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ABSTRACT

A counterexample is given to a conjectured separation result for

delayed sharing patterns when the delay is larger than two units. The

conjecture is proved to be true for a unit delay.
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I. INTRODUCTION

We use the formal setup and, with minor modification, the notation

developed by Witsenhausen [1]. The equations for the dynamics and

the observations are given by

1 K
xt = ft(xt.1»ut»***»ut:»vt:)> t= 1,...,T (1)

y\ -St^t-l^' kBl Kandt-l,...,!. (2)
k k

where at time t x is the state, u and y are respectively the control

input and observed output at the kth "station". The primitive random

variables

xo;vt,wt 0* = 1,...,K, t= 1,...,T)

are all independent. The control input u must be selected from a fixed

set U , and the data upon which this selection can depend is given by the

collection of variables

^t.k'V^ ={(Vus}ls - ^ z - K} u {(ys^r)!*-* <s<t,

t-n < r <_ t-1} = 6 U X , say.

Here the delay is the fixed positive integer n. Thus at time t 6

is the data shared by all stations whereas Xt is the data available

only to station k.

An (admissible) control law then is any set of functions

Y = {Yt; 1 < t < T, l£k£K} such that

T is the set of all control alws. (Here and below we are ignoring

many difficult technical considerations of measurabllity.) T is the

subset of all separated laws, i.e., all {y } of the form

-2-



vt(Vxt> - *t(Vxt>'

where F ,also denoted FtCO <>r F(xt_ \&t)> is the conditional probability

distribution of x_ given 6 .
t-n ° t

The cost associated with any law y is given by

T

J(Y) =E Eht(xt>uJf...,u^) (3)
k k k

where u = y (6 ,A ) and E denotes expectation. It has been conjectured

[1, Assertions 8,9] that in finding an optimum y from r it is enough to

s

restrict attention to r .

Conjecture inf{J(Y)|y e T} = inf{J(y)|y G rS}.

II. COUNTEREXAMPLE FOR n=2

We present an example in which n=2, 1=3, k=2, the £t*%t are linear,

h are quadratic and the primitive random variables are jointly Gaussian.

1 2
The state x = (x ,x ) is two-dimensional. Equation (1) is as follows:

_ / 1 2v
x0 ~ ^x0,x0;

12 12

xl = ^xl,xl^ = ^O^O'0^
_ , 1 2. ,12. . 1.2 2.x2 = (x2,x2) = (x19u2) = (x0+xQ,u2)

_ t 1 2. . 1 2 1 .. , 1.2 2 1..x3 (x3»x3/ = (x2-x2~u3,0) = (x0+xQ-u2-u3,0).

Equation (2) is as follows:

y£ =x£_x, k=1,2 and t=1,2,3.
1 2Hence the primitive random variables are (x0,xn) whose joint distribution

will be specified later. The sets U are specified by
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'r if (k,t) = (1,3) or (2,2)

<-<
{0} otherwise.

v.

Hence a control law y = iyA in T is essentially characterized by, and

12 k
hence identifiable with, the pair {Yo»"Vo) since y = 0 for the

remaining (k, t). From the above we get

x r 1 2, , 1 2, \1 r 1 li r 1,2 1. 2, r 1. 2,
63 = {yl'yl} = {x0'X0h A3 = {y2>y3} ={WW ={W'

62 = *' X2 = *yi>y2* = ^xo,xl^ = *x0* (since x1 = 0),

so that that conditional distribution F(x_ = ^|6 ) is degenerate:

F(x1 = £ ,x± = 5 lx0»x0) = 6<C ^o"^^6^ *

where 6 is the "delta function".

1 2Therefore V consists of all {YojY^} of the form

112 1 2 2 2Y3: (x0»x0)l—»"3 G R» Y2:xQ»—> u2 € R

s 12
whereas V consists of all tY3>Y2^ °f tne for*11

1,1^2. v 1 *= t> 22 2PBY3: (x0+x0))—Vu3 t R, Y2:x0'—»u2

si 12Observe that in r y~ can depend only on x~+x0 whereas in T it can

1 2aepend on xn and x_. Finally the cost function is taken to be

J(Y) =^ E{(x3) +(u3) }= Tj- E{(x0+x0-u2-u3). + (u3) }.

To see the situation more clearly set

w = x0+x0, xq = y, y3(0 = v(-), Y2(0 = u(«).

Then the optimal law in V is the solution of

min -^ E{(w-u-v) +v }

s.t. u = u(y), v = v(y,w), (4)
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and the optimal law in T is the solution of

1 2 2
min tE{ (w-u-v) +v }

t. u = u(y), v = v(w). (5)

We assume that the primitive random variables (w,y) are jointly

Gaussian with zero mean and covariance matrix

2

'wy

w

o
L- yw

wy

2
0.5

0.5

The problem (4) has the classical information pattern. Its optimal

solution is unique and can be calculated in a straightforward manner and

turns out to be

u*(y) = 2 y» v*(y,w) = 2 w - j y.

s

Observe that v* depends on y and so it is not in T

law in T is unique we conclude that for the example

min{J(Y)|Y ^ V} < min{J(Y)|Y e TS},

and so the conjecture is false for delay n >^ 2.

With this example before us we can see why the conjecture is false,

Essentially Ft(6t) consists of all the information about xt_n contained

in 6 but 6 also contains information about the controls selected

between t-n and t and this latter information may not be "captured" by

Since the optimal

(6)

''"The problem (5) is very close to the example treated by Witsenhausen [2].
An analysis similar to the one given there shows that the optimal separated
law in Ts is nonlinear. Strictly speaking we have not shown that an
optimum law in Ts exists. This can be done along the same lines as in
[2]. Alternatively we can give an example very similar to the one given
here but in which all variables take on finitely many values so that
we can compute J(y) for each y«
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2
F (6 ). In the example: if 6_ is known then u0 is also known but
t t J ^

1 2if only F(x |6_) is known then u„ cannot be determined.

III. CASE n=l

The conjecture is true when there is only a unit delay and has been

proved for the LQG case [3], but no proof appears to have been published

for the more general case. We take this opportunity to sketch a proof

using dynamic programming. To ease the notational burden we assume

K=2. For any random variables a,3 let P(a|$) denote the conditional

distribution of a given 3. However we preserve the notation

Ft(V = p(xt-ilV-
We begin with the observation [1,p. 1562] that F (6 ) does not depend

upon the choice of y in T. From (2) we can conclude then that

^t-rv^iv - p<vytivi)F(ViiV- (7)
Here P does not depend upon y« Also note that

Vi " 6t u <VVVut>

From these facts and (1), (2), a standard use of Bayes1 formula shows the

existence of an "updating" function $ , again not depending on y, such that

WW - VVV'VVV^- (8)
In obtaining the dynamic programming equation the next result will

1 2be useful. Let T = {(y^jY^)} be the set of admissible control laws at

t, and let T be its subset consisting of separated laws. Let n, £

1 2
be real-valued functions of their arguments and for each (Yt»Yfc) define

V(6t;Yt,Yt) by
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v(«t;Y*,Y*) =E{n(xt._1,Yj(«t,yJ),Y^(«t,yj),vt) +5(Ft(6t),yJ,

YjcVy^.vY^Vy^lV- (9)
Here v is the disturbance term entering in (1). V is well-defined by

1 2.
virtue of (7) and the assumption that v is independent of (&t>yt>yt'•

From (7) it follows that if (yJ,Y^) Grt> then V(6t;Yt,Yt) ±S afunction
1 2

of F (6 ), and so we write it as vs(Ft(6t) ^t,Yt^ * Let»

V*(6t) =inf{V(6t;Y^Yt)|(Yt''Yt) GV' V£<W)= ^^s^t^t5;
VY2t)l(VY2t)^rst}.

12 sLemma 1 Let £ > 0. There exists (3t,3t) in rfc such that

VVV^t'^ -Vs(Ft(6t}) +£f°r a11 V
Proof For each fixed Ft(6fc) "select" 3^(Ft(6t),yt), P^W'*^ SUCh that

E{n(xt_1,3^(Ft(6t),yJ),32(Ft(6t),y^),vt)

+C(Ft(6t),y^3j(Ft(6t),yJ),y2,3^(Ft(6t),y2))|6t} <V*(Ft(6t)) +e

This is possible by the definition. n

We emphasize again that a rigorous proof would require showing that

1 2
the selection of (3 ,3 ) can be done in such a way as to guarantee

measurability.

Lemma 2 V*(6t) = V*(Ft(6t)).

Proof Let (Y1»Y^) in rbe arbitrary. Fix 6 =6^ Then the control
12law (3t,3t) given by
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^v^ =^V^' et(6fyt} =Yt(Vyt} for a11Vvyt
does not depend on 6 at all, hence it is separated, and so

V(6t;3^,3^) >V*(Ft(6t)) for all 6^

In particular, for 6 = 6 we get

v(6t;3^,3^) =v(6t;Y^,Y2) >v*(Ft(6t)).

But 6 is arbitrary. Hence V*(6t) > V*(Ft(5t)). ^

Next, by backward induction, we define

t(Ft(6t)) =inf E{hT(fT(xT_1,Y^,Y^vT)|6T} (10)

and for t = T-l,...,l,

Wt(Ft(6t)) = inf E{VVxt-i>VYt>V)
rs
t

+ wt+i(\(Ft(6t)jytjYtjyt'Yt))|6t}* (11)

Theorem Let y ^ T. Let xY,uY,yY be the state, control and observation

processes induced by y. Then, for all t,

T
.Y ..lY ..2y.

t

and

T

E<£ hT(xY,u^Y,u^)|6t> >Wt(Ft(6t» (12)

Y ..lY „2Y

s t

inf E{£ hT(xY,u^,up|6t} =Wt(Ft(6t)). (13)
r

1 2
Finally if (3,3), t = 1,...,T is a separated control law which achieves

the infimum in (11) then it is optimal relative to T.

Proof From (10) and Lemma 2 we can see that (12), (13) hold for T.

From (11) and Lemma 2, we can see that (12), (13) hold for t if they hold

for t+1, and so by induction they hold for all t. To prove the final

assertion we again use induction to show that
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E{Z hT(K^,u^,uf)|«t} =Wt(Ft(6t)) (14)

for all t. Setting t=l in (14) and (12) then shows that 3 is optimal

relative to T. n
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