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ABSTRACT

In this paper a new approach to the placement problem is introduced.

The main idea is to take advantage of what one can do in linear placement

in tackling the two-dimensional placement problem. The method consists

of three distinct phases, namely: decomposition, linear placement and

iterative improvement. Each is clearly spelled out. Both constructive

and iterative algorithms are developed. The complexity of computation

is analyzed and the method has been tried with practical examples.

Although no general conclusion can be made on the effectiveness of the

method, it appears that the method is at least comparable to that described

in a recent paper [2],
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I. INTRODUCTION

In the design of large electronic circuits or systems, one key

problem which designers encounter is "layout". Because of its complexity,

the layout problem is usually divided into two subproblems, namely:

placement and routing. By placement, we mean the selection of locations,

for example, on a board for individual modules in such a way to facilitate

routing. The modules represent components or subsystems, which in many

typical cases, are semiconductor chips with external leads called pins to

be connected according to specifications. By routing, we mean the process

of making the interconnections while satisfying various physical and

economical constraints. Often, there exist conflicting requirements and

goals in each subproblem, and there are possible trade-offs; therefore

it is difficult to think about what constitutes an optimum layout design.

In this paper we will deal with only the placement problem, and we shall

adopt the usual goal of minimizing the total routing length defined in

an appropriate way.

Our approach differs from those in the literature [1-4] in that

throughout the process we bear in mind and depend on what can be done in

the much simpler one-dimensional placement problem. Our approach can be

separated into three phases, each one is to achieve a specific aim which

is easily understood. Wherever possible, we shall comment on the theoretical

implication of each problem. Both constructive and iterative algorithms

will be developed. The complexity of computation of each proposed

algorithm is analyzed and is found to depend on the cubic power of the

number of modules.

Phase one deals with the decomposition of all modules into horizontal

blocks and vertical blocks. The aim is to minimize the number of
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interconnections between vertical blocks and between horizontal blocks,

thus more or less reducing the problem to a linear placement problem.

Two methods are presented, one constructive and one iterative. From

the examples which we have tried, the iterative method can follow the

constructive method to yield the best results. At the conclusion of

this phase, each module must belong to one horizontal block and one

vertical block. The second phase deals with the determination of an

optimum ordering of both the horizontal blocks and the vertical blocks.

The purpose of this is to minimize the routing length. Here we depend on

a recently worked out algorithm of linear placement [5]. Finally, in

phase three, we perform the mop-up process to improve still the result.

We introduce an iterative improvement algorithm to further reduce

successively the total routing length by permuting modules on the same

row or on the same column.

Three examples are used to test and evaluate our methods. These

are summarized in Section VII along with some comparisons with existing

methods.

II. PRELIMINARY REMARKS AND EXAMPLES

Consider a two-dimensional board on which modules are to be placed.

The board is characterized in terms of a finite array of slots. A slot is

a point in an xy-coordinate system. Modules are the entities which are to

be assigned to slots to achieve some form of optimum results. Obviously,

one module can occupy one and only one slot, and on each slot not more than

one module is allowed.

Modules contain pins for connection by physical wires to form signal

nets. In other words, a signal net is a set of pins which must be inter-
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connected to have the same potential. In treating the placement problem

it is customary to disregard the pins but rather consider modules as the

basic entity. In the routing problem the interconnection of pins is then

taken up. Thus, each signal net in the placement problem becomes a set

of modules and signal nets specification defines the connection of all

modules.

Let B = fb ,b2,...,b } be the set of all modules and S = {sn,s0,...s }
n 12m

be the set of all signal nets. The specification of interconnection is

given by the connection matrix A = [a..] which is m by n: a = 1 if

signal net i is associated with module j, and a = 0 otherwise.

Let the board have p rows and q columns of slots. We may assume

that the number of modules is equal to n = pxq without loss of generality,

because dummy modules which are not connected can always be introduced.

Consider an example of a three by three board with five signal nets

and nine modules. The connection matrix is

1 2 3 4 5 6 7 8 9

© 1 0 1 0 0 0 0 0 0

© 0 1 0 1 0 0 0 1 0

A- ® 0 0 0 0 1 1 0 1 1

© 0 0 1 0 0 0 1 0 0

© 0 0 1 0 0 0 1 0 0

(1)

Note in the last two rows it is seen that the two signal nets are

associated with the same two modules. This means that they actually

connect different pins of the same modules. Assume that the modules

are placed as in Fig. 1, one possible interconnection is shown.

We wish first to comment briefly on what we mean by routing length.
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First, it is meaningful to define the distance between two adjacent slots,

either vertical or horizontal, as one unit length. Next, we define the

routing length of a signal net as the half-perimeter of the smallest

rectangle which encloses the modules in the signal net. Thus in Fig. 1,

the routing length of the five signal nets are found to be 2, 3, 2, 4 and 4,

respectively. It should be pointed out that in actuality the physical wire

length for signal net (5) is equal to 3 in comparison with the half-

perimeter routing length 2. Thus our definition represents only an

approximation which is convenient to use for various reasons. First,

the routing length as defined is easy to calculate and it fits especially

well with our approach which is based on decomposing modules into one-

dimensional horizontal and vertical blocks. Second, this measure represents

a lower bound of the rectilinear Steiner's minimum tree length. In the

case of signal nets which are associated with two or three modules, it

is equal to the Steiner's tree length. In most practical circuits, 70

to 80% of the signal nets are associated with only two or three modules.

Finally the half-perimeter measure incorporates into consideration to some

degree the ability of routing a signal net without being blocked by others.

Consider the given pxq modules and the connection matrix A. The

first phase in our method is to form p vertical blocks and q horizontal

blocks from the above information. A vertical block contains q modules and

a horizontal block contains p modules. Each module must belong to one

vertical block and one horizontal block. The goal of the decomposition

is to achieve minimum signal net interconnection among the vertical blocks,

and, similarly among the horizontal blocks. Let us denote the complete

set of vertical blocks and the complete set of horizontal blocks by CV and

C , respectively. Thus
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C — 1C. ,C« ,...C /

C = IC. ,C0,...C /
12 q

V h
Each ^ contains q modules, and each C. contains p modules.

We shall illustrate the above concept with the same example. For

the placement given in Fig. 1, p = q = 3 and

C±h ={1,4,7}
C2h = {2,5,8}
C3h ={3,6,9}

(2)

Cxv = {1,2,3}

C2V = {4,5,6}

C3V = {7,8,9}

Interconnection between blocks as specified by signal nets can be represented

by edges connecting different blocks in an interconnection graph. This is

shown in Fig. 2a and Fig. 2b for the horizontal blocks and vertical blocks,

respectively. The number of edges which represent interconnection in the

•u

horizontal blocks is designated by E and is equal to five. The corresponding

number for the vertical blocks is designated by Ev and is also equal to five.

Next consider a different grouping as given by

C* = {3,6,8}

c2h ={5,7,9}
c3h ={1,2,4}

(3)

cxv = {4,8,9}

c2v = {1,3,7}

C3V = {2,5,6}
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The interconnection graphs are shown in Fig. 3a and Fig. 3b. It is found

that for this decomposition E = 5 and EV = 2, which is an improvement

over the first one.

In the second phase of our method we take into consideration the

routing length. So far we have decomposed modules into blocks, but we

have not decided on the ordering. We shall use a linear placement algorithm

to find the optimum ordering for both the horizontal blocks and the vertical

blocks. The goal is to minimize the total routing length. The routing

length for a particular placement is equal to the sum of the routing

length for each signal set. Since we use the half-parameter definition

for the routing length of a signal net, it is easy to show that the total

routing length for a given placement is equal to the sum of the routing

lengths for the horizontal blocks and that of the vertical blocks. Let L

be the total routing length, L and L be the routing length for the

horizontal blocks and vertical blocks, respectively, then L = L +LV.

For the present example, the routing length for the first decomposition

is, according to Fig. 2, L = Lh+LV = 8+7 = 15. From Fig. 3, the routing

length for the second decomposition is L = L +LV = 7+4 = 11.

We next consider a different ordering for the second decomposition

as shown in Fig. 4. It is found that with the ordering shown, L = L +L

= 5+2 = 7. For this particular decomposition and ordering, we have the

module placement as given in Fig. 5. The total routing length is equal to the

sum of the individual routing length for each signal net. They are 1,2,2,1,1

as seen from Fig. 5. Thus we have reduced the total routing length

from fifteen for the placement shown in Fig. 1 to seven for that in Fig. 5.

It is to be noted that minimum edge interconnection does not necessarily

imply minimum routing length. The examples shown in Fig. 6 illustrate the
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point. Therefore, we should be aware of the limitation of our approach

discussed so far. Because of this and other reasons, further improvement

is possible. We now enter the third phase which is an iterative

improvement scheme. By permuting modules on the same row and on the

same column we can further reduce the total routing length. This will

be discussed in Section V.

III. DECOMPOSITION

The examples of the previous section illustrate the concept of

decomposition. In this section we will state the problem in a more

formal way and introduce two methods of decomposition. Let us consider

the grouping of modules into horizontal blocks first. There are q

horizontal blocks and each contains p modules. A signal net is defined

as a subset of modules which are associated with the signal net. Thus,

depending on the decomposition, a signal net can be represented by the

interconnection of a subset of horizontal blocks (or H-blocks) which

contain the modules in the net. We may define an H-graph with q nodes

representing the q H-blocks and edges specified by the signal net. An

edge-sequence is present between nodes representing H-blocks C.h and C, h
J k

if in a signal net there are modules which belong to both C. and C h. If
J k

a signal net is common to more than two blocks, say r = 2, there exist (r-1)

edges in an H-graph, corresponding to the signal net. These edges

constitute a linear tree structure among the r blocks. In the same fashion

we define the V-graph which has p nodes representing the p V-blocks. Our

problem is to find a decomposition in which the total number of edges in

the two graphs, E = E +E , is a minimum among all possible decompositions.

This problem is similar to the graph partition problem [6,7] which

is an NP-complete problem in the sense of Cook and Karp [8]. Therefore
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we need to develop efficient heuristic algorithms. In the following we

will first present a constructive algorithm and then an iterative method.

III.l. A constructive method

The constructive method selects modules, one at a time, based on an

evaluation function which measures signal net connectivity to modules

already selected and then decide which H-block and V-block the selected

module belongs to.

STEP 1: Choose a module arbitrarily, say b.. and let b.. be the member

of C^ and CV.
STEP 2: Determine all the members of C. sequentially, one at a time,

to have the maximum number of the interconnections with the

v

modules of C, already selected.

STEP 3: Determine all the members of C. from the remaining modules in

the same way as in STEP 2. All the members of C. and C. are

decided.

STEP 4: i = 2, j = 2 and FLAG = 0.

STEP 5: Select a module from the remaining modules which has the maximum

number of the interconnections with the numbers of both C.V and
l

t_

C. which are already selected and assign the module to be a
__ i-

member of C. and C. . If FLAG = 0, then to STEP 6; else go

to STEP 7.

STEP 6: i = i+1.

If i _< p, then go to STEP 5. Otherwise, if j < q, then set

FLAG = 1

STEP 7: j = j+1.

FLAG = 1 and i = j and go to STEP 7; else STOP.

*

It means that all members of all the V-blocks have been selected.
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If j <. q, then go to STEP 5.

Otherwise, if i < p, then set FLAG = 0 and j = i+1 and go to

STEP 5; else STOP.

The constructive algorithm is a quick and straight-forward method

whose solution is not optimum but may be close to it. Obviously, the

soLution is affected by the module which is chosen arbitrarily in STEP 1.

Furthermore, the solution is obtained by checking at local interconnections

only.

III.2. An iterative method

The iterative method proposed here is performed more in a global

way than the customary strategy of iteratively interchanging modules.

The process in which a set of specified modules is reassigned to H-blocks

or V-blocks in order to minimize the total number of edges is iterated

until no improvement is achieved. The main idea is based on the maximum

matching algorithm in a bipartite graph proposed in [9] and can be

solved with the Hungarian method. The idea has been adapted in papers [4]

and [10],where a minimum matching algorithm is used to minimize the total

routing length for unconnected signal nets.

Consider, for example, the first V-block, C- , and let us reassign

the modules in C^ to different H-blocks. Let C^ ={b1,b2,...,b }and

bi be a member of the H-block C. . Since elements in the V-blocks are

not changed, any reduction in the number of edges in the H-graph by

reassignment will not affect Ev. We will introduce a q by q cost matrix

denoted by W = {w..} to measure edge interconnection. The i-th row of W

corresponds to the module b. and the j-th column corresponds to the set
l-f * V.

of modules C. = C. -b.. The value of w.. is equal to the total number
3 3 3 ij M
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of interconnection edges between b1 and C.h ,i.e. the number of signal
h'

nets common to the module b. and C .
1 j

For the example in Fig. 1, let us consider the grouping given in

Fig. 2with CXV ={1,2,3}. Thus, C^' ={4,7}, C*' ={5,8} and C3h'= {6,9}
The cost matrix is found to be, as seen in Fig. 7

W =

0 0 0

110

2 0 0

(4)

The sum of the off-diagonal elements of the matrix W represents the total

number of interconnection edges in the H-blocks due to modules in C,V only,

and it is what we wish to minimize among all possible permutations of the

q modules in Cn". For the problem at hand it is seen that, by permuting
v

1 '

b- and b~, we obtain

Wf =

0 0 0

0 11

0 0 2

(5)

Thus we manage to reduce E by two without affecting EV.

The above process is next applied to the first H-block C^. We will

be able to decrease E while maintaining Eh fixed. The process then
v hcontinues with C2 and C2 alternatively. The iteration stops when

there is no further improvement.

IV. LINEAR PLACEMENT

All the members of the H-blocks and V-blocks have been decided in the

decomposition stage. The next problem to be solved is to find an ordering
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of the H-blocks and the V-blocks so as to minimize the total length of

the interconnections. The linear ordering problems for the H-blocks and

the V-blocks can be solved independently, therefore we will discuss only

the linear ordering problem for the H-blocks in this section.

The problem is formulated as follows. Let Ch = {C,h,C„h,...,C h}
12' q

be the family of all the H-blocks and S = {sn,s0,...,s } be the set of
LI m

all the signal nets. Suppose that the H-blocks are arranged in some

t_ l_ i_ y. V» Vi

order, say 0 = {C ,C ,...,C }. The routing length L (0 ) is to be
l 2 q

minimized. This is a linear placement problem [5,ll].

First let us introduce a simple way of computing the routing length.

Assume

°h =(C;J\c2h,...,Cqh) (6)

Let S (K ) C S be the set of signal nets associated with the set of H-blocks

Kh= {C*,C2\...9C*} (7)

Vi Ti Ti

then S (C -K ) is the set of signal nets associated with the H-blocks

which are left over. Let l(C. ,C2 ,...,C, ) denote the number of common

signal nets between the two sets of H-blocks, then

A(C^h,C2h,...,Ckh) =|sh(Kh>nS(Ch-Kh)| (8)

measures the density of the interconnection between the two sets of H-blocks

as shown in Fig. 8. It is easy to see that for the ordering in Eq. (6),

the total routing length for the H-blocks is

Lh(0h) =£ *(Clh,C2h C±h) (9)
i=l

The linear placement algorithm to be used is the e-algorithm
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developed in [5]. The e-algorithm produces a feasible solution whose

cost is not more than (1+e) times the cost of the optimum solution.

Thus, the smaller the value of e, the better the solution; however the

computation time and the required memory space will be larger. We have

found with i. = 1.5, the computation time is about one tenth of that

required for obtaining the optimum solution.

V. ITERATIVE IMPROVEMENT

The wide variety of existing iterative improvement methods can be,

basically, divided into three classes: interchange method (such as

Pairwise or Neighborhood interchange), relaxation method (such as Force-

directed relaxation [1]), and linear assignment method (such as Steinberg's [10]

or Rutman's algorithm [4]). Here, we shall consider an iterative improvement

method to reduce the routing length by the permutation of modules on the

same row or column of a board.

For a given placement of all modules, we will pick up one V-block,

v v
say C, , and consider the linear ordering of the modules in C, to

minimize the total routing length. The length of a signal net which

is not common to any modules in C, remains constant during this manipu

lation since the modules connected to the signal net remain fixed on

the board.

Therefore the problem is reduced to the determination of the linear

ordering of the modules in C, so as to minimize the total length of

signal nets common to one of the modules in C, . The total length of

signal nets with respect to the vertical line is independent of those

ordering, since the members of each H-block are not changed and the

ordering for H-block is invariant by this manipulation. The e-algorithm
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mentioned in Section IV is used to find an ordering of modules.

Consider an example with ten signal nets and six modules, defined

by the following connection matrix A = {a }
ij

A =

1 2 3 4 5 6

© 1 1 0 0 1 0

© 1 1 0 0 1 0

© 1 1 0 0 1 0

© 1 1 0 0 1 0

© 1 0 1 0 0 0

© 0 1 0 1 0 0

© 0 1 0 1 0 0

© 0 0 1 1 0 0

© 0 0 1 1 0 1

ft) 0 0 1 0 1 0

(10)

Let a board be composed of three rows and two columns. Suppose that we

have the following H-blocks and V-blocks in the decomposition stage:

C^ = {1,3,5}

C2 = {2,4,6}

Y ° {1>2}

C2V = {3,4}

C3V = {5,6}

(11)

We can show that this decomposition has the smallest number of interconnection

edges among all decompositions. Interconnections among V-blocks and H-blocks

are given in Fig. 9, and the number of edges is given by EV = 9 and Eh = 6.
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The best linear ordering for this decomposition is given by

Oh =(c1\c2h)

ov =(Cl\c3v(c2v) (12)
and is shown in Fig. 10. The total routing length is equal to 18 (Lh = 12

and L = 6). The placement determined by this decomposition and linear

ordering is shown in Fig. 11.

We can show that by making permutations within a row or a column,

we can further reduce the routing length. In Fig. 11, we have changed

the placement of C« from {2,6,4} to {2,4,6}, and the total routing length

has been reduced to L = 17. This is shown in Fig. 12. It is seen that

this new ordering changes the elements in V-blocks as

C/ = {1,2}

C2V = {4,5} (13)

C3V = {3,6}

The total number of edges in the V-blocks has actually be increased to

ten. Thus, a shorter routine length has been obtained, which corresponds

to a decomposition with larger number of edges.

VI. COMPLEXITY OF COMPUTATION

Now, let us analyze the complexity of computation of the algorithms

proposed. The following notations are used:

n: number of modules

p: number of rows on a board (zyvi)

q: number of columns on a board (-ni)

m: number of signal nets
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<5: maximum number of signal nets per module

cr: maximum number of modules per signal net

In our analysis the number of operations is estimated by the number of

additions or comparisons. It is shown that the leading term in the

computational complexity estimate of the entire process is in the order

of 0(6an3).

VI.1. Decomposition phase

(Constructive method)

xr h
When a member is decided to belong to C. and C. , we must check

the interconnections between (i-l)+(j-l) modules and the.other modules.

P q 2
This requires SojT £ (i-l)+(j-l) operations. And we need (l/2)n

i=l j=l

operations to select a module with maximum interconnections. Thus the

3/2 2
complexity of computation is in the order of 0(<5cm ,n ).

(Iterative method)

There are q modules in a V-block, thus we need 0(q ) operations

to solve the maximum matching algorithm. Suppose we repeat the process

for every V-block and every H-block, we need 0(pq ,qp ) operations or
2

0(n ) operation.

VI.2. Linear placement phase

The complexity of computation for the e-algorithm is a function

of e, 6, a and the number of modules. The e-algorithm with e = 1.5 (which

is used in our program) requires 0(6axnumber of modules ) in our

experimental result. There are 6p and 6q signal nets for H-block and

V-block, respectively. Therefore we need 0(6opq ,6aqp ) operations
3

or 0(6on ) operations.
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VI.3. Iterative improvement phase

Suppose we apply the e-algorithm with e = 1.5 to every H-block and

every V-block, we need 0(6apq5,6crqp5) or 0(6an3) operations.

VII. EXPERIMENTAL RESULTS

In order to check and compare the results of our algorithms with

others, the algorithms were programmed and tested for three examples

in a real problem. The program was written in FORTRAN and run on CDC6400

Example logic graphs were obtained from Stevens1 dissertation [12].

They represent three boards of the ILLIAC IV computer. The smallest,

intermediate and largest problems (67, 108 and 151 modules) appearing

in [12] were chosen and these examples are referred as Example 1, 2

and 3 in this paper.

Stevens used the actual dimensions of ILLIAC IV boards as the grid

size, i.e., there are 10x15 internal card locations and fifteen I/O

connector location in one row on the bottom of the board. We reduced

the grid size to 5x15 and 8x15 for Example 1 and 2, respectively. The

statistics for the example logic graphs are shown in Table 1.

VII. 1. Decomposition phase

For each example problem, first the Constructive method was applied

and then the Iterative method was used to improve the solution. Number

of edges required at the end of the Constructive method and part of the

Iterative method are shown in Table 2 and Table 3, respectively. Also

included is the computation time for performing each method. In the

Iterative method the process is iterated until no further improvement

is achieved for any one of the H-blocks or V-blocks.

It has been debated in the literature whether it is better to use
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a random start followed by an iterative-improvement or to use a constructive-

initial solution followed by an iterative-improvement. The results for

five random starts are shown in Table 4. In our experimental results

the random start approach is always inferior to the constructive-initial

start approach in both the value of the solution and the computation time.

VII.2. Linear placement phase

The e-algorithm with e = 1.5 is applied to find a linear ordering of

H-blocks and V-blocks which were obtained by the Decomposition phase. The

total routing length of interconnections and computation time for determining

a linear ordering are shown in Table 5.

VII.3. Iterative improvement phase

The e-algorithm with e = 1.5 is also applied to find a linear

ordering of modules in each H-block and in each V-block. The improvement

process is iterated until no further improvement is achieved for any one

of the H-blocks or the V-blocks. The results are shown in Table 6.

VII.4. Comparisons with other methods

Until now there are only a few formal placement algorithms which

have been proposed. In [2], some of the placement algorithms were

programmed and tested for some example logic graphs. In order to compare

the results of our algorithms with theirs, we used the same example

(Example 3) as was tested in [2].

Our final result for Example 3 was that the total routing length

of interconnections was equal to 2098 and the computation time for obtaining

the solution was 66.93 seconds. In [2] the length of a signal net is

estimated by the rectilinear distance and the minimum spanning tree. We

have to transform our estimation to the one used in [2] in order to
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compare the algorithms on a common basis. With regards to the estimation

of the rectilinear distance and the minimum spanning tree, our solution

requires 2133 units in total length.

The main results in [2] compared with our result are summarized as

follows. By starting from a solution obtained by a constructive initial

placement algorithm, the Force-directed pairwise relaxation algorithm

found a solution with 2030 units of total length in about 37 seconds of

computation time.

The Force-directed pairwise relaxation algorithm operating on the

associated quadratic assignment problem yielded a solution of about 2080

units in 38 seconds.

The Pairwise interchange algorithm operating on the associated

quadratic assignment problem found a solution of about 2090 units

in 29 seconds.

The other three methods tested in [2] could not find a solution with

shorter total routing length.

The method proposed here which consists of decomposition, linear

placement and iterative improvement found a solution with total routing

length which is 5% longer than the best solution [2]. On the other hand,

our method which consists of only the first two phases yielded a much

better solution than the conventional constructive method [2]. With

respect to computation time, we could not compare each algorithm, since

the computer used in [2] is not specified. We feel that with one

example it is difficult to comment on the efficiency of one method

over another.
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VIII. CONCLUDING REMARKS

In this paper we have introduced a new approach to the two-dimensional

placement problem. The main idea is to take advantage of what we already

know in the much simpler one-dimensional placement problem. The method

consists of three phases, namely: decomposition, linear placement and

iterative improvement. Heuristic algorithms have been proposed for each

phase. The computation complexity of each is analyzed. The method has

been tried with examples and some comparisons have been made with existing

methods. The results indicate that our method yields comparable results

in efficiency. However, no meaningful conclusion can be made based on

one example.

One advantage of our approach seems to be that the result obtained

from the first two phases before final iteration is superior to other

constructive algorithms. More work needs to be done in general areas.

The decomposition phase should be investigated further. Perhaps more

efficient algorithms can be obtained. The effect of linear placement

should be studied with respect to whether an optimum decomposition is

indeed needed. Finally, the method should be tried on other examples

for the purpose of evaluation and possible improvements.
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// Modules

# Internal modules

// External modules

// Signal nets

Av. // signal nets
per module

Av. // modules

per signal net

Range of signal net
size

Placement Grid Size

Example 1

67

52

15

138

7.0

3.4

2-9

5x15

Example 2

108

93

15

282

7.1

2.6

2-9

8x15

Table 1. Statistics of example logic graphs.

Example 3

151

136

15

419

6.5

2.3

2-9

11x15

// edges Computation

time (sec)Total Horizontal Vertical

Example 1

Example 2

Example 3

406

631

765

263

319

371

143

312

394

0.48

1.06

1.80

Table 2. Number of edges after the Constructive method in

the Decomposition phase.



// edges Computation

time (sec)Total Horizontal Vertical

Example 1 351 216 135 2.13

Example 2 596 286 310 2.23

Example 3 701 310 391 9.28

Table 3. Number of edges after the Iterative method in the

Decomposition phase.

Random Start After Iterative method Computation

time (sec)Total Hor. Vert. Total Hor. Vert.

1 898 520 378 764 387 377 18.0

2 902 524 378 769 413 356 17.7

3 912 518 394 775 398 377 16.9

4 886 501 383 741 383 358 19.3

5 931 528 403 798 403 395 17.8

Av. 906 518 388 769 397 372 17.9

Table 4. Five random starts followed by the Iterative

improvement for Example 3 in the Decomposition

phase.



Total length Computation

time (sec)Total Horizontal Vertical

Example 1 730 ' 514 216 6.53

Example 2 1426 839 587 7.67

Example 3 2281 1285 996 9.59

Table 5. Total routing length after linear placement

in the Linear placement phase.

Total length Computation

time (sec)Total Horizontal Vertical

Example 1

Example 2

Example 3

618

1242

2098

449

739

1150

169

513

948

13.34

31.34

46.26

Table 6. Total routing length after Iterative improvement

method in the Iterative improvement phase.
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Fig. 1. An example with 5 signal nets and 9 modules placed on a 3 x 3

board.
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(b)

Fig. 2. (a) Three horizontal blocks with E = 5. (b) Three vertical

blocks with Ev = 5.
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Fig. 3. (a) A different set of horizontal blocks with Eh = 5 and Lh = 7.

(b) A different set of vertical blocks with Ev = 2 and Lv = 4.
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(b)

Fig. 4. (a) A different ordering for the same horizontal blocks as in

Fig. 3a with L = 5. (b) A different ordering for the same

vertical blocks as in Fig. 3b with Lv « 2.
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Fig. 5. An optimum placement with L « 7.



(a)

(b)

Fig. 6. An example of two interconnections with E = 4 and L = 6 in

Fig. 6a and E = 5 and L = 5 in Fig. 6b.



Fig. 7. Example to illustrate the meaning of the
cost matrix W.
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ch^2
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(a)

C? {1.2}

C£ {3,4}

CV3 {5,6}

(b)

Fig. 9. (a) Interconnections among H-blocks with E = 6. (b) Inter

connections among V-blocks with E =9.
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(b)

Fig.10. (a) With linear ordering for the same horizontal blocks as in

Fig. 9a, we have Lh = 6. (b) With linear ordering for the same

vertical blocks as in Fig. 9b, we have L =12.
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Fig.11. A placement with E = 15 and L » 18.
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Fig.12. A placement with E = 15 and L = 17
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