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ABSTRACT

The problem studied is that of controlling a Markov chain so as to

minimize the long run expected cost per unit time. Three results are

obtained. First, a necessary and sufficient condition for optimality

is given. The second gives for any strategy u, an easily computable

bound B(u) >_ J(u) - J*, where J* is the minimum cost. The third result

consists of an algorithm which, starting with any strategy, successively

generates alternative strategies so that the bound B(u) decreases

monotonically to zero.
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1. Introduction

We consider afinite state Markov chain xfc, t=0,1,... whose

transition probability at time t depends upon the control u chosen

at t. Thus P(xt+1|xt) =P(xt+1|xt,ut). xt is observed
at each t and ufc may depend upon it. Hence we are concerned with

feedback controls or strategies ufc =u(t,xt). Such a strategy incurs

a cost k(xt,ut) at time t so that over the long run the expected cost

per unit time is

1 TJ(u) = lim —- E 5>(x ,u(t,xj). (1.1)
T-x» 0

To guarantee that this limit is meaningful we assume that whenever u

is stationary i.e. u(t,xfc) is independent of t, then the Markov chain

has a single ergodic class in the sense of Doob [l,p.l81]. Among all

(stationary) strategies we are interested in those which achieve the

minimum cost J as well as those which achieve a low cost even when they

are not optimal.

This mathematical problem has been extensively studied and the

available results are presented in several texts including those by

Howard [2], Ross [4], Kushner [3], and Bertsekas [5].

Three new results are presented here. The first states a necessary

and sufficient condition for the optimality of a strategy. The second

gives, for any strategy u, an easily computable bound B(u) >_ J(u) - J*,

where J* is the minimum cost. It is our opinion that this result will

be of value in the practical situation when optimal strategies are too

complicated to discover or to implement and when "good" strategies can be

proposed on the basis of previous experience or simplified models. The

third result is an algorithm which, starting with any strategy,successively
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generates in an easily computable manner alternative strategies u such

that the bound B(u) decreases strictly monotonically to zero.

Some of the proofs are involved. In order to maintain continuity

these are collected in the Appendix.

2. Problem Formulation

The state space of the Markov chain x is {l,...,s>. If x = i,

then any control u £ U(i) may be used. U(i) is a prespecified

compact set. A (stationary) strategy is any element u = (u(l),...,u(s))

£ U» U(l)x...xU(s). If xt = i and u(i) is used then

p_(u(i)) = Prob{xt+1 =j|xt = i}

where the p.. : U(i) -»• R are continuous functions such that

For u £ U, P(u) denotes the s x s transition probability matrix

{p±. (u(i))}. Note that the ith row of P(u) depends only on u(i). The

following assumption is in force throughout.

Ergodicity Assumption For each u the Markov chain x has a single ergodic

class.

An equivalent assumption is that for each u there is a unique

probability (row) vector 7r(u) = (^ (u),... ,tt (u)) such that

ir(u) = tt(u)P(u). (2.1)

A proof of this assertion may be found in [l,p.l81]. To prevent mis

understanding we note that this assumption is strictly weaker than that

of the "single ergodic class assumption" in [3;p.150] and of the "bounded

mean recurrence time" condition of- [4> Theorem 6.19] and [5, Proposition 3,

p. 337]. In particular we permit the single ergodic class to depend
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on u. Also note that U is not required to be finite as in [4,5].

For each i k(i,») : U(i) -> R is a continuous function giving

the cost. If xt is the Markov chain corresponding to u in U, then the

average cost per unit time is given by (1.1). Now under our assumption

it is known [1,pp.175-181] that

T

T^T+I S [PCu)]11 -TT(U)1 ,
X t=0

where 1 = (l,...,l)\ Substituting this into (1.1) shows that J(u)

does not depend on the initial state and is given more simply as

J(u) « 7r(u)k(u) (2.2)

where k(u) = (k(l,u(l)),...,k(s,u(s)))T.

u is optimal if J(u) = J* = inf{J(v)|v G u}. Since P(u) is assumed

continuous, it follows from (2.1) that ir(u) is continuous. Since k(u)

is also assumed continuous, so is J(u). Hence, by compactness of U, an

optimal strategy u* exists. It is shown in Corollary 3.1 below that u* is

then optimal with respect to all time-varying strategies also.

Our problem is to investigate strategies whose cost is close to J*.

3. Optimality Conditions

Recall the notation 1 = (1,...,1)'. It is convenient to introduce

Q(u) = P(u) - I

where I is the identity matrix. Then Q(u) has rank s-1, Q(u)l = 0

and ir(u) is the unique solution of

tt(u)Q(u) = 0, ir(u)l = 1 (3.1)

The next result is known.
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Lemma 3.1 For u in U consider the s linear equations in the 1+s variables

Y e R, c £ RS,

Yl « Q(u)c + k(u). (3.2)

(i) If (y,c) is a solution, then y = J(u). (ii) If (y,c) is a

solution, then so is (y,c+61) for every 6. (iii) A solution always exist.

Proof (i)follows by multiplying (3.2) on the left by tt(u), and (ii) by

substitution. Finally note that ir(u) [J(u)l-k(u)] = 0 so that J(u)l - k(u)

is orthogonal to the null space of [Q(u)]f, hence it is in the range of

Q(u).

Note that one may evaluate J(u) by first solving (3.1) for tt(u)

and then substituting into (2.2) or by solving (3.2) directly. In

either case one has to solve s linear equations.

Let Q±(u) be the ith row of Q(u). It depends only on u(i). For

any c let

H(c,u) = Q(u)c + k(u).

Then H±(c,u) = H^c.uCi)) = Q±(u(i))c +k(i,u(i)). Let h(c) be given by

h±(c) = min{H±(cfv) |v e U(i)}. (3.3)

The function H plays the role of the Hamiltonian and c the role of the

dual variable. This is evident in the results below which give minimum

principles. In the proofs repeated use will be made of the fact that

tt(u) H(c,u) = ir(u) [Q(u)c + k(u)] '« ir(u) k(u) = J(u)', for all c,u.

We first give a sufficiency condition.
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Theorem 3.1 Let u€ u. Suppose there exist Y, c such that

Yj =h(c) =min{H(c,v) - |v G U}, (3.4)

Y = H±(c,u) whenever tt (u) > 0. (3,5)

Then u is optimal and J(u) = y. In particular, if v G u satisfies

H(c,v) = h(c), then v is optimal.

Proof From (3.5)

tt(u)y1 = ir(u)H(c,u) = ir(u)k(u).

Let v G u. From (3.4)

ir(v)Yl <_ tt(v)H(c,v) = J(v).

Hence y = J(u) < J(v). The last assertion is immediate.
H

The converse of this result appears to need a much more difficult

proof.

Theorem 3.2 Let u be optimal. Then there exists y» c such that (3.4),

(3.5) hold.

Proof See the Appendix.

Any c for which there exists y satisfying (3.4) is called an

optimal dual variable. Evidently then y = J*. Let 11 = {tt|tt >_ 0, irl = 1)«

Then finding the optimal strategy is equivalent to solving the following

nonlinear programming problem:

Min{TTk(u)|7rQ(u) = 0, tt G n, u G U}.

Note that the problem is not convex, hence a duality theorem appears

unlikely. Nevertheless consider the dual problem

Max{Min{L(c,Tr,u) |tt G II, u G u}},
c
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where the Lagrangian L is given by

L(c,ir,u) = Trk(u) + itQ(u)c = tt(u)H(c,u).

Theorem 3.3 There exist c*,tt*,u* such that for all c, ir G n, u G u

L(c,ir*,u*) <_ L(c*,ir*,u*) = J* < L(c*,ir,u).

Moreover in this case c* is an optimal dual variable and u* an optimal

strategy.

Proof Follows readily from Theorems 3.1, 3.2 and the fact that an optimal

strategy exists.

There is a very important special case for which (3.4), (3.5) can

be strengthed and which furthermore is easy to prove. We say that the

strong erodicity assumption holds if for every u tr(u) is strictly positive.

Theorem 3.4 Under the strong ergodicity assumption u is optimal if and

only if there exist y» c such that

Yl = h(c) = H(c,u). (3.6)

Moreover y = J(u).

Proof Sufficiency follows from Theorem 3.1 so that only the necessity need

be shown. Suppose u is optimal and let y, c solve (3.2),

Yl = Q(u)c + k(u) = H(c,u).

Let v G u be such that H(c,v) = h(c) <_ yl. Multiplying this on the left

by ir(v) gives

J(v) = tt(v)H(c,v) = ir(v)h(c) <_ y^(v)l = y.

Since y = J(u) by Lemma 3.1, we must have equality above. Hence

ir(v)[h(c) - yl] = 0 and since tt(v) is strictly positive by assumption,

this implies h(c) = yl.
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It is interesting to observe that under the stronger assumption the

optimal dual variable is essentially unique.

Lemma 3.2 Under the strong ergodicity assumption if c, £ are optimal

dual variables then c - § = 51 for some 6.

Proof Let u be optimal. From (3.6)

H(c,u) - H(£,u) = Q(u)(c-£) = 0.

Since 1 spans the null space of Q(u) the result follows.

As a corollary of Theorem 3.2 we show following [3,p.159] that

an optimal stationary strategy is optimal with respect to arbitrary

feedback controls. Let y, c satisfy (3.2). We know that y = J*.

Let Xfc = (Xq,...,x ) be the observations made up to t and let

ut = ut(xfc) t>e any fixed feedback control. Let

p(xt =ilx^) =Prob{xt - i|Xt-;L}, i»l,...,s

and let pfc^X^) be the row vector with these as components. Similarly

define p(x +1lxt i)* Evidently

P^t+l'Vl* =P^t'Vl^^t^t'Vl^- (3>7)

Now by (3.4)

[P(ut(xt,Xt_1))-I]c + k(ut(xt,Xt_1)) > yj.

Premultiplication by p(x |x -) and using (3.7) gives

p(xt+llXt-l)c " P<xtlXt-l)c +PfeJVl^W* -Y •

Adding theinequalities for t = 0,...,T gives
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Takingexpectations and the limit infimum proves the next result.

Corollary 3.1 Let u (X ) be any feedback control. Then

, T

11m inf — E J]k(xt,ut(Xt)) >J*.
T

I
T-*» *' * 0

4. • Bounds

Recall the definition of H(c,u) and h(c). Also remember that

tt(u)H(c,u) = J(u). Define

h(c) = min h.(c) = min min H.(c,u),
i * i U X

h(c) = max h.(c) = max min H (c,u).
i i U

We begin with an elementary, but very useful, result.

Theorem 4.1 Let c be arbitrary, and u a minimizer of H(c,») i.e.,

H(c,u) = h(c). Then

h(c) < J(u) <. h(c),

h(c) < J* < h(c).

Also, u is optimal if h(c) = h(c).

Proof Evidently, li(c) <^ ?r(u)h(c) = J(u) <_ h(c). Next, let w be arbitrary.

Then again h(c) <_ ir(w)H(w,c) = J(w). Hence h(c) <_ J*. n

Consider this naive algorithm: Step 1, select c arbitrarily;

Step 2, find a minimizer u of H(c,»). Then without computing J(u) we

have the bound

0 £ J(u) - J* < h(c) - h(c).

Of course if J(u) is computed one has the better bound

0 <_ J(u) - J* <_ J(u) - h(c).
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The only aspect of this algorithm which recommends itself is the fact

that Step 2 involves s pointwise or decoupled minimizations.

A more sophisticated use of the result above is the following.

Suppose a strategy u is proposed on the basis of experience or working

with a simplified model. Then we find y, c so that

Yl = Q(u)c + k(u).

Next we calculate h(c) to get the following bound. The proof follows

from Theorems 3.1 and 4.1.

Lemma 4.1 (i) J(u) = y 1 J* >h(c). (ii) Let U(i) = {v(i)

G U(i)|Hi(c,v(i)) £ y}. Then u is an optimal strategy with respect to

U = U(l)x...xU(s).

An application of this Lemma is given in Varaiya, Schwiezer and

Hartwick [10].

5. An algorithm

Several computational algorithms are available for finding an

optimal u G u. The well-known "Interation in policy space" algorithm of

Howard is known to generate, under some additional assumptions, a sequence

of strategies u G u such that J(u) converges monotonically to J*

(see [3,p.154] or [5,p.349]). However, at each iteration this algorithm

requires a solution of the equation yl=Q(u)c +k(u ) for (y ,c ),
n- xx n' n n 'n n

and this may be prohibitive for large s unless Q has some special structure

as for example in the problem treated by Larson [6]. White [7] shows

that a modification of Bellman's method of "successive approximation"

converges under somewhat restrictive assumptions. However, the computational

burden is.considerably less than for Howard's algorithm since at each

iteration only a pointwise minimization (similar to evaluation of h(c))
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need be carried out. Furthermore, at each iteration a bound is

available, and the bound converges monotonically (see [5,p.347].) Finally,

if U is finite then it is possible to find an optimum by solving a linear

programming problem [4,p.152]. The number of variables is approximately

sxN where N is the cardinality of the largest U(i), so that this approach

is impractical unless some special structure obtains as in Kushner and

Chen [8],

The algorithm proposed here bears a family resemblance to White's

algorithm in that successive dual variables are generated. However our

motivation comes from the duality result of Theorem 3.3. The algorithm

can be viewed essentially as a "dual method" and we search for an optimal

dual variable. We begin by determining those directions along which

changes in c lead to a reduction in h(c) - h(c).

Note that £ Q .(u) = 0, Q..(u) <0 and Q >0 for j ^ i.
j J ii ij

Lemma 5.1 For c, 6, u

H±(c+e,u) >_ H.(c,u) if 0. <_ 0. for all j,

H±(c+6,u) < H±(c,u) if e± > 6. for all j.

i±(c+e,u) -h±(c,u) = EQ±i(u)e = J]q (u)[e -e.] >(<)o
j J J j J J

Proof H,

if 6. <(>)6..
i - - 3

For any c let S(c) = {i|h±(c) = h(c)}, S(c) = Ulh^c) = h(c)}. Let

0(c) = {6|e = min 8 < 0 < max 60 = 6. , iG s(c), k G s(c),
1 I * 3 I * k

j G s(c) U S(c)}.

Lemma 5.2 Suppose c is not an optimal dual variable so that h(c) < h(c)

i.e., j>(c) # S, S(c) ^ S, where S is the state space. Let 0 G 0(c). Then
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h±(c+0) > h±(c), iG s(c), (5#1)

h±(c+0) < h±(c), iG s(c). (5.2)

Furthermore there exists i for which at least one of these inequalities

is strict.

Proof By Lemma 5.1, H±(c+0,u) > H±(c,u) for iG s(c). Since the

inequality is preserved when minimizing over U we get (5.1); (5.2) follows

in a similar way. To prove the final assertion suppose we have equality

in (5.1),

h±(c+0) = h±(c), iG s(c).

Let v,w be such that

H(c+0,w) = h(c+0) and H(c,v) = h(c).

Then for i G _s (c)

H±(cfv) = H±(c+0,w) < H±(c,w);

but by Lemma 5.1,

H±(c+0,w) > H±(c,w).

Hence

H±(c+0,w) -^(c.w) =EQ^Cw^ =0, iGs(c).

Since 0± < 0. for i Gs(c) this implies

Q±j(w) = Pi:j(w) = 0, iG s(c), jG S(c). (5.3)

Now suppose we have equality in (5.2). Then a similar argument shows that

Qkj(v) = Pkj(v) =0'ke S(c), jG S(c) (5.4)
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Finally consider any u G u for which u(i) = w(i), i G j>(c) and

u(k) = v(k), kG S(c). Then (5.3), (5.4) hold for {P±.(u)}. Hence

there are at least two ergodic classes for u so that the ergodicity

assumption is violated.
n

From the proof we see that in the strongly ergodic case the lemma can be

strengthened.

Corollary 5.1 Under the strong ergodicity assumption both inequalities

(5.1), (5.2) above are strict, for some i.

The lemma suggests that to search for an optimal dual variable

we may change the proposed vector c(t) to c(t) + 0At where 0 G 0(c(t)).

It is desirable to make the choice of 0 continuous in c to avoid

"jamming", (see Zangwill [9] for a discussion of jamming). Consider the

function 0(c) where

0±(c) = h±(c) - h(c).

Notice that 0(c) G 0(c). The proof of the next result is in the Appendix.

Theorem 5.1 Consider the differential equation

4r=f(c) =0(c) -s^ieWHi. (5.5)
at

(i) For every initial condition cfl there is a unique solution c(t,cQ)

of (5.5) defined for all t >. 0 with c(0,cQ) = cQ.

(ii) c(t,cn) converges to the set of all optimal dual variables c*

for which (c*)'l = c'l. In particular, if the strong ergodicity assump

tion holds then c* is unique.

(iii) h(c(t,c0)) and h(c(t,cQ)) converge monotonically to J*, and

h(c(t,cn)) - h(c(t,cn)) decreases strictly monotonically to zero. If

the strong ergodicity assumption holds then h, h are strictly monotonic
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0 .
Now suppose u is any initially proposed strategy. Then to

improve upon u we should start the algorithm (5.5) at cn where

J(u )1 =H(c0,u°).

Appendix; Proofs of Theorem 3.2. 5.1.

We first prove Theorem 5.1 via a sequence of lemmas.

Lemma Al h±(c) = min{Hi(c,u) |u G u} is a uniformly Lipschitz function.

Proof Let q± = max{|Q±(u)| "|u G u} where Q. is the ith row of Q and

|-| is the Euclidean norm. Let cr, ur, r = 1,2 be such that

H±(cr,ur) -(^(u^c* +k(i,ur(i)) =h±(cr).

Then

hi(cl) -Qi<u2>cl +k(i,u2(i))

=Q^K^-c2) +Q±(u2)c2 +k(i,u2(i))

<qi|c1-c2| +h±(c2).

Similarly h±(c2) <qi|c1-c2| +h^c1) and so (h^c1) -h±(c2)|<q^^lc^c2
n

Corollary Al The function f(c) in (5.1) is uniformly Lipschitz, and so

the solution c(t,cQ) is defined for all cn and t >_ 0.

Lemma A2 c(t)'l = cQ'l where c(t) = c(t,c ).

Proof ^ c(t)'l =0(c)»l -0(c)'l =0. H

Lemma A3 Let Cq be such that h(cQ) < h(cfl). Then

h(c(t,cQ)) is non-increasing, h(c(t,cn)) is non-decreasing in t;
(Al)

h(c(t,c0)) - h(c(t,cQ)) < h(cQ) - h(cQ) for t > 0. (A2)
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Proof To prove (Al) let e > 0 and for each integer N define the function

Nc (t,cQ), 0 £ t <^ e by linear interpolation between the values

c (— e,cQ), n = 0,...,N where

cN(0,c0) =cQ
N/ "-+1 \ N,n x , 1 c, N,n Nx ^ rt
c (~¥~ £'C0} = C (N £,C0) + N f(C (N e'c0))' n - °'

Since f is Lipschitz by Corollary Al

Nc(t,c0) = lim c (t,cn),
N

and since h(c) is continuous by Lemma Al,

h(c(t,c )) = lim h(cN(t,c )). (A3)
N

N n N nNow for each n, f(c (— e,cn)) G0(c (— e,cn)) and so by Lemma 5.2,

for £ small, we must have

. , N, n+1 u v , , N,n NXh(c (— e>c0)) >. h(c (- e,cQ))

which together with (A3) implies that _h(c(t,cn)) is non-decreasing.

The other assertion in (Al) follows in a similar manner.

We now prove (A2). Let t > 0. Then because of (Al) it is enough

to show that there exists 0 < e < t at which

h(c(e,c0)) - h(c(e,c0)) < h(C()) - h(cQ). (A4)

Let

S(e) = {i|hi(c(e,c0)) =h(cQ)}, S(e) = {i|h±(c(e,c0)) =h(c0)}

Then to prove (A4) it is equivalent to show that either S^(e) or S(e) is

empty.
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Now, by the continuity of h. there is 0 < 6 < t so that for

0 < e < 6

h(cQ) <h±(c(e,c0)) <h(cQ), iG s(0) U§(0). (A5)

On the other hand for t > 0

c(t,cq) = cQ + xf(c0) +o(t).

Since f(cQ) G 0(cQ), therefore by Lemma 5.2,

hi(c0+ef(c0}) -^(c0}' iG 1(0),

h.(c0+ef(cQ)) < h(cQ), iG s(0),

and there is an i for which one of these inequalities is strict.

Suppose this is iQ G s(0) so that

hi ^O^f^O^ >-(c0)* (A6)

We claim that (A6) implies that there is s.. so that

h± (c(e,c0)) > h(cQ), 0 <e< ^ (A7)

To see this note that h± (c0+ef(c0)) is concave in e1; hence (A6)
implies that

Ahio(c0+£f(c0))

Hence

= n > 0

£=0+

h± (c(£,cQ)) = h(cQ) + ne + o(e)

from which (A7) follows. From (A5) and (A7) we obtain

S(£l) C s(0) - {iQ}. (A8)

Since, for fixed u, H±(c,u) is affine in c, and h.(c) = min{H.(c,u)|u G u}
therefore h±(c) is concave in c. Hence h.(c+E0) is concave in e.
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On the other hand, if the strict inequality held for in G s(0) then

instead of (A8) we would have shown

S(£l) C s(0) - {iQ}. (A9)

Now, if either _S(e-) or S(e1) is empty we are done. Otherwise

both are non-empty and we repeat the argument starting with the initial

condition c.. = c(e-,c ) and we find e. with £- < e« < t and

i G j3(e ) U S(e-) such that either

S(£2) C s(ex) - {i^

or S(e2) Cs(£l) - {i1>.

If either S.(e?) or S(e«) is empty we are done. Otherwise we repeat the

argument with the initial condition c« = c(E.,cn). Since at each step

k either .§.(£,) or S(e, ) is reduced by at least one element we must arrive

at a step at which one of these is empty.
n

Corollary A2 If the strong ergodicty assumption holds then in (Al) we

have strict monotonicity.

Proof In the proof of Lemma A3 we can now use Corollary 5.1 in place of

Lemma 5.2 so that we would have both .S(e. ) an<* ^^ew^ empty at some step k.

Lemma A4 Let c(t) = c(t,cQ) be the solution of (5.5). Then there is

M < » such that |c(t) | < M for t :> 0.

Proof If the assertion is false, then there exists t -*• «» such that
n

|c(t )I -»-<». Taking subsequences if necessary we can assume that there

is a sequence p •> » and 0 ^ 0 so that

lim p c(t ) = 0 (A10)
n n

n
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Let u G u be such that

H(c(t ),un) = h(c(t )).
11 n

By Lemma A3 the sequence h(c(tn)) is bounded. Hence, taking subsequences
if necessary, we may assume that

lim H(c(t ),un) = h
n

for some vector h, i.e.

lim[Q(un)c(t ) + k(un)] = h.
n

Since U is compact we may assume that there is u G u such that u11

converges to u and so

lim Q(un)c(tn) =h- k(u).

-1Multiplying both sides by pn~ and using (A10) this implies that

Q(u)0 = 0,

and so 0 = 61 for some 6. But by Lemma A2

lim p^1 c(tn)'l= lim p^1 cjjl =0

which implies 6=0 and contradicts 0^0.
u

Proof of Theorem 5.1 (i) follows from Corollary Al. By Lemma A4 the

trajectory t+ c(t) = c(t,cQ) is bounded. Let c* be any limit point.

We claim that c* is an optimal dual variable. Let t "-»--» such that
n

lim c(tn) = c*. (A12)

Let B(c) = h(c) - h(c) >_ 0. Then by Lemma A3, B(c(t)) decreases strictly

monotonically. By Theorem 3.1, c* is optimal if

B(c*) = lim B(c(tn)) = 0. (A13)
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Suppose in contradiction that B(c*) > 0. Then by Lemma A3, B must

decrease along the trajectory strating at c*, i.e.,

B(c(t,c*)) < B(c*), t > 0. (A14)

Because f is Lipschitz the solution of (5.5) varies continuously with

initial conditions. Hence from (A12)

c(t,c*) = lim c(t,c(tn)) = lim c(t+tn,cQ).
n-*» n-x»

Since B is continuous, this implies

B(c(t,c*)) = lim B(c(t+t ,cj) = B(c*)
n u

n-x»

which contradicts (A14). Then (A13) must hold proving the first half

of (ii) and (iii). If the strong ergodicity assumption holds then

c* is unique by Lemma 3.2, and the strict monotonicity follows from

Corollary A2.
n

The proof of Theorem 3.2 also requires some preliminary results.

Let u be optimal. By Lemma 3.1 there are c_ and y = J(u ) = J*

so that

yl =Q(u°)c0 +k(u°) -H(c0,u°). (A15)

Lemma A5 Let v be such that H(c_,v) < yl. If tt.(v) > 0 then H.(c,.,v) = y<
N 0 — ~ l i 0

Proof Premultiplying H(cn,v) _< yl by ir(v) gives

J(v) = tt(v)H(c0,v) < tt(v)y1 = y = J*

so that we must have equaltiy. Hence

tt(v)[H(c0,v) - yl] = 0

from which the result follows. n
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Lemma A6 If tt (u ) > 0 then H. (cn,u°) = h. (c.) = min{H. (cn,v) |v Gu}.
1U 1 U {^;

Proof Let J={i|H±(c0,u )<h±(c0)}, and let vGube such that

H.(c0,v) <^(Cq,^) =y, iGj.

Define u by

u(i) = fv(i) , i G jrv(i) ,itJ

lu°(i) ,iGj.

L(c0,u) = rH±(cofu) <y ,iG j

lH,(cn,u°) =y ,iG j.

By Lemma A5 tt.(u) = 0, i G j. Hence

Pij(u) =Pij(u0) =°» î J» jGJ' (A16)
But then tt. (u ) = 0, i G j.

i n

Let c(t) = c(t,cQ) be the solution of (5.5) starting at c..

From (A15) it follows that

h(c(0)) = y, h(c(0)) < y.

Since, by Theorem 5.1, h(c(t)) >. J* = y >_h(c(t)), it follows that

h(c(t)) = y.

Now let cT(t) be the subvector of c(t) with components in

I = {i|i G J}.

Lemma A7 c].(t) - c (0) = 6(t)l for some function 6(t).

Proof Suppose the assertion holds for some t >^ 0. Then from (A16)

we can see that

h\(c(t),u0) = H.(c(0),u0) = y, iG I.
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,Mw'

From (A17) and (5.5) it then follows that

£ cz(t) =5(t)l

for some number £(t). The result follows upon integrating this equation,

Proof the Theorem 3.2 From (A16) and Lemma A7 it follows that

H^cOO.u0) =h(c(t)) Ey, iGI. (A18)

Let c* be a limit point of the trajectory c(t). Then c* is an optimal

dual variable by Theorem 5.1, hence it satisfies (3.4). Also from

(A18) it follows that

H^cSu0) =y, iGI.

Since Tr±(u ) > 0 implies iG I by Lemma A6, therefore (3.5) holds.
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