, .x 4 (u. ,...,u. ) and V denotes12 3 (q ) j1 3m u(q()
the supremum over (u. ,...,u. ) e U. x««'xU. .

Jl Jm Jl Jm
As a simple illustration, assume that U, = U„ = Ug = {a,b} and the

tableau of IL. is given by

Then,

n(xrx2) ""^U^U^X

h h x2 X3 TT

a a a 0.8

a a b 1

b a a 0.6

b a b 0.2

b b b 0.5

Table 4. Tableau of nx.

= Proj,, .. nv = l/(a,a)+0.6/(b,a) +0.5/(b,b) (3.14)

which in tabular form reads

n(xrx2) xl h TT

a a 1

b a 0.6

b b 0.5

Table 5. Tableau of n (xrx2r
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Then, from nx it follows that the possibility that X, = b, X„ = a

X3 = b is 0.2, while from 11/x x x it follows that the possibility of

X1 = b and X2 = a is 0.6.

By analogy with the concept of independence of random variables, the

fuzzy variables X,nx g (x. ,...,X. ) and X, .x £ (X. ,) are

noninteractive if and only if the possibility distribution associated with

X = (X,,...,X ) is the cartesian product of the possibility distributions

associated with X/ x and X/ ,x, i.e.,

and

nv = nv xnv (3.15)
X X(q) X(q')

or, equivalently,

TTY(u1f...,u ) = irY (u. ,...,u. )*tty (u. ,...,u. ) . (3.16)X 1 n X(q) i} ik X(ql) 3} jm

In particular, the variables X,,...,X are noninteractive if and only if

nY = n„ xl x...xl . (3.17)
A Ai A/> A_

I l n

The intuitive significance of noninteraction may be clarified by a

simple example. Suppose that Xk (X,,X2), and X. and X« are noninter

active, i.e.,

7rX^uTu2^ =^X ^"l'^X ^u2^ ' (3.18)

Furthermore, suppose that for some particular values of u, and u«,

irx (u,) = a,, ttx (u2) = a2 < a, and hence Trx(u, ,u„) = cu. Now, if the

value of TT (u,) is increased to a,+6.., 6, > 0, it is not possible to

decrease the value of it.. (u2) by a positive amount, say 62, such that

the value of tfv(u,,u2) remains unchanged. In this sense, an increase in
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the possibility of u, cannot be compensated by a decrease in the possibility

of u?, and vice-versa. Thus, in essence, noninteraction may be viewed as

a form of noncompensation in which a variation in one or more components of

a possibility distribution cannot be compensated by variations in the comple

mentary components.

In the manipulation of possibility distributions, it is convenient to

employ a type of symbolic representation which is commonly used in the case

of fuzzy sets. Specifically, assume, for simplicity, that U.j,...,Un are

finite sets, and let r1 4-(r],...,r^) denote an n-tuple of values drawn
from U,,...,U , respectively. Furthermore, let -ft., denote the possibility

of r1 and let the n-tuple (r],...,rj) be written as the string r]---rj.
Using this notation, a possibility distribution nx may be expressed

in the symbolic form

N
nY = I ir,rr...r (3.19)X .^i i 1 2 n

or, in case a separator symbol is needed, as

nx-j1vrir2-ri (3-2o)
where N is the number of n-tuples in the tableau of nx> and the summa

tion should be interpreted as the union of the fuzzy singletons ^/(^,... ,rn)

As an illustration, in the notation of (3.19), the possibility distribution

defined in Table 4 reads

nY = 0.8 aaa + 1aab + 0.6 baa + 0.2 bab + 0.5 bbb . (3.21)

The advantage of this notation is that it allows the possibility

distributions to be manipulated in much the same manner as linear forms in
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n variables, with the understanding that, if r and s are two tuples

and a and $ are their respective possibilities, then

ar + $r = (av $)r (3.22)

ar n 3r = (a*$)r (3.23)

and ar x $s = (a-3)rs (3.24)

where rs denotes the concatenation of r and s. For example, if

nx =0.8 aa +0,5ab +1bb (3.25)

and

ny =0.9 ba +0.6bb (3.26)

then

nx +ny =0.8 aa +0.5ab +0.9 ba +1bb (3.27)
nx nny =0.6bb (3.28)

and L x i = 0.8aaba + 0.5 abba + 0.9bbba (3.29)

+ 0.6aabb + 0.5abbb + 0.6bbbb .

To obtain the projection of a possibility distribution JIX on

U/ \ 4 (U. ,...,U. ), it is sufficient to set the values of X. ,...,X.

in each tuple in nx equal to unity (i.e., multiplicative identity). As

an illustration, the projection of the possibility distribution defined by

Table 4 on U-j xU« is given by

Proj., „ nY = 0.8 aa + 1aa + 0.6 ba + 0.2 ba + 0.5 bb (3.30)
1*9

= 1 aa + 0.6 ba + 0.5 bb

which agrees with Table 5.
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Conditioned Possibility Distributions

In the theory of possibilities, the concept of a conditioned possibility

distribution plays a role that is analogous — though not completely — to

that of a conditional possibility distribution in the theory of probabilities.

More concretely, let a variable X= (X.j,...,X ) be associated with

a possibility distribution Ify, with nx characterized by a possibility

distribution function irJu,,... ,un) which assigns to each n-tuple (u1,...,un)

in U,x---xU its possibility ^x(u-j "n)»

Let q=(ir...,ik) and s=(J1 Jm) be subsequences of the

index sequence (l,...,n), and let (a. ,...,a. ) be an n-tuple of values
Jl Jm

assigned to X,,x = (X. ,...,X. ). By definition, the conditioned
xq ) J-j Jm

possibility distribution of X/ x4 (X. ,...,Xi ) given X^q,x = (a.. ,...,a.. )
i i\ i in

is a possibility distribution expressed as nY [X. =a. ;...;X. =a. ]
x(q) ^1 Jl Jm Jm

whose possibility distribution function is given by7

irv (u. ,...,u. IX. =a. ;...;X. =a. ) (3.31)
*(q) nl nk> Jl Jl Jm Jm

Airx(ur...,un)
u. =a. ,...,u. =a.

Jl Jl Jm Jm

As a simple example, in the case of (3.21), we have

n(x x)^xi=a-' =0,8aa +]ab ^3'32^
Cm O

as the expression for the conditioned possibility distribution of (X2>X3)

given X, = a.

7In some applications, it may be appropriate to normalize the expression
for the conditioned possibility distribution function by dividing the
riqht-hand member of (3.31) by its supremum over U. x ... xu. .
3 H 'k
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An equivalent expression for the conditioned possibility distribution

which makes clearer the connection between IIY [X. =a. ;... ;X. =a. ]
*(q) Jl Jl Jm Jm

and n„ may be derived as follows.

Let nY[X. =a. ;...;X. =a.] denote a possibility distribution which

consists of those terms in (3.19) in which the j,-th element is a. , the
I J-,

j0-th element is a. ,..., and the j -th element is a. . For example,
L J2 m Jm

in the case of (3.21)

nx[X1 =a] =0.8 aaa +1aab . (3.33)

Expressed in the above notation, the conditioned possibility distribu

tion of X, x = (X, ,...,X. ) given X. =a. ,...,X. =a. may be written

as

nY [X. =a. ;...;X. =a. ] = Proj,, n„[X. =a. ;...;X. =a. ] (3.34)
X(q) Jl 31 Jm Jm U(q) * Jl Jl Jm Jm

which places in evidence that IIX (conditioned on X/x =a/x) is a

marginal possibility distribution induced by nx (conditioned on x(s)=a(s))'

Thus, by employing (3.33) and (3.34), we obtain

n(X X)^X1 sa^ =°'8aa +]ab ^3'35^

which agrees with (3.32).

In the foregoing discussion, we have assumed that the possibility

distribution of X = (X,,...,X ) is conditioned on the values assigned to

a specified subset, X/ x, of the constituent variables of X. In a more

general setting, what might be specified is a possibility distribution

associated with X/^x rather than the values of X. ,...,X. . In such
is; J1 Jm
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8
cases, we shall say that nv is particularized by specifying that nv = G,

X * X(s)
where G is a given m-ary possibility distribution. It should be noted

that in the present context n„ is a given possibility distribution
X(s)

rather than a marginal distribution that is induced by IL..

To analyze this case, it is convenient to assume -- in order to simplify

the notation — that X. = X,, X. =X9,...,X. =X , m < n. Let G denote
Jl ' J2 c Jm m

the cylindrical extension of G, that is, the possibility distribution

defined by

G£GxUm+1x...xUn (3.36)

which implies that

yg(u1,...,un) iyG(uls...,um) , u. eU., j=l,...,n, (3.37)

where yp is the membership function of the fuzzy relation G.

The assumption that we are given IL. and G is equivalent to assuming

that we are given the intersection IL.HG. From this intersection, then,

we can deduce the particularized possibility distribution nv [nY =G]
X(q) X(s)

by projection on U/ x. Thus,

nY [nY =G] = Proj.. nYng . (3.38)
X(q) X(s) U(q) X

Equivalently, the left-hand member of (3.38) may be regarded as the compo

sition of nx and G [5].

As a simple illustration, consider the possibility distribution defined

by (3.21) and assume that

G =• 0.4 aa + 0.8 ba + 1 bb . (3.39)

8In the case of nbnfuzzy relations,particularization is closely related to
what is commonly referred to as restriction. We are not employing this
more conventional term here because of our use of the term "fuzzy restric
tion" to denote an elastic constraint on the values that may be assigned
to a variable.
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G = 0.4 aaa + 0.4 aab + 0.8 baa + 0.8 bab + 1bba + 1bbb (3.40)

LOG = 0.4 aaa + 0.4 aab + 0.6 baa + 0.2 bab + 0.5 bbb
A

n [II/X x x=G] =0.6a + 0,5b .

(3.41)

(3.42)

As an elementary application of (3.38), consider the proposition

p A John is big, where big is a relation whose tableau is of the form shown

in Table 6 (with height and weight expressed in metric units).

big height weight y

170 70 0.7

170 80 0.8

180 80 0.9

190 90 1

Table 6. Tableau of big.

Now, suppose that in addition to knowing that John is big, we also know

that q £ John is tall, where the tableau of tall is given (in partially

tabulated form) by Table 7.

tall height y

170 0.8

180 0.9

190 1

Table 7. Tableau of tall.
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The question is: What is the weight of John? By making use of (3.38),

the possibility distribution of the weight of John may be expressed as

Vight =Projweight n(height,weight)[nheight =tall] (3*39)
= 0.7/70 + 0.9/80 + 1/90 .

An acceptable linguistic approximation [5], [13] to the right-hand side of

(3.39) might be "somewhat heavy," where "somewhat" is a modifier which has

a specified effect on the fuzzy set labeled "heavy." Correspondingly, an

approximate answer to the question would be "John is somewhat heavy."

4. Possibility Distributions of Composite and Qualified Propositions

As was stated in the Introduction, the concept of a possibility

distribution provides a natural way for defining the meaning as well as

the information content of a proposition in a natural language. Thus, if

p is a proposition in a natural language NL and M is its meaning,

then M may be viewed as a procedure which acts on a set of relations in

a universe of discourse associated with NL and yields the possibility

distribution of a set of variables or relations which are explicit or

implicit in p.

In constructing the meaning of n given propositions, it is convenient

to have a collection of what might be called conditional translation rules

[14] which relate the meaning of a proposition to the meaning of its modi

fications or combinations with other propositions. In what follows, we

shall discuss briefly some of the basic rules of this type and, in particular,

will formulate a rule governing the modification of possibility distributions

by the possibility qualification of a proposition.
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Rules of Type I

Let p be a proposition of the form X is F, and let m be a modi

fier such as very, quite, rather, etc. The so-called modifier rule [6]

which defines the modification in the possibility distribution induced by

p may be stated as follows.

If

XisF-nA(x) =F (4.1)

then

Xis mF -* II^jq =F+ (4.2)

where A(X) is an implied attribute of X and F is a modification of

F defined by m.9 For example, if m=very, then F =F; if

m4more or less then F+ =vf; and if m=not then F+ =F' £comple

ment of F. As an illustration:

If

John is young —> nAge(John) =young (4.3)
then

2John is very young -* nAge(John) = young .

In particular, if

young = 1- S(20,30,40) (4.4)

then

young2 =(1 -S(20,30,40))2

where the S-function (with its argument suppressed) is defined by (2.6).

9A more detailed discussion of the effect of modifiers (or hedges) may be
found in [15], [16], [17], [8], [6], [13] and [18].



26

Rules of Type II

If p and q are propositions, then r 4 p*q denotes a proposition

which is a composition of p and q. The three most commonly used modes

of composition are (i) conjunctive, involving the connective "and";

(ii) disjunctive, involving the connective "or"; and (iii) conditional,

involving the connective "if...then." The conditional translation rules

relating to these modes of composition are stated below.

Conjunctive (noninteractive): If

Xis F->-nA(xx =F (4.5)

and

Y is G-*nB(Y) =G (4-6)
then

X is Fand Y is G-> n#A#x% g/yxx =FxG (4.7)

where A(X) and B(Y) are the implied attributes of X and Y,

respectively, II/A/xx B(Yu 1S tne possibility distribution of the variables

A(X) and B(Y), and FxG is the cartesian product of F and G. It

should be noted that FxG may be expressed equivalently. as

FxG = F HG (4.8)

where F and G are the cylindrical extensions of F and G, respectively

Disjunctive (noninteractive): If (4.5) and (4.6) hold, then

Xis ForY isG-n(A(x)>B(Y)) =F+G (4.9)

where the symbols have the same meaning as in (4.5) and (4.6), and +

denotes the union.
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Conditional (noninteractive): If (4.5) and (4.6) hold, then

If Xis Fthen Yis G— n(A(X),B(Y)) =F'®G (4J0)

where F* is the complement of F and © is the bounded sum defined by

•Wg-^-i'f+V (4J1)

in which + and - denote the arithmetic addition and subtraction, and

yF and y« are the membership functions of F and G, respectively.

Illustrations of these rules -- expressed in terms of fuzzy restrictions

rather than possibility distributions — may be found in [6] and [14].

Truth Qualification, Probability Qualification and Possibility Qualification

In natural languages, an important mechanism for the modification of

the meaning of a proposition is provided by the adjunction of three types

of qualifiers: (i) is t, where t is a linguistic truth-value, e.g.,

true, very true, more or less true, false, etc.,; (ii) is X, where X is

a linguistic probability-value (or likelihood), e.g., likely, very likely,

very unlikely, etc.; and (iii) is tt, where tt is a linguistic possibility-

value, e.g., possible, quite possible, slightly possible, impossible, etc.

These modes of qualification will be referred to, respectively, as truth

qualification, probability qualification and possibility qualification.

The rules governing these qualifications may be stated as follows.

Truth qualification: If

Xis F-> nA/x^ =F (4.12)

then

X is F is t —*• nA/xx = F
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where

uF+(u) =yT(yp(u)) , ueU ; (4.13)

y and yF are the membership functions of t and F, respectively,

and U is the universe of discourse associated with A(X). As an illus

tration, if young is defined by (4.4); x = very true is defined by

very true =S2(0.6,0.8,l) (4.14)

and

John is young — nAge(John) =young (4,15)
then

+

John is young is very true -*• nAge(Jonn) =young

where

young+(u) =S2(l-S(u;20,30,40);0.6,0.8,l) , ueU.

Probability qualification: If

X is F-• nA/xx =F (4.16)

then

X is F is X -* n = X (4.17)
I p(u)yF(u)du
JU r

where p(u)du is the probability that the value of A(X) falls in the

interval (u,u+du); the integral

p(u)yP(u)du
U h

is the probability of the fuzzy event F [19]; and X is a linguistic

probability-value. Thus, (4.17) defines a possibility distribution of

probability distributions, with the possibility of a probability density
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p(«) given by

tt(pH) =yx p(u)yp(u)du| . (4.18)

As an illustration, consider the proposition p4 John is young is very

likely, in which young is defined by (4.4) and

u ,.,,," S2(0.6,0.8,l) . (4.19)
*\ery likely v

Then

.2
ir(p(0) • S1

100

0

p(u) (1 -S(u;2Q,30,40)du);0.6,0.8,1 . (4.20)

Possibility qualification: If

X1sF-*nA(X) =F
(4.21)

then

X is F is possible -+ nA#y\ = F

in which

F = F © n (4.22)

where H is afuzzy set of Type 2° defined by

yn(u) =[0,1] , ueU , (4.23)

and © is the bounded sum defined by (4.11). Equivalently,

Up+(u) = [yp(u),l] , ueU , (4.24)

which defines yF+ as an interval-valued membership function.

10The membership function of a fuzzy set of Type 2 takes values in the set
of fuzzy subsets of the unit interval [5], [6].
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In effect, the rule in question signifies that possibility qualifica

tion has the effect of weakening the proposition which it qualifies through

the addition to F of a possibility distribution n which represents

total indeterminacy in the sense that the degree of possibility which it

associates with each point in U may be any number in the interval [0,1].

An illustration of the application of this rule to the proposition p4 X

is small is shown in Figure 1.

As an extension of the above rule, we have: If

Xis F-* nA(xx =F (4.25)

then, for 0 < a < 1,

X is F is a-possible —* HA(X) =F (4.26)

where F+ is a fuzzy set of Type 2whose interval-valued membership function

is given by

yF+(u) =[a-yp(u), a©(l-yF(u))] , ueU. (4.27)

As an illustration, the result of the application of this rule to the propo

sition p 4 X is small is shown in Figure 2. Note that the rule expressed

by (4.24) may be regarded as a special case of (4,27) corresponding to

a = 1.

A further extension of the rule expressed by (4.25) to linguistic

possibility-values may be obtained by an application of the extension prin

ciple, leading to the linguistic possibility qualification rule:

11n may be interpreted as the possibilistic counterpart of white noise.
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If

Xis F-* nA(x) =F (4.28)

then

X is F is 7r-possible —• IU/yx = F

where F+ is a fuzzy set of Type 2 whose membership function is given by

VpCu) = (>o(TT^yF(u)))n(<o(7T©(l.vlF(u)))) (4.29)

where tt is the linguistic possibility (e.g., quite possible, almost

impossible, etc.) and © denotes the composition of fuzzy relations. The

statement of this rule should be regarded as provisional in nature, since

the implications of a linguistic possibility qualification are not as yet

fully understood.

An interesting aspect of possibility qualification relates to the

invariance of implication under this mode of qualification. Thus, from the

definition of implication [ 6 ], ist follows at once that

X is F =* X is G if F c G . (4.30)

Now, it can readily be shown that

FC G => F+ C G+ (4.31)

where c in the right-hand member of (4.31) should be interpreted as the

relation of containment for fuzzy sets of Type 2. In consequence of (4.31),

then, we can assert that

X is F is possible => X is G is possible if F c G . (4.32)
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5. Concluding Remark

The exposition of the theory of possibility in the present paper

touches upon only a few of the many facets of this -- as yet largely unexplored

-- theory. Clearly, the intuitive concepts of possibility and probability

play a central role in human decision-making and underlie much of the human

ability to reason in approximate terms. Consequently, it will be essential

to develop a better understanding of the interplay between possibility and

probability -- especially in relation to the roles which these concepts

play in natural languages -- in order to enhance our ability to develop

machines which can simulate the remarkable human ability to attain impre

cisely defined goals in a fuzzy environment.
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Fig. 1. The possibility distribution of
"X is small is possible".



Fig. 2. The possibility distribution of
"X is small is a-possible".
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