
 

 

 

 

 

 

 

 

 

Copyright © 1977, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



ON RANDOM SETS AND BELIEF FUNCTIONS

by

Hung T. Nguyen

Memorandum No. UCB/ERL M77/14

6 April 1977

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



BBS5&SK ffiJSRW
BERKELEY. CALIFORNIA S*72«

ON RANDOM SETS AND BELIEF FUNCTIONS

Hung T. Nguyen
Department of Electrical Engineering and Computer Sciences

and The Electronics Research Laboratory
University of California, Berkeley, CA 94720

I. Introduction

The mathematical theory of evidence, as developed by G. Shafer

([l]j[2]), is based, in the main, upon the notion of lower-probability

measures in the work of A. Dempster on statistical Inference (e.g.[3]).

Such set-functions have been employed in many different fields such

as theory of capacities (G. Choquet,[4]), stochastic geometry (G. Kendall[5],

G. Matheron[6]), random fields (F. Spitzer[7]), and set-valued Markov processes

(T.E. Harris[8]).

This paper deals with a closer relationship between Dempster's scheme

of multi-valued mappings and Shafer's belief functions. The basic prob

ability assignment is regarded as the probability distribution of a random

set, the notion of condensability is expressed in terms of a multi-valued

mapping and is related to a general notion of regularity of probability

measures. These points of view are useful for applying the notion of

belief to fuzzy analysis where multivalued mappings are replaced by fuzzy

mappings, and propositions are of the form "X is A" where A is the label

of some fuzzy set [9] of a universe of discourse, possibly a continuum.
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2. Measurability of multi-valued mappings

Let (X,*^), (s£B), (^PCS),^) be three measurable spaces, where

HP(s) denotes the collection of all subsets of the set S.

Consider a multi-valued mapping:

T :X -^S).

We shall formulate two notions of measurability for T: the first

one is needed for defining lower (and upper) probability measure the

second one for considering random sets. Note that these notions of

measurability have been investigated, for example, by G. Debreu [10]

in a topological setting.

First, consider two inverses of T

a) Lower-inverse:

r* ^(S) -^(X)

te <p(s), r^(T) = t. = {x ex :r 4 «J>, r c T}
X X

b) Upper-inverse

T* :<P(S) -* <p(X)

te <P(S), r*(T) = t* = {x e x :r ht^},

Remark: The names of these inverses of T are given in the way that is

related to lower and upper probability measures. The lower-inverse

[resp. upper-inverse] is called upper-inverse [resp. lower-inverse] by

CI. Berge [11], and strong inverse [resp. weak inverse] by G. Debreu [10]

Definition 2.1

The multi-valued mapping V is said to be strongly measurable, with

respect to{Jk and 45, iff:
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vb eCg, r*(B) e^4.

Example:

Let X be a topological space,<j4 its Borel a-field; S a finite

set with its discrete topology. If T is lower-semi continuous on X

(i.e. for each xn £ X, for any V open in S such that V H r 4 <J>, there
x0

exists a neighborhood U of XQ such that: xGU^VOr 4 $)* then r

is strongly measurable, with respect tocjrandHP(S), since VA C s r*(A)

is open in X.

Now consider T as a point-to-point mapping, from X to4-*(S), where

"points" in ^P(S) are in fact subsets of S. The collection of all subsets

of ^(S) is denoted by^^S).

Let T the inverse mapping of T, i.e.

r"1 :<?*?> (s) * <P(x)

t€qxp($)., r'V) ={x ex:rx et}

If45 is a a-field on ^P(S), then as usual, T is said to be measurable,

with respect tOLAand^B, iff:

VT^, r-1(T) €u4.

Remark:

Let^ be the class of all finite subsets of the set S. For

Ie^,let v be the projection from ^(S) to ^(1), i.e.

AGCP(s), ^(A) -An i.

A finite dimensional cylinder set in <P(S) is a subset A of <P(S)

of the form:

A=it"1(A), where I€J} ,and AC<P(i).
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In particular, If A » {I }, I C i, then:

A = {B C s :BDI±9 B» D1-1}

Note that if Iv I2 G^ and I Di =$, then:

^ UI <zi> " {B CS: BDh> B' Dx2}-

Let Q denote the class of all finite dimensional cylinder sets in <P(S),

and (S3f= a(££), the a-field of ^(S), generated by fy. It is clear that
if r is strongly measurable (with respect toc^and^B) and if .Q C<Q,

then T is measurable (with respect totjtandij).

3. Lower-probability measure and belief functions.

3.1 A source is a probability space (X,(j4 , P) and a multi-valued

mapping r :X+ ^P(S). For simplicity, we assume that S* €<Jk and

P(S*) o i, Let^6be a a-field on S, we assume that T is strongly

measurable (with respect to^and^B), and in addition:

If T€^B, then T« {x €X:Tx DT} ejk.

The lower, and upper probability measures P^, P* are defined on

respectively by:

P*(B) = P(B^)

P*(B) - P(B*).

Note that P*(B) = l-P^(B').

A. Dempster considered also the set-function:

Q(B) = P(B).

Remark: In the study of random fields [7] and set-valued Markov

processes [8], the set-functions Q and P*, in the case where r is regarded
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as a random set, are called correlation function and incidence function

respectively.

Let f be a set-function: 4? -*• H. Two types of successive

differences of f(B), B£^B, with respect to parameters B G^B,

i = l,...,n+l, are defined as follows:

(i) V1(B;B1)f => f(B) - f(B U B^

V .-(B^-,...^ ,-). « V (B:B-,...,B )- - V (B U B ,,; B-,... ,'B )r
n+1 1. n+1 f nN 1* ' n f nN n+1 1' n'f

(ii) A1(B:B1)f = f(B) - f(B H B^

An+1(B;B1,...,Bn+1)f = An(B;Br...,Bn)f - An(B n b^; B^.-.B^

Following Choquet [4], we say that

a) f is alternating of infinite order of if V £ 0 for all n

b) f is monotone of infinite order if A > 0 for all n.
n —*

Properties of P^ and P* can be summarized as follows:

Proposition 3.1.1

(i) !*(*) " °» Z*<s> " x

(ii) P^ is monotone of infinte order.

(iii) If B £ ^B is a decreasing sequence, then:

In a dual way:

Proposition 3.1.2

(i) P*((J>) = 0, P*(S) = 1

(ii) P* is alternating of infinte order.

(iii) If B £4>is an increasing sequences, then:

P*(Bn) f P*(UBn).
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These facts can be seen from the definition of P^ and P* in terms

of P, and the fact that:

r*<? V =2 T*(V

r*(UB.) « u r*(Bj.
i *• i i

Remarks:

a) We have only I\(U )3U I\(B,).
* i Bi ~~ i * ±

b) In particular, the lower-probability measure P^ [Resp. P*] is

strongly super-additive [resp. strongly sub-additive].

c) For the time being, no topological notions are considered.

For further application to fuzzy analysis, where S - [0,1] or

some compact set of the real line, the topology will play an

important role. Let us point out a result in [6] (Choquet*s

theorem) concerning a functional associated with a random closed

set: [this functional plays the role of probability distribution

function of a real random variable]: If S is a locally compact

space, the space F of closed subsets of S is topologized in

some suitable way, a denotes its Borel a-field, and T is a

set-function defined on the space^Xof compact sets of S, then

the following are equivalent:

(i) T is an alternating Choquet Capacity of infinite order such that

T takes values in [0,1] and T(<f>) = 0.

(ii) There exists a unique probability measure P on a_ such that
F

T(K) = P[{A e F :AH K* ♦>], VK e<cK.

3.2. We recall here the notion of belief function on a finite set S.

A belief function Bel on S is a set-function from *-P(S) to

[0,1] such that:
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(i) Bel (4>) o 0

(ii) Bel (S) = 1
k . .

(iii) For any k, Bel (UA.) > £ <-D |I|+1 Bel( H A4)
i-1 I?4* i€i i

I C {!,...,k}

where |l| denotes the number of elements in I.

Note that a belief function Bel is increasing and there exists a

set-function:

m :<p(S) •* [0,1] such that:

a) m(<|») = 0

b) E (A) = 1
A € ^P(S)

c) Bel(A) = 2 m(B).
B C A

m is called the basic probability assignment [2], and

v |A"B|
m(A) = 2-r (-D Bel(B).

B C A

Note also that (iii) is equivalent to the non-negativity of m.

Remark: The representation problem of belief functions in terms of

measure algebra and allocation of probability has been fully discussed

in [1].

4. Random sets and belief functions

Consider a source (X.c^AjP), V:X-k^S).

Let^Bbe a a-field on S. We assume that T is strongly measurable,

(with respect to^and^B).

Proposition 4.1 The lower-probability measure P^ on4>is deduced from the

probability distribution of T considered as a random set.
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A

Proof: Let^be the a-field on ^(S) defined by:

teCB^r-1^) e<^4.
A

Thus, with respect totJ{and 4j, T is a measurable mapping. We say that

T is a rondom set by specifying its probability distribution P on^B:

te^, P(T) =Ptr"1^)]

If A £ ^(S), denote by 1(A) the principal ideal generated by A, i.e.,

1(A) = {B C s :BC a}, then VB S^B, i(B) e^B. Indeed:

T (1(B)) = B^ ^Jrby strong measurability of T. It follows that:

P[I(B)] = P*(B), vbgCB.

Proposition 4.2. In the finite case, the probability distribution of

the random set T is precisely the basic probability assignment.

Proof: Since S is finite, and we assume that A €^4 for all A C s, it

is clear that^B=^^ (S).

On the other hand, since:

m(A)= £ (-1)IA|-|B|
B C A ^*W

=*P*(B) = 2 m(B) « Z m(B) =m[I(A)]
B C A B e 1(A)

where m is the probability measure on CP^P(S) with density m. But

P[I(A)] -P^(A) =»!({A» = E (-1)IAI"IB'p*(B)
B CA

= m({A}).

Remarks:

(i) For A C s, let F(A) be the principal filter generated by A,

then: VA C s (or more generally, A gQ, in the infinite case)
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Aej4*F(A) eCg.

(ii) Let X be a topological spacetJ( its Borel a-field. S be a

be a Hausdorff, locally compact space,^Bits Borel a-field.

F, Q j'cK denote respectively the collection of all closed, open,

compact subsets of S. As a topological space [where the topology is

generated by {FK, Ke9J(} and {fg, G€Q }, with:

FK = {A e F :AH K = *}

FG = {A e f : A H G ^ <(.}

the space F is a Hausdorff, compact space. If T : X -»-^3fis continuous, then:

vb e^B, {x e x : T = B} GiA.
x v-/

Note that if A^ and A^^then

A. H a = {n : T = A} tjk.
* x ^

(iii) In this finite case, the existence of the biunivocal correspondence

between belief functions on S and probability distributions of random

sets is established by using the fact that to construct _P, it is

sufficient to construct its density on r(S), on one hand; and on the

other hand, given a set function v (belief function) on <-P(S), we

define _P[I(A)] = v(A), and we are in conditions of application of the

Mobius inversion theorem [12] to obtain P({A» via the Mobius function:

u(AfB) =(-l)'AHBlf ACB.

(iv) If ^J2(r) denotes the range of T, it is sufficient to

consider 1(A) = {B S <Q(T) : B C A}.

Example Let E = {At> t€ [0,1]} be a family of subsets of S such

that:

a) AQ = S

b) A± = <f>

c) s < t «> A 3 A .
_ s — t
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Let Q be the a-field on E defined as follows:

T££ *> T={At> e T, where Te^Bi the Borel a-field of the unit
inverval [0,1].

Let T be a random set taking values in (E, Q ) with probability

distribution P:

p[r e T] = A(T)

where A is the Lebesque measure on [0,1].

Let I(AJ = {A : A C a >
t s s — t

Then I(At) egfor all t € [0,1], since
KAt) = (As}s e [tfl]

Define a belief function v on E by:

v(At) =P[r E i(At)] = 1-t

5. Regularity and Condensability.

In this paragraph, given a scheme (X,lA,P), T : X -»-^P(S), we

assume that T is strongly measurable with respect to^Jkand ^P(S). Thus,

the belief function P^ and the upper probability measure £* are defined

on<:-P(S). Following Shafer [1], we say that the upper probability measure

P* is condensable iff JP* has the following approximation property:

VA E<p(S), P*(A) = sup P*(B) (1)
BG^O^A)

where fl denotes the collection of all finite subsets of S. Recall that,

if A is an increasing sequence in ^P(S), then:
n

P*(U A ) = sup P*(A )
n

n * — n

-10-



The condensability of P* is stronger than this sequential increasing

continuity. In fact [1], P* is condensable if and only if for any upward

net A. in ^(S), i^ I, we have:

P*(UA.) = sup P*(A,). (2)

The fact that (2) implies (1) can be seen as follows: let AGCP(s),

and T=£ H4^(A). It is obvious that Tis an upward net in <P(S),

and A = Ui thus:

I G T

P*(A) = p*( U i ) = sup P* (I)
ig t ig a n <+>(a)

Recall also that the upper-inverse V* of T maps ^P(S) intO(j4, since

r is strongly measurable, and:

(i) T* is increasing

(ii) T* (UA.) = Ur*(A.)
I * I ±

As a consequence, if A. is an upward net in 4^(S), then T*(A ) is an

upward net in^.

We now proceed to give a first characterization of condensability

of P* in terms of V.

Let^(P) be the subset of ^P(^) defined by:

A^^(P) ofUA^ G^4and
A G A

P[ U A ] = sup^ P(A)
A G A A G A

Let U[ ^(S)] be the set of all upward nets in ^(S). Define the

mapping T, from ^^(S) into<p<P(X) [in fact into tytyi^A)], induced by
T*, as follows:

?(A) = {r*(A),AG A}
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Proposition 5.1 A necessary and sufficient condition for the

condensability of P* is that f maps U[ ^P(S)] into^(P).

Proof Suppose that P* is condensable. Let A., i G i, be an upward

net in^P(S). By strong measurability of T, T(U A.) €<J\9 thus

U T*(A )G (j4. We have:
I

P*(UA.) = P[(UA.)*] = P[UA *] = sup P*(A.) = sup P(A *)
"I1 "I1 ""I1 j-1 ! ±

A

Thus {A±*,i G 1} G^(P).

The sufficiency follows immediately from the definition of (j4(P)•

There is another way to study the condensability of the upper-

probability measure .P*, associated with the scheme (X,c^n,P.),

T :X ->^P(S), uniquely in terms of the probability space (X,^A ,P)

and T. As before the upper-inverse T* will play an important role.

For this purpose, we shall first introduce a general notion of regularity

for probability measures (or more generally, for measures); using this

notion, we shall express the condensability of P* in terms of T* as

a criterion and study some consequences.

Notion of p-regularity

Let (ft, ^4 ,P.) be a probability space.

Let (E,<) be a partially ordered set, and F G e. Finally,

let p be a mapping from E to<j4«

Definition 5.2

We say that the probability measure P_ is regular with respect to

the system (E,F,p) [or simply p-regular, if E and F are fixed] iff:
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Vx G E, P[p(x)] = sup P(A)
AG 3(X)

where

p(x) a {p(y) . y e F, y < x}.

Remarks:

(i) Let E, F be subclasses of^: FC eC^; and p :E -+{J{

the canonical injection. Then the p-regularity of P_ is the usual one, i.e.

VA G E, P(A) = sup P(B)
BG F O q)(A)

Here, p(A) - F O <P(A).

(ii) If jP is p-regular, and p increasing, then:

P[p(x)] = sup P(A)
AG P(F) nCp[p(x)]

Consider again the scheme (X,^ »Z)» r :X+ SP(S), with Y strongly

measurable. Denote by % the collection of all finite subsets of S.

PutCJ* =T*(^ )andjt* -r*fl>(S)].
Consider the system (^P(S),^ ,T*).

We say that P is T*-regular if P is regular with respect to the

system (^P(S),^ ,T*). Then it is straightforward that:

Proposition 5.3

The following are equivalent

(i) £* is condensable

(ii) P_ is T*-regular.

Proposition 5.4

If £ is T*-regular, then:

VA e<4*, P(A) » sup P(T)
TGCjf* nCp(A).
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Proof:

Let BG Cp(S) such that A = T*(B).

We have:

P(A) » P[r*(B)]= sup P(T)
T G f*(B)

where f*(B) = (r*(I), IGJ} ,IC b}.

Thus:

P(A) = sup.P[r*(I)]

<± sup P[T*(I)] since V* is increasing.

flGd
Vr*(i) c r*(B)

We obtain, in fact, equality since P is increasing.

Remark

If (G,^,P) is a probability space and UC(^BCu4» we say that

_P is (inner) regular on43if:

VB G^B, P(B) = sup P(T)
T g $n q)(B)

More generally, let ty a mapping from^Binto 4^(Q) sucn that

t|>(B) C $n ^(B) for all BG^B. We can say that P is regular with

respect to (^ ,<Q,*) iff: VB GCg9 p(B) - sup P(T)
T G ^(B)

If the upper-inverse T* is injective [11], i.e.

a 4 b =» r*(A) n r*(B) = $

then £* is condensable if and only if P is regular with respect to

<^*»dl*»*) where:

AGJ(*, A 4 +

ij;(A) = (r*(I), IG Q, IC b} where B is the unique element of <hP(S)

such that A = T*(B).
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Proposition 5.5

If for each BG ^p(S), there exists a sequence {I } „
H nn G n

elements of %such that:

r*(B) = u r*(i )
n n

then P_ is regular ontA* with respect to Q*.

Proof: Let AG^*, A= r*(B) for some BG^p(S).

Since %is closed under finite union, and T* preserves (arbitrary)

unious, we can assume that the sequence {P*(I )} r- „ is increasing.
n n & N &

By monotone continuity of P, we have:

P(A) = P[r*(B)] = sup P[r*(l )]
— — — n

n.

< sup p(r*(D)

r*(i) c a.

We then get equality since P^ is increasing.

Proposition 5.6

If S is countable, then P_ is PA regular.

Proof:

Each BG ^p(S) can be written as:

B = U I with I G 0 and I increasing,
n n n O n 6

T*(B) = U r*(I ) with {r*(I )} increasing.

Thus: P[T*(B)] = sup P[T*(I )].
— — n

n

1 sup p[r*(i)]

I fa
I C B

< sup p[r*(D] < P[r*(B)]

**£
r*(i) c r*(B)
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