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«-•'=. ? ABSTRACT

The literature on decentralized stochastic
control is classified in terms of a few
paradigmatic problem formulations. The status
of research in each problem formulation is
presented, and an attempt is made to assess
the limit of these formulations.

INTRODUCTION !

Over the past thirty years many procedures
were invented for analyzing the behavior of
and for designing control strategies for
systems operating under uncertainty. We call
this set of procedures the "classical" theory
and divide it into three classes according to
the nature of the problem which is addressed.
Thus we have procedures for

'modelling systems e.g. state-space
models in the form of stochastic difference
or differential equations, input-output models
such as ARMA;

; ♦describing system behavior e.g.
quantitative descriptions such as state or
parameter estimators and qualitative descrip
tions such as stability, ergodlcity and
identifiability;

! 'Controlling system behavior e.g.
stochastic optimal control, adaptive control
and stabilizing feedback control.

It is not the intention to suggest that each
class of procedures was developed without
reference to the others. Nevertheless, it is
possible to detect, as our field progresses,
an unfortunate division of labor among
researchers resulting in each problem form
ulation gaining a certain degree of antonomy.

The classical theory presupposes the perspec
tive of a centralized controller. That is it
assumes that all the information about the
system is acquired, and the calculations
based upon it are made, at the same location.
Two kinds of information can be distinguished.

•Information about the system model
and the environment in which it operates. We
call this a priori or off line information.
Por example, in the case where the model is a
stochastic difference equation the off line
Information consists of the statistics of the
disturbance or "noise" process and of the
values of the parametersof the equation; when

-1-

the latter are not exactly known then a prior
probability distribution of the parameter
values is specified.

•At each instant that the system is
operating, the set of measurements on the
system made up to that time. It is customary
to call this on line information.

, The range of systems and problems to which the
classical theory is applicable is limited in
a technical and theoretical manner by the
centralization assumption. The limitation is
technical when the theory is applicable in
principle but the system is so large that
centralized information acquisition and
calculation are infeasible. An example of
this arises in the attempt to control the
traffic in a highway network. To describe
such a system requires hundreds of state and
control variables, and to implement a
centralized control scheme requires an
elaborate communication network to transmit
to the controller all of the traffic measure
ments made at different network locations.

When the system is such that the acquisition
and processing of information is decentralized
or shared among several locations then the
classical theory is Inapplicable. A good
example of this is the problem of routing of
messages over a date communication network
such as ARPANET.1 In this system both the
control signals ("protocols") and messages
are transmitted over the same links of the
network and at the same speed. One state
description of such a network consists of the
number of different kinds of messages at each
node and the states of the buffer storage
located there. It follows that at each node
the on line information available from nearby
nodes is more up-to-date than that available
from more remote nodes. This happens because
the latter is obtained after a longer trans
mission delay and this delay Is necessarily
of such a magnitude that the system state
changes significantly during this time.2

deeInahrS?!JescrJpt^on of A^ANET and ad hocdecentralized control strategy used there set
Kann [14].

This state description is due to Segall [33]
An imaginative analysis of the effects of trans
mission delay on the optimal decentralized con
trol strategy is given by Schoute [32J for the
simpler case of the ALOHA system.
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Our objective here is to review the literature
on decentralized stochastic control. This
literature is motivated by the desire to over
come the limits of the classical theory.
Since these limits are most felt in the prob
lem of control most of the contributions are
addressed to it. But there is some material
addressed to the problems of system modelling
and system behavior description and we shall
begin with this.

SYSTEM MODELS

There Is an extensive literature concerned
with simplification of models for large ' '
systems (see (Ref. 28)). Most of it is,
however, still within the framework of deter
ministic centralized control and little
attention Is paid to the fact that in large
systems information and control are often
decentralized. Hence the simplified model
will be useful only to the extent that it is
compatible" with the way this sharing occurs.
It Is unfortunately not possible to be more
precise about this compatibility consraint.
Some illustrative examples and suggestive
comments are given by Sandell [27]. For our
purpose the only useful model simplification
procedures are those using decomposition.
But since these are invented for the purpose
of addressing the other two problem formu
lations, we will consider them later.

1 SYSTEM BEHAVIOR DESCRIPTIONS

We consider research addressed to questions
of the form: How can qualitative or quant
itative properties of system behavior be
deduced when the available information is
decentralized? The qualitative property
which has been studied is that of stability
and the quantitative property is state
estimation.

In analyzing stability, Michel [19] starts by
supposing a model of interconnected subsystems

i - l,...,k (l)

where x± is the state of the ith subsystem
and CA is white noise. Suppose that £±, o^,
8ij all vanish at 0 so that 0 is an equili
brium state of (1), as well as an equilibrium
state of each "isolated" subsystem i

^(Xj) + <>!<*!>?!. (2)

Hext it is supposed that the system (2) is
asymptotically stable in the large with
probability 1 (ASIL), and furthermore that
there is available a Lyapunov function Vi(xi)
which guarantees ASIL. Then in a way which
is by now standard it is possible to provide
a test, involving only the bounds on V±(xi),
£Vi(xi) and the gjj, which guarantees ASIL of
(1). (Here X.V± denotes the differential
generator of (2) applied to Vi.) The result
has been extended in [20] to permit
stochastic variations in the interaction terms
gij as well.

In performing the test the analyst does not
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need all of the off line Information i.e. the
functions fj, o±t gjj, but only the various
bounds which presumably can be supplied by
controllers of each subsystem. (The on line
information plays no role here.) Thus a
certain degree of decentralization is possible
possible. There are two reservations: the
equilibrium state of (1) must be known, and
it does not seem possible to calculate this
on a decentralized basis, and the test is
known to be quite conservative since it
involves only the magnitudes of the g .

To study the literature dealing with decen
tralized state estimators consider a linear
version of (1) namely

*i " AiXi + ft + Bix» '"

'l " Vi + ni i - l,...,k
(3)

where x - (xlt...,xk) is the state of the
composite system, Eit r^ are independent
white noises and yi is the on line observa
tion at the 1th controller. Syppose the
"interaction" matrix Bi Is small. Then an
obvious state estimator can be proposed:

V" Vi +^(0^-1^.

The advantage of (4) is that the processing
of on line information is decentralized. One
may fix the structure (4) and ask for the
gain matrices KA(t) which minimize the mean
square error xj-Xi. This minimization
requires centralized knowledge of the off line
information and the (off line) computation
necessary to find the best gain is much
greater than that required to compute the
gain matrix for the centralized case [26].
It should also be noted that the estimate x^
is most likely to be biased. Finally, unless
Bj is indeed small, the estimator will behave
poorly even to the extent that if may be
unstable.

A more clever observation was made in [29].
Consider instead of (3) the system

*i " Vi + 5i + gi(x)

yi " Hil*l + Hi2*l(x) + V
for which Sanders, Tacker and Linton propose
the decentralized estimator

*i " AA +Ki<tHyi-Hiixi]- (s)
If the gain satisfies the condition

[Ki(t)Hi2-I]g1(x) = 0,

(4)

(6)

then x^ will be an unbiased estimate.
Moreover, within the class of G^ which
satisfy (6) the one which minimizes the mean
square error can be found easily and to do so
only the ith subsystem model need be known.
Thus both off line and one line information
can be decentralized. The proposed estimator,
which of course gives a larger error variance
than the best centralized estimator, is
likely to be most useful when the interaction



input gi(x) Is directly measured so that y^
has two components, y^ - (yii,yi2) where
I

712 " 81(x) + Hi2 •

Conversely the estimator (5) loses all
significance when gi(x) Is not measured i.e.
when Hi2 - 0. The stability of the estimator
(5) is Investigated in [30].

Reconsider now the system (3) again. It
seems natural to see what improvement in the
estimator can be achieved when we allow the
dimension of the estimator (4) to be arbi
trary, but still insisting that it depend on
71 alone. The optimal estimator in this case
will, for each 1, have the same dimension as
x. In fact each will attempt to estimate x
directly using its "own" measurement. Of
course if the local controllers can exchange
the estimates of their own states then the
estimates can be improved without increasing
the computational burden, but there is an
increase in the cost of communication. For
some additional discussion of this trade-off
and examples see [31]. Yet another possibil
ity for computing a decentralized estimator
is to use the "e-coupling method" introduced
In [14a]. In the. version as given by Cline
[7] this method does not permit decentrali
zation of either on line or off line
information. However if we impose a priori
a decentralized estimator such as (4), then
the e-coupling technique would appear to be
applicable. .

As the final example which may be relevant
here consider the estimation problem for the
singularly perturbed system

*1 "A11X1 + A12X2 +A13x3 + h
:X2"A21X1 + A22X2

jX3 ' A21xl
• • \

with measurements

+ C,

+ ^22x3 + *3»

*2 " Cl*l + C2*2
y3 - clXl

Suppose A2-» A33 are stable. Setting e «= 0
gives the slowly-varying steady states"

X2 ""A22lA21xl+52]» x3 =-Ai3lA31xl+e3]
and hence the reduced-order degenerate system

Xl. " fAll~A12A22A2rA13A33A31]xl + '
+h - h^llh ~A13A3353 j

v2 - ICi-CjAjz A21>xl " C2A22*2 + n2

+ C3x3 + n3.

This may not be obvious from a cursory
reading of [7]. To see it note that in the
notation of the reference the term x£ depends
on all of the previous xfc"1 via the depen
dence of Aj"1, BJf1. J
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y3 -[CrC3^A31]x1 -C3A^53 +n3.' ]
i - 1

Let i^ be the estimate for this degenerate
system. Then the estimate for the boundary
layer system is
. ^ .. .. . ... -_^

52 "~A22A21X1 +V X3 ""A33A31X1 +h \
where i

ee2 -A22e2 +fyc^+c^-y^

£83 - A33e3 + K3IC3e3+C1i1-y3Ii
; -„j

giving rise to a hierarchical estimator
design. Haddad and Kokotovic [10a] who
proposed this estimator have shown that

x£ ~ x. •* 0 in quadratic mean as e •* 0 where
x. is the optimal centralized estimator.
Their result has been extended by Teneketzis
and Sandell[35]. This technique is useful
for decentralized estimation provided that
the variable Xj.'xj, x describe physically
different subsystems, for then the hierar
chical estimator above does reduce com
munication of on line information between
subsystems.* Note also that if this is not
the case then it is a non-trivial matter to
determine the degenerate and boundary layer
systems.

I
CONTROL OF SYSTEM BEHAVIOR

As mentioned before the bulk of the work on
decentralized control is addressed to the
problem of control rather than systems
modelling or analysis of system behavior.
The literature can be subdivided into three
subclasses: that concerned with optimal
stochastic control; with exploring decentral
ized strategies within a restricted structure;
and with quasi-static optimization.

Optimal Stochastic Control j

Consider the following centralized control
problem: ~

Xt " ft(xt-l'Vut} • l " 1"-'T (7)

yt " *t(xt-l»wt> 1....T (8)

where xt is the state, uc is the control Input
to be selected from a prespecified set U and
yt is the on line measurement; and vt, wt are
random disturbances. Assume that the
primitive random variables xQ,v.,..,v ,w.,
••»wT are independent. A feedback law is a
sequence of functions y - (Ylf...,YT) where
Yt :*yl,**,yt* * ut G U* Ut r be the set of
all feedback laws. The cost associated with
Y is

T

J(y) -e r ht(xt,ut). (9)

Of course even if this is not the case, the
hierarchical estimator does reduce (central
ized) processing of on line information."



Y fc r is said to be optimal if it minimizes
J(y)< Two sets of results characterize
optimal laws. The first set consist of
"separation results." These effectively
describe a small subset raof r which includes
an optimal law. For example suppose we have
complete information i.e. y^^t-l in (8).
Then rg consists of only those y " (Yt.'^Y )
in which Yt depends only on yc « xt_». A T
more general result asserts that in the
incomplete information case rs consists of
those y in which Yt has the form
Yt " *t°Ft(yi»"»yt»ui...»ut_1) where

*t(vl»«*iUt-l) i8 the conditional distribu
tion of xt_i given Yi.-.u,..! [36,37]. In the
•special case where ft, gt are linear and the
primitive random variables are Gaussian then
Yt can be restricted even further to be of
.the form *t (xt-l) where xt_x is the con
ditional mean of xt-i given yi»..,ut-i. The
second set of results consists of necessary
and sufficient conditions for the otpimality
of a proposed y. These normally take the
form of "minimum principles" and are usually
derived via dynamic programming techniques.
Por example, in the complete information
•case yt • xt-i» we have this minimum
principle:

Let Vt(x) be functions defined recursively
hy VT+1(x) = 0, and

I

Vt(x) - inf /[ht(f.(x,v,.,u))

< +Vi(ft(x»vfu)>]p(dvt)* t - t...,i,
i \
where P(dvt) is the probability distribution
of vt. Then x» {^(xfi)} is optimal if
and only if for every t,x the infimum above
is achieved at ut ° Yt(x)•

With the appearance of Witsenhausen*s example
in [45] it became clear that the separation
results for the decentralized control pro
blem would be quite different from the
centralized case. To discuss this it is
more efficient to proceed in a formal
setting following [46]. We replace (7), (8)
by

xt "V^-rVV'""^' t "1»'*'T' <10>:

y? - 8t*xt-l,wt*» m" lf»M and t«1,..,T.
(ID

The primitive random variables are now the
Xq, v^, w£. y is the measurement made at
t by the mth "observation post," and u is
the control input selected at time t from a
set U* by the kth "control station." The
decentralized information structure is
described by specifying for each (t,k) a
subset Yt k, Uttk from {y°,uk| x < t, m < M,
a <. t-1, k< k> which is the set of all
available measurements made and actions taken
up to t. A feedback law is now of the form

Y-(Yj) where Y£ :^^."t,^ -ut Guk*
Again y is optimal if it minimizes J(y)
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given by (9) with u = (u£, ..,u£). "".
Witsenhausen'8 counterexample shows that
even when the ft» g^ are linear and the
primitive random variables are all Gaussian
there may be no optimal law {y*-} 0f the
form yJ - ♦t(x^_1|t,k) where xj^jt.k is
the conditional mean of x , given

(vt |t»ut k^* T*1*8 example runs counter to
the understanding gained from experience in
the study of the centralized control
problem.

Since the appearance of this counterexample
work has progressed in two directions. On
the one hand there have been attempts to
demarcate those decentralized problems for
which separate results, suggested by the
centralized problem, continue to hold. On
the other hand there are attempts to gen
erate counterexamples to other plausible
separation results. In the first category
we must include the work of Ho and Chu [12,
13] and Hartman [11], some results of
Witsenhausen in [46], Sandell and Athans [25],
Kurtaran and Sivan [15] and Schoute [32].

In the second category we must include some
perceptive observations made by Rhodes and
Luenberger [22] and developed by Benveniste
JBernhard and Cohen [4], a possible "111-
posedness" of some information structures
•noted in [5,25] and a counterexample by
IVaraiya and Walrand [41]. We review these
'results now. ,

• !

.Consider the model (9)-(11) with the
information structure {Y .,U A Let r be
the set of feedback laws compatible with
this information structure. Let a> denote
;the collection of the primitive random
;variables,3-the o-field generated by u.
From Assertions 1 and 3 of [46] it is easy
to prove the following separation result.

Proposition Suppose that for each (t,k) the
sub-o-field of 5 generated by{(Y. .,U ,)}

t,R t,K

"Is the same for all y in L Then it is
enough to limit attention to the set r
iconsisting of y" (y£) of the form 8

>t - ♦t-Ft«t.k-0t>k> >*e" pt<Yt,k>ut,k>
•is the conditional probability distribution
of Mgiven Ytfk, U^.

Witsenhausen calls such a problem feedforward
while Ho and Chu call it a static team. The
condition of the proposition hold for the
centralized control problem (7), (8) if
f..t £t are linear. Ho and Chu [13] have
discovered information structures for the
linear versions of (10), (11) for which the
condition also holds. Suppose now that in
addition to this condition it also happens
that Ft(Yt fc,Ut k) is Gaussian. Then of
course rg can be further restricted to con

sist of y- Ivt) of the form y* - *!j(ufr .)
where u>t . is the conditional mean of u given



"Pt k'^t k^' *' moreover the cost functions
ht in (9) are positive semi-definite quadratic
forms in x£, »r, then, using Radner's result
121], Ho and Chu have shown that the $ can
be restricted to be affine functions. t
(Radner's result has been extended by Hartman
[11]).

One Interesting case is when ft, gt are
linear, u is Gaussian and the information
structure corresponds to the "one-step delay
sharing pattern." As Ho and Chu have shown,
this case meets the condition of the, pror
proposition. Hence for the quadratic cost func
tion the optimal feedback law is an affine
..function of u>t k. A more easily implementable
affine feedback law is also possible and has
been worked out by Kurtaran and Sivan [15].

Be now turn to the "negative" results. It
turns out that for the n-step delay sharing
pattern i£n > 2 then the condition of the
proposition fails to hold. Moreover, even
the weaker forms of a separation result which
was conjectured in (Ref. 46, Assertions 8,9)
do not hold, as the example in [41] shows.
i

Examples have also been given to show that
the specification of an information structure
C*t ktUt k) can easily become ill-posed or
ambiguous if one is not careful. To see this
suppose u € u but that (Y ,U ) is
I *,0 t,k * t,o' T,0
not contained in C*t k»U k), In words:
<t,k) knows what (t,o) does but not what (t,o)
knows. It Is then possible for (t,o) to
encode all the information that is known
namely (Y ,U ) into the control action

«" a and thereby transmit it to (t,k). In
t&lfl way the intent of the specification of
the Information structure Is violated. This
observation has been made by Bismut [5] and
Sandell and Athans [25].5 This ambiguity can
be easily removed in a number of ways as
suggested in the footnote or by simply dele
ting certain kinds of specification of
Information structure.

i . ! ;
A problem which seems much more intrinsic to
the formulation of optimal decentralized
control was apparently first noted by Rhodes
and Luenberger [22] and later elaborated by
Benvenlste, Bernhard and Cohen [4]. Consider
a linear version of (10), (11) with M - K - 2,
with the information structure (Y .U }
.' tt * k\ k k t,k t,k" i(y^»••»y^.) » (u.,..,"t_j) }. In words: each
controller £ remembers Its own previous

A similar ambiguity arises in specifying the
class of computational algorithms with a fixed
finite memory. This was first pointed out by
Vlnograd and Wolfe [43], and air example of an
encoding scheme was given by Cohen [8]. In
this context, It is possible to overcome the
ambiguity by insisting on a smoothness con
dition [23] or a more careful definition [8].
observations but there is no "sharing" of on
line information between the two. Suppose the
cos,t function is quadratic, and suppose we
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"restrict attention to those" y•{y^>"which """'
are affine functions. Within this class the
best y generally has the following structure:
At each time t, controller k will make an
estimate of the action of controller j; since
the latter's action depends on its own
estimates of k's control, we get a recursive
situation in which as t increases each con
troller has to make estimates of random var
iables of exponentially growing dimension!
This example demonstrates in a dramatic
manner an observation made earlier by
Varaiya [40] and Athans [2]: while decentral
ization reduces communication of on line
information it tend to increase the pro
cessing of this information. Because of this
researchers have turned to study subsets of
r In which the processing is restricted
a priori. This literature is examined later.

As we have seen some effort has been devoted
to discovering separation results. To our
knowledge, the result of Varaiya and Walrand
[42] is the only one which seeks to determine
the counterpart of the minimum principle of
centralized control. Unfortunately, due to
limitations of space we cannot present this
result here. ;

i
i

Decentralized Control with Fixed Structure

The search for optimal decentralized control
laws has to date led to few practical design
procedures. Hence research has been directed
towards finding reasonable control laws from
within a prespecified (and very small) subset
rp of the set of all feedback laws r which
are compatible with the way the on line
information is decentralized.^ In general,
such a subset Tp is specified to consist of

all y€r«{Yt) where the y£ have afixed
functional form. This form Has inveriably
been taken to be linear so that each y G T
is described by a finite set of parametersF
and the search within T becomes computa
tionally feasible. F

• I
The first work in this direction is due to
Chong and Athans (6) who considered the
problem

x » Ax + BlUl + B2u2

yi-cix + TV -„•;

y2 C2X + V

(12)

where as usual n,, n, are independent white
noises which are independent of the initial
state x(0). The on line information
available to controller k at time t is Y(t)
* fyk(T)|T _< t}. It is assumed that the off
line information is available to both con
trollers. .Thus r consists of all pairs
^(O.Y^t)} where Yk(t) :Yfc(t) »u^t) Is

The idea of limiting the search to a
strategy with fixed structure was first used
in the context of differential games by
Rhodes and Luenberger [22].



arbitrary. The fixed structure selected is
the subset TF consisting of all {yi,y2) of
the form tWt) » D.(t)xk(t). where x. (t) is an
estimate of x(t) based on Yk(t): K

»k(t) " V^V^ +Vt)yk(t) +^(01^(0.
The "parameter" matrices D. , F , C. , H. are
arbitrary. For a quadratic cost Index the
authors determine the optimal parameter values
°f \* %.* \' lt 8hould he observed that
the computational burden in finding these
optimal values is much greater than finding
the optimal centralized feedback law.

In the example above the off line information
is available to all players and no communica
tion of the decentralized on line information
is permitted. Singh, Hassan and Titli [35]
consider the opposite case: they calculate,
for a deterministic linear quadratic problem,
the optimal centralized feedback law using a
hierarchical computational procedure in which
the off line information is decentralized.
Even though the procedure appear to be
extendable to the stochastic case this and
similar work is not discussed here because it
seems that the critical obstacle is the
decentralization of on line information.
!

If a certain amount of communication between
the various controllers is permitted then the
performance can certainly be improved. This
was seen above in the case of decentralized
state estimators. It should be possible,
although such work has not yet been reported,
to cascade the decentralized state estimators
with decentralized feedback controllers for
deterministic linear quadratic problems [18,
26] •
j \ i '
A more novel idea was developed by Chong and
Athans [6a], They take a model of a linear
Interconnected system similar to (3) above:

J. - Aiixi +Buui+ ^ijVV'jJ-
*i " Hixi + n. 1 - l,..,k. (13)

and assume a quadratic cost function. They
propose a two-layer structure. In the lower
layer there are k local controllers; the ith
local controller assumes a local model of the
form

1 Alixi + Biiui + vi

i " Vi + n
i* (14)

Here v± Is the "prediction" of the neglected
interaction terms received from the higher
layer coordinator. At time 0 vt(t),
0 <. t <. T is received, at time T the next
prediction vi(t), T <. t < 2T is received and
so on. The on line information y. (t) is also
continuously available. At each time nT the
coordinator receives all of the on line

By requiring that xk(t) be an unbiased
estimator of x(t), Ffc(t) is no longer a free
parameter. The authors however give no
Justification for this restriction.
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information, y^t) 0 <. t <fnf, i»l,".~.,k
and makes the predictions for the next period.
Since the _ith local controllers assumes (14)
to be the "true" model its optimal control
problem is of the classical LQG form. The
coordinator recognizes this and then finds
-reasonable prediction values v (t) .A
variety of "reasonable" choices are possible
[4], each of which can be intuitively
rationalized. It is however not yet possible
to decide whether the proposed structure Is
of greater theoretical or practical interest
than many other fixed structures which can
be proposed. A good discussion of the issues
is given in [4]. Another structure, similar
to that of Chong and Athans and with some
more theoretical analysis has been recently
proposed by Fores tier and Varaiya [9].

It is too early to be able to pass judgement
on the research in the study of fixed
structures. The only assertion which seems
to be valid is that almost all of the pro
posed structures result in greatly increased
computational burden and almost none of them
have been rationalized on theoretically
secure grounds.

Quasi-static Optimization , !

Consider the centralized problem

minimize E h(u ,w ,6)

yt - g(ut,wt,e)

f(ut,6) < 0

ut eu

(15)

where wt is a sequence of independent,
identically distributed random variables, u
is the control input, y is the observed C
output and 9 is an unknown parameter. f,g
are known a priori (off line information).
If 9 - 6 is known this is a straightforward
static optimization problem, the on-line
information plays no role, and the optimal
input is ut » u which is the solution of

minimize E h(u,w^,9°)
t ' i

f(u,9°) < 0, u G U. '
i

When 9 is unknown, repeated observation of
yt can be processed to yield improved
estimates 6. of 6. In many cases these
estimates can be used to select u in such
a way that ut converges to u°. We call such
a procedure for selecting ut quasi-static
optimal (QSO). The most well-known QSO
procedure is the method of stochastic
approximation first invented by Robbins and
Munro [24].8

When 9 is unknown, it is evident that the cost

8
An excellent discussion of the literature
and new results are given by Ljung [17]. It
is useful and important to note that the
assumption of independence of w can be
-considerably weakened. .-...-



function (15) is meaningless. We can see
that a QSO procedure does minimize the cost
function

lim E h(ut,wt,e), (16)

and if the convergence of u to u° Is rapid
enough it may even minimize the average cost
per unit time

lim- I E h(u ,w ,9)
T * 1 c *

(17)

The point to observe is that both of these
two cost functions "ignore" the choice of u
during the "transient." Hence the set of {
QSO procedures is very large and so we may
be able to find a QSO y ° (Yt(y1».-,y )>
which is also computationally attractive.
To appreciate this suppose we modify the
cost (16) or (17) to

: EpCE h(ut,wt,9)
1

(18)

where 0 < p < 1 is a discount factor. This
function does weigh the transient behavior.
In most cases this choice of cost will
result in a unique optimal feedback law with
an extremely complicated structure.
Moreover to make sense of (18) it is
generally necessary to specify a prior
distribution on 9, whereas QSO procedures
will minimize (16) or (17) for arbitrary 9.

A decentralized version of (15) would be
this:

minimize Eh(uJ,,.iU* v8) j
v' k k 1 K.Yt - g (ut,..,ut,wt, ), k = 1,..,K.

!*(u*,..,u*,8) <0 (19)

! \«j€u\ k-1,..,K. |
A decentralized control law is now of the

form y-(YkXyi»--.yt)>- SuPP°se 9-9° in
unknown^ A QSO y would be such that for e•
ach k ut converges to uk»° which solves the
static problem

minimize EhCu1,..,uK,wt,9°)
f(u1,..,uK,9°) < 0, ukGUk.

Barta and Varaiya [3] use stochastic approxi
mation to generate QSO procedures for some
special cases of (19) which arise in some'
simple mlcroeconomic models. A very inter
esting model of "satisflcing" behavior
[34] is proposed in [44].

In [16] Lau, Persiano and Varaiya propose a
QSO scheme to find the maximal flow of a
single commodity through a capacitated
network. This scheme is based on the label
ing algorithm. Gallager [10] has proposed a
QSO scheme to find the optimal flow for a

-7-

multicommodity problem. His scheme is
based on a gradient method and assumes a
strictly convex cost function. Both schemes
.require some communication between
controllers. These two papers suggest that
many of the methods of decentralized deter
ministic optimization (see e.g. [1]) should
be extendable to the stochastic quasi-static
problem.

CONCLUSIONS :

Research in decentralized stochastic control
(DSC) has been largely concerned with
decentralized versions of the centralized
LQG problem. However the attempt to find
optimal DSC laws was, with some exceptions,
soon frustrated and this led to the study
of feedback control laws with fixed linear
structures. The choice of these structures
has not been rationalized since we do not
know how to compare these with the class of
all possible decentralized laws. The choice
has been motivated simply by our familiarity
with the centralized LQG problem or more
generally with the finite-time horizon
centralized stochastic control problem. It
seems to us that we should reexamine all of
the components of this latter paradigmatic
.problem namely the way in which the system
dynamics, the on-line measurements and the
cost function are modelled. In the discus
sion of quasi-static optimization we observed
how a modest change in the formulation of the
cost function can lead to dramatic simpli
fication in the structure of optimal
strategies. From the results on adaptive
control [47] it would appear that similar
simplification is possible for some appro
priately formulated dynamic problems. The
point is not that we should abandon the
study of optimal DSC laws but that we should
not let ourselves be guided too closely by
the centralized LQG problem.
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