Copyright © 1977, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A TUTORIAL ON INGRES

by

Robert Epstein

Memorandum No. UCB/ERL M77/25

15 December 1977
(revised)

A TUTORIAL ON INGRES

by

Robert Epstein

Memorandum No. UCB/ERL M77/25

15 December 1977
(revised)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

Research sponsored by the National Science Foundation Grant
MCS75-03839-A01, U.s. Army Research Office Grant
DAAG29-76-G-0245, the Naval Electronic Systems Command Contract
N00039-78-G-0013, and the Joint Services Electronics Program Con-
tract F44620-76-C-0100. T -

A Tutorial on INGRES

This tutorial describes how to use the INGRES data base manage-
ment system. You should be able to follow the the examples given
here and observe the same results.

The data manipulation language supported by the INGRES system is
called QUEL (QUEry Language). Complete information on QUEL and
INGRES appears .in the INGRES reference manual. This tutorial
does not attempt to cover every detail of INGRES.

Begin by logging onto UNIX, the time sharing system under which
INGRES runs. If at all possible, use a terminal that has both
upper and lower case letters; otherwise 1life 1is going to be
miserable for you. If you are on an upper case only terminal,
type "\\" everywhere "\" appears in the tutorial. '

There should currently be a "%4" printed on your terminal. ~To
start using INGRES type the command:

% ingres demo

This requests "UNIX" to invoke INGRES using the data base called
"demo". After a few seconds, the following will appear:

INGRES version 6.1/0 login
Tue Aug 30 14:52:23 1977

COPYRIGHT ' '
The Regents of the University of California
1977

This program material is the property of the
Regents of the University of California and
may not be reproduced or disclosed without
the prior written permission of the owner.

go
#

The first two lines include the INGRES version number (in this
case version 6.1) and the current date. Following that is the
"dayfile", which includes messages related to the INGRES system.
The "go" indicates that INGRES is ready for your interactions.

The INGRES monitor prints an asterisk ("¥") at the beginning of
each line to remind you that INGRES is waiting for input.

Type the command:

A Tutorial on INGRES | Page 1

® print parts
*\g
Executing

The line "print parts" requests a printout of some data stored in
the data base. The "\g" means "go". The message "Executing . .
." indicates that INGRES is processing your query. The following
then appears:

parts relation

ipnum | pname lcolor iweight{qoh '
e et L L L P PP L P L Ll L ettt i
! 1!central processor ! pink ! 10} 11
{ 2! memory |gray | 201 32}
! - 3}disk drive iblack ! 6851 21
| 4itape drive - Jblack ! 4504 yi
{ 5itapes igray | 11 2501
' 6{1line printer lyellow | 5781 31
! 711-p paper lwhite ! 151 . a5 |
H 8iterminals iblue i 191 151
! 13} paper tape reader iblack ' 1071 0}
| 14} paper tape punch iblack | 147 01}
- 9!terminal paper iwhite ' 21 350}
| 10! byte-soap lclear ! 01 143}
! 11}card reader igray d 3271 0l
E 12icard punch |gray ' 4271 0l
[}
| = e EEREEEesEEE }
continue
*

What is printed on your terminal is the "parts relation". Intui-
tively, a relation is nothing more that a table with rows and
columns.

In this case the relation name is '"parts". There are five
columns (we call them domains) named pnum (part number), pname
(part name), color, weight, qoh (quantity on hand). Each row of
the relation (called a tuple) represents one entry, which in this
case represents one part in a computer installation. A relation
can have up to 49 domains and a virtually unlimited number of tu-
ples.

Notice that after the query is executed, INGRES prints "contin-
ue", while when we first entered INGRES it printed "go", As you
enter a query INGRES saves what you type in a "workspace". If
you ever mistype a query, typing "\r" will "reset" (ie. erase)
your workspace. (Later on we will learn ways to edit mistakes so
we don't have to retype the entire query.)

At any time you can see what is in the workspace by typing "\p".
Try typing "\p":

A Tutorial on INGRES ‘ Page 2

* \p’
print parts
»

The current contents of the workspace is printed. Now try typing
"\r":

¥ \r
go
*

The workspace is now empty. Whenever INGRES types "continue" the
workspace 1is non-empty; whenever INGRES types "go" the workspace
is empty.

After a query is executed, INGRES typically types "continue". If
you then type a new query, INGRES automatically erases the previ-
ous query, so you don't have to type "\r" after every query.
This will be further explained as we proceed.

Using the "retrieve" command we can write specific queries about
relations. As an example, 1let's have INGRES print only the
"pname" domain of the parts relation. Type the command:

* range of p is parts
¥ retrieve (p.pname)
*\g

Executing . .

i
| m————— —————————————— |
icentral processor '
imemory '
idisk drive !
itape drive]
| tapes !
iline printer |
i1l-p paper i
lterminals 1
| paper tape reader !
| paper tape punch !
iterminal paper |
|byte-soap '
icard reader d
icard punch !
[}]
)

continue
*

The output is just the pname domain from the parts relation.
What we did required two steps. First we declared what is called

A Tutorial on INGRES Page 3

a "tuple variable" and assigned it to range over the parts rela-
tion.

range of p is parts

What this means in English is that the letter "p" represents the
parts relation. It may be thought of as a marker which moves

down the "parts" relation to keep our place. INGRES remembers
the association so that once p is declared: to range over parts,
we don't have to repeat the range declaration. This 1is useful

when we are working with more than one relation, as will be seen
later on.

Next we used the retrieve command. 1Its form is
retrieve (list here what you want retrieved)

"p" by itself refers to the parts relation. "p.pname" refers to
the pname domain of the parts relation, so saying: '

retrieve (p.pname)
means retrieve the pname domain of the parts relation.
~Try the query to retrieve pname and color:

* retrieve p.pname, .p.color
*\g
Executing .

2500: syntax error on line 1
last symbol read was:

continue
*

Unfortunately we've made an error. INGRES tells us that it found
a syntax error on the first line of the query. "Syntax error"
means that we have typed something which INGRES cannot recognize.
The error occured on line 1. INGRES makes a sometimes helpful
and sometimes feeble attempt at diagnosing the problem. Whenever
possible, INGRES tells us the last thing it read before it got
confused.

In this case, the error is that the list of things to be re-
trieved (called the target list) must be enclosed in parenthesis.
The correct query is: '

* retrieve (p.pname, p.color)

*\g
Executing

A Tutorial on INGRES Page 4

Epname icolor i
[Bnbbabedadedehedededddeiusdeaderbeddenbesberdhesiend b dtien [}
lcentral processor ipink !
imemory igray |
ldisk drive iblack !
|tape drive iblack |
ltapes igray I
lline printer lyellow |
{1-p paper Iwhite !
iterminals 'blue |
|paper tape reader iblack !
ipaper tape punch Iblack '
|terminal paper lwhite H
Ibyte-soap jclear !
lcard reader | gray H
lcard punch lgray !
! |

continue
*

You can restrict which tuples are printed by adding a "qualifica-
tion"™ to the query. For example to get the name and color of
only those parts which are gray, type:

* petrieve (p.pname, p.color)

¥ where p.color = "gray"

* \g

Executing

| pname lcolor |

] |

[Buhedededadedehedieiadesdesbesdeiedebe bt ottty |

|memory gray |

'tapes lgray '

lcard reader lgray i

lecard punch lgray |

]]
|

continue
*

Notice that INGRES prints only those parts where p.color is gray.
Notice also that gray must be in quotes ("gray"). This is neces-
sary. The only way INGRES will recognize character strings (e.g.
words) is to enclose them in quotes. :

What if we wanted part names for gray or pink parts? We
need to append to the previous query the phrase:

only
or p;color = "pink"

Remember, however, that if the next 1line typed begins a new

A Tutorial on INGRES Page 5

query, INGRES will automatically reset the workspace. The
workspace will be saved only if the next line begins with a com-
mand such as "\p" or "\g". (There are others which we will come
to 1later.) If such a command is typed, the previous query is
saved and anything further will be appended to that query.

Thus, by typing:

*\p]

retrieve (p.pname, p.color)
where p.color = "“gray"

* .

you can see the previous query. Now fype:

* or p.color = "pink"
»

INGRES appends that last line to the end of the query. You can
verify this yourself by printing the workspace:

® \p ‘
retrieve (p.pname, p.color)
where p.color = "gray"

or p.color = "pink"

*

Now run the query:

i\g .
JExequting . e

| pname lcolor !
] 1
| Bkttt sttt d skt ik [}
{central processor | pink !
i memory lgray !
|tapes | gray i
lcard reader lgray !
lcard punch igray 3
]]
| e M E e E - - - [}
continue

*

‘The rules about when the workspace is reset may be very confusing
at first. In general, INGRES will do exactly what you want
without you having to think about it.

We have seen qualifications which used "or" and "=". 1In ‘general
one can use:

and

A Tutorial on INGRES Page 6

(equal)

(not equal)

(greater than)

(greater than or egqual)
(less than)

(less than or equal)

ANV NV o= ||
]

Evaluation occurs in the order the qualification was typed (ie.
left to right). Parenthesis can be used to group things in any
arbitrary order. T

INGRES can do computations on the data stored in a relation. For
‘example, the parts relation has quantity on hand and weight for
each item. We might like to know the total welght for each group
of parts (i.e. weight multiplied by qoh).

To get the name, part number and total weight for each part type
the query: '

* pretrieve (p.pname, p.pnum, p.goh ¥ p.weight)
*\g
Executing .

2500: syntax error on line 1
last symbol read was: ¥

continue
*

Another error. The problem is that when a computation 1is done,
INGRES does not know how to title the domain on the printout.
For a simple domain, INGRES uses the domain name as a title. For
anything else, you must create a new domain title by specifying:
tot = p.qoh * p.weight
More generally the form is:
title = expression

For example:

name = p.pname
computation = p.weight / 2000 ¥ (p.goh + 2)
Let's fix the error by retyping the query. As long as the first
line after a query does not begin with a "\p" or "\g" then INGRES
will automatically reset the workspace, erasing the previous
query for us.. ' '

* pretrieve (p.pname, p.pnum, tot=p.qoh ¥ p.weight)

A Tutorial on INGRES Page 7

ﬂ'\g
Executing .

| pname Ipnum |tot !
| = e e |
lcentral processor ' 11 10}
| memory ' 21 6401
{disk drive ! 31 1370}
|tape drive ! 4} 1800/
| tapes d 51 250/
Iline printer 3 6/ 1734
|1-p paper ' Tt 1425}
|terminals 1 8! 285}
| paper tape reader ! 134 0!
|paper tape punch ! 141 0}
|terminal paper | 91 700!
ibyte-soap | 10} 0!
lcard reader ! 11} 01
icard punch ' 121 0!

continue
*

In addition to multiplication, INGRES supports:

+ ‘addition

- subtraction (and unary negation)
/ division

* multiplication

%¥% exponentiation (e.g. 3%##10)
abs absolute value (e.g. abs(p.qoh - 50))
mod modulo division ,

and many others. Please refer to the INGRES reference manual for
a brief but complete description of what is supported.

If all we wanted were part numbers 2 or 10, then we could add the
qualification:

where p.pnum = 2 or p.pnum = 10

CAUTION: if we just started typing "where p.pnum " INGRES
would understand this as the beginning of a new query and would
reset the workspace. To avoid this you could type "\p" and force
INGRES to print the workspace, or you can type "\a" (append). .
The append command guarantees that whatever else is typed will be
appended to what is already in the workspace. This command is
only needed immediately after a query is executed. Any other
time data will be appended automatically. Try the following:

® \a

A Tutorial on INGRES Page 8

¥ where p.pnum = 2 or p.pnum = 10
*\g
Executing

'memory |
Ibyte-soap ' 101 i

continue
*

To include all part numbers greater than 2 and less than or equal
to 10:

* retrieve (p.pname, p.pnum, tot=p.goh ¥ p.weight)
¥ where p.pnum > 2 and p.pnum <= 10

* \g

Executing

| pname lpnum |tot H
]]
jm_————mmeee- Autederindedadadaieiaiabededete e d bt bt]
ldisk drive ! 31 13701
|tape drive d 41 1800/}
i tapes ! 51 250}
!1ine printer | 6 1734}
!1-p paper | 7V 1425}
{terminals ! 81 2851
iterminal paper d 9} 700}
'byte-soap | 10} i
]]
| Badadadeadad ettt s |
continue

*

Now, suppose we want to change the previous query to give results
for part numbers between 5 and 10 instead of 2 and 10. You are
probably annoyed at having to retype the entire query in order to
change one character. Consequently, INGRES lets you use the UNIX
text editor to make corrections and/or additions to your
workspace. At any time you can type "\e" and the INGRES monitor
will write your workspace to a file and call the UNIX "ed" pro-
gram. For example: '

¥ \e

>>ed
83

The ">>ed" message tells you that you are now using thé editor.
The number 83 is the number of characters in your workspace.

A Tutorial on INGRES Page 9

We can now edit the query by changing the 2 to a 5. 1Included in
the UNIX documentation is a tutorial on using the text editor.
Rather than duplicating that tutorial, we will just use a few of
the editor commands to illustrate how to do editing:

p

retrieve (p.pname,p.pnum,tot = p.qoh % p.weight)
2p s

where p.pnum > 2 and p.pnum <= 10

s/2/5/p

where p.pnum > 5 and p.pnum <= 10

w
83
q

<<monitor
*

Very briefly, this is what happens. "1p" and "2p" printed 1lines
1 and 2. "s/2/5/p" substitutes a 5 for a 2 on the current line
(line 2), and then prints that line. "w" writes the query back
to the INGRES workspace.

Inside the editor you can use any "ed" command except "e" (since
e changes the file name). When you quit the editor (q command),
the INGRES monitor will print "<<monitor" to remind you that you
are back in INGRES. Notice that you MUST precede the "g" command
with a "w" command to pass the corrected workspace back to
INGRES.

To verify that the query is correct and to run it, type:
® \p\g

retrieve (p.pname,p.pnum,tot = p.qoh * p.weight)

where p.pnum > 5 and p.pnum <= 10

Executing . .

| pname lpnum |tot

g
I et T i
!line printer ' 6 1734}
!1-p paper , | TV 1425}
|terminals ! 81 2851
lterminal paper ' 91 700
Ibyte-soap | 101 01
I |
| o e e e e ———————— i
continue
* .

Having exhausted the interesting queries concerning the parts re-
lation, lets now look at a new relation called "supply". Type:

* print supply

A Tutorial on INGRES Page 10

*\g
Executing .

supply relation

!snum Jpnum |} jnum |shipdatejquan |
]

: ----------- T - - - - 1]
| 4751 11 1001}73-12-31] 1!
' 475) 21 1002} 7u4-05-31} 32}
| 4751 3] 1001173-12-31] 2}
| 4751 4} 1002}74-05-31} 1!
' 122!} 71 1003{75-02-01] 144!
| 1221 7V 1004}75-02-01} 48!
i 122! 9} 1004]75-02-01] 144!
i 40! 6! 1001}74-10-10} 2!
] 241! 4! 1001173-12-31} 11
f 62} 31 1002 7u4-06-18} 3}
! 4751 21 1001173-12=-31} 32}
i 475) 1} 1002} 74-07-01) 1}
| 51 4} 1003{74-11-15] 34
1 51 4 1004}75-01-22| 6!
| 20! 5 1001{75-01-10} 20!
1 20! 51 1002}75-01-10]} 751
! 241} 11 1005}75-06-01} 11
| 241} 2} 1005)75-06-01] 32|
| 241} 31 1005}75-06-01} 11
d 671 4} 1005}75-07-01{ 1}
] 999 10} 1006}76-01-01} 144}
| 241 8! 1005{75-07-01} 1!
g 241} 9} 1005}75-07-01} 144

]
[e e e~ [
continue

*

The supply relation contains snum (the supplier number), pnum
(the part number which is supplied by that supplier), jnum (the
job number), shipdate (the date it was shipped), and quan (the
quantity shipped). '

To find out what parts are supplied by supplier number 122 type:
* retbieve (s.pnum) where s.snum = 122

*\g

Executing .

2109: line 1, Variable 's' not declared in RANGE statement

continue
*

We have referenced the tuple variable "s" (i.e. s.pnum) without

A Tutorial on INGRES Page 11

telling INGRES what "s" represents. We are missing a range de-
claration. Retype the query as follows:

range of s is supply
*# pretrieve (s.pnum) where s.snum = 122

*\g
Executing

- continue

*

Supplier number 122 supplies part numbers 7, 7 and 9. Note that
7 1is listed twice. When retrieving tuples onto a terminal it is
more efficient for INGRES NOT to check for duplicate tuples.
INGRES can be forced to remove duplicate tuples. We will come to
that later. o

" We now know that supplier 122 supplies part numbers 7 and 9. If
you haven't run this query a few hundred times you probably don't
know what part names correspond to part numbers. 7 and 9. We
could find out simply by running the query:

pretrieve (p.pname) where p.pnum = 7 or
¥ p.pnum = 9 '
*\g

Executing

i1-p paper
|terminal paper

continue
*

After two queries we know by part name what parts are supplied by
‘supplier number 122. We could do the same thing in one query by
asking:

% petrieve (p.pname) where p.pnum = S.pnum
¥ and s.snum = 122

*\g

Executing

A Tutorial on INGRES) Page 12

i1-p paper i
i1-p paper |
iterminal paper !
]
|

continue
#*

Again note that "l-p paper" is duplicated. Look closely at this
query. Note that the domain pnum exists in both the parts and
supply relations. By saying p.pnum = s.pnum, we are logically
joining the two relations.

Suppose we wished to find all suppliers who supply the central
processor. We know that we will want to retrieve s.snum. We
want only those s.snum's where the corresponding s.pnum is equal
to the part number for the central processor. .

If we find the p.pname which is equal to "central processor" then
that will tell us the correct p.pnum. Finally we want s.pnum =
p.pnum. The query is: o

* petrieve (s.snum) where

s.pnum = p.pnum and p.pname = "central processor"
*\g

Executing

continue
*

Let's abandon the parts and supply relations and try another.
First, we can see what other relations are in the database by

typing:

¥ help \g
¥ Executing .

relation name - relation owner
relation ingres
attribute ingres
indexes ingres

A Tutorial on INGRES Page 13

integrity ‘ ingres

constraint ingres
item ingres
sale ingres
employee ingres
dept ingres
supplier ingres
store ~ingres
parts ingres
supply ingres
continue
#

Let's look at the "emploYee" relation. Since we know nothing
about the relation we can also use the "help" command to learn
about it. Type: : ~

¥ help employee

*\g
Executing
. Relation: employee
.. Owner: ' ingres
- Tuple width: 30 ,
. Saved until: Fri Mar 25 11:01:30 1977
_ Number of tuples: 24
. Storage structure: paged heap
relation type: user relation

attribute name type 1length Kkeyno.

2
20

number
name
salary
manager
birthdate
startdate

CHe e e O R
o NN N

continue
#

The help command lists overall information about the employee reé
lation together with each attribute, its type and its length.

INGRES supports three data types: integer numbers, floating point
numbers, and characters strings. Character domains can be from 1
to 255 characters in length. Integer domains can be 1, 2, or U
bytes in 1length. This means that integers can obtain a maximum
value of 127; 32,767; and 2,147,483,647 respectively. Floating

A Tutorial on INGRES Page 14

point numbers can be either 4 or 8 bytes. Both hold a maximum
value of about 10%%¥38; with 7 or 17 digit accuracy respectively.

To look at’all domains we could use the print command or we could
use the retrieve command and list each domain in the target list.
INGRES provides a shorthand way of doing just that. Try the fol-
lowing:

*¥ prange of e is employee
¥ retrieve (e.all)

*\g

Executing

| number | name !salary|manage|birthd|startd]

157! Jones, Tim 12000} 199! 1940} 1960/

]

-

]]

1 !

! 1110}Smith, Paul ! 6000} 33} 1952} 1973}
: 35!Evans, Michael | 5000 321 1952} 1974}
! 129! Thomas, Tom ! 10000} 199! 1941} 1962}
! 13} Edwards, Peter | 9000} 199! 1928} 1958]
| 215)Collins, Joanne | 7000} 10y 1950{ 1971}
! 55! James, Mary ! 12000} 199{ 19207 1969
! 26! Thompson, Bob ! 130001 199 1930F 1970]
! 98!Williams, Judy ! 9000} 199} 1935! 1969
' 32! Smythe, Carol I 9050} 199} 1929} 1967|
! 33} Hayes, Evelyn ! 10100 199! 1931} 1963}
| 199 }Bullock, J.D. i 27000} 0} 1920/ 1920/
! 4901!Bailey, Chas M. i 8377 321 1956} 1975|
| 843|Schmidt, Herman 1 11204) 261 1936] 1956}
" 2398!Wallace, Maggie J. | 7880! 26} 1940} 1959}
| 1639)Choy, Wanda | 11160} 55 1947{ 1970}
! 5119}|Ferro, Tony ! 13621} 551 1939} 1963}
' 371 Raveen, Lemont i 11985} 261 19501 1974
' 5219:w1111ams, Bruce I 133741 33} 1944} 1959}
! 1523)Zugnoni, Arthur A. | 19868] 129 1928} 1949}
! 430! Brunet, Paul C. P 17674 1291 1938F 1959/
! 994! Iwano, Masahiro | 15641} 129} 1944} 1970}
i 1330i0Onstad, Richard i 87791 13} 19527 1971}
! 10} Ross, Stanley ! 15908} 1991 1927 1945}
i 11! Ross, Stuart ! 12067/ .01 1931} 1932i
| e e . e e mr e e EmEEmeee- 1
continue

*

"pAll" is a keyword which is expanded by INGRES to become all
domains. The domains are not guaranteed to be in any particular
order. The previous query is equivalent to:

range of e is employee

retrieve (e.number, e.name, e.salary, e manager
e.birthdate, e. startdate)

A Tutorial on INGRES - Page 15

Let's retrieve the salary of Stan Ross. At this point we will
need to be able to type both upper and lower case letters. 1If
you are on an upper case only terminal, type a single "\" before
a letter you wish to capitalize. Thus on an upper case only ter-
minal type "\ROSS, \STAN". 1If you are on an upper and lower case
terminal, use the shift key to capitalize a letter.

Run the query:

*® retrieve (e.name,e.salary)

* where e.name = "Ross, Stan"
!\g

Executing

| name | salary|
| == mm e !
| mmmecc;cememeccc—— e ———— ;
continue

*

The result is empty. There is no e.name which satisfies the
qualification. That's strange because we know there is a Stan
.. Ross. However, INGRES does not know, for example, that "Stanley"
. and "Stan" are semantically the same. :

To get the correct answer in this situation you may use the spe-
~cial "pattern matching" characters provided by INGRES.

One such character is "#"_ It matches any string of zero or more
characters. Try the query:

¥ retrieve (e.name,e.salary)

* where e.name = "Ross, S¥"
Executing

| name 1 salary|
1 [}
e ——— e —————————
{Ross, Stanley ! 15908
|Ross, Stuart | 120671
] [}
[ettt e]
continue

*

In the first case "#" matched the string "tanley" and in the
second case it matched "tuart". :

Here is another example. Find the salaries of all people whose
first name is "Paul'": :

A Tutorial on INGRES Page 16

* retrieve (e.name,e.salary)

* where e.name = "¥ Paul#*"
*\g

Executing

| name | salary|
] ' [}
[pdhadtedadeted etk dndeednskashenienfiaiendenteinadhasiay [}
ISmith, Paul I 6000}
|Brunet, Paul C. | 17674}
] [}
[Bhadedeadeddebededestbadesdesin bbb S it [}
continue

*

Notice that if we had asked for e.name = "* Paul" we would not

have gotten the second tuple. Also, INGRES ignores blanks in any
character comparison whether using pattern matching characters or

not. This means that the following would all give the same
results: -

e.name = "Ross,Stanley"

e.name = "Ross, Stanley "

e.name "R o s s,Stanley"

Particular characters or ranges of characters can be put in
square brackets ([]). For example, find all people whose names
start with "B" through "F":

* retrieve (e.name,e.salary)

* where e.name = "[B-F]*"
*\g

Executing

| name }salaryi
[}

[kbbbt ket et adadadadei bbb !
|Evans, Michael 5000
|Edwards, Peter 9000}
1Collins, Joanne 70001

'
|
|
{Bullock, J.D. i 27000}
1
:'
i
]
)

iBailey, Chas M. 83771
|Choy, Wanda 11160}
| Ferro, Tony 13621}
{ Brunet, Paul C. 17674,
t |
e e it b b I
continue

*

Notice that this last query could be done another way:

¥ retrieve (e.name,e.salary)

A Tutorial on INGRES . Page 17

% yhere e.name >"B" and e.name <"G"
ﬁ\g
Executing . . .

Ename -~ |salary|
e e et L :
|Evans, Michael 5000}
|Edwards, Peter 9000
{Collins, Joanne 7000}
|Bullock, J.D. 27000}

|
|
|
|
|Bailey, Chas M. I 8377!
b
|
=

|Choy, Wanda 111601
| Ferro, Tony 13621}
EBrunet, Paul C. 17674}
e e L L L L E L L et !
continue

*

The two results are identical; however, the second way 1is gen-
erally more efficient for INGRES to process.

There are three types of pattern matching constructs. All three
.can be wused in any combination for character comparison. They
are: . A

matches any length character string
matches any one (non-blank) character

] can match any character listed in the brackets. If two
characters are - separated by a dash (-)ﬁ then it matches
any character falling between the two characters.

ey W

The special meaning of a pattern matching character can be turned |
off by preceeding it with a "\". This means that "\¥*" refers to
the character "#n,

We turn now to the aggregation facilities supported by INGRES.
This allows a user to perform computations on whole domains of a
relation. For example, one aggregate is average (avg). To com-
pute the average salary for all employees, we enter:

% petrieve (avgsal=zavg(e.salary))

*\g
Executing

11867.5205

continue

A Tutorial on INGRES , Page‘18

*

The particular title "avgsal" is arbitrary, but necessary; INGRES
needs some sort of title for any expression.'in the target list
(other than a simple domain). : :

We can also find the minimum and maximum salaries:

% pretrieve (minsal=min(e.salary),maxsalzmax(e.salary))
*\g
Executing . . .

'minsal |maxsal!
|

continue
*

If we wanted to know the names of the employees who make the
minimum and maximum salaries, that query would be:

retrieve (e.name, e.salary)
where e.salary = min(e.salary) or e.salary = max(e.salary)
Executing . . .

! name ! salary!
1 1
| Rnkdadedaddddadeadnsie b d® b ntendendn et |
|Evans, Michael i 5000}
{Bullock, J.D. ! 27000}
] |
== m—m——————— mmmm—mmm————— I
continue

*

INGRES supports the following aggregates:

count
min
max
avg
sum
any

We now indicate the query to list each employee -along with the
average salary for all employees:

retrieve (e.name,peersal=avg(e.salary))

*\g
Executing . . .

A Tutorial on INGRES Page 19

|Jones, Tim
iSmith, Paul
{Evans, Michael
| Thomas, Tom

{ Edwards, Peter
iCollins, Joanne
| James, Mary

| Thompson, Bob
iWilliams, Judy
|Smythe, Carol
|Hayes, Evelyn
|Bullock, J.D.
{Bailey, Chas M.
lSchmidt, Herman
iWallace, Maggie
{Choy, Wanda

| Ferro, Tony
|Raveen, Lemont
iWilliams, Bruce
| Zugnoni, Arthur
{ Brunet, Paul C.
!Iwano, Masahiro
lOnstad, Richard
lRoss, Stanley

{ Ross, Stuart
| .

. econtinue

*

An aggregate always evaluates to a single value.
last query, INGRES

e.name.

Aggregates can have their own qualification.

| peersal H
[}

11867.520)
11867.520]
11867.520}
11867.520]
11867.520)
11867.5201
11867.520}
11867.5201
11867.520}
11867.5201
11867.520}
11867.520]
11867.520}
11867.5201
11867.520]
11867.5201
11867.520}
11867.520}
11867.520)
11867.520
11867.520]
11867.520}
11867.520)}
11867.5201
11867.5205

replicated

To process the
the average salary next to each

For example, we can

retrieve a list of each employee along with the average salary of
those employees over 50.

¥ retrieve (e.name,peersal=

% avg(e.salary where 1977-e.birthdate > 50))

*\g
Executing

- {Jones, Tim
1Smith, Paul
|Evans, Michael
| Thomas, Tom
|Edwards, Peter

A Tutorial on INGRES

|peersal

Page 20

ICollins, Joanne ! 19500.000}
| James, Mary ! 19500.000!
!Thompson, Bob | 19500.000]
IWilliams, Judy ! 19500.000}
!Smythe, Carol ! 19500.000]
|Hayes, Evelyn | 19500.000}
{Bullock, J.D. i 19500.000!
iBailey, Chas M. | 19500.000]
|Schmidt, Herman | 19500.000}
|Wallace, Maggie J. | 19500.000}
iChoy, Wanda | 19500.000]
{Ferro, Tony i 19500.000!
|Raveen, Lemont ! 19500.000}
iWilliams, Bruce | 19500.000}
| Zugnoni, Arthur A. | 19500.000]
| Brunet, Paul C. i 19500.000]
| Iwano, Masahiro ! 19500.000}
{Onstad, Richard | 19500.000}
|Ross, Stanley ! 19500.000}
|Ross, Stuart | 19500.000}

continue
*

Contrast the previous query with this nekt one. We w1li retrieve
the names of those employees over flfty and retrieve the average:
salary for all employees.

¥ retrieve (e.name,peersal=zavg(e.salary))
* where 1977-e.birthdate > 50

*\g

Executing .

| name | peersal !
]]
[Bttt sttt]
| James, Mary | 11867.520]
-{Bullock, J.D. i 11867.520}
[}]
[Bttt et sbnsbeafenbeni ot |
continue
*

There is a very important distinction between these last - two

queries. An aggregate is completely self-contained. It is not
affected by the qualification of the query as a whole.

In the first case, average is computed only for those employees
over fifty, and all employees are retrieved. In the second case,
however, average is computed for all employees but only those em-
ployees over 50 are retrieved.

A Tutorial on INGRES | Page 21

If we wanted a list of all employees over fifty together with the
average salary of employees over fifty, we would combine the pre-
vious two queries into one. That query would be:

retrieve (e.name, peersals=s '
avg(e.salary where 1977 - e.birthdate >'50))
where 1977 - e.birthdate > 50

\g

Executing . .

w W Wk Wk

i name | peersal '
1]
[Ratadababet bbb bbb bbbl i
| James, Mary ! 19500.000]
|Bullock, J.D. | 19500.000}
]]
| e e e e e s Ss e Se e !
continue

*

It is sometimes useful to have duplicate values removed before an
aggregation 1is computed. For example if you wanted to know how
many managers there are, the following query will not give the
right answer: '

% petrieve (bosses = count(e.manager))
*\g
% Executing . . .

Ibosses

continue
*

Noﬁice that that gives the count of how many tuples there are in
employee. What we want to know is how many unique e.manager's
there are.

INGRES provides three special forms of aggregationg

countu count unique values
avgu o average unique values
sumu sum unique values

‘It's interesting to note that minu, maxu, and anyu are not need-
ed. Their values would be the same whether duplicates were re-
moved or not.

The correct query to find the number of managers is:

A Tutorial on INGRES : Page 22

* retrieve (bosses=zcountu(e.manager))

*\g
Executing .

|bosses

continue
%

Another aggregate facility supported by INGRES is called aggre-

gate functions.

Aggregate functions group data into categories
and perform separate aggregations on each category.

For example, what if you wanted to retrieve each employee, and
the average salary paid to employees with the same manager? That

query would be:

* retrieve (e.name,manageravg=avg(e.salary by e.manager))

*\g .
Executing

| Jones, Tim

| Thomas, Tom

| Edwards, Peter
lJames, Mary

| Thompson, Bob
iWilliams, Judy
|Smythe, Carol

| Hayes, Evelyn

| Ross, Stanley
|Smith, Paul
IWilliams, Bruce
iEvans, Michael
IBailey, Chas M.
iCollins, Joanne
tBullock, J.D.
|Ross, Stuart

iSchmidt, Herman

iWallace, Maggie
| Raveen, Lemont
{Choy, Wanda
{Ferro, Tony

i Zugnoni, Arthur
!Brunet, Paul C.
i Iwano, Masahiro
Onstad, Richard

A Tutorial on INGRES

Imanageravg|
[}

Page 23

continue
#

The first nine people all have the same manager and their average
salary is 11117.555. The next two people have the same manager
and their average salary is 9687. etc.

Once again, if we wanted to see the same list just for those em-
ployees over 50: : :

% petrieve (e.name,manageravg=avg(e.salary by e.manager))
% where 1977-e.birthdate > 50 '

* 0\ g

Executing

i name A!manageravg%
] 1
 Radadadadedatadeded ekt b b utndebedndest o ttndadaded i b intn |
| James, Mary ! 11117.555}
!Bullock, J.D. ! 19533.500}
1]
[Rdadatebadted kb de b b hedeadesdedbe bbb !
continué

Aggregate functions (unlike simple aggregates) are not completely
local to themselves. The domains upon which the data is grouped
(called the by-list) are logically connected to the domains 1in
the rest of the query. '

.In these last examples, the "e.manager" in the by-list refers to
the same tuple as "e.name" in the target list.

‘If we wanted to compute the average salaries by manager for only
managers 33 and 199, then the query would be:

% pretrieve (e.ﬂame,manageravg:
* avg(e.salary by e.manager)
where e.manager = 199 or e.manager = 33
% \g _ :

" Executing .

| name !manageravg |
| e mmmmmmm o mmmmmmmm—mmmmmmemee !
| Jones, Tim I 11117.5551
| Thomas, Tom i 11117.555]
" Edwards, Peter I 11117.5551
! James, Mary i 11117.555]
! Thompson, Bob ! 11117.555|
'Williams, Judy I 11117.555}

A Tutorial on INGRES ‘ Page 24

| Smythe, Carol i 11117.555}
|Hayes, Evelyn I 11117.555}
{Ross, Stanley i 11117.555]
lSmith, Paul | 9687.000)
{Williams, Bruce ' 9687.0005
e e e L L L L P L P e i
continue

*

Suppose we wanted to find out how many people work for each
manager, and 1in addition wanted only to include those employees
who have worked at least seven years.

*¥ retrieve (e.manager,people=count(e.name by e.manager where
* e.,startdate < 1970))

*\g

Executing

imanage|people

| 199} 8!
| 331 21
I 32| 0}
| 10} 0!
1 01 21
| 261 21
| 551 11
| 1291 21
| 131 0}
S :
continue

*

Notice that managers 32, 10, and 13 have no employees who started
before 1970. Now suppose we want to know the average salary for
those employees. Simply change "count" to "avg" and rerun- the
query. :

¥ retrieve (e.manager,peoplezavg(e.salary by e.manager where
¥ e.startdate < 1970)) '

*\g

Executing

Imanage | people !

]
e e
! 199] 10882.250)
| 33} 22687.000!
g 321 0.000}
d 10} 0.000!

A Tutorial: on INGRES ' Page 25

19533.5001

! 0}

| 26} 9542.000}
| 551 13621.000!
| 129} 18771.000}
5 131 o.oooi
| mm—emoooaaeaneeees-]
continue

#*

Notice what INGRES does for managers 32, 10 and 13. The average
salary for those manager employees is actually undefined since
there are no employees who started before 1970. INGRES always
makes undefined values zero in aggregates. ' '

If you want to remove the zero values from the output, a qualifi-
cation can be added to the query. The following query will find
the average salaries only for those which are greater than zero.

* retrieve (e.manager,people=zavg(e.salary by e.manager where

* e,.startdate < 1970)) : _
* yhere avg(e.salary by e.manager where e.startdate <-1970) > O
* \g »
ngxecuting e e e

r?lmanage}people

199} 10882.250]

]

1

i 33} 22687.000]

| 0} 19533.500

i 26} 9542.000} .
! 551 13621.000}

E 129} 18771.000}
T i '
continue

.

AUp until now we have been retrieving reéults directly onto the
terminal. You can also save results by retrieving them into a
new relation. This is done by saying:

retrieve into newrel (...)
where

The rules are exactly the same as for‘retrieves onto the termi-
nal. INGRES will create the new relation with the correct
domains, and then put the results of the query in the new rela-
tion. ' .

For example, create. a new relation called "overpaid" which has
only those employees who make more than $8000:

A Tutorial on INGRES o Page 26

petrieve into overpaid (e.all)
¥ where e.salary > 8000

¥ print overpaid

¥ \g

Executing .
overpaid relation
inumber {name isalaryimanageibirthd|startd|

10} Ross, Stanley

]
]
] 1
|]
| 11}Ross, Stuart \ 12067] {19311 1932]
! 13| Edwards, Peter i 9000} 1991 1928{ 1958]
' 26} Thompson, Bob i 13000} 199% 1930; 1970
| 32iSmythe, Carol i 9050} 1991 19291 1967]
| 33}/Hayes, Evelyn i 10100/} 199{ 19317 1963]
! 371 Raveen, Lemont i 11985} 261 1950% 1974}
! 55iJames, Mary | 12000} 199} 1920} 1969}
: 98!Williams, Judy i 9000} 1991 19351 19691
i 129! Thomas, Tom i 10000} 199! 1941} 1962}
! 157! Jones, Tim | 12000} 199 1940{ 1960}
! 199 {Bullock, J.D. i 270001} 0} 19201 1920
| 430}Brunet, Paul C. I 176741 129¢ 19381 1959
] 843}Schmidt, Herman I 11204} 261 19361 1956,
! 994} Iwano, Masahiro | 15641 129% 1944} 19701
i 1330i{0Onstad, Richard i 87791 131 19521 1971}
| 15231 Zugnoni, Arthur A. | 19868} 129} 1928} 1949}
| 1639i{Choy, Wanda I 11160} 551 1947} 1970}
| 4901}Bailey, Chas M. I 83771 321 19561 1975!
! 5119}Ferro, Tony i 136211 55/ 1939{ 1963
i 5219}Williams, Bruce i 133741 331 1944} 1959
]
| e e e e s e e e e e e e e e e e e ———]
continue
*

On a "retrieve into" nothing is printed. We had to include a
"print" command to see the results. Also, the relation name on a
"retrieve into" must not already exist. For example, if we. tried
the same query again:

*\g A
Executing . .

5102: CREATE:'duplicate relation name overpaid

continue
*

There are two special features about a "retrieve into". First,
the result relation is automatically sorted and any duplicate tu-
ples are removed. Second, the relation becomes part of the data

A Tutorial on INGRES : _ Page 27

base and is owned by you. If you don’t want it to be saved you
should remember to destroy it. The mechanism for destroying a
relation w1ll be mentioned a bit later. .

So far we have only retrieved data but never changed it. INGRES
supports three update commands: append, replace, and delete.

For example, to add "Tom Terrific" to the list of overpaid em-
ployees and start him off at $10000: : '

* append to overpaid(name = "TePPlflC, Tom",salary = 10000)
*\g :
Executing . . .

continue
*

Notice that we specified values for only two of the six domains
in ."overpaid". ‘That is fine. INGRES will automatically set
. numeric domains to zero and character domains to blank, if they
are not specified.

- Notice also that INGRES did not print anything after the query.
- This is true for all update commands.

Let ‘s give everyone in overpaid a 10% raise. To do this we wént
- to replace o.salary by 1.1 times its value. Type the query:

"% pange of o is overpaid
* replace o(salary = o.salary ¥ 1.1)

*\g
Executing . . .

continue
*

~While the append command requires that you give a relation name
(e.g. append to overpaid), the replace and delete commands re-
quire a tuple variable. Note that the command is:

.replace o (. . .)
where . . .

and not:

replace overpaid (. . .)
where . .

Print the results of these last two updates:

* print overpaid

A Tutorial on INGRES ' Page 28

*\g
Executing . .

overpaid relation

Inumber |name Isélary{manageibirthdlstartd{

101 Ross, Stanley

|]

]]

i 11}Ross, Stuart i 132731 o/ 1931} 1932}
i 13| Edwards, Peter i 9899 199¢{ 1928} 1958}
' 26} Thompson, Bob i 14299} 199} 1930! 1970}
1 32iSmythe, Carol i 9954 199} 1929% 1967!
i 33iHayes, Evelyn i 11109] 1991 19311 1963]
! 37 1 Raveen, Lemont i 13183} 261 1950) 1974,
! 55! James, Mary ! 13199} 199} 1920! 1969!
i 98Williams, Judy I 9899 1991 19357 1969]
! 129! Thomas, Tom I 10999 199} 1941{ 1962}
| 1571 Jones, Tim I 131991 1991 19401 1960}
| 199 !Bullock, J.D. | 29699 0} 1920/ 1920!
! 430!Brunet, Paul C. I 19441 1291 1938! 1959}
! 843|Schmidt, Herman | 12324} 26} 1936f 1956}
! 994! Iwano, Masahiro ! 17205! 129! 1944} 1970!
! 1330!0Onstad, Richard i 9656 13} 1952} 1971}
! 1523} Zugnoni, Arthur A. | 21854} 1297 1928! 1949}
! 1639)Choy, Wanda ! 12275]) 551 1947{ 1970/
{ U4901iBailey, Chas M. I 9214 321 19561 1975i
i 5119 Ferro, Tony i 14983} 55¢ 1939} 19631
! 5219}Williams, Bruce 14711} 33) 1944} 1959!
' 0iTerrific, Tom i 11000} oY oK

1

[}

continue
*

Let ‘s fire whoever has the smallest salary:

¥ delete o where o.salary = min(o.salary) \g
Executing .

continue
*

Notice that the delete command requires a tuple variable (eg.
delete 0) and not a relation name.

What if we wanted to know who makes more that Tom Terrific? The
query to do this is very subtle. First we use a new tuple vari-
able called "t" which ranges over overpaid, and will be wused to
refer to Tom. t.name must equal "Terrific, Tom". Next, we use a
tuple variable called "o" which will scan the whole relation. If
we ever find an o.salary > t.salary then o.name must make more

A Tutorial on INGRES Page 29

than Tom.
The complete query is:

range of t is overpaid

retrieve (o.name, osal=o.salary, tomsal = t.salary)
where o.salary > t.salary

and t.name = "Terrific, Tom"

\g

Executing . . .

o % % % % %

Iname ‘ losal ‘tomsali

192471 11000}
146007 11000}
157281 110001
12219 11000}
14501i 11000}

| Ross, Stanley i

{Ross, Stuart |

| Thompson, Bob |

{Hayes, Evelyn |

| Raveen, Lemont]

| James, Mary i 145181 11000}
{ Thomas, Tom - 12098} 11000}
iJones, Tim i 14518] 11000}
{Bullock, J.D. { 32668] 11000}
{Brunet, Paul C. i 21385{ 11000}
|Schmidt, Herman i 13556 11000}
~{Iwano, Masahiro i 189251 11000}
|Zugnoni, Arthur A. | 24039} 11000!
|Choy, Wanda : i 135021 11000}
|Ferro, Tony | 16481] 11000]
{Williams, Bruce { 16182} 11000}
]]

continue
#*

If we wanted to give Tom Terrific $50 more than anyone else, the
query would be:

¥ preplace o(salary = max(o.salary) + 50)
% where o.name = "Terrific, Tom"

*\g

Executing . . .

continue
%

Finally, to destroy a relation owned by yourself, type the 'com-
mand: .

% destroy overpaid

*\g
Executing . . .

A Tutorial on INGRES : " Page 30

Continue
*

We are now ready to leave INGRES. This is done either by typing
an end-of-file (control/d) or more typically use the "\g" com-
mand:

INGRES vers 6.1/0 logout
Tue Aug 30 14:55:20 1977
goodbye bob -- come again

A Tutorial on INGRES » Page 31

	Copyright notice 1977
	ERL-77-25

