

Copyright © 1977, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

A TUTORIAL ON INGRES

by

Robert Epstein

Memorandum No. UCB/ERL M77/25

15 December 1977

(revised)

A TUTORIAL ON INGRES

by

Robert Epstein

Memorandum No. UCB/ERL M77/25

15 December 1977

(revised)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Research sponsored by the National Science Foundation Grant
MCS75-03839-A01, U.S. Army Research Office Grant
DAAG29-76-G.-0245, the Naval Electronic Systems Command Contract
N00039-78-G-0013, and the Joint Services Electronics Program Con
tract F44620-76-C-0100.

A Tutorial on INGRES

This tutorial describes how to use the INGRES data base manage
ment system. You should be able to follow the the examples given
here and observe the same results.

The data manipulation language supported by the INGRES system is
called QUEL (QUEry Language). Complete information on QUEL and
INGRES appears in the INGRES reference manual. This tutorial
does not attempt to cover every detail of INGRES.

Begin by logging onto UNIX, the time sharing system under which
INGRES runs. If at all possible, use a terminal that has both
upper and lower case letters; otherwise life is going to be
miserable for you. If you are on an upper case only terminal,
type "\\" everywhere "\" appears in the tutorial.

There should currently be a u%" printed on your terminal. To
start using INGRES type the command:

% ingres demo

This requests "UNIX" to invoke INGRES using the data base called
"demo". After a few seconds, the following will appear:

INGRES version 6.1/0 login
Tue Aug 30 14:52:23 1977

COPYRIGHT

The Regents of the University of California
1977

This program material is the property of the
Regents of the University of California and
may not be reproduced or disclosed without
the prior written permission of the owner.

go

The first two lines include the INGRES version number (in this
case version 6.1) and the current date. Following that is the
"dayfile", which includes messages related to the INGRES system.
The "go" indicates that INGRES is ready for your interactions.

The INGRES monitor prints an asterisk ("*") at the beginning of
each line to remind you that INGRES is waiting for input.

Type the command:

A Tutorial on INGRES Page 1

* print parts

* \g
Executing . . .

The line "print parts" requests a printout of some data stored in
the data base. The "\g" means "go". The message "Executing . .
." indicates that INGRES is processing your query. The following
then appears:

parts relation

pnum Spname color weight qoh

1icentral processor pink 10 1

2imemory gray 20 32

3!disk drive black 685 2

4|tape drive black 450 4

5!tapes gray 1 250

6{line printer yellow 578 3
7J1-P paper white 15 95

8jterminals blue 19 15

13ipaper tape reader black 107 0

14|paper tape punch black 147 0

9|terminal paper white 2 350

10jbyte-soap clear 1 0 ' 143
11jcard reader gray i 327 I o
12!card punch gray i 427 i o

continue
«

What is printed on your terminal is the "parts relation". Intui
tively, a relation is nothing more that a table with rows and
columns.

In this case the relation name is "parts". There are five
columns (we call them domains) named pnum (part number), pname
(part name), color, weight, qoh (quantity on hand). Each row of
the relation (called a tuple) represents one entry, which in this
case represents one part in a computer installation. A relation
can have up to 49 domains and a virtually unlimited number of tu
ples.

Notice that after the query is executed, INGRES prints "contin
ue", while when we first entered INGRES it printed "go". As you
enter a query INGRES saves what you type in a "workspace". If
you ever mistype a query, typing "\r" will "reset" (ie. erase)
your workspace. (Later on we will learn ways to edit mistakes so
we don't have to retype the entire query.)

At any time you can see what is in the workspace by typing "\p".
Try typing "\p":

A Tutorial on INGRES Page 2

* \p
print parts

The current contents of the workspace is printed.
"\r":

Now try typing

* \r
go
*

The workspace is now empty. Whenever INGRES types "continue" the
workspace is non-empty; whenever INGRES types "go" the workspace
is empty.

After a query is executed, INGRES typically types "continue". If
you then type a new query, INGRES automatically erases the previ
ous query, so you don't have to type "\r" after every query.
This will be further explained as we proceed.

Using the "retrieve" command we can write specific queries about
relations. As an example, let's have INGRES print only the
"pname" domain of the parts relation. Type the command:

* range of p is parts
* retrieve (p.pname)
* \g
Executing ...

pname

central processor
memory

disk drive

tape drive
tapes
line printer
1-p paper
terminals

paper tape reader
paper tape punch
terminal paper
byte-soap
card reader

card punch

continue

The output is just the pname domain from the parts relation.
What we did required two steps. First we declared what is called

A Tutorial on INGRES Page 3

a "tuple variable" and assigned it to range over the parts rela
tion.

range of p is parts

What this means in English is that the letter "p" represents the
parts relation. It may be thought of as a marker which moves
down the "parts" relation to keep our place. INGRES remembers
the association so that once p is declared' to range over parts,
we don't have to repeat the range declaration. This is useful
when we are working with more than one relation, as will be seen
later on.

Next we used the retrieve command. Its form is

retrieve (list here what you want retrieved)

"p" by itself refers to the parts relation, "p.pname" refers to
the pname domain of the parts relation, so saying:

retrieve (p.pname)

means retrieve the pname domain of the parts relation.

Try the query to retrieve pname and color:

* retrieve p.pname, p.color

* \g
Executing . . .

2500: syntax error on line 1
last symbol read was: .

continue
«

Unfortunately we've made an error. INGRES tells us that it found
a syntax error on the first line of the query. "Syntax error"
means that we have typed something which INGRES cannot recognize.
The error occured on line 1. INGRES makes a sometimes helpful
and sometimes feeble attempt at diagnosing the problem. Whenever
possible, INGRES tells us the last thing it read before it got
confused.

In this case, the error is that the list of things to be re
trieved (called the target list) must be enclosed in parenthesis.
The correct query is:

* retrieve (p.pname, p.color)
* \g
Executing . . .

A Tutorial on INGRES Page 4

pname !color

central processor Ipink
memory !gray
disk drive !black
tape drive black

tapes Igray
line printer !yellow
1-p paper white

terminals blue

paper tape reader black

paper tape punch black

terminal paper white

byte-soap clear

card reader gray

card punch 'gray

continue
*

You can restrict which tuples are printed by adding a "qualifica
tion" to the query. For example to get the name and color of
only those parts which are gray, type:

* retrieve (p.pname, p.color)
* where p.color = "gray"
* \g
Executing . . .

pname !color

memory igray
tapes Igray
card reader Igray
card punch Igray

continue
*

Notice that INGRES prints only those parts where p.color is gray.
Notice also that gray must be in quotes ("gray"). This is neces
sary. The only way INGRES will recognize character strings (e.g.
words) is to enclose them in quotes.

What if we wanted part names for gray or pink parts? We only
need to append to the previous query the phrase:

or p.color r "pink"

Remember, however, that if the next line typed begins a new

A Tutorial on INGRES Page 5

query, INGRES will automatically reset the workspace. The
workspace will be saved only if the next line begins with a com
mand such as "\p" or "\g". (There are others which we will come
to later.) If such a command is typed, the previous query is
saved and anything further will be appended to that query.

Thus, by typing:

* \p
retrieve (p.pname, p.color)
where p.color = "gray"
*

you can see the previous query. Now type:

* or p.color = "pink"
*

INGRES appends that last line to the end of the query. You can
verify this yourself by printing the workspace:

* \p
retrieve (p.pname, p.color)
where p.color = "gray"
or p.color = "pink"
*

Now run the query:

* \g
Executing ...

pname jcolor

central processor
memory

tapes
card reader

card punch

1pink
Igray
Igray
Igray
Igray

continue
*

The rules about when the workspace is reset may be very confusing
at first. In general, INGRES will do exactly what you want
without you having to think about it.

We have seen qualifications which used "or" and "=". In general
one can use:

and

A Tutorial on INGRES Page 6

or

not

— (equal)
i= (not equal)
> (greater than)
>= (greater than or equal)
< (less than)
<= (less than or.equal)

Evaluation occurs in the order the qualification was typed (ie.
left to right). Parenthesis can be used to group things in any
arbitrary order.

INGRES can do computations on the data stored in a relation. For
example, the parts relation has quantity on hand and weight for
each item. We might like to know the total weight for each group
of parts (i.e. weight multiplied by qoh).

To get the name, part number and total weight for each part type
the query:

* retrieve (p.pname, p.pnum, p.qoh * p.weight)
* \g
Executing ...

2500: syntax error on line 1
last symbol read was: *

continue
*

Another error. The problem is that when a computation is done,
INGRES does not know how to title the domain on the printout.
For a simple domain, INGRES uses the domain name as a title. For
anything else, you must create a new domain title by specifying:

tot = p.qoh * p.weight

More generally the form is:

title s expression

For example:

name = p.pname

computation r p.weight / 2000 * (p.qoh + 2)

Let's fix the error by retyping the query. As long as the first
line after a query does not begin with a "\p" or "\g" then INGRES
will automatically reset the workspace, erasing the previous
query for us..

* retrieve (p.pname, p.pnum, tot=p.qoh * p.weight)

A Tutorial on INGRES Page 7

* \g
Executing

1pname [pnum Itot

Icentral processor 1 1 10
1memory 2 I 640
{disk drive 3 I 1370
Itape drive 4 ! 1800
1tapes 5 I 250
{line printer 6 1734
|l-p paper . 7 1425
1terminals 8 285
Ipaper tape reader j 13 0
1paper tape punch | 14 0
{terminal paper | 9 700
1byte-soap | 10 0
|card reader 111 0
1card punch | 121 0

continue
*

In addition to multiplication, INGRES supports:

+ addition

subtraction (and unary negation)
/ division

* multiplication
** exponentiation (e.g. 3**10)
abs absolute value (e.g. abs(p.qoh - 50))
mod modulo division

and many others. Please refer to the INGRES reference manual for
a brief but complete description of what is supported.

If all we wanted were part numbers 2 or 10, then we could add the
qualification:

where p.pnum = 2 or p.pnum = 10

CAUTION: if

would under

reset the wo

INGRES to

The append c
appended to
only needed
time data wi

* \a

we jus
stand

rkspac
print
ommand

what

immedi

11 be

t started

this as

e. To av

the wor

guarante
is aire

ately aft
appended

A Tutorial on INGRES

typing "where p.pnum " INGRES
the beginning of a new query and would
oid this you could type "Yp" and force
kspace, or you can type "\a" (append),
es that whatever else is typed will be
ady in the workspace. This command is
er a query is executed. Any other
automatically. Try the following:

Page 8

* where p.pnum = 2 or p.pnum = 10
* \g
Executing . . .

pname

memory

byte-soap

pnum Itot

2!
101

640

0

continue
*

To include all part numbers greater than 2 and less than or equal
to 10:

* retrieve (p.pname, p.pnum, totrp.qoh * p.weight)
* where p.pnum > 2 and p.pnum <= 10
* \g
Executing ...

pname Ipnum 1tot |

disk drive I 31 13701
tape drive I 41 1800]
tapes I 5! 250!
line printer ! 6! 1734}
1-p paper I 71 14251
terminals I 81 2851
terminal paper I 9! 700}
byte-soap I 101 01

continue
*

Now, suppose we want to change the previous query to give results
for part numbers between 5 and 10 instead of 2 and 10. You are
probably annoyed at having to retype the entire query in order to
change one character. Consequently, INGRES lets you use the UNIX
text editor to make corrections and/or additions to your
workspace. At any time you can type "\e" and the INGRES monitor
will write your workspace to a file and call the UNIX "ed" pro
gram. For example:

* \e

>>ed

83

The ">>ed" message tells you that you are now using the editor.
The number 83 is the number of characters in your workspace.

A Tutorial on INGRES Page 9

We can now edit the query by changing the 2 to a 5. Included in
the UNIX documentation is a tutorial on using the text editor.
Rather than duplicating that tutorial, we will just use a few of
the editor commands to illustrate how to do editing:

1p
retrieve (p.pname,p.pnum,tot = p.qoh * p.weight)
2p
where p.pnum > 2 and p.pnum <= 10
s/2/5/p
where p.pnum > 5 and p.pnum <= 10
w

83
q
<<monitor
*

Very briefly, this is what happens. "1p" and "2p" printed lines
1 and 2. "s/2/5/p" substitutes a 5 for a 2 on the current line
(line 2), and then prints that line, "w" writes the query back
to the INGRES workspace.

Inside the editor you can use any "ed" command except "e" (since
e changes the file name). When you quit the editor (q command),
the INGRES monitor will print "<<monitor" to remind you that you
are back in INGRES. Notice that you MUST precede the "q" command
with a "w" command to pass the corrected workspace back to
INGRES.

To verify that the query is correct and to run it, type:
* \p\g
retrieve (p.pname,p.pnum,tot = p.qoh * p.weight)
where p.pnum > 5 and p.pnum <= 10
Executing . . .

pname

line printer
1-p paper
terminals

terminal paper
byte-soap

continue
*

}pnum Itot

61 173^
7! 1425
81 285
9! 700
10} 0

Having exhausted the interesting queries concerning the parts re
lation, lets now look at a new relation called "supply". Type:

* print supply

A Tutorial on INGRES Page 10

* \g
Executing . . .

supply relation

snum pnum !jnum |shipdate! quan |

4751 1! 1001173-12-31! 11
475 2 1002174-05-31 32!

4751 3! 1001173-12-31 2!
475 4 1002174-05-31 1!
1221 7! 1003175-02-01 144!
122 7 1004175-02-01 48}
122| 91 1004175-02-01! 144!
440 I 6 1001174-10-10 2!
2411 4! 1001173-12-311 1!
62 I 3 I 1002174-06-18 3!

4751 2 1001173-12-31 32!
475 1 ! 1002174-07-01 1i

5 4 1003174-11-15 3!
5 I 4 ! 1004J75-01-22 ! 6!

20 5 1001175-01-10 20|
20 I 5 ! 1002175-01-10 ! 75!

241 1 1005175-06-01 1!
241 2 ! 1005175-06-01 I 32!
241 3 1005175-06-01 1!
67 I 4 ! 1005175-07-01 I 1>

999 10 1006176-01-01 1 144|
241 I 8 I 1005175-07-01 ! 11
241 9 I 1005175-07-01 I 144!

continue
*

The supply relation contains snum (the supplier number), pnum
(the part number which is supplied by that supplier), jnum (the
job number), shipdate (the date it was shipped), and quan (the
quantity shipped).

To find out what parts are supplied by supplier number 122 type:

* retrieve (s.pnum) where s.snum = 122
* \g
Executing . . .

2109: line 1, Variable 's' not declared in RANGE statement

continue

*

We have referenced the tuple variable "s" (i.e. s.pnum) without

A Tutorial on INGRES Page 11

telling INGRES what "s" represents. We are missing a
claration. Retype the query as follows:

* range of s is supply
* retrieve (s.pnum) where s.snum
* \g
Executing . . .

continue
*

= 122

range de-

Supplier number 122 supplies part numbers 7, 7 and 9. Note that
7 is listed twice. When retrieving tuples onto a terminal it is
more efficient for INGRES NOT to check for duplicate tuples.
INGRES can be forced to remove duplicate tuples. We will come to
that later.

We now know that supplier 122 supplies part numbers 7 and 9. If
you haven't run this query a few hundred times you probably don't
know what part names correspond to part numbers 7 and 9- We
could find out simply by running the query:

* retrieve (p.pname) where p.pnum
* p.pnum =9
* \g
Executing . . .

pname

1-p paper
terminal paper

continue
*

= 7 or

After two queries we know by part name what parts are supplied by
supplier number 122. We could do the same thing in one query by
asking:

* retrieve (p.pname) where p.pnum
* and s.snum = 122

* \g
Executing . . .

A Tutorial on INGRES

= s.pnum

Page 12

pname

1-p paper
1-p paper
terminal paper

continue
*

Again note that "1-p paper" is duplicated. Look closely at this
query. Note that the domain pnum exists in both the parts and
supply relations. By saying p.pnum = s.pnum, we are logically
joining the two relations.

Suppose we wished to find all suppliers who supply the central
processor. We know that we will want to retrieve s.snum. We
want only those s.snum's where the corresponding s.pnum is equal
to the part number for the central processor.

If we find the p.pname which is equal to "central processor" then
that will tell us the correct p.pnum. Finally we want s.pnum =
p.pnum. The query is:

* retrieve (s.snum) where
* s.pnum = p.pnum and p.pname
* \g
Executing . . .

= "central processor"

continue
*

Let's abandon the parts and supply relations and try another.
First, we can see what other relations are in the database by
typing:

* help \g
* Executing ...

relation name

relation

attribute

indexes

relation owner

ingres
ingres
ingres

A Tutorial on INGRES Page 13

integrity ingres
constraint ingres
item ingres
sale ingres
employee ingres
dept ingres
supplier ingres
store ingres
parts ingres
supply ingres

continue
*

Let's look at the "employee" relation. Since we know nothing
about the relation we can also use the "help" command to learn
about it. Type:

* help employee
* \g
Executing . . .

Relation: employee
Owner: ingres
Tuple width: 30
Saved until: Fri Mar 25 11:01:30 1977
Number of tuples: 24
Storage structure: paged heap
relation type: user relation

attribute name type length keyno.

number i 2

name c 20
salary i 2
manager i 2
birthdate i. 2

startdate i 2

continue
*

The help command lists overall information about the employee re
lation together with each attribute, its type and its length.

INGRES supports three data types: integer numbers, floating point
numbers, and characters strings. Character domains can be from 1
to 255 characters in length. Integer domains can be 1, 2, or 4
bytes in length. This means that integers can obtain a maximum
value of 127; 32,767; and 2,147,483,647 respectively. Floating

A Tutorial on INGRES Page 14

point numbers can be either 4 or 8 bytes. Both hold a maximum
value of about 10**38; with 7 or 17 digit accuracy respectively.

To look at all domains we could use the print command or we could
use the retrieve command and list each domain in the target list.
INGRES provides a shorthand way of doing just that. Try the fol
lowing:

* range of e is employee
* retrieve (e.all)

* \g
Executing ...

number! name salary manage birthd! startd!

157! Jones, Tim 12000! 199! 1940! 1960!

1110' Smith, Paul 6000 33 1952 1973!

35! Evans, Michael I 5000! 32! 1952! 1974!

129 Thomas, Tom 10000 199 1941 1962!

13!Edwards, Peter ! 9000 199 1928 1958!

215 Collins, Joanne 7000 10 1950 1971!

55. James, Mary 12000 199 1920! 1969!
26 Thompson, Bob 13000 199 1930 1970!

98 Williams, Judy 9000 199 1935 1969!
32 Smythe, Carol 9050 199 1929 1967!

33 Hayes, Evelyn 10100 199 1931 1963!

199 jBullock, J.D. 27000 I o ! 1920 ' 1920!

4901 Bailey, Chas M. 8377 32 1956 1975!

843 iSchmidt, Herman I 11204 ! 26 I 1936 I 1956!
2398 Wallace, Maggie J. 7880 26 1940 1959!

1639 |Choy, Wanda ! 11160 ! 55 ! 1947 ! 1970!

5119 Ferro, Tony 13621! 55! 19391 1963!
37 Raveen, Lemont 11985 26 1950 1974!

5219! Williams, Bruce 13374! 33' 1944! 1959!
1523 Zugnoni, Arthur A. 19868 129 1928 1949!
430! Brunet, Paul C. ! 17674' 129 1938! 1959!
994 Iwano, Masahiro 15641 129 1944 1970!

1330 Onstad, Richard 8779 13 1952 1971!
10 Ross, Stanley 15908 199 1927 1945!
11 Ross, Stuart 12067 0 1931 1932!

continue
*

"All" is a keyword which is expanded by INGRES to become all
domains. The domains are not guaranteed to be in any particular
order. The previous query is equivalent to:

range of e is employee
retrieve (e.number, e.name, e.salary, e.manager

e.birthdate, e.startdate)

A Tutorial on INGRES Page 15

Let's retrieve the salary of Stan Ross. At this point we will
need to be able to type both upper and lower case letters. If
you are on an upper case only terminal, type a single "\" before
a letter you wish to capitalize. Thus on an upper case only ter
minal type "\ROSS, \STAN". If you are on an upper and lower case
terminal, use the shift key to capitalize a letter.

Run the query:

* retrieve (e.name,e.salary)
* where e.name = "Ross, Stan"
* \g
Executing ...

name Isalary

continue
*

The result is empty. There is no e.name which satisfies the
qualification. That's strange because we know there is a Stan
Ross. However, INGRES does not know, for example, that "Stanley"
and "Stan" are semantically the same.

To get the correct answer in this situation you may use the spe
cial "pattern matching" characters provided by INGRES.

One such character is "*". It matches any string of zero or more
characters. Try the query:

* retrieve (e.name,e.salary)
* where e.name = "Ross, S*"
* \g
Executing . . .

name !salary

Ross, Stanley ! 15908
Ross, Stuart ! 12067

continue
«

In the first case "*" matched the string "tanley" and in the
second case it matched "tuart".

Here is another example. Find the salaries of all people whose
first name is "Paul":

A Tutorial on INGRES Page 16

* retrieve (e.name,e.salary)
* where e.name = "*,Paul*"

* \g
Executing . . .

name

Smith, Paul
Brunet, Paul C.

jsalary

I 6000
! 17674

continue
*

Notice that if we had asked for e.name = "*,Paul" we would not
have gotten the second tuple. Also, INGRES ignores blanks in any
character comparison whether using pattern matching characters or
not. This means that the following would all give the same
results:

e.name = "Ross,Stanley"
e.name = "Ross, Stanley "
e.name = "R o s s,Stanley"

Particular characters or ranges of characters can be put in
square brackets ([]). For example, find all people whose names
start with "B" through "F":

* retrieve (e.name,e.salary)
* where e.name = "[B-F]*"

* \g
Executing ...

name •salary

Evans, Michael I 5000
Edwards, Peter ! 9000
Collins, Joanne I 7000
Bullock, J.D. ! 27000
Bailey, Chas M. ! 8377
Choy, Wanda ! 11160
Ferro, Tony I 13621
Brunet, Paul C. ! 17674

continue
*

Notice that this last query could be done another way

* retrieve (e.name,e.salary)

A Tutorial on INGRES Page 17

* where e.name >"B" and e.name <"G"

* \g
Executing ...

name !salary

Evans, Michael I 5000
Edwards, Peter ! 9000
Collins, Joanne ! 7000
Bullock, J.D. ! 27000
Bailey, Chas M. ! 8377
Choy, Wanda I 11160
Ferro, Tony I 13621
Brunet, Paul C. ! 17674

continue
*

The two results are identical; however, the second
erally more efficient for INGRES to process.

way is gen-

There are three types of pattern matching constructs. All three
can be used in any combination for character comparison. They
are:

* matches any length character string
? matches any one (non-blank) character
[] can match any character listed in the brackets. If two

characters are separated by a dash (-)*, then it matches
any character falling between the two characters.

The special meaning of a pattern matching character can be turned
off by preceeding it with a "\". This means that "*" refers to
the character "*".

We turn now to the aggregation facilities supported by INGRES.
This allows a user to perform computations on whole domains of a
relation. For example, one aggregate is average (avg). To com
pute the average salary for all employees, we enter:

* retrieve (avgsal=avg(e.salary))
* \g
Executing ...

avgsal

11867.520

continue

A Tutorial on INGRES Page 18

The particular title "avgsal" is arbitrary, but necessary; INGRES
needs some sort of title for any expression in the target list
(other than a simple domain).

We can also find the minimum and maximum salaries:

* retrieve (minsal=min(e.salary),maxsal=max(e.salary))
* \g
Executing ...

minsallmaxsal

5000! 27000

continue
*

If we wanted to know the names of the employees who make the
minimum and maximum salaries, that query would be:

* retrieve (e.name, e.salary)
* where e.salary = min(e.salary) or e.salary = max(e.salary)
* \g
Executing ...

name

Evans, Michael
Bullock, J.D.

!salary

I 5000
! 27000

continue
*

INGRES supports the following aggregates:

count

min

max

avg

sum

any

We now indicate the query to list each employee along with the
average salary for all employees:

* retrieve (e.name,peersal=avg(e.salary))
* \g
Executing . . .

A Tutorial on INGRES Page 19

name !i)eersal I

Jones, Tim ' 11867.520!
Smith, Paul I 11867.520!
Evans, Michael ! 11867.520!
Thomas, Tom ! 11867.520!
Edwards, Peter ! 11867.520!
Collins, Joanne | 11867.520!
James, Mary ! 11867.520}
Thompson, Bob | 11867.520!
Williams, Judy ! 11867.520!
Smythe, Carol ! 11867.520!
Hayes, Evelyn I 11867.520!
Bullock, J.D. ! 11867.5201
Bailey, Chas M. ! 11867.520!
Schmidt, Herman ! 11867.520!
Wallace, Maggie J. ! 11867.520!
Choy, Wanda ! 11867.520!
iFerro, Tony ! 11867.520!
Raveen, Lemont I 11867.520!
Williams, Bruce ! 11867.520!
Zugnoni, Arthur A. ' 11867.520!
Brunet, Paul C. I 11867.520!
Iwano, Masahiro ! 11867-520!
lOnstad, Richard ! 11867.520!
Ross, Stanley ' 11867.520!
'Ross, Stuart ! 11867.520!

continue

*

An aggregate always evaluates to a single value. To process the
last query, INGRES replicated the average salary next to each
e.name.

Aggregates can have their own qualification. For example, we can
retrieve a list of each employee along with the average salary of
those employees over 50.

* retrieve (e.name,peersal=
* avg(e.salary where 1977-e.birthdate > 50))
* \g
Executing ...

name

Jones, Tim
Smith, Paul
Evans, Michael
Thomas, Tom
Edwards, Peter

A Tutorial on INGRES

peersal

19500.000
19500.000
19500.000
19500.000
19500.000

Page 20

Collins, Joanne
James, Mary
Thompson, Bob
Williams, Judy
Smythe, Carol
Hayes, Evelyn
Bullock, J.D.
Bailey, Chas M.
Schmidt, Herman
Wallace, Maggie J.
Choy, Wanda
Ferro, Tony
Raveen, Lemont
Williams, Bruce
Zugnoni, Arthur A.
Brunet, Paul C.
Iwano, Masahiro
Onstad, Richard
Ross, Stanley
Ross, Stuart

19500.000

19500.000
19500.000

19500.000
19500.000

19500.000
19500.000

19500.000
19500.000

19500.000
19500.000
19500.000
19500.000

19500.000
19500.000

19500.000
19500.000

19500.000
19500.000

19500.000

continue
*

Contrast the previous query with this next one. We wili retrieve
the names of those employees over fifty and retrieve the average
salary for all employees.

* retrieve (e.name,peersal=avg(e.salary))
* where 1977-e.birthdate > 50

* \g
Executing . . .

name

James, Mary
Bullock, J.D.

!peersal

I 11867.520
! 11867.520

continue
#

There is a very important distinction between these last two
queries. An aggregate is completely self-contained. It is not
affected by the qualification of the query as a whole.

In the first case, average is computed only for those employees
over fifty, and *11 employees are retrieved. In the second case,
however, average is computed for all employees but only those em
ployees over 50 are retrieved.

A Tutorial on INGRES Page 21

If we wanted a list of all employees over fifty together with the
average salary of employees over fifty, we would combine the pre
vious two queries into one. That query would be:

* retrieve (e.name, peersal=
* avg(e.salary where 1977 - e.birthdate > 50))
* where 1977 - e.birthdate > 50

* \g
Executing ...

name Ipeersal

James, Mary ! 19500.000
Bullock, J.D. i 19500.000

continue
*

It is sometimes useful to have duplicate values removed before an
aggregation is computed. For example if you wanted to know how
many managers there are, the following query will not give the
right answer:

* retrieve (bosses = count(e.manager))
* \g
* Executing . . .

bosses

25

continue
*

Notice that that gives the count of how many tuples there are in
employee. What we want to know is how many unique e.manager's
there are.

INGRES provides three special forms of aggregation..

countu count unique values
avgu average unique values
sumu sum unique values

It's interesting to note that minu, maxu, and anyu are not need
ed. Their values would be the same whether duplicates were re
moved or not.

The correct query to find the number of managers is:

A Tutorial on INGRES Pa8e 22

* retrieve (bosses=countu(e.manager))
* \g
Executing . . .

bosses

continue
*

Another aggregate facility supported by INGRES is called aggre
gate functions. Aggregate functions group data into categories
and perform separate aggregations on each category.

For example, what if you wanted to retrieve each employee, and
the average salary paid to employees with the same manager? That
query would be:

* retrieve (e.name,manageravg=avg(e.salary by e.manager))
* \g
Executing ...

name !manageravg!
i

Jones, Tim ! 11117.555!
Thomas, Tom 11117.555!
Edwards, Peter 11117.555!
James, Mary 11117.555!
Thompson, Bob 11117.555!
Williams, Judy 11117.555
Smythe, Carol 11117.555
Hayes, Evelyn 11117.555

Ross, Stanley 11117-555
Smith, Paul 9687.000
Williams, Bruce ! 9687.000
Evans, Michael I 6688.500
Bailey, Chas M. 6688.500
Collins, Joanne I 7000.000

Bullock, J.D. I 19533-500
Ross, Stuart ! 19533-500
Schmidt, Herman ! 10356.333
Wallace, Maggie J. ! 10356.333
Raveen, Lemont ! 10356.333
jChoy, Wanda ! 12390.500
[Ferro, Tony ! 12390.500
IZugnoni, Arthur A. ! 17727.666
[Brunet, Paul C. I 17727.666
[Iwano, Masahiro ! 17727.666
[Onstad, Richard i 8779-000

A Tutorial on INGRES Page 2 3

continue
»

The first nine people all have the same manager and their average
salary is 11117.555. The next two people have the same manager
and their average salary is 9687. etc.

Once again, if we wanted to see the same list just for those em
ployees over 50:

* retrieve (e.name,manageravg=avg(e.salary by e.manager))
* where 1977-e.birthdate > 50

* \g
Executing ...

name

James, Mary
Bullock, J.D.

continue

Smanageravg

! 11117.555
! 19533.500

Aggregate functions (unlike simple aggregates) are not completely
local to themselves. The domains upon which the data is grouped
(called the by-list) are logically connected to the domains in
the rest of the query.

In these last examples, the "e.manager" in the by-list refers
the same tuple as "e.name" in the target list.

to

If we wanted to compute the average salaries by manager for only
managers 33 and 199, then the query would be:

* retrieve (e.name,manageravg=
* avg(e.salary by e.manager)
* where e.manager = 199 or e.manager

* \g
Executing . . .

name

Jones, Tim
Thomas, Tom
Edwards, Peter
James, Mary
Thompson, Bob
Williams, Judy

A Tutorial on INGRES

!manageravg

117.555

117.555
117.555
117.555
117.555

117.555

= 33

Page 24

Smythe, Carol
Hayes, Evelyn
Ross, Stanley
Smith, Paul
Williams, Bruce

11117.555

11117.555
11117.555
9687.000
9687.000

continue
*

Suppose we wanted to find out how many people work for each
manager, and in addition wanted only to include those employees
who have worked at least seven years.

* retrieve (e.manager,people=count(e.name by e.manager where
* e.startdate < 1970))

* \g
Executing ...

manage!people

199! 8

33! 2

32! 0

10! 0

0! 2

26! 2

55! 1

129! 2

13! 0

continue
#

Notice that managers 32, 10, and 13 have no employees who started
before 1970. Now suppose we want to know the average salary for
those employees. Simply change "count" to "avg" and rerun the
query.

* retrieve (e.manager,people=avg(e.salary by e.manager where
* e.startdate < 1970))

* \g
Executing ...

manage|people

199! 10882.250
33! 22687.000
32! 0.000

10! 0.000

A Tutorial; on INGRES Page 25

0

26
55

129

13

19533-500
9542.000
13621.000
18771.000

0.000

continue

*

Notice what INGRES does for managers 32, 10 and 13. The average
salary for those manager employees is actually undefined since
there are no employees who started before 1970. INGRES always
makes undefined values zero in aggregates.

If you want to remove the zero values from the output, a qualifi
cation can be added to the query. The following query will find
the average salaries only for those which are greater than zero.

* retrieve (e.manager,people=avg(e.salary by e.manager where
* e.startdate < 1970))
* where avg(e.salary by e.manager where e.startdate < 1970) > 0
* \g
Executing ...

manage! people j

1991 10882.250!
33! 22687.000!
0! 19533-500!

26! 9542.000!
55! 13621.000!

129! 18771.000!

continue
#

Up until now we have been retrieving results directly onto the
terminal. You can also save results by retrieving them into a
new relation. This is done by saying:

retrieve into newrel (...)
where . . .

The rules are exactly the same as for retrieves onto the termi
nal. INGRES will create the new relation with the correct
domains, and then put the results of the query in the new rela
tion.

For example, create a new relation called "overpaid" which has
only those employees who make more than $8000:

A Tutorial on INGRES Page 26

* retrieve into overpaid (e.all)
* where e.salary > 8000
* print overpaid

* \g
Executing . . .

overpaid relation

number!name salary manage birthd startd

10!Ross, Stanley 15908 199 1927 1945
11|Ross, Stuart 12067 0 1931 1932
13!Edwards, Peter 9000 199 1923 1958
261Thompson, Bob 13000 199 1930 1970

32|Smythe, Carol 9050 199 1929 1967
331Hayes, Evelyn 10100 199 1931 1963
37lRaveen, Lemont 11985 26 1950 1974
55!James, Mary 12000 199 1920 1969
98!Williams, Judy 9000 199 1935 1969
129'Thomas, Tom 10000 199 1941 1962
157!Jones, Tim 12000 199 1940 1960
199!Bullock, J.D. 27000 0 1920 1920
430!Brunet, Paul C. 17674 129 1938 1959
843!Schmidt, Herman 11204 26 1936 1956
994!lwano, Masahiro 15641 129 1944 1970
1330!Onstad, Richard 8779 13 1952 1971
15231Zugnoni, Arthur A. 19868 129 1928 1949
l639!Choy, Wanda 11160 55 1947 1970

4901iBailey, Chas M. 8377 32 1956 1975
5119!Ferro, Tony 13621 55 1939 1963
5219!Williams, Bruce 13374 33 1944 1959

continue
*

On a "retrieve into" nothing is printed. We had to include a
"print" command to see the results. Also, the relation name on a
"retrieve into" must not' already exist. For example, if' we tried
the same query again:

* \g
Executing ...

5102: CREATE: duplicate relation name overpaid

continue

There are two special features about a "retrieve into". First,
the result relation is automatically sorted and any duplicate tu
ples are removed. Second, the relation becomes part of the data

A Tutorial on INGRES Page 27

base and is owned by you. If you don't want it to be saved you
should remember to destroy it. The mechanism for destroying a
relation will be mentioned a bit later.

So far we have only retrieved data but never changed it. INGRES
supports three update commands: append, replace, and delete.

For example, to add "Tom Terrific" to the list of overpaid em
ployees and start him off at $10000:

* append to overpaid(name = "Terrific, Tom",salary = 10000)
* \g
Executing ...

continue
*

Notice that we specified values for only two of the six domains
in "overpaid". That is fine. INGRES will automatically set
numeric domains to zero and character domains to blank, if they
are not specified.

Notice also that INGRES did not print anything after the query.
This is true for all update commands.

Let's give everyone in overpaid a 10% raise. To do this we want
to replace o.salary by 1.1 times its value. Type the query:

* range of o is overpaid
* replace o(salary = o.salary * 1.1)
* \g
Executing ...

continue
*

While the append command requires that you give a relation name
(e.g. append to overpaid), the replace and delete commands re
quire a tuple variable. Note that the command is:

replace o (. . .)
where ...

and not:

replace overpaid (...)
where ...

Print the results of these last two updates:

* print overpaid

A Tutorial on INGRES Page 28

* \g
Executing . . .

overpaid relation

number name salary manage birthd startd

10

11

13
26

32

33
37
55
98
129

157
199
430
843
994
1330

1523
1639
4901

5119
5219

0

Ros

Ross,

Stanley
Stuartnuss ,

Edwards, Peter
Thompson, Bob
Smythe, Carol
Hayes, Evelyn
Raveen, Lemont
James, Mary
Williams, Judy
Thomas, Tom
!Jones, Tim
[Bullock, J.D.
!Brunet, Paul C.
!Schmidt, Herman
Brunei, raui u.

Schmidt, Herman
Iwano, Masahiro
Onstad. Richard

Iwano,
Onstad, m^^w.* «
Zugnoni, Arthur
iChoy, Wanda
Bailey, Chas M.
jFerro, Tony
!Williams, Bruce
[Terrific, Tom

continue

17498

13273
9899
14299
9954
11109

13183
13199
9899
10999

13199
29699
19441
12324
17205
9656

21854
12275
9214

14983
14711
11000

199
0

199
199

199

199
26

199
199
199

199
0

129
26

129

13
129
55
32

55

33
0

Let's fire whoever has the smallest salary:

* delete o where o.salary = min(o.salary) \|
Executing . . .

continue

Notice that the delete command requires
delete o) and not a relation name.

1927

1931
1928
1930

1929

1931
1950

1920

1935
1941
1940
1920

1938
1936
1944
1952

1928
1947
1956
1939
1944

0

1945
1932
1958
1970

1967
1963
1974

1969
1969
1962
1960
1920

1959
1956
1970

1971

1949
1970

1975

1963
1959

0

tuple variable (eg.

What if we wanted to know who makes more that Tom Terrific? The
query to do this is very subtle. First we use a new tuple vari
able called "t" which ranges oyer overpaid, and will be used to
refer to Tom. t.name must equal "Terrific, Tom". Next, we use a
tuple variable called "o" which will scan the whole relation. If
we ever find an o.salary > t.salary then o.name must make more

A Tutorial on INGRES Page 29

than Tom.

The complete query is:

* range of t is overpaid
* retrieve (o.name, osal=o.salary, tomsal
* where o.salary > t.salary
* and t.name = "Terrific, Tom"
* \g
* Executing ...

name osal tomsal

Ross, Stanley 19247 11000

Ross, Stuart 14600 11000
Thompson, Bob 15728 11000
Hayes, Evelyn 12219 11000
Raveen, Lemont 14501 11000
James, Mary 14518 11000
Thomas, Tom • 12098 11000

Jones, Tim 14518 11000
Bullock, J.D. 32668 11000
Brunet, Paul C. 21385 11000
Schmidt, Herman 13556 11000
Iwano, Masahiro 18925 11000
Zugnoni, Arthur A. 24039 11000

Choy, Wanda 13502 11000
Ferro, Tony 16481 11000
Williams, Bruce 16182 11000

= t.salary)

continue
*

If we wanted to give Tom Terrific $50 more than anyone else, the
query would be:

* replace o(salary = max(o.salary) + 50)
* where o.name = "Terrific, Tom"
* \g
Executing ...

continue
«

Finally, to destroy a relation owned by yourself, type the com
mand:

* destroy overpaid
* \g
Executing ...

A Tutorial on INGRES Page 30

Continue
«

We are now ready to leave INGRES. This is done either by typinj
an end-of-file (control/d) or more typically use the "\q" com
mand:

* \q
INGRES vers 6.1/0 logout
Tue Aug 30 14:55:20 1977
goodbye bob — come again

A Tutorial on INGRES Page 31

	Copyright notice 1977
	ERL-77-25

