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INPUT-OUTPUT STABILITY OF INTERCONNECTED SYSTEMS USING

DECOMPOSITIONS: AN IMPROVED FORMULATION

F. M. Callier ,W. S. Chan+, C. A. Desoer+

ABSTRACT

We study the input-output stability of an arbitrary interconnection

of multi-input, multi-output subsystems which may be either continuous-

time or discrete-time. We consider throughout three types of dynamics:

nonlinear time-varying, linear time-invariant distributed and linear time-

invariant lumped. First, we use the strongly connected component

decomposition to aggregate the subsystems into strongly-connected-

subsystems (SCS's) and interconnection-subsystems (IS's) so that the

overall system becomes a hierarchy of SCS's and IS's. Using this

decomposition, we define column-subsystems (CS's). The basic structural

result states that the overall system is stable if and only if every

CS is stable. We then use the minimum-essential-set decomposition on

each SCS so that it can be viewed as a feedback interconnection of

aggregated subsystems where one of them is itself a hierarchy of

subsystems. Based on this decomposition, we present results which

leads to sufficient conditions for the stability of SCS. For linear
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time-invariant (transfer function) dynamics, we obtain a characteristic

function which gives the necessary and sufficient condition for the

overall system stability. We point out the computational saving due

to the decompositions in calculating this characteristic function. We

believe that decomposition techniques, coupled with other techniques

such as model reduction, aggregation, singular and nonsingular

perturbations, will play key roles in large scale system design.
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I. Introduction

This paper considers the input-output stability of an arbitrary

interconnection of multi-input multi-output subsystems. This problem

can be viewed as a generalization of that dealing with the feedback

interconnection of multi-input multi-output subsystems [1-6]. On

the other hand, since an arbitrary interconnection can always, by

suitable reformulation, be viewed as a single overall constant

output feedbacks system (as is done in Fig. 2 below), the task

this paper is to analyze the details of the interconnections using

graph theoretic decomposition techniques and to bring them to bear

on the stability study.

Basically, there are two types of stability: Lyapunov stability

and input-output stability. For the Lyapunov stability, the system

dynamics are restricted to ordinary and functional-differential

equations [7]. In [8-13], sufficient conditions for Lyapunov stability of

an arbitrary interconnection of subsystems are obtained as follows:

assume each subsystem is stable with a given Lyapunov function, then

try to construct either a vector or a weighted-sum Lyapunov function

for the overall system. The input-output stability studied in this

paper, allows much more general types of dynamics [1-3]. Papers

[14-17] use this point of view and M-matrix technique to obtain

sufficient conditions for input-output stability of arbitrary

interconnectionsof subsystems. The interpretation of their results

is that if each subsystem is stable, if the loop gain of each local

feedback loop is smaller than one and if the gains of the interconnecting

subsystems are small enough, then the overall system is stable.
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The crucial difference between this paper and [8-17] is that

we use graph theoretic decomposition techniques, originally proposed

by Harary [18], to exploit the structure of interconnection. Furthermore,

we need not assume that every subsystem is stable. These graph

theoretic decompositions have been used in [18-24]. In [18],

Harary considered only the matrix inversion problem. In [19] and

[20], Kevorkian considered solving systems of nonlinear and linear

algebraic equations and, in [21], nonlinear time-invariant dynamical

systems described by differential and algebraic equations. In [22],

Ozguner and Perkins considered the existence of a state space description

of the overall system formed by linear time-invariant subsystems

interconnected through constant gain subsystems. In [23] Mayeda and

Wax considered the exponential stability of systems of ordinary

differential equations. In contrast to [8-12, 21-23], we use the

general input-output description for our subsystems: thus our theory

covers both linear and nonlinear, time-invariant and time-varying,

lumped and distributed subsystems as well as the continuous-time and

discrete-time cases [1-3]. A detailed comparison between our previous

paper [24] and the present paper is relegated to Section X: Conclusions,

so that we can make specific reference to results of the present paper.

We study the stability using three levels of aggregation. At the

lowest level, we have the multi-input multi-output subsystems which

are arbitrarily interconnected through summing nodes to form the

overall system. By using strongly-connected-component (SCC) decomposition,

Some open-loop unstable systems occur in practice: rockets,
electronic circuits with op amps, and chemical processes [25]
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we aggregate the subsystems into strongly-connected-subsystems

(SCS's) and interconnection-subsystems (IS's). The overall system

which is the top level aggregation, becomes a hierarchy of these

mid-level aggregated subsystems.

The content of this paper are as follows:

Sec. I: Introduction

Sec. II: Preliminaries

Sec. Ill: System descriptions and assumptions

Sec. IV: Overall system stability without using decomposition

Sec. V: SCC decomposition of the overall system

Sec. VI: Structural result

Sec. VII: MES decomposition of SCS

Sec. VIII: Sufficient conditions for the^-stability of SCS.

Sec. IX: Simplifying characteristic function using decompositions

Sec. X: Conclusions

Appendix: Proofs

The reader is urged to give particular attention to some

notational and linguistic conventions: (i) on "map" and "stable"

in Sec. II; (ii) on the dimension of subsystems in Sec. Ill;

(iii) on the relabelling due to the SCC decomposition in Sec. V;

and (iv) on the relabelling due to the MES decomposition in Sec. VII
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II. Preliminaries

In this paper we consider an interconnection of subsystems

with two types of dynamics: nonlinear time-varying dynamics where

systems are described by operators between function spaces, and linear

time-invariant dynamics where systems are described by their transfer

functions. Throughout this paper, we shall use NTV and LTI to denote

nonlinear time-varying operator dynamics, and linear time-invariant

transfer function dynamics, respectively.

For a NTV system, we adopt the following standard description

[3, Sec. III.l], namely, letX/be the time set of observation (typically

t7 = 3R, for continuous-time case, 2 for discrete-time case)W be a

normed space with norm |•| (typically l/m 3R or C ), and^ be the set

of all the functions mapping ^J into If. The function spaceV is a

linear space over 3R (or <C) under pointwise addition and pointwise

multiplication by scalars. Introducing a norm B*0 on \/, we obtain a

normed linear subspace *t of the linear space ^T, given by

£ A(f :^->V|flfB <«}

For any T6^» we define fT(t) •f(t) if t<T, and zero for t>T.
We say that fT is obtained by truncating f at T. Associated with

the normed space cLis the extended space jf defined by

/eA{f x3 +V\vt*V% l£Tl <«}

We shall often write HfO instead of Bf_B. From now on we take U^= ]R. A NTV

system with n± inputs and nQ outputs is described by an input-output operator
on± i,no

H : Si •** X .An operator H is said to be causal iff for all

inputsu€ £. i , for all T£ ^/, the corresponding output Hu satisfies
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(HuT)T = (Hu)T. An operator H is said to be £ -stable iff there

exists constants 3, Y in ]R such that ¥u6/ ,VT £ t/,

llHullT <3+Y DuBT (1)

It is well-known that when H is causal, then H is ^.-stable if and

^ni
only if there exists constants 3? Y in 3R . such that Vu £ (h~

llHuO <_ 3 + y Hull (2)

Throughout this paper, we consider only causal operators (see

Assumption 1 in Sec. III).The smallest y for which (2) holds is called

the gain of H, and is denoted by y[H], i.e.,

n

Y[H] A inf{Y | 33 e JR+ 3Vu G <£ 1, UHuII <3+Y^uU} (3)

The incremental gain of H denoted by yW is defined as follows:

Y[H] Ainf{Y |Vttru2€ £ i, Om^-Hu^ <y^-u^} (4)

Remark 1: (i) Note that the bias 3 in (1) and (2) which is restricted

to be zero in the stability definition of [1,2,14-17] is allowed to

be nonzero in our definition. This increase in generality not only

allow us to consider biased operators, but also simplifies the stability

analysis of the overall system (e.g. see Proof of Theorem III).

(ii) The SsL-stability of H not only requires that H takes an input

in oL-space into an output in ^L-space, but also requires that

Y[H] be finite, (iii) H is ^,-stable, or equivalently y[H] < »,

does not necessarily imply that y[E] < °°. (iv) It is easy to show that
_ -n. _ n

if there exist u € X such that HuG X_°, then y[H] <. y[H]. (v) If

H is linear, then y[H] = y[H]. n
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It is well-known that a very large class of linear time-invariant

operators can be represented as convolution operators and if the

convolution kernels are Laplace transformable, the operators can be

described by transfer functions [26]. In this paper, the LTI dynamics

will be described by transfer functions. Only the continuous-time case

will be considered. All the results on LTI continuous-time case

presented in this paper also hold for LTI discrete-time case by

making corresponding changes as described in [3, Sec. IV.6].

We shall be concerned with two classes of convolution kernels.

First, we define the algebra (L [3]: f : <C+ + <E is said to be in (X
oo ' "St.*

iff f(s) = f (s) + 2 *Ae where f is the Laplace transform of
a i=Q * a

00

a function in L1(R+), f € TBL for all i, J^ lfil < °° »0= tQ,
n xn. i=0 *noxni

0< t± for i>_ 1. H:C+ -»- <E ° xis said to be in CL iff

all its elements are in Q^.. We note that (i) f £ ^L-has an inverse in

CL if and only if inf |f(s)| > 0, [27, p. 150], [3, p. 249],
se c+

A nxn * nxn

(ii) H £ CL has an inverse in CL if and only if

inf |det H(s) |>0 [3], and (iii) £^( ^J™) is a commutative
sec

+

(noncommutative, resp.) algebra over the field 1R[27,3]. A LTI distributed
n xn.

system described by its transfer function H : <L+ C is said to
* n xn.

iX-stable iff H € CL ° . It is well-known that if a system is

6^-stable then (i) for any p S [1,~], it takes an L -input into an

L -output with a finite gain, i.e., it is X-~stable for ^C83 L ,

and (ii) it takes continuous and bounded inputs (periodic inputs, almost

periodic inputs, resp.) into outputs belonging to the same classes

resp. [3, 28],
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Let 1R (s) denote the field of rational functions with real
nQxn.

coefficients. Let TR (s) denote the ring of nQ x n± matrices

whose elements are in IR(s). By definition, A LTI lumped
noxn±

system is described by a transfer function in TR (s) . A LTI
n xn

lumped system described by its transfer function H(s) € 1R (s) is

said to be exponentially stable (abbreviated exp-stable) iff (i) H(s)

is proper (i.e. bounded at infinity) and (ii) H(s) has all its poles

in the open left-half plane (i.e. H has no <C+-pole). It is easy to

see that TR (s), the class of all scalar exp-stable transfer functions

is an algebra over TR , in fact a subalgebra of 6C .

In either the lumped or distributed case, if the transfer function

H has a domain of convergence which includes some right-half plane

and if, for large Re s, it is bounded by some polynomial in s, then

it is causal. (The second requirement is indispensable: viz. e ),

[3, Thm. B.3.4].

Convention on "map" and "stable"

Throughout this paper, (i) by a map H, we mean an operator H

for the NTV dynamics case and a transfer function H for the LTI

dynamics case and (ii) when we say' that a system described by the map

H is stable, we mean the operator H is ^.-stable in NTV dynamics,

the transfer function H is #.-stable in LTI distributed dynamics and
2

the transfer function H is exp-stable in LTI lumped dynamics.

2We do not distinguish a transfer function from an operator by the usual
notation of * because some of our results hold for all three types

of dynamics with corresponding definitions of stability.
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Note that when a system is described by the map H, the specification of

3
H prescribes the inputs and the outputs of the system.

Using (1), the definition of ^.-stability, one can easily

prove that the composition and addition of ^"Stable operators are

again JC-stable. Since Q_, TR (s) are algebras, they are closed

under multiplication and addition. Thus we have

Lemma 1 (NTV, LTI)4

Every series-parallel connection of stable subsystems is stable.
n

III. System Description and Assumptions

In this paper we consider an overall system S consisting of an

arbitrary interconnection of subsystems. The subsystems are specified

by an input-output map: they may be MIMO (multi-input multi-output)

or SISO (single-input single-output), unstable or stable, nonlinear

or linear, time-varying or time-invariant, and continuous-time or

discrete-time. The interconnections are realized through m summing nodes

as indicated by Fig. 1. The subsystem from node j to node i is

described by the map G... Each summing node j is fed by an external input

u. and by the outputs of the subsystems G.-,...,G. . The output e. of

the summing node j is the input to the subsystems G-.,...,G .. In
1J mj

practice, a significant portion of the subsystems G. 's are absent,

hence are represented by zero maps.

3
As will be seen below (Remark 2), it makes a lot of difference whether

H is taken to be G(I-G)"1 or G(I-G)-1.
4
We use NTV, LTI following each lemma, theorem and corollaries to
indicate the type of dynamics for which the statement holds.
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Convention on dimension of subsystems

To alleviate burdensome notations which are peripheral to the main

ideas of the paper, we denote each subsystem as if it were SISO,

(i.e. for NTV dynamics, G :jf -> X. ;for LTI dynamics, G±. is

a scalar transfer function)the results presented in this paper still

hold for MIMO subsystems, (i.e. for NTV dynamics,
13

,G.. r^.30**";

Tor LTI dynamics, G.. is a matrix transfer function), by modifying the

"dimension" of the product spaces accordingly. n

Assumption 1: Causality

Throughout this paper, we assume that all the subsystems G.

are causal. n

The summing-node equations read

m

». = u. + y* G..e. for i = l,...,m.
1 1 fei lj J

In matrix notation, we have

I~G11 "G12

"G21 I~G22

-G
ml

-G

-G

I-G

'lm

r- -^

el
=

ui

!2m e2
•

•

•

u2
•

•

•

•

mm
e uI mj

(10)

(11)

This simplified description of the subsystems does not affect the
validity of the formulas below. The simplified description avoids
the messy bookkeeping of three levels of aggregation of subsystems,
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Define G A
11

ml

Jlm ..A ei
•

, u4

i

mm

•

e

With these definitions, the system equations (10), or equivalently

(11) become

(I-G)e = u (12)

Assumption 2: Unique Solvability

Throughout this paper, we assume that

(a) for NTV dynamics, (I-G) : ui—>e is a map from ^£ into ^ ,

and is a causal map.

00

(b) for LTI distributed dynamics, V sequences (s.). - C q; where

|s | •> « , lim inf |det(I-G)(s.) | > 0.
i -* oo x

(c) for LTI lumped dynamics, det(I-G)(») ^ 0. n

Conditions under which Assumption 2(a) is satisfied can be found

in [2, Ch.2], [3, Sec. III.5].

Definition of the overall system stability .

The overall system S is said to be stable iff Vi, j = 1,...,m,

the maps ul—>G..[(I-G) u]. are stable.

Remark 2: (i) At first sight, one might want to choose as definition

of overall system stability: the map (I-G)~ : ul—*e be stable. Note

that without requiring G to be linear,
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I+ G(I-G)"1 = (I-G)d-G)"1 + G(I-G)"1 = (I-G)"1 (13)

Hence the map (I-G) is stable if and only if the map G(I-G)~
m

is stable, i.e. for i - l,...,m the maps u

j=l

G..e. are stable,
ij 3

By definition the overall system S is stable iff Vi,j = l,...,m,

ui—*G..e. are stable. Hence by Lemma 1, if the overall system S is

stable, then the map (I-G) is stable.

(ii) The converse of the last statement is not true because two unstable

terms, say G..e. and G ,e, may cancel each other and give a stable

m

sum Jj G..e.. An example to illustrate the point: Let m = 2
j=l 13 J

and all subsystems be SISO LTI lumped. It is easy to check that if

Gu(s) = (2s+3)/(s+l), G12(s) = 0 Vs, Gn(s) = -(s-4)/(2s-l) and

G22(s) = (s-4)/(2s-l), then a) (I-G) and G(I-G) are exponentially

stable, b) the maps u1 G21el and V G„2e„ are both unstable

(pole at s = 0.5); but their sum is of course stable since it is the

(2,1) element of G(I-G)~ . Q

In order to formulate the definition of overall system stability,

let G . denotes the ith column of G. Let
•J —

G A diag(G ,,...,G )
— .1 .m

mxmLet I be the mxm identity matrix and let KG]R be given by

K 4 [Ij...jl]

Let y A Guei

G21el

Gmlei

G e
mm n)

A <y«>lol. •»m» j=l>•••$m

-12-
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Note that from (14) and (15)

G = KG (17)

Then the overall system S can be viewed as a constant output feedback

system as shown in Fig. 2. Thus the overall system S is stable if and

only if the map G(I-KG)"" = G(I-G)"1 :uj—*y is stable.

By Assumptions 1 and 2, G(I-KG)~ : ul—»y is a well-defined causal

map.

For theoretical development, Fig. 2 is convenient. However it

does not take advantage of the particular structure of the interconnection,

namely that a number of G..'s are zero maps. Our objective is to

take the structure into consideration using graph theoretic decomposition

techniques.

IV. Overall System Stability Without Using Decomposition

In this section we consider the overall system stability without

using decomposition. Theorem I gives a sufficient condition for the

overall system stability; it is quite general since it holds for NTV

dynamics with ^-stability, LTI distributed dynamics with ^-stability,

and LTI lumped dynamics with exp-stability.

Theorem I (NTV, LTI)

Consider the overall system S described by (11) and satisfying

Assumptions 1 and 2. If (a) G.. is stable Vi / j, i,j = l,...,m

(b) for every unstable G.., (I-G..) is stable and (c) (I-G) is

stable then the overall system S is stable. Q
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Remark 3: (i) By Theorem I, under its assumptions (a) and (b),

the stability of (I-G) is equivalent to the overall system stability.

(ii) If every G^ , i,j = l,...,m is stable, then Assumptions (a) and

(b) are satisfied. a

For the remaining part of this section we study the #.-stability

(exp-stability, resp.) of the overall system S in LTI distributed

(lumped, resp.) dynamics. Due to the symmetry between the distributed

and lumped cases, the results are presented in pairs: we use

D(L, resp.) to denote distributed (lumped, resp.) case.

Let TR [S] denote the commutative ring of polynomials with real

n0xn. noxn
coefficients. Let H(s) G TR (s) \ N (s) G m [s] , D(s) G 3R [s] Xn,

nxn.

N0(s) G TR[s] 1, then (N ,D,N ) is said to be a right left coprime

factorization (r.l.c.f) of H iff (i) H = N D_ N , (ii) there exist
nxn n xn

Ur(s) 6 TR[s] °, U£(8) €IR[s] * ,Vr(s), V£(s) € mts]1™ such
that det[U N + V D] (s) i 0,Vs G (C and det[N„U + DVj(s) t 0, Vs G <E.

r r r *» x» jt
n xn n x*1.* n.xn.

Let H(s) S ]R(s) ° i, Nr(s) G TR [s] ° 1, Dr(s) G ]R [s] 1 \ then

(N ,D ) is said to be a right coprime factorization (r.c.f.) of H

iff (N ,D ,1) is a r.l.c.f. of H.A left coprime factorization (l.c.f.)

is similarly defined.

n^xn. x nnxn * nxn Pi nxni
Let H :(T •> C \ N G d ° ,D€^ ,NG Cl , then

+ r *

(N ,D,N0) is said to be a pseudo right left coprime factorization
r * ^nxiiQ

(p.r.l.c.f.) of Hiff (i) H=ND*^, (ii) there exist u*r G(L
* n.xn 2 nxn

U G (X 1 , V , V G £t SUch that det[U N +VDj(s) / 0,
I ' r' I r r r

Vs Gc and det[N U+DV ](s) ^ 0, Vs Gc (iii) vsequences (s±)i"1 c C+
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n xn.

where |s |-»- », lim inf |det D(s.)|>0. Let H;C+ +I° ,
i ->• oo

*n xn.
_ /7 o i A n xn

NJt ^ ,D G CL ° °, then (N ,D0)is said to be a pseudo left

coprime factorization (p.l.c.f.) of H iff (I,D ,N.) is a p.r.l.c.f.

of H.A pseudo right coprime factorization (p.r.c.f.) is similarly

defined.

It is easy to see that the definitions of coprime factorizations

given above are equivalent to those defined in the literature

[e.g.3,5,6,24,29]. The reason for introducing new definitions is

to achieve symmetry between the distributed and the lumped cases.

It is well-known that if (N ,D,N0) is r.l.c.f. of H, and H is proper
r x>

then H is exp-stable if and only if. det D(s) has no (D -zero [29]. By

similar reasoning as in [5], it is easy to show that if (N ,D,N ) is a
IT At

p.r.l.c.f. of H, then H is ^-stable if and only if inf |det D(s) | > 0.
sG C+

The following lemma in spite of its simple proof has far reaching

consequences: it gives us a characteristic function mapping from <£

into <D such that the overall system S is ^(.-stable (exp-stable, resp.)

if and only if the infimum over <E of the absolute value of that

characteristic function is positive.

Lemma '2D(L) (LTI)

Consider the LTI distributed (lumped, resp.) constant output

feedback system shown in Fig. 3 where H is the transfer function in

the forward path and K is a constant matrix. Let (N >D,N0) be a p.r.l.c.f.
r *>

(resp. r.l.c.f.) of H. (For the lumped case assume that H is proper.)

Assume that V sequences (s.) .. C ffi where |s.| •*• «, lim inf |det(I-KH)(s^|> 0.
i -». «

(det(I-KH)(«) gt 0, resp.) Under these conditions, H(I-KH)"1 : vi »z

-15-



is ^.-stable (exp-stable, resp.) if and only if

inf |det(D-N KN )(s)| > 0 (18)
s G <c * r

(det(D-N KN )(s) has no (E, - zero, resp.)

Remark 4: (i) Lemma 2D(L) is proved by showing that if (N ,D,N ) is

a p.r.l.c.f. (resp. r.l.c.f.) of H then (N ,D-N„KN ,NJ is a p.r.l.c.f.
r Z r V *

(resp. r.l.c.f.) of H(I-KH)~ . It is well-known that if x is the

state used in a finite dimensional minimal SSSD (state space system

description) of H, then the SSSD of the constant output feedback

system H(I-KH) , using the same state x, will also be minimal, since

constant output feedback preserves both complete controllability and

complete observability when the same state is used [30, p. 365].

Since the r.l.c.f. in PMSD (polynomial matrix system description) is

a counterpart of the minimal realization in SSSD, [31,32], Lemma 2L

can be viewed as a counterpart in PMSD of the above well known fact

in SSSD.

(ii) Applying Lemma 2D(L) to the feedback system considered in

[5,33], we can easily obtain all the characteristic functions(resp.

polynomials) given in these papers.

(iii) Note that Lemma 2D(L) will still hold if K has elements
A

in CC(if K is a polynomial matrix, resp.). n

Under Assumptions 1 and 2, applying Lemma 2D(L) to the overall

system S shown in Fig. 2 and using the particular form of K, we obtain

a characteristic function (polynomial, resp.) for the overall system S.

Theorem II D(L) (LTI)

Consider the LTI overall system S described by (11) and satisfying

Assumptions 1 and 2. For j = 1,...,m, let G denote the jth column
•J
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of G, and let (N .,D.) be a p.r.c.f. (r.c.f., resp.) of G . (For
•J J #J

the lumped case, assume that G is proper.) Let

N4[N.!...;N ], D A diag(D.,... ,D•) (20)
— .1' ' .m — i- m

With these definitions, the overall system S is ^-stable (exp-stable,

resp.) if and only if

inf |det(D-N)(s)| > 0 (21)
sGc+

(det(D-N) has no <C -zero, resp.) n

Remark 5: (i) Note that G= ND"1 but that N, D are not necessarily

p.r.c. (resp. r.c). (ii) Clearly by using p.r.c.f. of G .'s, one
•J

can obtain a characteristic function for the overall system S. However

7 * 2
since the size of the output y of S is m , such characteristic function

2 2
will be the determinant of a m xm matrix. The characteristic function

given by Theorem II D(L) is the determinant of a mxm matrix where

m is the size of the input u of S (see Fig. 2). a

In Sec. IX below, we will discuss how the SCC and MES decompositions

to be described in Sec. V and VII, simplify the necessary and sufficient

stability test given by (21).

V. SCC Decomposition of the Overall System

In this section, we apply the ideas presented in [24, Sec. Ill] to the

present formulation. In order to make this paper to some extent self-

contained, we define below all the required terms.

By definition, a digraph J0A (V,E) consists of a set of vertices

V,nd a set of directed edges E={(v^v.) |v e v}. ( ±- an
•* i J

Recall Footnote 5.
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edge directed from v to v. and is said to be incident to both v
i J i

and v [34,35]. A section graph of $= (V,E) is defined to be a

digraph $(U) A (U Cv, {(v±,v )GE^v. Gu». /^(U) is said to

be connected iff disregarding the direction of the edges, every pair

of vertices in U are mutually reachable by going through edges in

^y)(U). *V(U) is said to be strongly connected iff respecting the direct

of the edges, every pair of vertices in U are mutually reachable by

traversing along edges in jO(U). A maximal strongly connected section

graph JyOJ) is called a strongly connected component (abbr. SCC) of J\).

In other words, mutually reachability between a pair of vertices

is an equivalence relation (i.e. reflexive, symmetric and transitive)

defined on V and the set of vertices in each SCC is an equivalence

class under that equivalence relation. A connected component is

similarly defined. The vertex v. is said to have a self-loop iff

(v ,v.) G E. A circuit of length SL > 1 is defined to be an ordered

set of I distinct vertices (tt_ ,ir.,... ,tt ) such that (^,11^) G e and

(irk,7rk -) G E for k = 1,2,... ,£-1. A digraph is said to be acyclic

iff it does not contain any circuit. The indegree (resp. outdegree)

of a vertex v. is defined to be the number of edges coming into

(resp. out of) v.. The adjacency matrix of a digraph J\)= (V,E) is

defined to be an nxn matrix A where n is the number of vertices in

o

such that a.. = 1 iff (v.,v.) G E and a.. = 0 otherwise.

#.

ion

o

Most graph theorists define a . = 1 iff (v.,v.) G e. Hence our adjacency

matrix is the transpose of theirs.
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Consider the overall system S described above. The interconnection

digraph $ . of S is defined as follows: each summing node i

of Scorresponds to avertex v. of /u^t» and /Snt nas adirected

edge from v. to v. iff the subsystem G is not the zero map. Since

each connected component of *V. can be analyzed separately, without

loss of generality, we assume that Jhd. is a connected digraph.

We now perform the SCC decomposition on the connected digraph JhJ .

Step 1: Find all the SCC's Q ,Q2>..., ^ of AJ±nt'
Step 2: Make a condensation of J\f. with respect to these SCC's. That

is, we define a new digraph called the structural digraph J\J

of S as follows: each SCC U of sv corresponds to a vertex

v in A? and there is a directed edge from v to v„ iff the
as " a B

set of directed edges in rO. from any vertex in Q to any

vertex in Q ft is not empty. By construction, /v is a

connected acyclic digraph.

Step 3: Relabel the vertices of J\J so that its adjacency matrix A is
s s

a lower triangular matrix. Hence, with respect to the new

labeling, a SCC, say Q , can only feed its output to SCC's,

say C^ , £^ >..., with a higher subscript, i.e. $, y > a.

Step 4: Relabel the vertices of J\J. so that (a) those that belong to

the same SCC are numbered consecutively and (b) those that

belong to the lower numbered SCC are numbered lower than those

belonging to the higher numbered SCC. n

Step 1, the identification of SCC's, can be done by using Tarjan's

efficient algorithm STRONGCONNECT [36]. In [36] Tarjan has proved that

his algorithm is correct and that its requirements for memory space
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and computing time are bounded by a linear function in the number of

vertices and edges in the digraph. For somewhat less efficient but

simpler algorithm, see [18, 22]. For a heuristic algorithm, see

[19, 21]. Step 2 can easily be done by inspection. Step 3, labeling

of a connected acyclic digraph is called topological sort [34, pp. 402],

[37, pp. 258]. It is done in u iterations (u = the number of SCC's)

by deleting a vertex with zero indegree and all its incident edges

at each iteration and, then, by relabeling the vertices in the order

they were deleted.

A little thought reveals that the adjacency matrix A of J\f

after Step 4 will be in the lower block triangular form:

int

m

m„

r- .C

m,

AIi ° •••
Ac c

21 22 •"

m

\

0

0

c Ac c

ul u2 - uyj

(22)

where (i) mc is the number of vertices in ^ , (ii) each diagonal

block A is the adjacency matrix of & and (iii) each off diagonal

block A ft, a > $ is the adjacency matrix of g? ft which is defined to

be the bipartite digraph [34, pp. 168] consisting of (a) all the

vertices of Q, and Qft» and (b) all edges of AT. directed from a

vertex in u R to a vertex in Q .
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Notational Convention

From now on, without loss of generality, we assume that we start

out with the overall system S which has been relabeled after the

SCC decomposition.

For a >_ 3 = l,...,u, we define

V A the set of vertices in
a —

SCC $

c c
u A the m - vector (u.)

a i ie vc
a

c c
e A the m - vector (ej

1 ie vc
a

G A the m x m0 matrix [G..]

"*C c c c cG A the (m • m ) x mft matrix: diag(columns of G )
3' 3 a3'

K _ A the m x (m • mrt) matrix! [IJ...JI]
a3 — a a 3

y ft A the (m^ • m^) - vector (G..e.)
ap — a p ij j iG VC, j G V^

a' J 3

(Compare (27), (28), (29) with (14), (15), (16)). Note that

and

Ga3 =
KC GC
Ka3 a3

~c a ~c c

ya3 a3 e3

Equation (11) can now be written as

I-G
11

c

21
-G

L
-G

ul

I-G
22

• . I-G4
yu

c

el

f- -

c

ul
c

e2
•

c

U2
•

•

•

c

•

•

c
u

y
_ —
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From (32) we can write

4•^ S ♦ I°«*
Using (30) and (31) we have

Ke •K^-ofo'1 <ue +%k$i %> (33)
Observe that due to block-lower-triangular form of G after relabeling,

c ~c c
e«» y « do not depend on u. for j > 3«
3 ot3 J

For a = l,...,y, we denote by S , the strongly-connected-subsystem

(SCS) associated with the SCC u of ^V. : it is obtained from the
v ' MLa int

overall system S by removing all the summing nodes and subsystems

which do not appear in Q . Hence its input is u , its output is

yC and it is described by the map GC (I-K^„(£ )-1 =G^(I-G^)"1. In
-'aa r aa aa aa aa aa

other words, SC can be viewed as the constant output feedback
' a

system shown in Fig. 2 with the following replacements: G by G ,

~~c c c ~ ~ c
K by K , u by u , e by e , y by y . Consequently the stability

J act a a aa

definition below follows previous pattern.

The SCS SC is said to be stable iff the map GC (I-G*; ) is
a ~~~"~~~"~~~ aa aa

stable.

By Assumption 2 in Sec. Ill and block-lower-triangular structure

c -1
in (32), (I-G ) is a well-defined causal map. Hence every SCS is

is described by a well-defined causal map.

W

subsystem (IS) associated with tjL^a of ™int: it: iS obtained from the
overall system by removing all the summing nodes and subsystems which

do not appear in ££ R. Hence its input is Ug, its output is y and

~cit is described by the map G g.

stable iff thp man f:

i3

For a > 3= l,...,y-l, we denote by S^ft, the interconnection-

The IS S is said to be stable iff the map Gcn is stable,
ap r ag
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In view of (27)-(33), a little thought will reveal that the overall

system S : (ua)a=!^*—*^a3^ ftai can be viewed as a series-parallel connection

of SCS's, IS's and constant gain subsystems K as shown in Fig. 4 for Llie case

y = 3.

For 3 = l,...,y, we denote by Sfi, the column-subsystern (CS)

described by the maps G^(I-G^j"1, a=3, 3+1,...,y. These maps
are the contribution of u£ to (y£ )Jj while neglecting the effect of
all other inputs (u?)?~,.

Prior to establishing in Theorem III below, that the overall

system is stable if and only if every CS is stable, we note some

relationships between the stabilities of CS's, SCS's and IS's which are

direct consequences of the definitions and of the structural decomposition.

Fact 1 (NTV,LTI)

If CS Sg is stable, then SCS Sg is stable. n

Since SCS S*r is stable implies that the map (I-G^0) is stable,
p pp

we have

Fact 2 (NTV,LTI)

If SCS s£ is stable and Va >3, IS s£ are stable, then CS S
is stable.

n

Note that the stability of CS does not imply that of the corresponding

IS's. However, in view of G*$ =^^bV"1 (I-G33>» we have
Fact 3 (NTV,LTI)

If g£ is stable and CS SQ is stable, then Va > 3, IS S°„ are stable.
pp 3 a3
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Suppose CS S0 is stable and for some a > 3, IS S a is not stable.
p ap

In LTI dynamics, this implies that there exists some pole-zero cancellation

~c c —1
between G - and (I-GOQ) . Clearly under independent parameter

ap pp

~c c
perturbations of G 0 and GOD, such pole-zero cancellation will not

ap pp

be preserved. Thus for the stability of CS S_ to be robust, it is
p

c
reasonable to assume that every IS S 0 is stable. Under this

ap

assumption, from Facts 1 and 2, we have

Fact 4 (NTV,LTI)

If every IS Scg, a>3is stable, then the stability of CS S

is equivalent to the stability of SCS Sft. n

This fact emphasizes the importance of the stability study of the

SCS. (see Sec. VIII below)

VI. Structural Result

Theorem III below gives a necessary and sufficient condition for

the overall system stability. This result is structural in the

sense that it is based on the block-lower-triangular structure obtained

by SCC decomposition. It holds for NTV dynamics with ^.-stability,

LTI distributed dynamics with CL -stability and LTI lumped dynamics

with exp-stability.

Theorem III (NTV,LTI)

Consider the overall system S described by (32) and satisfying

Assumptions 1 and 2. The overall system is stable if and only if

V3 = l,...,y, CS Sa are stable. „
p
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VII. MES Decomposition of SCS

In this section, we apply the ideas presented in [24, Sec. V]

to the present formulation. In order to avoid ambiguity and to make

this paper self-contained, we shall develop the concept of minimum

essential set.

Throughout Sec. VII and VIII, we study the stability of a single

c -1map, namely (I-G ) . For convenience and to alleviate the already

burdensome notation, we will drop the subscript a throughout Sec. VII

and VIII. Thus we write

eC = (I-GVV (34)

In addition to the graph theoretic terms defined in Sec. V, we

will need the following terms. By definitidn, U C v is called an

essential set of a digraph /9a (V,E) iff the section graph A/(V-U)

is acyclic. Given a digraph, an essential set with minimum number of

vertices is called a minimum essential set (MES) of the digraph. It

should be noted that our definitions allow an acyclic digraph to have

self-loops; this follows from our requirement that a circuit be of

length > 1.

Consider the strongly connected subsystem S and its interconnection

digraph (4 A (VC,E°) which by construction is strongly connected. We now

perform the MES decomposition on Q>.
2 /> 1 c 2

Step 1: Find an essential set V of y and define V A V -V . By

construction, the section graph Q(V ) is acyclic.

Step 2: Relabel the vertices of U so that every vertex in V is

2
numbered lower than all the vertices in V .
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Step 3: Relabel the vertices of (j^QJ ) so that its adjacency matrix
11 9

A is a lower triangular matrix.

A little thought reveals that the adjacency matrix A of (Rafter

Step 3 will be in the bordered lower triangular form:

1 2
m m

AC =

1 r- .11 , .12-i
m

2
m

A

21
LA

A

A22
(35)

where (i) for i = l,2,m is the number of vertices in V and (ii) A

is a lower triangular matrix.

To exploit the structure of Q as much as possible, it is obvious

that one should use a minimum essential set in the decomposition.

The problem of finding a minimum essential set has been studied by

many researchers [39-46]. Theoretically speaking, the problem can

be considered solved since it requires a finite amount of work. However

the amount of work required can become potentially excessive for some

large digraphs since it is a NP-complete problem [47]. To perform

Step 1, we must first compensate for the fact that we allow self-loops,

so we first remove all the self-loops in X^9 then apply the algorithm

given in [44] to find a minimum essential set and then put back the

self-loops. Step 2 of the decomposition can be done easily. Step 3

is carried out by using the topological sort described in Sec. V.

9
Recall Footnote 8.
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Remark 6: Clearly by allowing A in (35) to be in block-lower-

22
triangular form [48], we can further reduce the size of A . The

tradeoff in computational efficiency between this "generalized" MES and

the MES decompositions still remains an open question. n

Notational Convention

From now on, Without loss of generality, we assume that we start

out with the SCC &which has been relabeled after the MES decomposition.
n

For i,j = 1,2, we define

V2 A the MES of ^ (36)

V1 A VC - V2 A (37)

u A the m -vector (u, ) (33)
k e V1

e A the m -vector (e,) . (39)
* k e v

G 3 A the m x vr-matrix [G, ] . (40)
** ke v1, i e vJ

Equation (34) can now be written as two equations

,T .11. 1 _12 2 1 ,,„v
(I-G )e - G e = u (41)

21 1 22 2 2-GZV + (I-GZZ)eZ « vl (42)

We define

G22 4 G22 +G^d-G11)"1 012 (43)

The matrix signal flowgraph [49] associated with the nonlinear eq.

(41), (42) is given in Fig. 5.

Remark 7: (i) when u = 0, from (41)

1 _ (T rll.-l_12 2e = (I-G ) G e (44)

-27-



Substitute (44) into (42), we have

2 ,_ ?,22.-l 2
e = (I-G ) u (45)

Substitute (45) into (44), we have

1 11 -1 12 ~22 -1 2eX = (I-GJ"L) VZ (I-G ) Lu (46)

Thus (I-G22)"1 :(0,u2)H_^e2 and (I-GU)"1G12(I-622)'1 :(0,u2),—*e\

Hence the stability of (I-G ) : (u ,u )i »(e ,e ) implies that of

(I-G22)-1, (I-G11)"1G12(I-G22)"1.

(ii) Consider Fig. 5 and calculate I minus the loop gain of a

SCS:

j- G21(I-G11)-1G12(I-G22)-1

= [LG22 - G^a-G11)"^12] (I-G22)"1

-22 22 -1= (I-G ) (I-G ) ±

Hence (I-G22)"1 = (I-G22)"1 [I-G^d^W^I-G22)"1] (47)

Note that (47) generalizes for the nonlinear case the standard

expression relating closed-loop gain and the open-loop gain in the linear case,
n

VIII. Sufficient Conditions for the ^L-Stability of SCS

In this section we present two sufficient conditions for the

^v^-stability of an SCS based on the MES decomposition.

Using equations (41), (42) and the small Gain Theorem at the MES

decomposition level, we have

Note that this calculation does not require linearity in any of the G J,s.
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Theorem IV (NTV)

c -1
Consider the map (I-G ) described by (41)-(42) and satisfying

12 11 -1 22 -1
Assumptions 1 and 2. Suppose that y[G ], y[(I-G ) ], y[(I""G ) ],

y[G (I-G' ) ] are finite. Under these conditions if

YtG^d-G11)"1] •Y[G12] •Yld-G22)"1] <1 (48)

then the map (I-G ) is oC.-stable. H

Remark 8: (i) Theorem IV still holds if the superscripts 1

and 2 are interchanged throughout.

(ii) Note that y[G21], Ytd-G11)"1] are finite implies that

Y[G21(I-G11)"1] is finite.

(iii) We shall now check that under the assumptions of Theorem

IV, the necessary conditions for the eC-stability of (I-G°) given in
>o "•22 —1

Remark 7 (i), namely the ^-stabilities of (I-G ) and

11 -1 1? ~22 —1 91 11 -1 12 22 -1
of (I-G11) VZ(I-GZZ) x are satisfied. Since y[GZL(l-G ) G±Z(I-G^) x]

<_ y[G21(I-G11)"1]« y[G12] •Y[(I-G22)"1], by the assumption (48)
21 11 -1 12 22 -1 "

of Theorem IV and the Small Gain Theorem, [I-G (I-G ) G (I-G ) ]

is ^-stable. In view of (47), this together with X^stability of

(I-G22)"1 imply that (I-G22)"1 is *C-stable. Since (I-G )" ,G
/? 11 —1 10 00 —1

are assumed to be ^C-stable, so is (I-G ) G (I-G ) . n

From Theorems I and IV, we have

Corollary IV.1 (NTV)

Consider the SCS S after MES decomposition and satisfying

Assumptions 1and 2. If (a) Vi ^j, i,j GVc, y[G±,] is finite;

(b) Vi Gv1, Yfd-G^)"1] is finite; (c) Vi €v2, Y[G±i] is finite
or Y[(I-Gii)"1] is finite; (d) yUI-G22)"1] is finite; and
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(e) YtG^d-G11)"1] •YtG12] •Yfd-G22)"1] <1, then the SCS

S is X--stable.
n

Theorem V (NTV)

c -1
Consider the map (I-G ) described by (41)-(42) and satisfying

Assumptions 1and 2. If y[G12], Yfd-G11)"1], y[(I-G22)"1] ,

Y[G21(I-G11)"1] are finite, then the map (I-G0)"1 is >C-stable. n

Remark 9: (i) Theorem V still holds if the superscripts 1 and 2

are interchanged throughout. By the MES decomposition (a) (I-G )

~22
has a lower-triangular structure and thus is easy to invert,(b) (I-G ),

2
which has no particular structure, has a size equal to |v | and usually

|V I« |v |. If we interchange the superscripts 1 and 2, we would
~11 22

consider (I-G ) and (I-G ): however none of these maps has any

particular structure. Hence there is a definite advantage in using

-22 -11
G instead of G

(ii) Note that the third assumption of Theorem V is also

necessary. The first three assumptions of Theorem V together imply

^ 11 -1 12 "-22 -1
the JL-stability of (I-G ) G (I-G ) , which is a necessary condition

for the ^-stability of (I-G0)"1.
21 11 -1

(iii) The assumption y[G (I-G ) ] < <» allows us to write

.21 pllx-l /r12 2. 1. n21,_ „llx-l p12 2 ^ _1 . n_ln - 21 11 -1G (I-G ) (G e +u ) = G (I-G ) G e + u where Uu II <_Y[G (I-G ) ]

• Hu II and u can be viewed as an input equivalent to u but applied at

node 2 in Fig. 5.
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From Theorems I and V, we have

Corollary V.l (NTV)

Consider the SCS S after MES decomposition and satisfying

c 1 ~Assumptions 1 and 2. If (a)^Vi > j, i6V ,j6v , y[G..] is finite

and there exists e.. G X_ such that G..e.. £ X; (b) Vi £ V ,
ij ij ij

Y[(I-G..) ] is finite and there exists e.. £ <?C such that G..e.. £ X^;
11 ii ii ii ii

2 -1
(c) Vi G V , y[G..] is finite or y[(I-G, ) ] is finite; (d) Vi ^ j,

iSVc, jeV2, Y[Glj] is finite; and (e) ytd-G22)]"1 is finite, then
the SCS SC is ^-stable. n

Remark 10: (i) The assumption that there exists e.. £ ^ such that

GJ.e.. G ^, is very mild. It is satisfied when G.. is unbiased,
ij ij ij

i.e. G 0 = 0, which is the class of operators considered in

[1,2,14-17]. (ii) Suppose that G.. does not satisfy this assumption.
ij

Then for any input in X. its output is in £ ~* &L, • However the

overall system stability requires the input e. as well as the output

y. . of every subsystem G.. to be in X when the external inputs?.

u. 's are in ^C. Hence the overall system is not ^-stable. „
k

IX. Simplifying Characteristic Functions Using Decompositions

We shall now consider the savings in computing the characteristic

function of the overall system S, given by Theorem II D(L) in Sec. IV,

due to the two graph theoretic decompositions.

After the SCC decomposition, G is in block-lower-triangular form.

Let j G V . Then G , the jth column of G, has all zero entries in
a • •J

a-1

the first Y) m° rows. Let (N .,D.) be a p.r.c.f. (r.c.f., resp.)
3=1 P ° J

a-1

of G . Then N also has all zero entries in the first Y] m° rows.
*J •J *••* ~ 8

0=1 0

Thus NA [N xj...! N ] is in the same block-lower-triangular form as G.
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Since D 4 diagCD^..-. ,D )• is diagonal, (D-N) is also in the same

block-lower-triangular form as G. Let NC , DC denote the ath
aa a —-

diagonal block of N, D respectively, i.e.

Naa =[Nik], t- vc >K =di*S «V c c
i,k e v a 1 i e v

a » a

Hence,

Note

det(D-N) = n det(DC-NC )
a=l a aa

a

Hence inf |det(D-N)(s)| > 0 if and only if Va = l,...,u

that Va » l,...,u, det(DC-N° )€ /JL, so it is bounded in (C,.
<x aa *" +

sec

inf |det(DC-N )(s)
S ^ <D

I>o(Va = l,...,u, det(Dc-NC )e ]R[s], so
< a aa

it has no poles in <E; hence det(D-N)(s) has no (D -zero if and only

**c c

if Va = l,...,y, det(D -N )(s) has no <E -zero, respectively for the

lumped case].

After the MES decomposition, G -
aa

^G11 G12"1
aa aa

G21 G22
i- aa aa-J

lower-triangular form. By reasoning as above, D - nc
<* aa

is also in bordered lower-triangular form. Now

is in bordered

a aa

12-1

aa
-N

-N21 52-N22
aa a. ua

det(DC-NC ) =
a aa det[5a-Naa-Naa(Ba-NU)"1N12] 'det(D1-N11) (50)a aa aa a aa aa a aa
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11 ~1 11
where due to lower-triangular form of D -N

a aa

det^-N11) = n det(D,-N,,) (51)
a aa . ^ „l i Ii

a

Thus we have

Corollary II.1 D(L) ,(LTI)

Consider a LTI overall system S described by (32), which satisfies

Assumptions 1 and 2, and has the factorizations described above.

(For the lumped case assume that G is proper).

The overall system S is ^-stable (exp-stable, resp.) if and only

if Va = 1,...,u

D2-N22-N21(51-N11)-V2
a aa aa a aa aa

> ~ " Ta

inf |det[D-N-N (D-NU)" N1 ](s) • II - det(D -N.,) (s) I > 0.e £ ' a aa aaN a aa7 aaJ i G v

(52)

~2 22 21 -1 11 -1 12
(resp. det[D -N -N (D -N ) N ](s) . n det(D -N )(s) hasv a aa aav a aa' aaJ v ' <~ 1 cv :L ±±J Ks; nas

i e vJ
a

no (C -zero.)

Recall that we write the G fs as if they were SISO, i.e. as if

^Di"Nii^ are scalar functions. We write here det(D -N ) instead
of (I^-N^) so that the result applies for the MIMO G fs.
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X. Conclusions

This paper has treated in a very general setting the input-output

stability of an arbitrary interconnection of subsystems. Four classes

of results are presented: (i) for both NTV and LTI dynamics, a

sufficient condition for the overall system stability without using

any decomposition (Theorem I); (ii) for both NTV and LTI dynamics,

the structural Theorem III stating the equivalence between the overall

system stability and those of the CS's; (iii) for NTV dynamics,

sufficient conditions for the ot-stability of (I-GC ) and of SCS SC
aa a

using the MES decomposition (Theorems IV and V and their corollaries) ?

and (iv) for LTI dynamics, both lumped and distributed, characteristic

function for the overall system stability (Theorem II D(L), Corollary

II.1 D(L)).

Although this paper uses the same graph theoretic decompositions

as were used in [24], there are considerable differences between these

two papers.

(i) The problem formulation is different. In [24], there are

two types of subsystems, G's and Fii's, and also two types of summing

nodes, those with outputs fed into G's and into F 's. In the present paper

all the subsystems and all the summing modes are treated equally.

The present formulation avoids this artificial distinction between

the G^s and the F »s and, more importantly, leads to more transparent

theorem formulations.
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(ii) The definition of overall system stability has been modified

in a very important way. In [24], the overall system stability is

defined as the stability of the map (u,v;h—>(e,n) or equivalently,
m

stability of the map (u,v)»—>(Ge,Fn). Since Fn = ( £ F n.) m ,
j=l iJ J i=i*

two unstable terms, say F^, F^, may cancel each other and
m ,«

give a stable sum JT F..n. (see Remark 2). In the present paper,
j=l lj J

the overall system stability is defined to be the stability of the

map ui—>(GJJ,eJ)J m ,: this is consistent with viewing the overall
ij j i,j=l

system as an interconnection of black-boxes because it requires the map

from the inputs to each black-box output to be stable.

(iii) In the present paper, the structural results and their

proofs are developed in a more systematic manner: the three types

of dynamics (NTV, LTI distributed and LTI lumped) are carried together,

rather than only carried out for the ^-stability case. Amuch more thorough

understanding of the interplay of the results is achieved.

The derivations highlight the key role played by the closure properties

of stable maps, by the block-lower-triangular structure resulting from

the SCC decomposition and by the particular features of the definition

of stability.

13
This formulation is the conventional one for single loop feedback systems,

but in that case, since there is only one such subsystem output per
summing node, the cancellation is impossible.
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(iv) In [24], there are no counterparts of Theorems I, II, III

and IV of the present paper.

(v) the computational effort required to compute the characteristic

function for the overall system stability in [24] is considerably

greater than in the present paper. (Theorem II and Corollary II.1) In

[24], the characteristic function det(D_nD_ -N_nN_ )(s) is obtained
i? & Gr F& Gr

by treating the overall system S as a "big" feedback system (G,F).

To compute it one must first find a coprime factorization of a "big"

matrix F. In the present paper, the characteristic function det(D-N)(s)

is given by Corollary II.1 D(L). To compute it one only need to find

a coprime factorization for each column G of G, j = 1,... ,m. This
•J

computational gain is achieved in spite of the more refined and more

demanding definition of the overall system stability.

By using the same reasoning as in [50], sufficient conditions

under which the exp-stability of the overall system is robust can

easily be obtained. Due to space limitation, we do not present

them in this paper.

The main challenge in decentralized control of large scale

systems is due to informational constraints: the controller at

subsystem i has no knowledge of the information at subsystem j,

(e.g. the output observed, the control applied etc.), and vice versa.

However in the preliminary analysis of a large system one should first

concentrate on the qualitative system properties (e.g. stability,

controllability, observatility, etc.), as opposed to the control of the

large scale system; at that stage information contraints do not come

into the picture. For such preliminary study graph theoretic

decomposition techniques, not necessarily restricted to SCC and MES
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decompositions, should be used to analyze the structure of the large

scale system. It is clear that the structure emerging from such an

analysis will play a crucial role in the control problem.

SCC decomposition is particularly useful for stability study

because it decomposes the overall system into a series-parallel

connection of SCS's and IS's and the stability is preserved under

such connection (Lemma 1). Hence the stability question of the overall

system becomes decentralized in the sense that to ensure overall system

stability, we only need to make each SCS and each IS stable. As

noted in introducing Fact 4, for the overall system stability to be

robust, it is reasonable to assume every IS is stable. Under this

assumption, the overall system is stable if and only if every SCS is

stable, and hence stabilization of the overall system is decentralized

into the stabilization of each SCS.

Even though this paper considered mostly interconnection of nonlinear

subsystems, a key feature of its analysis was that the interconnection

occured through summing nodes which are linear elements. (This type of

additive nonlinear interaction is also found in most works based on

the Lyapunov function technique [13].) It is not clear at this time

what will be the most successful model for truly nonlinear interaction among

subsystems. Some work has already been reported for the feedback case.

[38,51]
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Proof of Theorem I

Let U A {(i»j)|i = j and G . is unstable}. By assumption,

(I-G)"1 :ui—>e = (e.).mn is stable. Since V(i,j) £ U, G, . is stable,
j J=l ij

the map

ul—»GJ.e 'is stable V(i,j) t U (A.I)
ij j

Now consider some (i,i) *= U. Substituting e. by (10), we have

G..e. =G^d-G..)"1 (u± •+ J] 0^) (A.2)
j#

By (A.l) and Lemma 1,

the map

map

m

) is stable. (A.3)BM(Ui +j§. Vj
j^i

By (13) the assumed stability of (I-G ) is equivalent to the

C.d-G..)"1 is stable. (A.4)
ii ii

In view of (A.2), (A.3) and (A.4) together imply that

ui—*G..e is stable. (A.5)

$A.l) and (A.5) establish the overall system stability.
Q.E.D.

Proof of Lemma 2D(L)

We first prove the lemma for the distributed case. Recall the well-

established identity for matrices M,N,

M(I-NM)"1 * (I-MN)"3*!. (A.6)
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Substituting for H and using (A.6) we have

H(I-KH)"1 =NrD"1NA(I-KNrD"1N£)"1

=NrD"1(I-NJlKNrD"1)"1N£

=N^D-N^)"1^ (A. 7)

Hence the equivalence of the lemma will be established once we show

that the three matrices in (A.7) form a p.r.l.c.f. of H(I-KH) . By

assumption (N ,D,N ) is a p.r.l.c.f. of H, hence there exist (^-matrices

WVva such that °c

det[UrNr+VrD](s)

= det[(Ur+VrN£K)Nr+Vr(D-NJlKNr)](s) * 0 Vs e G+ (A. 8)

and

det[NJlUJl+DVil](s)

= det[N£(U£«llrV£) + (D-N£KN.)V£] (s) ^0 Vs € C+ (A. 9)

Since K is a constant matrix, and Ur,V ,N ,U ,N ,V are (L -matrices,
r & X/ it a* .

by closure property of algebra Q^% (u +V N K), (U +KN V ) are also

^L-matrices. Now (A. 10)

det(D-N„KN )= det D •det(I-N„KN D"1)
% r' v % r '

= det D •det(I-KN D"1^)
r a

= det D • det(I-KH) (A.11)

By definition of p.r.l.c.f., V sequences (s.). , C <C where |s | •* « ,

lim inf |det B(s±)\ >0 and by assumption lim inf |det(I-KH)(s.)| >0
i ->• 00 £ •+ 00

Hence by (A.11), for all such sequences,

lim inf |det(D-N KN )(s.)| > 0.
. Xr r i
1 -»• 00
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This together with (A.7)-(A.10) imply that (N ,D-N KN ,N ) is a
r x» r x»

p.r.l.c.f. of H(I-KH)"1.

For the lumped case, the proof follows similarly. In view of (A.11)

the assumption det (I-KH)(») $ 0 implies that det(D-N„KN ) t 0.
& r

Proof of Theorem II D(L)

Let N A diag(N N )
— .1 .m

Q.E.D.

Thus G = ND and since (N .,D.) is a p.r.c.f. of G , for j = l,...,m,
•J J *J

it is easy to see that (N,D) is a p.r.c.f. of G, or equivalently (N,D,I)

is a p.r.l.c.f. of G. From (17), G = KG. Thus Assumption 2 is

equivalent to V sequences (O^i c c+ where |s.J -*• «> ,

lim inf |det(I-KG)(s.)| > 0. Now we apply Lemma 2D to the overall
i •*• °°
system S (Fig. 2) with H «- G, K «- K, N •<- N, D -*• D, N£ •*• I and

with N = KN, Theorem IID follows.

For the lumped case, the proof follows similarly. Q E ^

Proof of Theorem III

By definition, Vg = l,...,y, CS S are stable if and only if

Va >g=l,...,y, GC0(I-GqQ)"1 are stable. (A.21)
— ap pp

By definition, the overall system is stable if and only if

Va > 3 = l,...,y, (u?). ,i-»yC0 are stable. (A.22)
— i l—i ap

Recall

K$ ' 6>-gC66>"1 (ua +%kti ?m>. (33)
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We prove (A.21) =* (A.22) by induction on 3. Suppose (A.21) holds.

From (33), Va :> 1,

~c ~c /T _c .-1 c
y«i = Gal(I-Gll> ul

i.e. GC-(I-gJ-)" :u£i—»yC.,. Thus (A.21) implies that (A.22) holds

Va >. 3 « 1.

Suppose (A.22) holds Va >_ 3 = 1 Y~l» (A.23)

From (33), Va >_ y» we have

(I-G° )
YY

Cs Y , wClc vY-1

~C ~C t- _C v-1 , C , V^ vC "*C \y = G (I-G ) (u + X, K . y .).Jay ayv YY Y itj YJ YJ

Note that by (A.21) GC (I-Gc )"X is stable Va >_ y, and by (A.23) the

map (up/,1 KyJLj is stable. Thus (A.22) holds Va>_3!Bl,...,Y.

Hence, by induction, (A.22) holds Va :> 3 - l,...,y.

We prove (A.22) =* (A.21) by contradiction. Suppose (A.22) holds.

Suppose, for sake of contradiction, that for some a,3 with a >_ $,

Ga3(I"G33)_1 is not stable-
For LTI dynamics, consider the input (6,...,8>ufi» 6,...,9).

By (33) and linearity, the corresponding output is

y«3 = Ga$(I"V U3

Thus (A.22) implies that G^d-G*)"*1 is stable. Hence we have reached
ap pp

a contradiction. » - •

For NTV dynamics, (A.22) Implies that there exist y»3 such
_c

that Vu£ € "A.J- ,i-1,...,3, VT €^ ,

,2s»<«ftp"S+% l% h^*&#*+? (a-24)
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Let (y^)^ be the output corresponding to the input (8,... ,8, iig,6,... ,6),
S—1
x^" ~c ~c ~c 8—1Let fA 2L* Kg4 yg4« Observing that (yg-JJLi depends only on the

first (3-1) components of that input, namely (6,...,6), by the

assumed /L-stability of the overall system,
mc

f€= *- 3 (A.25)

For that input (A. 24) becomes

1,Ga3(I"G33)"1 (u3+f)BT -^^3°T +* (A*26)
Ac c -^mB

Letting uD A u0 + f and recalling that *^» is closed under addition,
p p e r

— - ~c -J> ft
we conclude from (A.26) that there exist y9& such that Vu £ *\^_ ,

p e

VT^,

<YBig«T + (y!«I +e)

>. xnus ii „li-fc* v
a3

reached a contradiction.

where by (A.25), OfII < «.. Thus Gca(I-G«a)"1 is ^-stable. Hence we have
ap 3p ^-

Proof of Theorem IV

From the SCS equation (42),

2 _ . -22.-1 / 2..21 1.
e = (I-G ) (u +G e )

= (I-G22)"1 [uVd^J-^uW)]

-42-
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Hence Vu1 E£f, Vu2 6/f, VT 67,
2e'HT <Yfd-G22)"1] UuV^I-G11)"1 (uW2e2)llT+ 3Ld-G22)-1]

<Ytd-G22)"1] • (YtG^d-G11)"1] luWu 3[G21(I-GU)] +

lu2t!} + 3[(I-G22)"1]

1Yfd-G22)'1] •̂ YfG^d-G11)"1] •{YfG12]lle2UT +3[G12] +
On1!,,} +3[G21(I-G11)"1] +llu2llT) +3fd-G22)"1]

Hence it is easy to choose positive numbers y»3 S Vu ^ its! ,

vu2e £m ,vtg *j 9
e

{l-YtCl-G22)-1] • TlC^d-G11)"1] • YtG12]}De2DT

<y • (1^0,, +Bu2»T) +6

where by assumption (48) the scalar multiplying Be II is greater than

zero. Thus,

«e2llT <{1-Yld-G22)-1] •Y[G21(I-GU)_1] •y[G12]}_1.

[Y •(lu1lt +Ou2BT) +1].
12 2 %-PHence (u ,u )i—>e is ££ -stable. Now from (41)

1 ,_ Ulv-1 , 1^,12 2.
e = (I-G ) (u +G e )

Since (i) (u1,u2)»-^e2 is ^-stable, and (ii) G12, (I-G11)"1 are

assumed to be Jc-stable, by Lemma 1, (u ,u )»—*e is *(.-stable.

Hence (I-G)"1 :(u^ii2) I—'(e^e2) is <£-stable. q.e.D.
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Proof of Corollary IV.1:

Assumption (a) implies that

YfG12], YfG21] are finite. (A.27)

Assumptions (a), (b) and the lower-triangular form of (I-G11), together

imply that

Yfd-G11)"1] is finite. (A.28)

By Theorem IV, (A.27), (A.28), Assumptions (d) and (e) together imply

that

(I-GC)~ is ^.-stable. (A. 29)

Using Theorem I with G replaced by GC, Assumptions (a), (b), (c)

and (A. 29) together imply that the SCS SC is ^-stable.

Proof of Theorem V

From the SCS equations (41) and (42)

(I-G22)e2 =u2 +G^I-G11)"1 (uW)

[I-G22-G21(I-G11)-1G12]e2 =u^Vg11)"1 (uWV) -G21(I-G11)-1G12e2
2 -22 -1 2 1ez = (I-GZZ) L (u +S1) (A. 30)

where u1 AG^I-G11)"1 (uWV) - G^d^VW

satisfies B^fl <YfG21 (I-G11)"1] • llu10 Vu1 G£* .

Since (i) (u^u2)!—»(u2-^1) is ^-stable and (ii) (I-G22)"1 is

assumed to be ^-stable, by Lemma 1, (u ,u )i—>e is ^-stable.

From (41) and (A.30)

1 _ ,T Pllv-1 , 1.-12 2.
e = (I-G ) (u +G e )
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Since (i) (u1^2)! *e2 is ^-stable, and (ii) G12

and (I-G ) are assumed to be JL-stable, by Lemma 1, (u^u2)! ^e1
is X-stable.

-1 12 12 w>
Hence (I-G) : (u ,u )t—» (e ,e ) is Aj-stable.

Q.E.D.

Proof of Corollary V.l:

It follows from Assumption 2 that d-G..)~ is a well-defined

map; by Assumption (b) of the corollary, Vi £ V , there exists

€ £ such that G±ie±± ^ £, hence u^ 4 d-G^e^ € <?L
and consequently d-G..)~ u.. € ^.. Thus, by Remark l(iv),

Assumptions (a) and (b) respectively imply that

Vi >j, i€vC, j€v1, YfG^] is finite, (A.31)

Vi ev1, Yf (I-G±1)""1] is finite. (A.32)

Assumption (a) implies that

YfG21] is finite. (A.33)

Assumptions (a), (b) and the lower-triangular form of (I-G ), together

imply that

Yfd-G11)"1] is finite. (A.34)

Similarly, (A. 31), (A. 32) and the lower-triangular form of (I-G ),

together imply that

Yfd-G11)"1] is finite. (A.35)

Assumption (d) implies that

YfG12] is finite. (A.36)

"ii
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By Theorem V, (A. 33)—(A. 36) and Assumption (e) together imply that

d-GC)"X is £_ -stable. (A.37)

By Theorem I, (A.31), (A.37), Assumptions (c) and (d) together imply

that the SCS SC is ^j-stable. n _ _
Ij. £>.D.
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Fig. 2 Overall system S : u*—»y viewed as a constant output feedback
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Fig. 5 Flow graph associated with (41), (42),
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