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ABSTRACT

We study the input-output stability of an arbitrary interconnection
of multi-input, multi-output subsystems which may be either continuous-
time or discrete-time. We consider throughout three types of dynamics:
nonlinear time-varying, linear time-invariant distributed and linear time-
invariant lumped. First, we use the strongly connected component
decomposition to aggregate the subsystems iﬁto strongly-connected-
subsystems (SCS's) and interconnection-subsystems (IS's) so that the
overall system becomes a hierarchy of SCS's and IS's. Using this
decomposition, we define column-subsystems (CS's). The basic structural
result states that the overall system is stable if and ohly if every
CS is stable. We then use the minimum-essential-set decomposition on
each SCS so that it can be viewed as a feedback interconnection of
aggregated subsystems where one of them is itself a hierarchy of
subsystems. Based on this decomposition, we present results which

leads to sufficient conditionsfor the stability of SCS. For linear
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time-invariant (transfer function) dynamics, we obtain a characteristic
function which gives the necessary and sufficient condition for the
overall system stability. We point out the computational saving due

to the decompositions in calculating this characteristic function. We
believe that decomposition techniques, coupléd with other techniques
such as model reduction, aggregation, singular and nonsingular

perturbations, will play key roles in large scale system design.
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I. Introduction

This paper considers the input-output stability of an arbitrary

interconnection of multi-input multi-output subsystems. This problem

can be viewed as a generalization of that dealing with the feedback

interconnection of multi-input multi-output subsystems [1-6]. On

the other hand, since an arbitrary interconmmnection can always, by
suitable reformulation, be viewed as a single overall constant
output feedbacks system (as is done in Fig. 2 below), the task
this paper is to énalyze the details of the interconnections using
graph theoretic decomposition techniques and to bring them to bear
on the stability study.

Basiéally, there are two types of stability: Lyapunov stability
and input-output stability. For the Lyapunov stability, the system
dynamics are restricted to ordinary and functional-differential
equations [7]. In [8-13], sufficient conditions for Lyapunov stability of
an arbitrary interconnection of subsystems are obtained as follows:
assume each subsystem is stable with a given Lyapunov function, then
try to construct either a vector or a weighted-sum Lyapunov function
for the overall system. The input-output stability studied in this
paper, allows much more general types of dynamics [1-3]. Papers
[14-17] use this point of view and M-matrix technique to obtain
sufficient conditions for input-output stability of arbitrary
interconnections of subsystems. The interpretation of their results
is that 1if each subsystem is stable, if the loop gain of each local
feedback loop is smaller than 6ne and if the gains of the interconnecting

subsystems are small enough, then the overall system is stable.



The crucial difference between this paper and [8-17] is that
we use graph theoretic decomposition techniques, originally proposed
by Harary [18], to exploit the structure of interconnection. Furthermore,
we need not assume that every subsystem is stable.l These graph
theoretic decompositions have been used in [18-24]. 1In [18], :
Harary considered only the matrix inversion problem. In [19] and ';
[20], Kevorkian considered solving systems of nonlinear and linear
algebraic equations and, in [21], nonlinear time-invariant dynamical
systems described by differential and algebraic equations. In [22],
azgﬁner and Perkins considered the existence of a state space description
of the overall system formed by linear time-invariant subsystems
interconnécted through constant gain subsystems. In [23] Mayeda and
Wax considered the exponential stability of systems of ordinary
differential equations. In contrast to [8-12, 21-23], we use the
general input-output description for our subsystems: thus our theory
covers both linear and nonlinear, time-invariant and time-varying,
lumped and distributed subsystems as well as the continuous-time and
discrete~time cases [1-3]. A detailed comparison between our previous
paper [24] and the present paper is relegated to Section X: Conclusions,
so that we can make specific reference to results pf the present paper.
We study the stability using three levels of aggregation. At the
lowest level, we have the multi-input multi-output subsystems which
are arbitrarily interconnected through summing nodes to form the

overall system. By using strongly-connected-component (SCC) decomposition,

lSome open-loop unstable systems occur in practice: rockets, .
electronic circuits with op amps, and chemical processes [25].
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we aggregate the subsystems into strongly-connected-subsystems

(5CS's) and interconnection-subsystems (IS's). The overall system

which is the top level aggregation, becomes a hierarchy of these

mid-level aggregated subsystems.

The content of this paper are as follows:

Sec. I:
Sec. II:
Sec. III:
Sec. IV:
Sec. V:
Sec. VI:
Sec. VII:
Sec. VIII:
Sec. IX:
Sec. X:

Appendix:

Introduction

Preliminaries

System descriptions and assumptions

Overall system stability without using decomposition

SCC decomposition of the overall system

Structural result

MES decomposition of SCS

Sufficient conditions for theJerstability of SCS.
Simplifying characteristic function using decompositions
Conclusions

Proofs

The reader is urged to give particular attention to some

notational and linguistic conventions: (i) on "map" and "stable"

in Sec. II; (ii) on the dimension of subsystems in Sec. III;

(11i) on the relabelling due to the SCC decomposition in Sec. V;

and (iv)

on the relabelling due to the MES decomposition in Sec. VII.



ITI. Preliminaries

In this paper we consider an inﬁerconnection of subsystems
with two types of dynamics: }nonlinear time-varying dynamics where
systems are described by operators between function spaces, and linear
time-invariant dynamics where systems are described by their transfer
functions. Throughout this paper, we shall use NTV and LTI to denote
nonlinear time-varying operator dynamics, and linear time-invariant

transfer function dynamics, respectively.

For a NTV system, we adopt the following standard description
[3, Sec. III.1l], namely, letgbe the time set of observation (typically
U =R + for continuous-time case, Z+ for discrete-time case) ,7/.be a
normed space with norm |+| (typically V= 1Rr" or €V, andybe the set
of all the functions mappingginto V. The function space‘? is a
linear space over R (or C) under pointwise addition and pointwise
ﬁultiplica_tion by scalars. Introducing a norm l<l on ’:7', we obtain a

normed linear subspace ;Cof the linear space 0:71, given by

2 atE TV < w)

For any T 67, we define fT(t) = f(t) if t < T, and zero for t > T.

We say that fT is obtained by truncating f at T. Associated with

the normed space 5{. is the extended space ;(e defined by

Z ate:T>V|wmmed, Igl < =}

e
We shall often write Hf“T instead of [lfTB. From now on we take 2= R. A NTV

system with n, inputs and n, outputs is described by an input-output operator

ni no
H : ie > ie . An operator H is said to be causal iff for all

n
inputsu € p{e i , for all T € 7, the corresponding output Hu satisfies

-5—
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(HuT)T = (Hu)T. An operator H is said to be x -stable iff there

n
exists constants B, Yy in R, such that ¥u € xei’ ¥T € 7,
||Hu“T <B+y "uﬂT (1)

It is well-known that when H is causal, then H is ;{-stable if and

only if there exists constants B, y in ]R such that ¥u € DL 1
(lHul <B+y lull (2)

Throughout this paper, we consider only causal operators (see
Assumption 1 in Sec. III).The smallest y for which (2) holds is called

the gain of H, and is denoted by y[H], i.e.,

n
v[H] A inf{y | JBE R D WE L1, Iml < g+ ylul} (3)

The incremental gain of H denoted by ?[H] is defined as follows:

- n
-~ i -~
Y[H] A inf{y | Vu,,u, € £, UHul-HuZE iy"ul-uzu} (4)

Remark 1l: (i) Note that the bias B8 in (1) and (2) which is restricted
to be zero in the stability definition of [1,2,14-17] is allowed to

be nonzero in our definition. This increase in generality not only
allow us to consider biased operators, but also simplifies the stability
analysis of the overall system (e.g. see Proof of Theorem III).

(ii) The %_—stability of H not only requires that H takes an input

in x-space into an output in f_-space, but also requires that

v[H] be finite. (iii) H 1is X,—stable, or equivalently y[H] < =,

does not necessarily imply that y[H] < ». (iv) It is easy to show that
if there exist u € ini such that Hu € ;(no, then y[H] < y[H]. (v) If

H is linear, then y[H] = y[H]. .



It is well-known that a very large class of lineaf time—invariént
operators can be represented as convolution operators and if the
convolution kernels are Laplace transformable, the operators can be
described by transfer functions [26]. 1In this paper, the LTI dynamics
will be described by ﬁransfer functions. Only the continuous-time case
will be considered. All the results on LTI continuous—-time case
presented in this papér also hold for LTI discrete-time case by
making corresponding changes as described in [3, Sec. IV.6].

We shall be concerned with two classes of convolution kermels.

~

First, we define the algebra (& [3]: f : €, + C is said to be in a
o -st '

iff f(8) = £_(s) + E f.e i where £_is the Laplace transform of
a i=0 i . a
(-
a function in L, (R,), £, € R for all i, }; l£] <=, 0=t
n.xn, 1=0 ~ 0 oXn,
0<tiforill. H:¢++¢ is said to be in (L iff

all its elements are in 0: We note that (i) f € j_,has an inverse in

QA if and only if inf |f(s)| > 0, [27, p. 150], [3, p. 249],
s € ¢+ :
A NnXn A nxn

(ii) H € @ has an inverse in (L if and only if

inf |det H(s)| > 0 [3], and (iii) d.( d_fum) is a commutative

s€¢,

(noncommutative, resp.) algebra over the field R [27,3]. A LTI distributed

n_xn
system described by its transfer function H : ¢+-> ¢® ‘i is said to
~ noxn,
(Z -stable iff H € (L . ‘It is well-known that if a system is
a_—stable then (i) for any p € [1,»], it takes an Lp-input into an
Lp-output with a finite gain, i.e., it is B{,—stable for A= Lp,
and (ii) it takes continuous and bounded inputs (periodic inputs, almost

periodic inputs, resp.) into outputs belonging to the same classes

resp. [3, 28].
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Let IR (s) denote the field of rational functions with real
n xn,
coefficients. Let R (s) denote the ring of n xn, matrices

whose elements are in R (s). By .definition, A LTI lumped -
n_xn

system is described by a transfer function in IR (s) ° i. A LTI
n_xn
lumped system described by its transfer function H(s) € R (s) a1 is

said to be exponentially stable (abbreviated exp-stable) iff (i) H(s)

is proper (i.e. bounded at infinity) and (ii) H(s) has all its poles
in the open left-half plane (i.e. H has no ¢+7pole). It is easy to
see that BRe(s), the class of all scalar exp-stable transfer functions
is an algebra over IR, in fact a subalgebra bf Ci;.

In either the lumped or distributed case, if ;he transfer function
H has a domain of convergence which includes some right-half plane
and if, for large Re s, it is bounded by some polynomial in s, then
it is causal. (The second requirement is indispensable: viz. es),

[3, Thm. B.3.4].

Convention on "map" and "stable"

Throughout this paper, (i) by a map H, we mean an operator H

for the NIV dynamics case and a transfer function H for the LTI

dynamics case and (ii) when we say that a system described by the map
H is stable, we mean the operator H is }(—stable in NTV dynamics,
the transfer function H is (L -stable in LTI distributed dynamics and

the transfer function H is exp-stable in LTI lumped dynamics.2

2We do not distinguish a transfer function from an operator by the usual

notation of * because some of our results hold for all three types
of dynamics with corresponding definitions of stability.:



Note that when a system is described by the map H, the specification of
H prescribes the inputs and the outputs of the system.3
Using (1), the definition of Zi-stability, one can easily
prove that the composition and addition of )ﬁrstable operators are
again ;(_-stable. Since &, ]Re(s) are algebras, they are closed
under multiplicationAand addition. Thus we have
Lemma 1 (NIV, LTI)4

Every series-parallel connection of stable subsystems is stable.
‘ : o

IITI. System Description and Assumptions

In this paper we consider an overall'aystem S consisting of an

arbitrary interconnection of subsystems. The subsystems are specified

by an input-output map: they may be MIMO (multi-input multi-output)
or SISO (single-input single-output), unstable or stable, nonlinear
or linear, time-varying or time-invariant, and continuous~-time or

discrete-time. The interconnections are realized through m summing nodes

as indicated by Fig. 1. The subsystem from node j to node‘i is

described by the map G Each summing node j is fed by an external input

ij°
uj and by the outputs of the subsystems Gjl""’Gjm' The output ej of
the summing node j is the input to the subsystems Glj""’ij' In

practice, a significant portion of the subsystems G,,'s are absent,

ij

hence are represented by zero maps.

3As will be séen below (Remark 2), it makes a lot of difference whether

H is taken to be E;(I--(r.)‘l or G(I-G)"l.
4

We use NTV, LTI following each lemma, theorem and corollaries to
indicate the type of dynamics for which the statement holds.
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Convention on dimension of subsystems

To alleviate burdensome notations which are peripheral to the main
ideas of the paper, we denote each subsystem as if it were SISO,
(i.e. for NTV dynamics, Gij : ;(E -+ ;Ce; for LTI dynamics,Gij is
a scalar transfer function)the results presented in this paper still
| n'o nio
hold for MIMO subsystems, (i.e. for NTV dynamics,Gij : JﬁeJ > 5(é 5
for LTI dynamics,Gij is a matrix transfer function), by modifying the

"dimension" of the product spaces accordingly.5

Assumption l: Causality

Throughout this paper, we assume that all the subsystems Gij

are causal.

=
The summing-node equations read
m
e, = u; + ): Gi.e. for i = 1,...,m. (10)
j1 .
In matrix notation, we have
r— - — —
I-Gy; =Gy +ee =6y eﬂ u;
€1 2 S| || | % a1
L% Tom) (%] ()

5This simplified description of the subsystems does not affect the
The simplified description avoids
the messy bookkeeping of three levels of aggregation of subsystems.

validity of the formulas below.
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With these definitions, the system equations (10), or equivalently

(11) become
(I-G)e = u : (12)

Assumption 2: Unique Solvability

Throughout this paper, we assume that
(a) for NIV dynamics, (I—G)-l :t ur—e is a map from i: into xz,

and is a causal map.

(-]

(b) for LTI distributed dynamics, ¥ sequences (si)i=1

Cc €, , where
|s;| > =, lim inf Idet(I—G)(si)l > 0.

i+

(c) for LTI lumped dynamics, det(I-G) (=) # O. n

Conditions under which Assumption 2(a) is satisfied can be found

in [2, Ch.2], [3, Sec. III.5].

Definition of the overall system stability

The overall system S is said to be stable iff ¥i, j = 1,...,m,

the maps ut——*Gij[(I-G)-lu]j are stable.

Remark 2: (i) At first sight, one might want to choose as definition
of overall system stability: the map (I-G)_lz uf—-?e be stable. Note

that without requiring G to be linear,

~11-




1+61-0)7 = (16107t +ea-e)t = (1672 ay

Hence the map (I-G)_l is stable if and only if the map'G(I-G)-l
~ m
is stable, i.e. for 1 = 1,...,m the maps u+— 2: Gijej are stable.
j=1

By definition the overall system S is stable iff ¥i,j = 1,..;,m,
llk_’cijej are stable. Hence by Lemma l, if the overall system S is
stable, then the map (I--G)-1 is stable.
(ii) The converse of the last statement is not true because two unstable

terms, say Gile2 and Gikek may cancel each other and give a stable
m

sum Gijej' An example to illustrate the point: Let m = 2 J
j=1

and all subsystems be SISO LTI lumped. It is easy to check that if
Gll(s) = (2s+3)/(st+l), Glz(s) = 0 ¥s, GZl(S) = =(s-4)/(2s-1) and
G22(s) = (s-4)/(2s-1), then a) (I--G)-1 and G(I—G)-1 are exponentially

stable, b) thg maps ulf——aGZlel and ulr——»Gzze2 are both unstable

(pole at s = 0.5); but their sum is of course stable since it is the

(2,1) element of G(I—G)-l. .

In order to formulate the definition of overall system stability,

let G j denotes the jth column of G. Let

G A diag(G ;,...56 ) ' (14)

- 2
Let I be the mxm identity matrix and let K € R™™ be given by

KA [I}...!T) (15)
- — -~ .
Let y A Glleﬂ A Gi5)421,...,m,3=1,...,m (16) *
¢21%1
Cn1®1
e
mm m

-12-



Note that from (14) and (15)

G = KG | . (17)

Then the overall system S can be viewed as a constant output feedback
system as shown in Fig. 2. Thus the overall system S is stable if and
only if the map é(I—R@)-l = f'?.(I-G)“l : u——y is stable.

By Assumptions 1 and 2, é(I-ﬁé)-l : uf——a§ 1s a well-defined causal

_map.
For theoretical development, Fig. 2 is convenient. However it
does not take advantage of the particular structure of the interconnection,

namely that a number of G,,'s are zero maps. Our objective is to

ij
take the structure into consideration using graph theoretic decomposition

techniques.

IV. Overall System Stability Without Using Decomposition

In this section we consider the overall syétem stability without
using decomposition. Theorem I gives a sufficient condition for the
overall system stability; it is quite general since it holds for NTV
dynamics with bc-stability, LTI distributed dynamics with A -stability,

and LTI lumped dynamics with exp-stability.

Theorem I (NTV, LTI)
Consider the overall system S described by (11) and satisfying

Assumptions 1 and 2. If (a) G,, is stable ¥i # j, 1i,j = 1,...,m

ij ‘
(b) for every unstable Gii’ (I-Gii)-l is stable and (c) (I—G)—'1 is

stable then the overall system S is stable. -
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Remark 3: (i) By Theorem I, under its assumptions (a) and (b),
the stability of (I—G)-.l is equivalent to the overall system stability.
(ii) va~every Gij’ i,j =1,...,m is stable, then Assumptions (a) and

(b) are satisfied. o

For the remaining part of this section we study the & -stability
(exp-stability, resp.) of the overall system S in LTI distributed
(lumped, resp.) dynamics. Due to the symmetry between the distributed
and lumped cases, the results are presented in paifs: we use
D(L, resp.) to denote distributed (lumped, resp.) case.

Let R [S] denote the commutative ring of polynomials with real
n.xn n_xn

LN (s) ERIs] © , D(s) € R[s]™,

coefficients. Let H(s) € R (s)
nxn

Nz(é) € R [s] i, then (Nr,D,Ng) is said to be a right left coprime
factorization (r.l.c.f) of H iff (i) H = NrD-lN , (ii) there exist
nxn n_ xn %

i

u.(s) € R[s] °, U, (s) € R [s] , V_(s), V (s) € R [s1™" such

that det[U N +V D](s) # 0,¥s € € and det[Nz 9 + DV ](s) # 0, ¥s € C.

n _xXn n Xn,

L p(s) ER[s] T *

Let H(s) € R (s) o 1, N_(s) € R[s] , then

(Nr’Dr) is said to be a right coprime factorization (r.c.f.) of H

iff (Nr’Dr’I) is a r.l.c.f. of H.A left coprime factorization (l.c.f.)

is similarly defined.
‘n _xXn A XN ~ DXn ~ nxn,

1
LetH,:c—>c°i,N€d.°,De& ,Nea— , then

(N ,D,N ) is said to be a pseudo right left coprime factorization

~NXN,,
(p.r.l.c.f.) of H iff (i) H = NrD lNz, (ii) there exist Ur ed ’

~ nixn
Uz € d V..V, ed such that det[UrNr'*'VrDJ(S) # 0,

’ ’

¥s € c, and det[N U + DV ](s) # 0, ¥s € C (iii) ¥ sequences (Si)i:l Cg

—14-



n_xn
where |si| + », lim inf |det D(s;)| > 0. LetH: € ~>¢C o
n_xn i+e

N € 61 o1 ' AN xno
L R Dz ed ° , then (Nz,Dz)is said to be a pseudo left

coprime factorization (p.l.c.f.) of H iff (i,Dz,Nz) is a p.r.l.c.f.

of H.A pseudo right coprime factorization (p.r.c.f.) is similarly

defined.

It is easy to see that the definitions of coprime factorizations
_ given above are equivalent to those defined in the literature
[e.8.3,5,6,24,29]. The reason for introducing new definitions is
to achieve symmetry between the distributed and the lumped cases.

It is well-known that if (Nr,D,Nz) is r.l.c.f. of H, and H is proper
then H is exp-stable if and only if det D(s) has no ¢+fzero [29]. By
similar reasoning as in [5]1, it is easy to show that if (Nr’D’Nl) is a
p.r.l.c.f. of H, then H is {{-stable if and only if fgf ldet D(s)| > O.

The following lemma in spite of its simple proo? ha:+far reaching
consequences: it gives us a characteristic function mapping from c+
into € such that the overall system S is cl-stable (exp-stable, resp.)

if and only if the infimum over ¢+ of the absolute value of that

characteristic function is positive.

Lemma 2D(L) (LTI)

Consider the LTI distributed (lumped, resp.) constant output
feedback system shown in Fig. 3 where H is the transfer function in
thékforward path and K is a constant matrix. Let (Nr,D,Nz) be a p.r.l.c.f.
(resp. r.l.c.f.) of H. (For the lumped case assume that H is proper.)
.Assume that ¥ sequences (Si)i:I in in
(det (I-KH) (») # 0, resp.) Under these conditions, H(I—KH)-1 t Ve 2z

-15-
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is {-stable (exp-stable, resp.) if and only if

igf Idet(D—NzKNr)(s)l >0 (18)
s Q+ :

(det(D—NzKNr)(s) has no ¢+ - zero, resp.) -

Remark 4: (i) Lemma 2D(L) is proved by showing that if (Nr’D’Nl) is
a p.r.l.c.f. (resp. r.l.c.f.) of H then (Nr’D—NzKNr’Nn) is a p.r.l.c.f.
(resp. r.l.c.f.) of H(I—KH)_l. It is well-~known that if x is the
state used in a finite dimensional minimal SSSD (state space system
description) of H, then the SSSD of the constant output feedback
system H(I—KH)-l, using the same state x, will also be minimal, since
constant output feedback preserves both complete controllability and
complete observability when the same state is used [30, p. 365].
Since the r.l.c.f. in PMSD (polynomial matrix system description) is
a counterpart of the minimal realization in SSSD, [31,32], Lemma 2L
can be viewed as a counterpart in PMSD of the above well known fact
in SSSD.

(ii) Applying Lemma 2D(L) to the feedback system considered in
[5,33], we can easily obtain all the characteristic functions (resp.
polynomials) given in these papers.

(iii) Note that Lemma 2D(L) will still hold if K has elements
'in éi(if K is a polynomial matrix, resp.). n

Under Assumptions 1 and 2, applying Lemma 2D(L) to the overall
system S shown in Fig. 2 and using the particular form of R, we obtain

a characteristic function (polynomial, resp.) for the overall system S.

Theorem II D(L) (LTI)

Consider the LTI overall system S described by (11) and satisfying

Assumptions 1 and 2. For j = 1l,...,m, let G j denote the jth column

~16-



of G, and let (N ) be a p.r.c.f. (r.c.f., resp.) of G ;. (For

.3°%

the lumped case, assume that G is proper.) Let

3

NAIN {...iN ], D Adiag(Dj,...,D) : (20) 3

With these definitions, the overall system S is 6L—stable (exp—stabie, o
resp.) if and only if
inf  |det(D-N)(s)| > O (21)
‘s € ¢,
(det(ﬁ-N) has no C+fzero, resp.) u

Remark 5: (i) Note that G = Nﬁ-l

but that N, D are not necessarily
p.-r.c. (resp. r.c.). (ii) Clearly by using p.l.c.f. of G j's, one
can obtain a characteristic function for the overall system S. However

~

since the size7 of the output y of S is mz, such characteristic function

will be the determinant of a mzxm2 matrix. The characteristic function

given by Theorem II D(L) is the determinant of a mxm matrix where

mis ﬁhe size of the input u of S (see Fig. 2). -
In Sec. IX below, we will discuss how the SCC and MES decompositions

to be described in Sec. V and VII, simplify the necessary and sufficient

stability test given by (21).

V. SCC Decomposition of the Overall System

In this section, we apply the ideas presented in [24, Sec. I1II] to the

present formulation. 1In order to make this paper to some extent self-

contained, we define below all the required terms.

By definition, a digraph jgé (V,E) consists of a set of vertices

V .nd a set of directed edges E = v ’
g {( iavj)l\’i,\)j S V}. (vi’\)j) is an

7Recall Footnote 5.



edge directed from vy to vj and is said to be incident to both v,
—_— —_— i

and vj [34,35]. A section graph of A3= (V,E) is defined to be a

digraph )W) A (U C v, {(vi,vj) € Elvi,vj € U}). AJ(U) is said to
be connected iff disregarding the direction of the edges, every pair
of vertices in U are mutually reachable by going through edges in

,}a(U). /5RU) is said to be strongly connected iff respecting the direction

of the edges, every pair of vertices in U are mutually reachable by
traversing along edges in‘ga(U). A maximal strongly connected section

graph ﬁ(U) is called a strongly connected component (abbr. SCC) of ,/3 .

In other words, mutually reachability between a pair of vertices
is an equivalence relation (i.e. reflexive, symmetric and transitive)
defined on V and the set of vertices in each SCC is an equivalence

class under that equivalence relation. A connected component is

similarly defined. The vertex vy is said to have a self-loop iff
(vi,vi) € E. A circuit of length £ > 1 is defined to be an ordered
set of % distinct vertices (“1’“2""’n2) such that (“2’“1) € E and
(“k’“k+l) €E for k=1,2,...,28-1. A digraph is said to be acyclic
iff it does not contain any circuit. The indegree (resp. outdegree)
of a vertex vy is defined to be the number of edges coming into

(resp. out of) v, The adjacency matrix of a digraphng= (V,E) is

defined to be an nxn matrix A where n is the number of vertices in ):j,

' 8 '
= e = .
such that aij 1 iff (vj,vi) E- and aij 0 otherwige

8Most graph theorists define a,, = 1 iff (vi,vj) € E. Hence our adjacency

ij
matrix is the transpose of theirs.
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Consider the overall system S described above. The interconnection

digraph: ﬁint of S is defined as follows: each summing node i

of S corresponds to a vertex v, of )s’int’ and ﬁint has a directed

ij

can be analyzed separately, without

edge from \’j to vy iff the subsystem G,., is not the zero map. Since

each connected component of /\‘?;nt

loss of generality, we assume that ,ﬁint is a connected digraph.
We now perform the SCC decomposition on the connected digraph Jsint'
. 2 1

Step 1: Find all the SCC's dl’ 62,..., Qu of int®

Step 2: Make a condensation df /%/int with respect to these SCC's. That

is, we define a new digraph called the ‘structural digraph ,/38

of S as follows: each SCC (; o of Jgint corresponds to a vertex

Vo in '@s and there is a directed edge from Ga to ;B iff the

set of directed edges in /5 nt from any vertex in éa to any

i
vertex in GB is not empty. By construction, /‘3; is a

connected. acyclic digraph.

Step 3: Relabel the vertices of }3; so that its adjacency matrix As is
a lower triangular matrix. Hence, with respect to the new
labeling, a SCC, say Cza’ can only feed its output to SCC's,
say éB’ éy""" with a higher subscript, i.e. B, v > a.

Step 4: Relabel the vertices of /31nt so that (a) those that belong to
the same SCC are numbéred consecutively and (b) those that
beiong to the lower numbered SCC are nunibered lower than those

belonging to the higher numbered SCC. -

Step 1, the identificatior_l of SCC's, can be done by using Tarjan's
efficient algorithm STRONGCONNECT [36]. 1In [36] Tarjan has proved that

* his algorithm is correct and that its requirements for memory space
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and computing time are bounded by a linear function in the number of
vertices and edges in the digraph. For somewhat less efficient but
simpler algorithm, éee [18, 22]. For a heuristic algorithm, see

[19, 21]. Step 2 can gasily be done by inspection. Step 3, labeling

of a connected acyclic digraph is called topological sort [34, pp. 402],

[37, pp. 258]. 1It is done in u iterations (u = the number of SCC's)
by deleting a vertex with zero indegree and all its incident edges

at each iteration and, then, by relabeling the vertices in the order
they were deleted.

01:'./ﬁrin(:

A little thought reveals that the adjacency matrix Aint

after Step 4 will be in the lower block triangular form:

mC mc mC
1 2 * 00 u

c ~,C i
ml All 0 L 4 0

= c [ Cc
Ay e m, | Ay Ayy -ee O (22)

C [ c Cc
A A e o0 A

e Lul u2 N\

where (1) mz is the number of vertices in Kza, (1i) each diagonal
block A:a is the adjacency matrix of t;a and (iii) each off diagonal

block Az o > B is the adjacency matrix of cZaB which is defined to

- TaB’
be the bipartite digraph [34, pp. 168] consisting of (a) all the
vertices of Z:a and (;B’ and (b) all edges of lslnt directed from a

vertex in C;B to a vertex in (;a'

-20-



Notational Convention

From now on, without loss of generality, we assume that we start

out with the overall system S which has been relabeled after the

SCC decomposition.

"
For @« > B = 1,...,u, we define
VS A the set of vertices in SCC (o, (23)
u, A the m - vector (ui)i i (24)
a
c c _ 25
e, A the m - vector (ei)i i (25)
o
c c c
G , A the m_ x m, matrix [G,,] (26)
R T
~c c c c c
. : di 1 of G 27
GaB A the (ma mB) X mg matrix ag (columns aB) (27)
k© A the n° x (mc . mc) matrix: [Ii...}I] (28)
af = a a B
~C c c
Yy , Athe (m  * m)) - vector (G,.e,) (29)
af a B ij ] i €VC, je ve
o B
(Compare (27), (28), (29) with (14), (15), (16)). Note that
6 =KkS, G (30)
B al aB
and
Yag = Cas ©g
Equation (11) can now be written as
- - o] - )
c c| _ c
I_Gll 0 LI s 0 W el ul
c c . c c
“Gy1  I7Cy . |22 )
' ). . (32)
L ] 0 .
c c c c
- . . . -G e u
L ul 1 HU Lu_l Lu-J
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From (32) we can write
[
C _ (y_n€ 1 . cC c ¢
eg = (I-Ggg) = (ug + j§l Cg; 5
Using (30) and (31) we have

3¢ _ &C r_ ’
Yag = Cop(I-Cg G u + Z KBj yﬁJ (33)

Observe that due to block-lower-triangular form of G after relabeling,
c =~c
B’ yaB
For ¢ = 1,...,1, we denote by S:, the strongly-connected-subsystem

e do not depend on u§ for j > B.

(SCS) associated with the SCC Z:a of lﬁ;nt: it is obtained from the
overall system S by removing all the summing nodes and subsystems
which do not appear in Cza' Hence its input is uz, its output is

~

c ~C c -1
Yoo and it is described by the map G (I KaaGau) = Gaa(I-Gaa) . In
other words, Ss can be viewed as the constant output feedback
system shown in Fig. 2 with the following replacements: G by ¢

~ =c c c - ~c
K by Kaa’ u by u, e by ey by Yoo' Consequently the stability
definition below follows previous pattern.

The SCS SC is said to be stable iff the map ¢ (I—Gc )_l
=== "a —_— ao. ao

stable.
By Assumption 2 in Sec. III and block-lower-triangular structure

in (32), (I—G:;o‘)_1 is a well-defined causal map. Hence every SCS is

is described by a well-defined causal map.

For a > B =1,...,u-1, we denote by Sgs, the interconnection-

subsystem (IS) associated with (zaB of ﬁ%;nt; it is obtained from the

overall system by removing all the summing nodes and subsystems which
c . =~C

do not appear in CzaB' Hence its input is ugs its output is yaB and

it is described by the map @zs.

c -~
The IS SaB is said to be stable iff the map GEB is stable.
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In view of (27)-(33), a little thought will reveal that the overall

u

' c ~C
system S : (ua)a=1k—-’(ya8) can be viewed as a series-parallel connection

u
o,B8=1
of SCS's, IS's and constant gain subsystems REB as shown in Fig. 4 for the case
p =3,

For 8 = 1,...,u, we denote by SB’ the column-subsystem (CS)

described by the maps é:B(I-Gga)-l, a =8, Btlyeo.,l. ’These maps

are the contribution of ug to (;Eﬁ)a:B while neglecting the effect of

B-1
i=1’ .
Prior to establishing in Theorem III below, that the overall

all other inputs (ug)

system is stable if and only if every CS is stable, we note some
relationships between the stabilities of CS's, SCS's and IS's which are

direct consequences of the definitions and of the structural decomposition.

Fact .1 (NTV,LTI)

If CS SB is stable, then SCS S; is stable. - o

c

Since SCS SB

is stable implies that the map (I—Gge)-l is stable,

we have

Fact 2 (NTV,LTI)

c

If sCs S8

is stable and ¥a > B, IS Sg are stable, then CS S

B 8

is stable. 2

Note that the stability of CS does not imply that of the corresponding

(]

IS's. However,. in view of 626 = ~§B(I-G;B)-1 (I-GB

B), we have

Fact 3 (NTV,LTI)

If GS. is stable and CS S

88 is stable, then ¥a > B, IS Sz are stable.

B B
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Suppose CS S_ is stable and for some a > B8, IS S: . is not stable.

B B
In LTI dynamics, this implies that there exists some pole-zero cancellation

between é; and (I—GEB)—l. Clearly under independent parameter

B
perturbations of 523 and st, such pole-zero cancellation will not
be preserved. Thus for the stability of CS SB to be robust, it is
reasonable to assume that every IS S:B is stable. Under this

assumption, from Facts 1 and 2, we have

Fact 4 (NTV,LTI)
If every IS S:B’ o > B is stable, then the stability of CS SB

is equivalent to the stability of SCS S;’ n

This fact emphasizes the importance of the stability study of the

scs. (see Sec. VIII below)

VI. Structural Result

Theorem III below gives a necessary and sufficient condition for
the overall system stability. This result is structural in the
sense that it is based on the block-lower-triangular structure obtained
by SCC decomposition. It holds for NTV dynamics with ~-stability,
LTI distributed dynamics with Cz_—stability and LTI lumped dynamics

with exp-stability.

Theorem III (NTV,LTI)
Consider the overall system S described by (32) and satisfying
Assumptions 1 and 2. The overall system is stable if and only if

¥ =1,...,u, CS SB are stable. -
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VII. MES Decompositioh of SCS

In this section, we apply the ideas presented in [24, Sec. V]
to the present formulation. In order to avoid ambiguity and to make

this paper self-contained, we shall develop the concept of minimum

essential set.

Throughout Sec. VII and VIII, we study the stability of a single
map, namely (I—Gza)_l. For convenience and tq alleviate the already
" burdensome notation, we will drop the subscript o throughout Sec. VII

and VIII. Thus we write
c c.~-1lc
e = (I-G7) "u (34)
In addition to the graph theoretic terms defined in Sec. V, we

will need the following terms. By definitidn, U C V is called an

essential set of a digraph)étg (V,E) iff the section graph JSRV-U)
is acyeclic. Given a digraph, an essential set with minimum number of

vertices ié called a minimum essential set (MES) of the digraph. It

should be noted that our definitions allow an acyclic digraph to have
self-loops; this follows from our requirement that a circuit be of
length_>’1.

Consider the strongly connected subsystem s® and its interconnection
digraph c:é:(VC,Ec) which by construction is strongly connected. We now
perform the MES decomposition on <;~
Step 1: Find an essential. set V2 of 4 and define Vl A Vc—VZ. By

construction, the section graph C;(Vl) is écyclic.
Step 2: Relabel the vertices of G so that evéry vertex in ‘V1 is
numbered lower than all the vertices in V2.
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Step 3: Relabel the vertices of Czcvl) so that its adjacency matrix
All is a lower triangular matrix.9
A little thought revealsthat the adjacency matrix Ac of & after

Step 3 will be in the bordered lower triangular form:

1 2
m m
ol Call 1 412
c e
A" = B (35)
|
22 2L 422

where (i) for 1 = 1,2,mi is the number of vertices in Vi and (ii) A11
is a lower triangular matrix.

To exploit the structure of t}as much as possible, it is obvious
that one should use a minimum essential set in the decomposition.
‘The problem of finding a minimum essential set has been studied by
many researchers [39-46]. Theoretically speaking, the problem can
be considered solved since it requires a finite amount of work. However
the amount of work required can become potentially excessive for some
large digraphs since it is a NP-complete problem [47]. To perform
Step 1, we must first compensate for the fact that we allow self-loops,
so we first remove all the self-loops in t%, then apply the algorithm
given in [44] to find a minimum essential set and then put back the
self-loops. Step 2 of the decomposition can be done easily. Step 3

is carried out by using the topological sort described in Sec. V.

9Recall Footnote 8.
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Remark 6: Clearly by allowing A11 in (35) to be in block-lower-
triangular form [48], we can further reduce the size of A?z. The
tradeoff in computational efficiency between this "generalized" MES and

the MES decompositions still remains an open question. -

Notational Convention

From now on, without loss of generality, we assume that we start

out with the SCC Czwhich has been relabeled after the MES decomposition.

"
For i,j = 1,2, we define
v2 A the MES of 1] (36)
viave-vE o | (37)
ui A the mi-vector (uk) ' (38)
B ke v |
i i
e A the m -vector (ek) i (39)
kEvV
¢t A the m' x wl-matrix 6, | (40)
kEV, g€
Equation (34) can now be written as two equations
a-cthyel - ¢1%2% = ! ' ' (41)
-c2lel + (1-62%)e? = o2 | (42)
We define
~22 22 2 - '
G“AG™ ¢+ ¢ l(I-Gll) 1gt? (43)

The matrix signal flowgraph [49] associated with the nonlinear eq.

(41), (42) is given in Fig. 5.

Remark 7: (i) When ul = 8, from (41)
1 -1, ' : '
e' = (-6t 1¢t22 (44)
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Substitute (44) into (42), we have

2 ~22 -1 2
? = (-84 (45)

Substitute (45) into (44), we have

el - (I—Gll)-lGlz (1_622)-1 u2 (46)

~22.-1

Thus (I-G™ ") : (e,uz)l-——-)e2

-1.1 ~22 -1
and (I-Gll) 1G 2(I--G ) : (O,uz)h——ael.

Hence the stability of (I—-Gc).'l : (ul,uz)k——»(el,ez) implies that of

(1-822)71 (1-glly 15121 522,71

(ii) Consider Fig. 5 and calculate I minus the loop gainlo of a

SCS:

_ ety 1gl2 (1221

=i

11-622 - 2L (1-gtly 1612 (1-22)L

1

‘(1-622)_(I—G22)-1

-1

11,-1_12 22)_1] 47)

~22 -1 -
Hence (I-6-9)™" = (1-¢2%)7! [1-¢*(1-¢')1et?(1-¢

Note that (47) generalizes for the nonlinear cagse the standard

expression relating closed-loop gain and the open-loop gain in the linear case.
u

VIII. Sufficient Conditions for the S -Stability of SCS

In this section we present two sufficient conditions for the
}K_-stability of an SCS based on the MES decomposition.
Using equations (41), (42) and the small Gain Theorem at the MES

decomposition level, we have

10Note that this calculation does not require linearity in any of the GiJ's.
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Theorem IV (NTV)

Consider the map (I—Gc)"l described by (41)-(42) and satisfying

Assumptions 1 and 2. Suppose that,Y[GIZ], Y[(I—Gll)-ll, y[(I—G22 -1],
Y[GZl(I-G;l)—l] are finite. .Under these conditions if
- 1 22. -1 ,
vic? ¢ty - yiet? - yia-e*H T <2 (48)
then the map (I—Gc)_1 is 5£-stable. n

Remark 8: (1) Theorem IV still holds if the superscripts 1
and 2 are interchanged throughout.

(ii) Note that y[GZl], y[(I—Gll)'l] are finite implies that
vic?t -6 is finite.
(1i1) We shall now check that under the assumptions of Theorem
IV, the necessary conditions for the R£~stability of (I-Gc)_l given in

Remark 7 (i), namely the E{}stabilities of (1—622)-1 and

- ~22 - : - 22.-1
of (I—Gll) 1GlZ(I-Gzz) 1 are satisfied. Since Y[GZI(I—Gll) lGlz(I-G ) 1

f_y[Gzl(I—Gll)-l]- Y[G12]~- Y[(I—Gzz)—ll, by the assumﬁtion (48)

| -1
-1.12 22.-1

of Theorem IV and the Small Gain Theorem, [I-G21(I—Gll) G "(I-G"7) 7]

is o\i-stable. In view of (47), this together with xf'stability of

- ~22. — 11.-1 12
(I—Gzz) 1 imply that (I—Gzz) 1 is‘;crstable. Since (I-G77) ~, G

- ~22 -1
are assumed to be Jfrstable, so 1is (I-Gll) 1Glz(I-G ) . o

From Theorems I and IV, we have

Corollary IV.1l (NTV)

Consider the SCS S after MES decomposition and satisfying
Assumptions 1 and 2. If (a) Vi # j, i,j € Vc, Y[Gij] is finite;

1 2

(b) Vi €E Vv, y[(I—Gii)—I] is finite; (¢) Wi € V", y[Gii] is finite

or v[(1-6,,) ™11 is finite; (@) v[(1-6*H)™}] is finite; and
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@ vie?ta-e"™ « v16*?) - v[(1-62%)"1] < 1, then the scs

Sc is Ei_—stable. .

Theorem V (NTV)
Consider the map (I—Gc)ml described by (41)-(42) and satisfying
Assumptions 1 and 2. If Y[GIZ], Y[(I—Gll)-l], y[(Ifézz)-l],

?[GZl(I-Gll)-I] are finite, then the map (I-Gc)-1 is ;{;-stable. -

Remark 9: (i) Theorem V still holds if the superscripts 1 and 2

are interchanged throughout. By the MES decomposition (a) (I-Gl )

has a lower-triangular structure and thus is easy to invert, (b) (I-ézz),
‘which has no particular structure, has a size equal to |V2| and usually
|V2| << |V1|. If we interchange the superscripts 1 and 2, we would
consider (I—éll) and (I—G22): however none of these mapé has any
particular structure. Hence there is a definite advantage in using

622 instead of éll.

(11) Note that the third assumption of Theorem V is also
necessary. The first three assumptions of Theorem V together imply
the ;(rstability of (I- Gll) lGlz(I GZZ) 1, which is a necessary condition
for the X-stability of (I-¢%)71.

(iii) The.assumption ;[G21(I—Gll)-1] < ® allows us to write

12 2, 1 11,-1 12 2 -1

e?l(1-¢1y 1 (¢ 2%y = ¢ (-¢lly where lgll < yie2ta-cthHh™

. lu!l and ! can be viewed as an input equivalent to ut but applied at

node 2 in Fig. 5.
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O
v

From Theorems I and V, we have

Corollary V.1l (NTV)

Consider the SCS S° after MES decomposition and satisfying

Assumptions 1 and 2. If (a)ovi >j, i € Vc, j€ Vl, ;[Gij] is finite

e X; o) vi€ v,

€ 2{ such that G e G va;

‘ . -
and there exists eiJ ;(_such that Gij ij

;[(I-Gii) ] is finite and there exists &

(c) ¥i € V2, Y[Gii] is finite or v[(I-G

ii

ii) ] is finite; (d) ¥i # Js
L= 2 . i ~22 =1 . . .
i€v, jEV, Y[Gij] is finite; and (e) Y[(I-G"7)] ~ is finite, then

the scs s€ is ¥ -stable. .

Remark 10: (i) The assumption that there exists el € ;('such that

GiJ 1] ?{_ is very mild. It is satisfied when Gij is unbiased,
i.e. Gije = 9, which is the class of operators considered in

[1,2,14-17]. (ii) Suppose that G,, does not satisfy this assumﬁtion.

ij
i =]

Then for any input in Z{_its output is in ;fe 5(_. However the(

overall system stability requires the input ej as well as the output

§ij of every subsystem Gij to be in ;ﬁ.when the external inputs:

uk's are in ‘jz. Hence the overall system is not ;ﬂ—stable. -

IX. Simplifying Characteristic Functions Using Decompositions

We shall now consider the savings in computing the characteristic
function of the overall system S, given by Theorem II D(L) inlSec. v,
due to the two graph theoretic decompositions.

After the SCC decomposition, G is in block-lower-triangular form.

. c
Let j € Va. Then G 5 the jth column of G, has all zero entries in

a-1

c
the first 2 mB rows. Let (N ,D ) be a p.r.c.f. (r.c.f., resp.)
=1
B a-1
of G.j' Then N j also has all zero entries in the first z: mg rows.
B=1 O

Thus N A [N u...-N ] is in the same block-lower-triangular form as G.
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Since D é=diag(nl"'°’nm) is diagonal, (D-N) is also in the same
block—lower-triangdlar form as G. Let Nza’ ﬁ; denote the ath

diagonal block of N, D respectively, i.e.

c ~C
N = [N, ] » D= diag ((D,) )
oo ik i,k € ve o i i € Vc
o » (v}
Hence,
o H ~C . C
det(D-N) = 1T det(D -N_)
a=1 (VR T ]

. ~ c A
Note that ¥a = 1,...,yu, det(Dz-Nau) € (L, so it is bounded in c,.

Hence inf |det(5_N)(s)[ > 0 if and only if ¥a = 1,...,1u
s € Q+

inf  |det(DS-NC )(s)| > 0O (Vu = 1,...,u, det(°-N® ) € R [s], so
a oo c o aa
s € ¢+
it has no poles in €; hence det(ﬁ-N)(s) has no ¢+—zero if and only
~c . C
if ¥a =.1,...,u, det(Da-Naa)(s) has no € -zero, respectively for the

lumped case)._

After the MES decomposition, G° =[G 6127 is in bordered
, ac ao aa
G21 G22
ac aa '
lower-triangular form. By reasoning as above,ﬁc_ N¢ = ﬁl-Nll -le
a ac a oo ao
21 . DY
N2l 5222

ao o ad

is also in bordered lower-triangular form. Now

s e =2 22 21 =1 11 -1 12 -1 11
det B -N_,) = det[D-NC-NC (0 11y ~Iy2) det(®-N) (50
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where due to lower-triangular form 11of ﬁl-Nll,
a aa

det(ﬁl-Nll) = I det (D
a oo

i€v

17Vy4) (51

Thus we have

Corollary II.1 D(L) -(LTI)

Consider a LTI overall system S described by (32), which satisfies
Assumptions 1 and 2, and has the factorizations described above.
(For the lumped case assume that G is Eroper).

The overall system S iS¢CZ-stab1e (exp-stable, fesp’) if and only
if ¥a = 1,...,1

~2 22 21 .1 .11.-1.12 )
inf ]det[Da—Naa-N (BN, ) N 1(s) I 4 det(Di-Nii)(s)] > 0.

Sem oo a4 oo iev
+ a
(52)
~2 22 21 ~1 11.-1 12
(resp. det[D -N_'-N - (D -N_) lNaa](S) . . g o det(D,-N, ) (s) has
o
no G+-zero.) -

lpecall that we write the Gy;'s as if they were SISO, i.e. as if

(Di-Nii) are scalar functions. We write here det(Di-Nii
of (Di-Nii) so that the result applies for the MIMO Gij's.

) instead
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X. Conclusions

This paper has treated in a very general setting the input-output
stability of an arbitrary interconnection of subsystems. TFour classes
of results are presented: (i) for both NTV and LTI dynamics, a
sufficient condition for the overall system stability without using
any decomposition (Theorem I); (ii) for both NTV and LTI dynamics,
thg structural Theorem III stating the equivalence between the overall
system stability and those of the CS's; (iii) for NTV dynamics,
sufficient conditions for the & -stability of (I—Gga)_l and of SCS S
using the MES decomposition (Theorems IV and V and their corollaries) f
and (iv) for LTI dynamics, both lumped and distributed, characteristic
functionAfor the overall system stability (Theorem II D(L), Corollary
II.1 D(L)).

Although this paper uses the same graph theoretic decompositions
as were used in [24], there are considerable differences between these
two papers.

(1) The problem formulation is different. 1In [24], there are
two types of subsystems, Gi's and Fij's, and also two types of summing

nodes, those with outputs fed into G,'s and into F

1
1 ij s. In the presenf paper
all the subsystems and all the summing modes are treated equally.
The present formulation avoids this artificial distinction between

the Gi's and the Fij's and, more importantly, leads to more transparent

theorem formulations.
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(i1) The definition of overall system stability has been modified
in a very important way. In [24], the overall system stability is
defined as the stability of the map (u,v)+——(e,n) or equivalently,

m
stability of the map (u,v) —>(Ge,Fn). Since Fn = ( Z Fij"') n s
i=1 I =1
two unstable terms, say Fiznz, Fiknk’ may cancel each other and

3

m
give a stable sum ;E; Fijnj (see Remark 2),l In the present paper,
j= '

the overall system stability is defined to be the stability of the

m
e . .: this is consistent with viewing the overall
135371, 3=1 &

" system as an interconnection of black-boxes because it requires the map

map ur—(G

from the inputs to each black-box output to be stable;
(1ii) 1In the present paper, the structural results and their
proofs are developed in a more systematic manner: the three types
of dynamics (NTV, LTI distributed and LTI lumped) are carried together,
rather than only carried out for the Jerstability case. A much more thorough
understanding of the interplay of the results is achieved.
The derivations highlight the key role played by the closure properties
of stable maps, by the block-lower-triangular structure resulting from
the SCC decomposition and by the particular features of the definition

of stability.

13

This formulation is the conventional one for single loop feedback systems,
but in that case, since there is only one such subsystem output per
summing node, the cancellation is impossible.
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(iv) In [24], there are no counterparts of Theorems I, II, III
and IV of the present paper.

(v) the computational effort required to compute the characteristic
function for the overall system stability in [24] is considerably |
greater than in the present paper. (Theorem II and Corollary I1.1) In
[24], the characteristic function det(DFzDGr-NFQNGf)(S) is obtained
by treating the overall system S as a "big"‘feedback system (G,F).

To compute it one must first find a coprime factorization of a "big"
matrix F. 1In the present paper, the characteristic function det(D-N)(s)
is given by Corollary II.1 D(L). To compute it one only need to find

a coprime factorization for each column G . of G, j = 1,...,m. This

3
computational gain i1s achieved in spite of the more refined and more
demanding definition of the overall system stability.

By using the same reasoning as in [50], sufficient conditions
under which the exp-stability of the overall system is robust can
easily be obtained. Due to space limitation, we do not present

them in this paper.

The main challenge in decentralized control of large scale

systems is due to informational constraints: the controller at
subsystem i has no knowledge of the information at subsystem j,

(e.g. the output observed, the control applied etc.), and vice versa.
However in the preliminary analysis of a large system one should. first
concentrate on the qualitative system properties (e.g. stability,
controllability, observatility, etc.), as opposed to the control of the
large scale system; at that stage information contraints do not come
 into the picture. For such preliminary study graph theoretic

decomposition techniques, not necessarily restricted to SCC and MES
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decompositions, should be used to analyze the structure of the large
scale system. It is clear thatlthe structure emerging from such an
analysis will play a crucial role in the control problem.

SCC decomposition is particularly useful for stability study
because it decomposes the overall system into é seriés—pérallel
connection of SCS's and IS's and the stability is preserved under
such connection (Lemma 1). Hence the stability question of the overall
system becomes decentralized in the sense that to ensure overall system
stability, we only need to make each SCS and each IS stable. As
noted in introducing Fact 4, for the overall system stability to be
robust, it is reasonable to assume every IS is stable. Under this
assumption, the overall system is stable if and only if every SCS is

stable, and hence stabilization of the overall system is decentralized

into the stabilization of each SCS.

Even though this paper considered mostly interconnection of nonlinear
subsystems, a key feature of its analysis was that the interconnection
occured through summing nodes which are linear elements. (This type of
additive nonlinear interaction is also found in most works based on
the Lyapunov function technique [13].) It is not clear at this time
what will be the most successful model for truly nonlinear interaction among
subsystems. Some work has already been reported for the feedback case.

[38,51]
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Proof of Theorem I

Let U A {(i,3)]|1 = j and G, is unstable}. By assumption,

(I—G)_1 ! ub—e = (ej)jz1 is stable. Since ¥(i,j) ¢u, Gij is stable,
the map
u—G, e, is stable ¥(i,j) €U ‘ (A.1)

i3
Now consider some (i,i) € U. Substituting e; by (10), we have
-1 . Lt o
Gyiey = 6, (TG0 (u, + jgl Gy 4e5) | (A.2)
J#H

By (A.l) and Lemma 1,

the map
m
U (u, + Z G,.e.,) is stable. (A.3)
143 1373 } ,
j#

By (13) the assumed stability of (I_Gii)_l is equivalent to the
map
G,.(I-G )_l is stable. ‘ (A.4)
ii ii
In view of (A.2), (A.3) and (A.4) togeﬁher imply that.
ut-—-—-)Giiei is stable. (A.5)

fA.1) and (A.5) establish the overall system stability.
Q.E.D.

Proof of Lemma 2D(L)

We first prove the lemma for the distributed case. Recall the well-

established identity for matrices M,N,

M(I—NM)—]' = (I—MN)"]M. (A.6)
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Substituting for H and using (A.6) we have

H(I—KH)'1 Nrn'lnz(;-KNrD‘lNl)'l

-1 -1,-1
N.D T (I-NKN D )TN,

N_(D-N KN ) ln2 (A.7)

Hence the equivalence of the lemma will be established once we show
that the thrce matrices in (A.7) form a p.r.l.c.f. of H(I—KH)-l. By

assumption (Nr’D’Nz) is a p.r.l.c.f. of H, hence there exist Ciw~matrices

a

Ur’Uz’Vr’VQ such that P
det[UrNr+VrD](s)
= ‘ - € ]
det[(Ur+VrN£K)Nr+Vr(D NgKNr)](s) # 0 ¥s € ¢ (A.8)
and
det[Nzu£+DV£](s)
= € .
det[Nz(U£+KNrV2) + (D-NzKNr)Vzl(s) #0 ¥s € ¢, (A.9)

Since K is a constant matrix, and Ur,Vr,Nz,Ug,Nr,Vzlare L -matrices,
by closure property of algebra Ci_, (Ur+er2K)’ (U£+Ker2) are also

(i_-matrices. Now (A.10)

1]

-1
det(D-NzKNr) det D det(I—NzKNrD )

det D * det(I—KNrD-lNz)

det D ¢ det(I-KH) (A.11)

By definition of p.r.l.c.f., ¥ sequences (si)i:1 c ¢; where Isil > o,

lim inf |det D(s;)| > 0 and by assumption lim inf |det(I-KH)(s,)| > 0
i+ i > o i

Hence by (A.11l), for all such sequences,

lin inf |det(D-NKN )(s))| > o.

i>oe
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This together with (A.7)-(A.10) imply that (Nr’D_NzKNr’Nz) is a
p.r.l.c.f. of H(I-KH)-l.
For the lumped case, the proof follows similarly. In view of (A.1ll)

the assumption det (I-KH)(«) # O implies that det(D-N KNr) £ 0.

)
Q.E.D.

Proof of Theorem II D(L)

Let N A diag(N ;,...,N )

Thus G = ﬁﬁ-l and since (N j’Dj) is a p.r.c.f. of G i’ for j = 1,...,m,
it is easy to see that (ﬁ,ﬁ) is a p.r.c.f. of G, or equivalently (N,D,I)
is a p.r.l.c.f. of G. From (17), G = KG. Thus Assumption 2 is

(-]
equivalent to ¥ sequences (s;),_; C ¢, where |si| > o,
lim inf |det(I-KG)(s )] > 0. Now we apply Lemma 2D to the overall
i> o

system S (Fig. 2) with H <« G, K « K, N « N, D« D, Ng « I and
with N = KN, Theorem IID follows.

For the lumped case, the proof follows similarly. Q.E.D

Proof of Theorem III

By definition, ¥8 = 1,...,u, CS S, are stable if and only if

B

Yo > B = 1,ee0,1, G (I G ) are stable. (A.21)

By definition, the overall system is stable if and only if

¥a > B = 1,00, (u )i- r—,y B are stable. (A.22)
Recall

~Cc _ xC o ~c

Yag = Cop(I-Cg c (u + 2: KBj Bj (33)
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We prove (A.21) = (A.22) by induction on B. Suppose (A.21) holds.
From (33), ¥« > 1,

~C
yal' e;, (- G11) uy

i.e. (1 Gll) i*—*%- Thus (A.21) implies that (A.22) holds
Vo > B = |

Suppose (A.22) holds ¥a > B = 1,...,Y-1. (A.23)
From (33), ¥a > y, we have

;c = g (I—Gc )-1 (uc + Ei% sc )

oY ey oYY Y & Yj

Note that by (A.21) & (I—G;:Y)-l is stable ¥a > y, and by (A.23) the
map (ug)1 (y j)j 1 is stable. Thus (A.22) holds ¥a > 8 = 1,...,Y.
Hence, by induction, (A.22) holds ¥a > B = l,...,H.

We prove (A.22) = (A.21) by contradiction. Suppose (A.22) holds.
Suppose, for sake of contradiction, that for some &,B with o > B,
~C c -1 |
GaB(I GBB) is not stable.

For LTI dynamics, consider the input (e,...,e,u;, Bye0050).

By (33) and linearity, the corresponding output'is

-1l ¢

= G (I GBB) ug

yaB
Thus (A.22) implies that G (I G ) 1s stable. Hence we have reached

a contradiction.

. For NTV dynamics, (A.22) implies that there exist ;,E such

n$
that vl € R 1, 1= 1,...,e.we 7,

le] Neo GBB) Lu B + 2 KBj yBj)ﬂ < y(zlu B | (A.24)
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Let (§§j)j:1 be the output corresponding to the input (9,...,9,u3, yeees0),

B=l .. - R |
Let £ A 2: Bj §§j Observing that (y;j)§=i depends only on the

first (B-l) components of that input, namely (6,...,0), by the

assumed j{-stability of the overall system,

m
re Y8 : (A.25)

For that input (A.24) becomes

uc ac ) (u°+f)n f_;upCu + B ' (A.26)

Letting uB A uB + f and recalling that di B is closed under addition,

we conclude from (A.26) that there exist y,B such that ¥u. € 5{,

8
vre 27,

- e _
oy 5 (1-6 p < Y(ug-£l) + 8

8 gy
o - -

S-Y"uB"T + y“f“T + 8

—Ac - -

g_yluBﬂT + (ylel + B)

where by (A.25), Ufll < @, Thus G (I -G is }{rstable. Hence we have

88
reached a contradiction. . . Q.E.D.

Proof of Theorem IV

From the SCS equation (42),

2 _ 2 21 1

1-62%)1 (wie?lely

1]
I

(I_GZZ)—I [u2+G21(I Gll) 1( 1+G12e2)]

]
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1 2
Hence VuleJ(t: s Vuzeiz s VTe'vja

L
le®l, < vi(1-6*%™1} luke® (1-cthL (o LelZed, + sra-6?H L

<y ¢ yeP -ty ™Y Tulecl? 2ﬂ + sre?t ¢ty +

re.

o2t o+ ela-eH™h
< via- GZZ) M (vt - riettetty + siet?) +

uulu 1+ 8162t a-e"h ™l + 12 ) + s[(1-6¢2%H71 1

Hence it is easy to choose positive numbers y,B =] Vu € S{m

w’ € i“‘ , ¥ € °J,
22 - 2 11.-1 12 2
16"y - vt a-eth™ - yietie’t,
- 1 2 -
<y« (lu HT+ﬂu lIT)+B
where by assumption (48) the scalar multiplying Uezll,r is greater than
zero. Thus,
- - 12, .-1
ﬂezﬂT < {1—7[(1—(;22) . Y[GZl(I-Gll) e yieh
- 1 2 -
{y « (u “T + lu™l) + 8],

Hence (ul,uz)i—-—> e2 is i-—stable. Now from (41)

Lo eyl ulel2e?)
Since (1) (u ,u )i--re is i-stable, and (ii) G 2, (I—G )

assumed to be Rf-stable, by Lemma 1, (u ,u )l—re is i—stable i
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Proof of Corollary IV.1:

Assumption (a) implies that
2
y[G1 1, y[GZI] are finite. (A.27)

Assumptions (a), (b) and the lower-triangular form of (I-Gll), together

imply that
yI(-6'1 1] is finite. (A.28)

By Theorem IV, (A.27), (A.28), Assumptions (d) and (e) together imply

that
(I—Gc)_l is Z{:stable. (A.29)

Using Theorem I with G replaced by Gc, Assumptions (a), (b), (c)

and (A.29) together imply that the SCS s¢ 1s ZC-stable.

Q.E.D.
Proof of Theorem V
From the SCS equations (41) and (42)
(I_Gzz)ez = u? 4 ¢Pla-etly 1 (ulil2e?)
[I- GZZ Gzl(I Gll) -1 12] 2 _ 2+G21(I-Gli)-l (u1+G12ez) G (I Gll) 1G12 2
e? = (1-8*H™ (uBah) (A.30)
whefe ﬁl A,GZI(I—Gll)- (u 1+612 2) - GZI(I Gll) 1Gl2 2

satisfies | atl < y[G (1 Gll) 1] el wle ;(P .

Since (i) (ul,uz)r——e(u2+ﬁl) is ;(-stable and (i) (I—(E?‘z)‘l
assumed to be i-stable, by Lemma 1, (u ,u )v-—-ye is istable.
From (41) and (A.30)

el = (el (ulicl2e?)

Y-



Since (1) (ul,uz)t—»ez is i—stable, and (ii) G]'2

11,-~
and (I—q ) 1 are assumed to be i.—stable, by Lemma 1, (ul,uz)v-—eel

is z—stable. ) S -

Hence (I—G)-l : (ul,uz)\—e(el,ez) is i_-stable. . . T .
Q.E.D. .

Proof of Corollary V.1l:

-1

It follows from Assumptibn 2 that (I—Gii) is a well-defined

1

map; by Assumption (b) of the corollary, ¥i € V', there exists

ey € zsuch that G:I.ieii € i,, hence u A (I-Gii)eii €

i
-1

and consequently (I-Gii) € i Thus, by Remark 1(iv),

Y44
Assumptions (a) and (b) respectively imply that
Ty c vl
Vi>j,i€v, jEV, Y[Gij] is finite, (A.31)
X

¥i€v, Y[(I'Gii)-ll'is finite.  (A.32)

Assumption (a) implies that
~. 21 .
Y[G™"] is finite. (A.33)

Assumptions (a), (b) and the lower-triangular form of (I-Gll), together
‘imply that
Jra-e™1y is finite. (A.34)

Similarly, (A.31), (A.32) and the lower-triangular form of (I-Gll),

together imply that

yIa-et11] is finite. (A.35)
Assumption (d) implies that ' ~
v[6'?] is finite. | (A.36) L
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. ﬂ‘

By Theorem V, (A.33)—(A.36) and Assumptioﬁ (e) together imply that

1-¢%)t 1s f -stable. (A.37)

By Theorem I, (A.31), (A.37), Assumptions (c) and (d) together imply

thattheSCS s® is 2(:stable. . Q.E.D
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Fig. 1 A typical subsystem G
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Fig. 3 Constant output feedback system:
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Fig.<'5 Flow graph associated with (41), (42). ‘
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