

Copyright © 1977, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

EVALUATION OF COMPUTER SECURITY SYSTEMS

USING A FUZZY RATING LANGUAGE

by

D. Clements

Memorandum No. UCB/ERL M77/41

1 August 1977

Evaluation of Computer Security Systems

using a Fuzzy Rating Language

by

Don Clements

Memorandum No. UCB/ERL M77/41

1 August 1977

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, 3erkeley

94720

Evaluation of Computer Security Systems

using a Fuzzy Rating Language

Don Clements

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

ABSTRACT

A methodology for the evaluation of computer security systems has been investigated.
The central idea is the application of natural language as the vehicle for the expression of
imprecise and sometimes subjective evaluations by a "security rater" in the absence of objective
measures of security performance. It is suggested that linguistic rather than numeric measure
ment tools are more appropriate in this environment.

An organizational tool for the evaluation of security systems is proposed in the form of
the basic security system which is a set theoretic model in the form of a 5-tuple that facilitates
the enumeration of security threats, protected objects and security techniques or features. The
model is augmented with the mechanism of the linguistic variable to combine the enumeration
and evaluation processes. The linguistic variable and the concept of imprecise evaluation are
concepts grounded in the theory of fuzzy sets. Applicable features of fuzzy set theory are dis
cussed and various techniques for the design of rating languages are presented. The security
system rater employs phrases in the rating language to express his evaluation of the security
performance of a system component.

Methods are examined for the determination of an overall system security rating given
the individual component evaluations. The classical "weakest link" approach is compared with
the use of scores based upon an imprecise analog of the numerical weighted mean. The several
scoring methods have been tested through the use of a security rating calculator, a software
product which is briefly described. The calculator is exercised upon a hypothetical sample com
puter facility. Although the facility analysis is kept at a very high level in the interest of brevity
it is suggested that the methodology easily extends to more detailed security analysis activities.

While the applicability of the linguistic variable and its superiority to numerical methods
in complex and imprecise environments is not amenable to a formal proof, the utility of the
methodology is strongly indicated by its intuitive appeal and the general agreement of evalua
tion results with the opinions of security experts.

CR Categories: 2.4, .4.6, 8.1

Keywords: security evaluation, fuzzy-set applications, linguistic variable

Research sponsored by National Science Foundation Grant MCS76-09214.

1. Introduction

In the last several years, methods for controlling security in computer systems have

become widely known. While in 1972 there were only one or two books and three bibliogra

phies on computer security and privacy, in 1977 there are at least 14 books and 6 bibliographies

on the topic. An example of a recent general text is [HOFFMAN 1977]. Case histories of

computer abuse [PARKER 1976] indicate that this kind of crime is increasing. Knowledge of

the techniques and problems involved in computer security is also widespread, as one might

guess from the proliferation of literature. Expanding public concern with the problem is evi

denced by a great deal of federal, state and local legislation [US 1974], [NASIS 1974],

[BERKELEY 1974], [CBEMA 1975], [HR 1984], [PL 93-579]. Governmental agencies such as

the National Bureau of Standards, the Defense Department, and the National Science Founda

tion are all sponsoring research efforts in the area, as have some private manufacturers

[SAFE 1974], [SALTZER 1974], [GOLDSTEIN 1975].

One consequence of this work is that a significant part of the computing community is

now aware of techniques for maintaining security in computer systems. Unfortunately, the

question of how to measure the costs and effectiveness of the various security methods is still

largely unexplored. Only recently has there been any reliable work done on costs of privacy

transformations or authentication methods, and researchers have only scratched the surface in

investigating metrics for security systems [HOFFMAN 1974]. While some more formal work

has begun [BELL 1973], [ANDREWS 1975], [POPEK 1974], [WALTER 1974],

[HARRISON 1976], [HARTSON 1976], [DENNING 1976], there has so far been very little

useful application of this theoretical work to practical security decisions. One exception is a

privacy cost model which has been recently introduced [GOLDSTEIN 1976]. This work

assesses the impact of various privacy regulations upon data processing installations which han

dle personal information. Goldstein addresses both the problem of conversion costs to meet

privacy requirements and the increment to ongoing operating costs in the installation. He does

not, however, deal with the effectiveness of security techniques directly.

We will address the question of security effectiveness. We propose a methodology for the

evaluation of data processing installations with respect to the performance of their security sys

tems. We believe the major obstacle to effective measurement of security performance is the

lack of suitable metrics. One difficulty is that many security techniques are difficult to evaluate

precisely. Another reason for the lack of physical metrics is the large part the human com

ponent of the data processing environment has to play in the making or breaking of security

systems. Human performance in the area of security is often difficult to quantify. The problem

is further aggravated by the lack of reliable historical data in this area.

f

f
<

f
e

i In the absence of reliable and objective security performance measures, we propose the

use of an evaluation mechanism based upon the responses of a security rater who employs

objective data in arriving at an evaluation whenever possible while drawing upon his or her

experience and expertise in formulating subjective evaluations when necessary. Accordingly,

we advocate the use of d secimt}' rating language rather than numeric measures as the basL for

system evaluation. A language is more suited to the human rater because it facilitates the

expression of imprecision.

The details of rating language design will be presented in Chapter 3. An APL-based

software system for calculating security ratings has been developed and is discussed in Chapter

5. All of this is based upon a set-theoretic security model which serves as a vehicle for evaluat

ing data processing installations with respect to security. The model serves as a basis for the

analysis of the entire data processing facility by decomposition into security elements. Each ele

ment is a "point of interest" from the standpoint of security. It identifies the interaction of

some object of value to the system owner with some security threat which attacks that object.

The element also identifies a security feature which has been provided by the data processing

installation to deter potential security compromise. Presumably, both an object and a threat

must exist for an element to be of interest with respect to system security. As we shall see

shortly, each element will, by definition, possess some security feature even if it is only an

ineffective null feature. Our goal is to infer a measure of the effectiveness of the security sys

tem as a whole based upon the security properties of the individual elements.

We feel that imprecise measurements are required due to the complexity of security sys

tems and the presence of the human component throughout these systems. We further believe

that an application of fuzzy set theory [ZADEH 1965] to the problem of imprecision will result in

a useful though inexact measure or rating. This theory forms the basis for the design of a

linguistic rating scale in which words are employed instead of (or in addition to) numerical meas

ures of security effectiveness. We have applied this theory to form a software rating system to

be employed by security auditors in the evaluation of system security in data processing installa

tions.

1.1 Scope of the Work

Before presenting our security system model, we wish to establish the boundaries of our

study. We do so by way of a set of basic assumptions about the nature of the security evalua

tion problem. A detailed discussion of these assumptions, including plausibility arguments, is

presented in Appendix A. The assumptions are:

\)f."

<i i ;:r;'.v '••>-• v.-

•)-:-ci.C

'; *
i

I

1. Current methods for evaluating computer security systems are inadequate, mainly for

the reasons outlined above.

2. In the absence of applicable physical measurement techniques and adequate historical

data, un evaluation methodology based upon a combination of objective data and subjec

tive evaluations can enhance the current check list procedures for system analysis.

3. A model which facilitates system decomposition is necessary since human evaluators

are better able to rate system components individually than to evaluate the security sys

tem as a whole. A composite rating based upon an exhaustive detailed decomposition will

be less likely to omit significant components.

4. The dependence of so many security techniques upon the human component and the

presence of the human adversary in many of the security threats in real-world computer

systems introduces both complexity in the system analysis and imprecision in the rating

estimates.

5. Classical probability theory is not always applicable in the analysis of security risks

because threats are not always random in nature. Additionally, the semantics of the rating

language are not necessarily best modeled through a statistical or probabilistic approach

since there is not a large body of evidence that human raters evaluate in a probabilistic

manner. Zadeh's theory of possibility [ZADEH 1977] may be a better choice since it

seems more intuitive. We shall adopt it here with the caveat that there is no more empir

ical evidence that humans evaluate via a possibilistic mechanism than that they use proba

bilities. Evaluation language semantics may be modeled using probabilities. We do not

choose to do so. We believe that they are better modeled (for this application) using the

theory of possibility.

6. A suitable foundation for the construction of a subjective and imprecise rating metho

dology is the Theory of Fuzzy Sets [ZADEH 1965]. This assumption is closely related to

number 5.

7. The model to be presented is quite general and thus may lack accuracy in representing

some details of complex real-world security systems. We are sacrificing detail for the

flexibility needed to deal with the diverse types of security threats and techniques present

in a typical data processing facility.

Before we continue with this development, it is necessary to briefly touch upon some of

the problems in the area of security system metrics which are considered to be beyond the

scope of our present efforts. With reference to Assumption 2 we wish to emphasize that the

rating language of Chapter 3 is a suggested sample or prototype. We will not attempt the

design of an "optimal" set of rating terms or semantics. We believe the semantics we have

developed to be at least Intuitively reasonable. The" design of some of the language semantics

draws upon existing work (see references in Chapter 3).

Nor do we attempt to present a methodology for the determination of the "best" semantics

for a given individual security expert. The calibration of the system to individuals is a very

difficult problem. We have given some references which indicate how such a methodology

might be approached (see Appendix A). We have not studied methods for comparing raters.

Suitable statistical normalization techniques may perhaps be developed or existing methods

applied to the fuzzy scores; these issues are beyond the scope of this work. We also ignore the

problem of selecting a "competent" security expert to formulate the system ratings.

The system decomposition alluded to in Assumption 3 is not detailed here for real-world

data-processing installations. Some work in this area has already been done (see

[CLEMENTS 1974] and [MICHELMAN 1977] for example). A hierarchical decomposition

tool will greatly enhance the practical usefulness of the methodology we are presenting.

We will make no attempt to establish that people think or formulate ratings in a fuzzy

manner. The references in Appendix A under the discussion of Assumption 4 deal with this

problem. The results to date are inconclusive but not discouraging.

We are not concerned with the accumulation of statistics on security threats or comprom

ises either accidental or intentional. We do assume such information (however incomplete) is

available to the security expert to aid in the formulation of his or her ratings. Some very ade

quate compilations of security compromises and threats are available to the reader in check list

or case history form. Some sources are: [BROWNE 1973], [FARR 1972], [KRAUSS 1972],

[PARKER 1976], [WOOLDRIDGE 1973].

Ball and Hora have proposed a risk analysis methodology based upon the use of Bayesian

techniques [BALL 1977]. Their work is concerned with the calculation of threat probabilities

and compromise costs. Their concept of cost relates directly to our term object loss value (see

Section 1.3). Results of calculations under the Ball and Hora model could provide input to the

security rater for the estimation process. As the authors point out, when the prior probabilities

are unknown and/or the cost parameters are uncertain, subjective guesses must be made. Since

the model is dynamic, the correct values will be produced in time. We feel that lack of prior

information is the rule rather than the exception in the field of security. Furthermore, we have

assumed that threats are not always probabilistic (Assumption 5 above). Nevertheless, the use

of an approach such as Ball's might aid the rater in making realistic evaluations.

With reference to Assumption 6, we should point out that we are adopting the existing

theory of fuzzy sets essentially as is. We have no major or radical changes to propose in order

to fit the theory to our application. We will present some minor extensions when necessary.

Finally, we wish to emphasize that complex theoretical modeling is not the goal of this

work. The model to be presented is simple. It is intended as a convenient framework for the

development of the rating methodology, not as an entirely faithful simulation of a data process

ing facility.

1.2 Need for Security Metrics

One of the most difficult decisions for the data processing manager has been security

investment. How much of the data processing equipment budget should be allocated to the

purchase and maintenance of security features? The decision process is largely subjective

because there do not currently exist techniques for objectively and precisely measuring the

effectiveness of all of the elements of computer system security. It has sometimes been argued

(often by designers of military systems) that security must be a binary condition - a system is

either secure or completely insecure. However, it is highly unlikely that many commercial

computer users could afford total security even if it were possible to achieve that state. Indeed,

total security may not be desirable if efficiency of data processing greatly suffers as a result.

Nevertheless, security measurement is becoming necessary in a rapidly increasing number

of commercial installations. Sound business practice requires the protection of corporate assets,

including the physical computing equipment, the information therein, and (of course) the peo

ple involved in system operation. Additionally, increasing national concern over privacy and

security in computer systems [U.S. 1974], [H.R. 1984] indicate that future data processing

managers will devote even more attention to security issues in their selection and operation of

data processing equipment.

However, most every manager must work within the limits of a reasonable security

budget. It becomes important to know how much extra security is obtained in choosing one

security mechanism over another. Ideally, this security increment should be quantifiable so

that cost-effectiveness analyses may be performed. Currently, we are a long way from such

precise quantification of the effectiveness of security techniques. This is especially true in the

areas of data processing security which are more the province of people than the machine.

These are the administrative, legal, and physical security considerations in the data processing

facility. In these areas, it is most definitely the integrity and/or competence of people which

makes security work. We believe the impact of the human component will continue to

frustrate the attainment of precision in security metrics. There are just too many human inter

faces in security systems and "people cannot be 'proven secure' in a non-Orwellian world"

[HOFFMAN 1974].

We may, however, attempt to formalize a methodology for use in evaluation of a security

system which organizes .-nd places bounds upon the imprecision and subjectivity currently

employed by computer system evaluators. We propose to base this methodology upon the

model described in the following section.

1.3 The Basic System Model

As a first step in the design of security metrics we describe an abstraction of a data pro

cessing installation's security system. The description takes the form of a set-theoretic model:

the basic security system. To date, the application of mathematical modeling to studies of secu

rity issues has focused mainly upon software structures functioning within or in conjunction

with the operating system in multi-user installations. Such structures function to control user

access to information and computing resources [WEISSMAN 1969], [LAMPSON 1971],

[GRAHAM 1972], [HSIAO 1974].

Three more recent models are worthy of note. Hartson characterizes a security system as

a 5-space [HARTSON 1976]. His access control mechanism is concerned with monitoring and

granting access requests which result in changes to the system state within the 5-space. His

implementation is for use in data-base management applications. Harrison has presented a

model of a system with information sharing [HARRISON 1976] and has shown that the owner

of information may lose control of access to that information after granting access to a limited

number of users. He has proven that the question of guaranteeing that an unreliable user will

not pass on an access right to someone unknown to the original owner is undecidable in gen

eral, though it may be decidable for a specific system. Dorothy Denning [DENNING 1976] has

provided a framework based upon a lattice model of security classes and information flow. The

lattice properties permit concise formulations of the security requirements of an existing system

into a mathematical framework which facilitates proofs of certain security characteristics. Her

model is concerned with determining if "illegal" information flow paths can exist.

Our model addresses a broader range of security problems. We are interested in all of the

ways in which data and/or computing resources may be misappropriated. We adopt a view of

the computing environment which has been suggested by Turn [TURN 1974]. His conception

of the security environment is illustrated in Figure 1.1. While Turn is interested in the design

of security systems subject to user needs and external constraints, the measurement of security

effectiveness can be viewed as the evaluation of the threat domain-security system-protected

domain interface. We therefore adopt a narrower view of the system environment by eliminat

ing the user domain and external constraints from consideration.

THREAT
DOMAIN

USER DOM,

INSECURITY SYSTEM/

EXTERNAL
CONSTRAINTS

PROTECTED \
DOMAIN J

Figure 1.1 Security Environment (from [TURN 1974J)

We wish to focus upon those resources within computing systems which are vulnerable to

some security threat. In any non-trivial data processing installation there will exist a large

variety of such resources, including (but by no means limited to) confidential data, proprietary

programs, hardware devices (tapes, terminals, disks, etc.), the operating system, computer

time, and even elements of the security system itself (e.g., the password file). We group these

elements as the set of security objects denoted by the letter 0. We will use upper case italics to

name sets and (possibly subscripted) lower case italics to denote set elements. These security

objects display a common characteristic: each possesses a loss value to its owner. This value

may or may not be precisely quantifiable [GLASEMAN 1977].

Associated with each security object is a number of activities which a potential intruder

may employ to gain unauthorized access to that object. We enumerate the potential intrusion

activities against each of the security objects to form the set of security threats (T). Some typi

cal threats are: wire tapping, exploiting operating system trapdoors, reading core residues, theft,

misappropriation of computer time, natural disasters, etc. The common characteristic of the

threat set is a likelihood of occurrence associated with each threat. In a real world environment,

these likelihoods are often quantifiable with only a limited degree of precision. In fact, a sub

jective estimate may often be the best that may be had [GLASEMAN 1977]. Likelihood may

be thought of as a subjective probability estimate. We will not use the term probability directly

since a threat may not always be a random event (see Assumption 5, Section 1.1).

The object-threat relation is modeled as a bipartite directed graph (Figure 1.2) in which

edge (tj,Oj) exists if and only if /, is a viable means of gaining access to object Oj. It should be

noted that tl.e relation of threats to objects is not 1 to 1; a thrs** may compromise an arbitrary

number of objects and an object may be vulnerable to more than one threat. The goal of the

security game is to "cover" each edge of the graph of Figure 1.2 by erecting a barrier to access

along that path.

Figure 1.2 The threat-object relation

A third set forms the barriers and completes the model. Its members are the security

features (F) which are employed as protective devices in the data processing system. Security

features include hardware, software, physical, administrative, and legal techniques for counter

ing threats of compromise. Ideally, each feature fk in F eliminates some edge {thoj) in the

threat-object relation. In reality, a security technique performs a fire wall function by present

ing some degree of resistance to a penetration attempt. This resistance is the common charac

teristic of the members of F. Some examples of security features are: cryptography, pass

words, locks, tape sign-out logs, overwriting core residue and security badges.

The set of security features transforms the bipartite digraph of Figure 1.2 into the tripar

tite graph of Figure 1.3 if every threat - object edge is "covered" by some feature. Therefore, a

"covered" system or sub-system may be defined as one in which all edges in the graph of Figure

1.3 are of the form (/,,/*) or (/*,Oy). An edge of the form (t„Oj) identifies an unprotected

object. It should be noted that a single security technique may counter more than one threat

Figure 1.3 The basic security system

(e.g. /4 in Figure 1.3) and/or protect more than one object (e.g. f\ in Figure 1.3). We also

wish to emphasize that the absence of an edge (thoj) does not guarantee complete security

because of the "fire wall" nature of most security measures. The presence of such an edge does

indicate a potential for compromise unless, of course, the likelihood of occurrence of /, is

known to be nil.

We define a basic security system as a 5-tuple:

S = <0,T,F,V,E> (1.1)

where:

O is a set of security Objects

Tisa set of security Threats

F is a set of security Features

Kis a set of Vulnerabilities, a relation in TxO

£is a set of Elements, a relation in VxF (equivalently, a relation in TxFxO)

In other words, J'is the set of ordered pairs (/,,o7) (the penetration paths) and E is the set of

ordered triples {thfk,Oj) which are the points of interest in the data processing system from the

security evaluation standpoint.

> Recall that a "covered" system possesses no unprotected objects. In such a system:

Ui.OjH V-*Gk)(thfk,Oj)€E. (1.2)

If this does not hold the system is not covered and o, is unprotected for some j.

Of course, there is no way to completely enumerate all items of security interest in a real-

world computing facility since new threats may arise every day. The best we can do is to iden

tify an uncovered system when an object threat pair is found which has no associated security

feature. Therefore, coverage is properly considered as a relative property; a system is covered

or uncovered relative to some threat set which has been enumerated. Showing that there are

no uncovered paths does not imply the system is covered. This is analogous to trying to prove

the absence of program bugs through testing. Finding an uncovered system or sub-system is of

practical usefulness and is a by-product of the normal enumeration process which is involved in

the check-list approach to security analysis. The data processing manager will be interested in

any uncovered sub-system since this indicates a security system design oversight. Coverage is

also relative to an object set since an uncovered threat is of little interest if there is no associ

ated set of objects which may be compromised by the occurrence of the threat in question.

Although our model appears superficially similar to [HARTSON 1976], the underlying

elements and relations greatly differ. Hartson is concerned with access demands and dynamic

changes in the system state as a result of granting or denying requests. Our model is static and

addresses the broader question of overall security performance. Access control by the data base

management system (Hartson's object of investigation) might be one security element in our

model depending upon the level of detail chosen in analyzing a given computer installation.

We are concerned with evaluating the effectivenessof many types of security features - including

the DBMS-type Hartson has developed - and their contributions to the overall security of the

computing system. Hartson's goal is the design of a family of protection languages which

enable system security administrators to specify ownership, sharing, authorization, access his

tory and other housekeeping parameters in a functioning data base system. Our purpose is to

aid the system manager in a post-design security audit or to aid the designer in an iterative

design-evaluate process.

10

1.4 The Problem of Imprecision

If every security feature in our model system possessed an infinite resistance to penetra

tion, our task would be finished. Assuring coverage would be sufficient to assure absolute secu

rity. However, real-world security measures present only a finite amount of resistance: pass

words have a finite length and are chosen from a finite alphabe*. a steel door may be cut given

sufficient lime, etc. We must therefore address the problem of "measuring", in some sense,

these resistances if we are to arrive at an overall evaluation of the degree of security present in

the hypothetical data processing facility.

Most security techniques do not lend themselves to reliable and precise quantification.

For example, the security of a password scheme may be lower if the password characters are

not chosen randomly since clever guessing may quickly discover a password. How much lower

is the resulting resistance to penetration? A similar situation exists with respect to the likeli

hood of a security threat. What is the numerical expectation that a user will lose his or her

security badge or have it stolen? Even object values may be calculable only within a range in

many cases. Dollar-cost replacement may not be the sole consideration if confidential data is

stolen [GLASEMAN 1977]. Loss of client trust or damage to a company's market position

may be much more difficult to quantify. In such instances we must rely upon human judge

ment to provide an approximate measure of resistance, likelihood, and value.

The problem is further aggravated when we attempt to combine these individual resis

tance values to obtain an overall system security rating. The individual security features may

interact or depend upon each other. For example, the effectiveness of a password scheme may

depend upon the protection mechanism which safeguards the password file. Often these

interactions are not well understood. One rating scheme [HOFFMAN 1974] recognizes the

need for subjectivity but requires the rater to assign a numerical value to his or her estimates of

component resistances. A linear weight and score method is used to produce relative rankings.

We feel that such a purely numerically based rating system demands a degree of precision on

the part of the system rater which is both difficult to attain and difficult to interpret with

confidence. The precision implied in a numerical rating is inconsistent with the complexity of

the real world data processing installation. The statement: "XYZ computer installation is .65

secure" may be consistent within the framework of some rating system but is difficult for the

outside observer to interpret meaningfully. Further, such a statement is likely to generate more

than a little skepticism. Conceptualizing a .65 secure system is much more difficult than visual

izing, say, a .65 full cup of coffee. The latter concept is tough enough as it is.

Nevertheless, it is possible to make meaningful measurements of the security of a system

relative to another installation or relative to some security standard. We suggest that the

appropriate structure for the expression of such measures is the linguistic variable

11

[ZADEH 1975b] - a variable which assumes values which are words rather than numbers. A

computing system may be represented by a composite linguistic variable: a structure whose

components are themselves linguistic variables termed attributes. These attributes might

include processing power, cost, amount of storage, security, etc. An exact description of the

structure is not necessar* here - we are interested only in the security attribute. This com

ponent is a simple linguistic variable which takes on values such as high, low and mtJium.

Appropriate modifiers provide finer resolution by allowing values such as very high, somewhat

low, and so on. A complete description of the process which produces a linguistic rating scale

is given in Chapter 3.

The evaluation of the security of a given data processing system corresponds to the

assignment of a value to the attribute "security". This value is the meaning of the linguistic rat

ing phrase (see Section 3.1) chosen and is represented by a fuzzy set (see Chapter 2) whose

members are values on some (numeric) rating base scale. The rating scale might be an interval

on the real line or an integer valued interval. These base scale values are analogous to the

numerical ranking values proposed by Hoffman [HOFFMAN 1974]. We sacrifice the precision

of a purely numeric approach to gain a higher level of confidence that the final "fuzzy" rating is

realistic and easy to interpret.

The overall security rating will be based upon the rater's evaluation of the adequacy of

each security element in the system. This overall "score" may be based upon resistances alone,

or upon resistances weighted by some combination of object value and threat likelihood. As

mentioned earlier, these entities may be quite difficult to quantify precisely. Additionally, every

evaluation will be somewhat subjective. For these reasons, we will augment each security ele

ment of the basic security system with a composite linguistic variable. There are three com

ponents of this variable: likelihood, resistance and value. Each of these is a simple linguistic vari

able which may be assigned linguistic values taken from the rating scale. Each is associated

with a component of the element triple (t„fk,Oj) in the basic model. Resistance corresponds

to the feature fkl likelihood corresponds to the threat /, and value is associated with the object

Oj.

There are intuitively reasonable interpretations for the dimensions of these three meas

ures. Resistance could be measured in units of time, likelihood could take on units of numeric

probability, and value could be measured in dollars. In the interest of simplicity and economy

of rating scale design we will assume that all three measures are normalized to dimensionless

quantities. Thus, we are interested in relative measures. A single dimensionless base rating

scale will be used. For most of the examples in this work we will assume the rating scale to be

the real interval (1,9) or the ordered sequence of integers from 1 to 9. This gives the scale an

integer valued mid-point at 5. The implementation of our rating calculator (see Chapter 5)

12

uses the integer valued rating scale.

As mentioned in Appendix A, it would also be possible to model "likelihood" as a linguis

tic probability [ZADEH 1975b]. Linguistic probabilities assume values such as likely, unlikely,

highly likely, etc. In order to keep this exposition conceptually simple we will employ only one

rating vocabulary using variants of high, low, etc. as discussed previously. These may be

thought of as relative linguistic values which are applied to evaluate resistance, likelihood and

value.

The type of scoring function used to arrive at an overall system rating will depend upon

the security policy in effect at the installation under analysis. A "dogmatic" security policy

[TURN 1974] requires the complete protection of all resources. Such a policy would require a

weakest link scoring function. A "rational" security policy [TURN 1974] calls for a weighted

score where the weights are a function of the object values and threat likelihoods. Scoring func

tions are discussed in detail in Chapter 4.

1.5 The Rated Security System Model

The basic model elements are augmented with composite linguistic variables as outlined

above. In order to avoid confusion, we will use (possibly subscripted) upper-case boldface

letters to denote linguistic variables. The letter E denotes the compound structure made up of

the composite linguistic variable defined above and the associated triple from the element rela

tion (E) of the basic security system. Consider Figure 1.4 which depicts a single rated security

element. Note that Er identifies the triple which represents er in the element relation of the

basic model. Additionally, a likelihood attribute L, (where Lr is a linguistic variable) is associ

ated with threat th The object component oj has value attribute Vr and a resistance attribute Rr

belongs to the security feature fk. Note that the subscripts for likelihood (L), value (V) and

resistance (R) match the subscript (/•) of the element (E) rather than the individual threat,

object, and feature component subscripts. This is to emphasize that these components are

evaluated in the context of the specific security element which they form. In other words, these

measurements are dependent upon the particular object-feature-threat interaction.

As a qualitative example of this interdependence, consider a file containing a proprietary

program belonging to a software engineering firm. The loss value of the program may be

pretty high in the context of a threat of theft by a competitor who may exploit its commercial

value. On the other hand, the file may have a fairly low value in the context of a threat of

accidental erasure (especially if a machine readable back-up copy exists).

Values such as pretty high or fairly low are assigned to the linguistic variables at each

security element in the data processing system. These linguistic values are modeled as fuzzy

13

Er

t: 0:

Figure 1.4 The rated security element

sets. Each of the rating base scale values possesses a grade of membership in the fuzzy set

which is the meaning of one of these linguistic values. This grade of membership is

represented by a compatibility function which is denoted by the greek letter fi. Fuzzy sets are

more completely discussed in Chapter 2. We anticipate that development here only to

emphasize the following: fuzzy sets are not probability distributions although there are some

superficial similarities. A related discussion appears in Appendix A.

Figure 1.5a depicts a possible compatibility function for the phrase high over the real base

scale (1,9).

H

HIGH

0

Figure 1.5a A possible compatibility function for high

14

Again, Mhigh is not a probability although p. will (by definition) range over the (0,1) interval
[ZADEH 1965], [ZADEH 1975b]. The proper interpretation of /xhlgh is that it represents the

degree to which each of the base values agrees with our conception of the notion of high.

Similarly, Figure 1.5b illustrates the concept very high.

N ERY HIGH

T

5

Figure 1.5b A possible compatibilityJunction for very high

Neither of these curves should be taken too literally. They are intended only as qualitative

illustrations.

As mentioned in the description of the basic security system, there may be unprotected

objects in a given installation. In terms of our earlier notation:

Gi)Qj)[[(titOj)£V] &(Vk)[(thfk,Oj)tE]\ (1.3)

We may easily augment the model to include uncovered objects in the element relation. We

introduce the null security feature written f0 and add it to the set of security features in the sys

tem. This null feature possesses the property that any security element of the form:

Uhh,Oj)

will have a null resistance rating (null is the lowest rating available) regardless of the specific

object and threat in the element. We define an augmented security feature set:

Fa=F\J{f0}

and replace /"with Fa in the model definition (1.1). Now define a set of uncovered elements:

Eu which contains those uncovered pairs in £, each of which is augmented with the null

15

security feature:

EuAUi.h.Oj) |U„0jHV & mHtiJk,ojHE) (1.4)

Then replace the set E in the model with the augmented set Ea=E[J Eu.

1.6 The Evaluation Process

Evaluation begins with the analysis of the data processing installation by decomposing it

into a set of security elements. At each element, the security auditor or rater assigns a linguis

tic value to the resistance (R) of the security feature at that point. The rater (or perhaps the

installation manager) then assigns a linguistic value to V and also L: the object loss value and

the threat likelihood at this particular element. These three values determine the contribution

of the element to the overall installation security rating. The resistance value determines the

amount by which overall security is enhanced or degraded. Depending upon the scoring func

tion in use (see Chapter 4), this increment/decrement may be weighted by some combination

of object value and threat likelihood.

As a crude example consider a system composed of only two elements. The first is:

ei=UufltOi)

where ti is a software bug in user A's program which overwrites his or her private data file (o\)

and fi is optional read only protection available for the file system. The second element is:

e2~U2.f2.01)

where t2 is the threat from user B browsing through the files of user A, oj is as before and f2 is

password protection available for private files. Assume a hypothetical rater assigns the follow

ing values at the two elements:

16

Ei : Lj = fairly high

V! = high

Fi = very high

(1.5)

E2: L2 = medium

V2 = very high

F2 = medium

Using "weakest link" scoring based upon the MIN score (see Section 4.1), the system rat

ing is medium (due to F2). If a "fuzzy weighted mean" scoring function (see Section 4.4) is

employed and threat likelihood is the weight, Li causes Fi to dominate and the overall rating

might be high. On the other hand, if loss value is considered the paramount issue, V2 causes

F2 to dominate and the total score might be sortof high or some other value nearer to medium

than high Weights which are combinations of L and V would generate still different total

scores.

1.7 Overview of the Thesis

The next chapter presents a brief review of fuzzy set theory. Only those elements of the

theory which are needed for development of concepts used later in this work are presented.

Chapter 3 develops a methodology for the design of a rating language. This language is used to

generate the rating phrases used in assigning values to the various resistances, likelihoods, and

loss values in the installation. A set of default compatibility functions which represent the

meanings of the terms in the rating language is also given. These may be used in the absence

of any information about a particular rater's linguistic bias, that is, in the absence of empirically

gathered data (classified by individual rater) relating numeric rating values to linguistic rating

phrases.

Chapter 4 describes some suggested scoring functions based upon the "weakest link" secu

rity philosophy and upon the linear weight and score method of Hoffman [HOFFMAN 1974].

Chapter 5 discusses our implementation of a software package for gathering element ratings and

17

calculating overall system scores. A fictitious data processing installation is rated in Chapter 6

where the various scoring functions are compared. Chapter 7 is a summary and a discussion of

some possible extensions to the present work. Appendix A contains a detailed discussion of

the major assumptions of the thesis (see Section 1.1). Finally, the actual APL code which is

the software for gathering and calculating ratings is displayed in appendix B.

18

2. Basics of Fuzzy Set Theory

In this chapter we present a very brief outline of fuzzy set theory. We intend to discuss

only those portions of the theory which will be useful in the understanding of the linguistic rat

ing process. For full details on this growing field, the reader may consult the bibliography. See

especially Kaufmann's very complete text [KAUFMANN 1975] for a starting point. Material

more closely related to our specific applications may be found in [ZADEH 1975b].

2.1 Definition of a Fuzzy Set

We begin with a universe of discourse which is just some collection of items of interest.

We will deal with two such universes: an interval of the real line between and including 1 and 9

which we will label: R and the set of integers from 1 through 9 which we label: /. We will

often refer to the universe of discourse as the base scale and its elements as base values. A

fuzzy set is a subset of some universe of discourse which is defined by a membership function.

This membership function is a mapping from the universe of discourse to the real valued

interval(0,1). It represents the grade of membership of each point in the universe of discourse

in the fuzzy set. A membership function is usually labeled with the Greek letter /*. Thus, if X

is a fuzzy subset of R :

M*: (1,9)—(0,1) (2.1)

Notice that a classical (non-fuzzy) set (labeled Y for example) may be considered to possess a

binary membership function:

Aty: CMO.l} (2.2)

where {0,1) is the set of values 0 and 1 rather than an interval. Therefore, a fuzzy set may be

viewed as an extension of the notion of a classical set. The membership function is often also

referred to as the compatibility function. The notion of compatibility is more intuitive for our

purposes since it emphasizes the idea that set membership may be a subjective thing. We will

use the two terms interchangeably. A non-fuzzy finite set is often denoted explicitly as:

A=[alta2, • • • ,a„] (2.3)

where the a, are values in U where /iA = 1. We will represent a finite fuzzy set explicitly as:

A=[fil[a[],/ji2[a2],...,fJi„[an]} (2.4)

We will omit the braces when no confusion will result. A general form which displays the

functional property of /t is:

19

A=\JfiA (/)[/] (2-5)

where y.A (i) indicates the result of applying the compatibility function to the singleton: in the

universe ofdiscourse. This yields a value in (0,1) which is the fi-value (membership value) for

that singleton. This fi -value is paired with its base value as initiated by the [/] notation. The

union of these fuzzy singletons yields the fuzzy set: A.

This notation holds an advantage for us over the form which most often appears in the

literature (see for example [ZADEH 1975b]). There the standard notation employs the "/"

(slash) to separate compatibility and base values (e.g. .2/5) and union is often represented by

"+". We wish to reserve these symbols for use in discussing fuzzy arithmetic. As an example,

let / be our universe of discourse. We may represent the set labeled slightly more than 2 (with

{} omitted) as:

1[3], .7[4], .5[5], .1[6] (2.6)

These values are arbitrarily selected for illustration purposes. When the fuzzy set is infinite the

membership function will be given in closed form. For example, we might represent about 9 in

R as:

(J 0.5x(x-7)[x] (2.7)
*€(7,9)

where "x" represents conventional multiplication and the union is taken over the (infinite) set

of values in (7,9). It is understood that base values outside the interval (7,9) are assigned

membership values of zero (see Figure 2.1). We shall deal mainly with finite sets in this work

and will use fuzzy sets on the continuum solely for purposes of illustration. We shall also

employ closed forms on occasion in describing operations upon fuzzy sets.

20

ABOUT 9

0

Figure 2.1 The simple membership junction of (2.7)

2.2 Properties of Fuzzy Sets

For a given fuzzy set: X, the set of points in U for which fix is non-zero valued is called

the support of X. The height of X is defined as the maximum value of fix- A fuzzy set is nor

mal if its height is 1. A sub-normal set may be made normal by dividing fix by the height of

the set. We shall find this normalization process useful later.

Another important property of certain fuzzy sets is convexity. A general definition of con

vexity is given in [ZADEH 1965]. For the special cases in which the universe of discourse is a

segment of the real line or an interval of integers, we can define convexity quite simply. A

fuzzy set XGUis convex if:

(\/i)(\/j)(\/k)(i<j^k-pLX(J)>(nx(')/\V<x(k))) (2.8)

Here the " a" operator signifies the taking of the minimum. Figure 2.2 illustrates convexity and

normality.

Convexity is an important consideration when modeling linguistic ratings as fuzzy sets.

For example, a phrase such as about 2 or about 8 (see Figure 2.3a) indicates a value which is

simultaneously near both end points of the rating scale but not near the center. While this is a

perfectly good fuzzy concept, it is difficult to make intuitive sense out of such a value as a rat

ing or score. In words, the rater is saying: "The score is either near 2 or near 8." On the other

hand, Figure 2.3b illustrates a valid (though perhaps overly vague) rating value which might be

21

Normal, Convex

Non-convex

Convex

Sub-normal

Figure 2.2 Normalconvex, non-convex, and sub-normalfuzzy sets

Figure 2.3a Semantics ofabout 2 or about 8

termed about 2 to about 8. The rater is saying "I'm uncertain about the exact score but it is not

lower than about 2 and not higher than about 8". Notice that the meaning of this phrase is a

convex fuzzy set.

22

In

Figure 2.3b Semanticsofabout 2 to about 8

Of course, normal, convex sets represent only a small portion of the possible forms for

the compatibility function which the general fuzzy set theory allows. As we have seen, there is

a certain intuitive justification to requiring a linguistic rating to possess a meaning which is a

convex fuzzy set. There is also justification for maintaining normality. As rating phrases

become more and more complex (see Figure 3.7 in Chapter 3), peak compatibility values may

get smaller and smaller until linguistic approximation (see Chapter 5) becomes very difficult.

Normalization assures the final rating "curve" in normal, convex fuzzy sets in this work, will

belong to the family of curves which makes up the rating language. Thus convexity and nor

mality greatly simplify the task of the linguistic approximator without sacrificing the flexibility

needed to express a linguistic rating value. Accordingly, we will be mainly interested

2.3 Classical Set Operations

Three basic operations upon fuzzy sets are complementation, union, and intersection. Let

A' be a fuzzy set over U. The complement of A may be denoted as A' and is defined as:

A'-\J(l-f<LA(a))[a]
atU

(2.9)

where "-" represents the usual subtraction operation. Here the notation fiA(a) indicates the

result of applying the compatibility function associated with set A to the base value a. After

subtraction from unity, this new /x-value is associated with a (indicated by the [a] notation)

23

and the process is repeated over all values in the universe of discourse. Complementation

implements the linguistic operator not and thus represents negation as in not high (see

Section 3.3).

The intersection of two fuzzy sets is defined by:

Af)B=[J(iiA(c)AnB(c))[c] (2.10)

where "a" indicates the minimum of the two values is to be taken. The union of two fuzzy sets

is defined by:

^U5=U Wc)v/afl(c))[c]
c€t/

(2.11)

where "v" indicates that the maximum of the two values is to be taken. These three basic

operations are illustrated graphically in Figure 2.4.

Figure 2.4a Complementation

An in-depth discussion and intuitive justification of these definitions may be found in

[BELLMAN 1973]. We will make use of these operations in rating language design (see

Chapter 3).

24

Figure 2.4b Intersection

Figure 2.4c Union

2.4 Compatibility Function Modifiers

In Section 3.3 we discuss the notion of a hedge: a unary operator that modifies the mean

ing of a linguistic value. That meaning is represented as a fuzzy set. In the construction of

hedges, we will find the operations of concentration (CON) and dilation (DID useful. These

operations are defined (see [ZADEH 1972]) as:

25

^A2COmA)=A

(2.12)

DILU)=^05

where A is a fuzzy set and in general,

A^\J(nA(a))c[a] (2.13)

Thus, CON and DIL are operators which, in a sense, decrease and increase the fuzziness of a

set since p.-values are modified to a degree which depends upon their distance from unity. The

operation of intensification [ZADEH 1972] is somewhat akin to concentration in this respect but

is more emphatic in separating high and low /x-values. Intensification (INT) is defined as fol

lows:

Mintoo

2x0^ (a)2) ifM/4(fl)<0.5

l-2x(l-^(fl))2 iffiA(a)>0.5 (2.14)

A qualitative comparison of concentration dilation and intensification is given in Figure 2.5.

Figure 2.5 Concentration, dilation and intensification

The operation of fuzzification has an effect opposite to that of intensification in that the

fuzziness of a set is increased. In the case of a non-fuzzy set, fuzzification transforms the set

into a fuzzy one. Fuzzification is discussed in great detail in [ZADEH 1972]. We will be con

cerned with one form: an operation which modifies the support of a fuzzy or non-fuzzy set. The

26

fuzzifier FUZ accepts two parameters: a fuzzy set A and a set of kernels K each of which is a

fuzzy set generated by applying FUZ to a non-fuzzy singleton in the universe of discourse.

FUZ has the effect of performing a scalar multiplication of the membership function of A at

each point in U over the kernel at that point.

The operation is csier to illustrate than to explain. Let / (integers 1 to 9) be the

universe of discourse. Let:

Jf(lWl[l], .5[2]J

tf(9)={.5[8], 1[9]} (2.15)

K(i)={.5[i-l], 1[/], .5[/+l]}f 2</<8

Each K(i) is a distinct fuzzy set which is used in the fuzzification process as follows. Let:

A={A[5], 1[6], .617]} (2.16)

We represent scalar multiplication of compatibility function values by "x":

FUZ(A\K)=\J fjiA(i)xK(i)[i] (2.17)

={.4x/a5),lx/:(6),.6xjn7)}

={.4x(.5[4], 1[5], .5[6]),lx(.5[5], 1[6], .5[7]), .6x(.5[6], 1[7], .5[8])}

={.2[4], .4[5], .2[6], .5[5], 1[6], .5[7], .3[6J, .6[7], .3[8])

={.2[4], .515], 116], .617], .3[8]}

The behavior of FUZ upon a non-fuzzy singleton is of particular interest. Let 2?={4)={1[4]}

and let Kbz given by (2.15). Then:

FUZ(£;iO=(lxA:(4)} (2.18)

={lx(.5[3], 1[4], .5[5])}

={.5[3], 114], .5[5]}

This enables us to transform a non-fuzzy set (in this case a singleton) into a fuzzy set.

Fuzzification is useful in the generation of fuzzy numbers. For instance, the results of the last

example could be interpreted as the fuzzy number about 4 (see Section 3.3).

27

2.5 Fuzzy Relations

An n-ary fuzzy relation [ZADEH 1971], [ZADEH 1975b] is a fuzzy subset of the (non-

fuzzy) Cartesian product of n universes of discourse. We will confine our attention to binary

fuzzy relations in Ixl where / is the integer base scale defined in Section 2.1 above. Fuzzy

relations in real n-space are discussed in the references. A binary relation R has a bivariate

membership function over the ordered pairs (ij) in Ixl. The general descriptive form is:

= U m(/j)U7] (2.19)
(/.;)€/x/

We shall depict binary relations explicitly as n by n matrices where n is the cardinality of

the universe of discourse. In the interest of brevity, we choose a universe of discourse:

y={l,2,3). The relation similar in JxJ might be defined as:

1 .5 .02

similar = .5 1 .5 (2.20)

.02 .5 1

For a pair (ij) in similar, / denotes a row and j denotes a column.

In words, the meaning of a relation R is just a statement of the compatibility of pairs in

Ixl under the notion which R labels. Thus in the case of (2.20), similar(2,l)=.5 means that

0.5 is the degree to which 2 is compatible with 1 under this particular notion of similarity. In

other words, 2 is "similar" to 1 with degree 0.5 in this case.

In general, if R is a relation from Uto V(i.e. RZUxV) and S is a relation from ^to W,

then the composition of R and S yields a relation from U to W. In this work, we will be using a

single base "rating" scale (see Chapter 3) in defining the fuzzy sets and fuzzy relations which

make up our rating language. Therefore, for our purposes, £/, V, and Ware all identical to /.

Modifying the above definition apply to our special usage, a composition of binary relations will

yield a relation in Ixl. Composition is denoted by the symbol "O" and is defined (for discrete

fuzzy sets) in terms of the max-min inner product [ZADEH 1971] as:

ROS~ IJ VUir(U) MLS(j.k))[i.k] (2.21)
(/J)€/x/>€/

where "v" represents taking the maximum /x-value and "a" represents taking the minimum.

Note that" v" applies over all ./€/. In words, the compatibility of /* and k in the resultant rela

tion is the maximum of the minimums with j as the linking component. As Zadeh points out,

composition is just the max-min matrix product when the universes of discourse are finite sets.

The max-min product is the analog of the classical matrix "dot" product with " v" replacing addi

tion and "a" replacing multiplication. Since our implementation models the rating scale as a set

28

of integers, we need consider only this form of composition. We borrow an example from

[ZADEH 1975b]. Here the universe of discourse is simply: {1,2} so that /?, 5, and ROS are

defined over (l,2)x(l,2). We represent these ordered pairs as (labeled) rows and columns of

the relation matrices:

.3 .8

* = .6 .9

(2.22)

.5 .9

5 = .4 1

Then the composition of these relations is given by the matrix product (where "v" replaces

summation and" A" replaces multiplication in the more familiar matrix product definition):

(.3a.5)v(.8a.4) (.3a.9)v(.8aD

ROS = (.6 A.5) v (.9 A.4) (.6 A.9) v (.9 A1)

.4 .8

.5 .9

(2.23)

2.6 Compositional Inference

We shall find use for composition in combining fuzzy relations and fuzzy sets. The effect

of a relation upon a value which is a fuzzy set is described by the compositional rule of inference

[ZADEH 1975b] which is a generalization of the familiar modus ponens rule of the proposi-

tional calculus:

FROM: p

AND: p—q (2.24)

INFER: q

Analogously, consider the application of a function /:

29

GIVEN: jc=o

AND: y=f(x) (2.25)

INFER: y=f(a)

Now suppose a in (2.25) is a fuzzy set in /. An alternative way to view a fuzzy set is as an

assignment to a unary (fuzzy) relation in /. Let Xd) be such a relation. Then X{i)=a may

be thought of as the relational assignment corresponding to x=a in (2.25). Let /be a fuzzy

set in /x/and let F(ij) be a binary (fuzzy) relation in Ixl. Then the compositional rule of

inference states that we may infer a unary relation Y(j)€l as the result of the two relational

assignments and the composition given by:

FROM: Xd)=a

AND: F(ij)=f (2.26)

INFER: Y(j)=X(i)OF(i,j)

where "O" is.the composition operator of (2.21). The unary relation Yd) defines a fuzzy set y

in /. When we are dealing with finite fuzzy sets, composition is just the max-min product of a

unary and a binary relation:

Mr0)= (J V 0**0) AMfUy))W (2.27)
y€//6/

This gives us a semantic rule for determining the effect of a relation upon a fuzzy value. As a

quick example, let F=R where R is defined in (2.22) and let a={.4[l], .7[2]}. Then

Xd) = .4 .7 and:

.3 .8
Y(j) = A .7 0 6 9 (2.28)

- (.4A.3) V(.7 A.6) Ua.8)v(.7a.9)

= .6 .7

that is, the result is the fuzzy set: ^={.6[1], .7(2]}. Note that (2.28) was arbitrarily constructed

to illustrate the mechanics of compositional inference. Our use of this rule is detailed in con

nection with the relation lower in Section 3.5 where its operation is more intuitively appealing.

30

2.7 The Extension Principle

Finally, we describe the extension principle [ZADEH 1975b] which allows a mapping or

relation which operates in some universe of discourse U to apply to fuzzy subsets of U. In

essence, the extension principle asserts that the result of applying a mapping / to a fuzzy sub

set A obtains from applying /to each base element of A in turn:

A = {ft\[al],...,iLn[a„])

/U) = {/Wfli],...,M>J)l (2'29)

= Uil/Wl, • ' • ,Hnlf(an)])

For an analogous formulation when Uis a continuum see [ZADEH 1975b].

In Chapter 4 we develop scoring functions for finding composite security system ratings.

These scoring calculations depend upon the application of standard arithmetic operations to

fuzzy sets. The extension principle for binary operators is presented in [ZADEH 1975b]. If •

is an arbitrary binary operator in U and A and B are fuzzy sets in U:

(2.30)

yet/

By the extension principle:

A •£=((J fxA(/) [/]) •(U Hb(J) t/1)

(2.31)

-U 0*^00 AM*C/» ['•/]

Here the tacit assumption is that:

M>A.B(U)BaV-A(i) A/ttflO) (2.32)

That is, the result is a subset of the fuzzy Cartesian product of A and B. The " A" operator is

characteristic of taking the fuzzy Cartesian product [ZADEH 1975b].

31

2.8 Summary

Reviewing the major operations upon fuzzy sets which have been discussed in this

chapter, recall that for fuzzy sets A, B in some universe U:

A'-\J il-iiA(a))la]

A\jB=(J(fiA{c)y/jLB(c))[c}

^n*=u wc)am*(c))[c]
e€t/

MlNTCO

For a fuzzy set A and a kernel function K in /

CONGO=^2

DILC4)=/40-5

2x0^(a)2) if^UKO.5

l-2x(l-^(a))2 if/^(a)>0.5

FUZ(A;K)=\J fiAd)xKd)[i]

For fuzzy relations /?, S in /x/:

*OS= (J V(findJ) MJLS(j.k))[i,k]
(/.;)€/x/y€/

For a fuzzy set a in U, a fuzzy set /in f/x £/, unary relations X, Kand binary relation F:

FROM: *(/)=0

AND: /'(//)=/

INFER: r0)=^(/)O/r(/j)

For a general binary operator "•":

A •£=(|J ^(/)[/]) •((J fiB(J)l/l)
#€(/ >€£/

= U (nAd)MiB(J))[fj)
0 •;)

32

This introduction to the theory of fuzzy sets is by no means an exhaustive treatment of

the subject. The interested reader will find a wealth of literature beginning with the references

in the present work. We have purposely limited our discussion to those features of the theory

which will prove useful in the development to follow. Specifically, in the next chapter we will

employ the above tools in the design of a sample security rating language. This language will

be the vehicle for the construction of fuzzy security ratings.

33

3. Designing a Security Rating Language

We now outline the general method for constructing a rating tool based upon words and

phrases rather than numbers. As discussed in Section 1.6, we must evaluate three components

at each security element in the data processing facility: threat likelihood, object value, and

feature resistance. In a completely general system, three separate rating scales would be con

structed since the units of the base variable scale would differ for each component. For exam

ple, subjective probability, dollars, and expected safe time might be chosen as the underlying

units. We will make the simplifying assumption that each of the three base scales is first nor

malized to range over a dimensionless scale. Then, without loss of generality, we need con

sider only one rating scale for each of the 3 components.

3.1 The Base Scale

Specifically, the base variable will range over the interval (1,9). In the interest of clarity,

some of the illustrations in this and other chapters will feature continuous compatibility func

tions (i.e mappings onto the real line). Therefore, in the general case the rating base variable is

real-valued. Certain theoretical matters discussed in Chapter 4 also require the use of fuzzy

sets upon the real line. However, our implementation (see Chapter 5) models fuzzy sets over

the integers. Additionally, examples are often easier to construct and understand when the

integers from 1 through 9 are used. Our base variable will be real or integer valued as con

venient. We emphasize that the real line is the general case; the integers are used to simplify

our implementation and examples.

In the next section we discuss the various terms which make up our rating mini-language.

Some of the terms are primary, that is their definition in the form of a fuzzy set is considered

axiomatic. Other terms operate upon the primary terms to yield composite terms or phrases

which yield finer shades of meaning. Neither the names of the rating terms nor the forms of

their fuzzy sets are to be considered as the only choices. Our implementation allows the rater

to optionally supply his or her own term set and provide the fuzzy sets and functions which

represent the meaning of the rating terms. The language presented here is a standard default

provided with the rating calculator described in Chapter 5.

34

3.2 The Primary Linguistic Values

We choose as primary rating terms the values low, high, and medium. A possible

representation for /Lthigh is given in Figure 3.1. The values of /Lt,ow and ^medium are shown also.

'""MEDIUM
IGH

Figure 3.1 The primary linguistic values

Our selection of these forms is based largely upon an intuitive notion of the underlying

meaning of the primary terms low, high, and medium. We are employing fuzzy sets to model

the semantics of these terms in a way which makes more explicit the approximate nature of the

concept. For example, consider the notion high. Each value Mhigh(') represents the degree to

which we subjectively believe that the base value / (in the context of the limits of the base

scale) is compatible with the notion of a high value. In other words, / belongs to the class of

high ratings (where in this case 9 is the highest possible rating). The degree to which / belongs

isgivenby/Ahigh(/).

In the absence of empirical data which would indicate the way in which people internalize

concepts such as high with reference to a numerical rating scale, we might reason in the follow

ing way. We would expect a maximum at the upper end point of the rating scale since (on a

scale of 1 to 9) one would surely perceive 9 as high. It seems reasonable to expect that values

near the mid-point and lower would be excluded from the notion of high. The shape of the

curve in between is more difficult to justify but it seems reasonable to expect that the /it-values

will decrease slowly at first as we move away from the upper end of the base scale and then fall

off more rapidly. G. Lakoff presents a more detailed and compelling analysis of this curve form

in conjunction with the concept "tall" [LAKOFF 1973].

35

Similar reasoning may be applied to justify the forms of the ^-functions of low and

medium. Since these concepts are so subjective, our implementation provides these primary

fuzzy sets as default values. The user is free to substitute his or her own /i-functions as well as

names other than high, low, and medium.

We now present two approaches to the problem of defir.Mg primary terms. In the next

section we discuss three general methods for denning linguistic modifiers. These various tech

niques are provided as options and defaults in the implementation (see Chapter 5). The first

scheme is due to Zadeh. He has formulated parameterized closed forms which may be used to

generate fuzzy sets for primary terms of this type. These canonical forms are called 5 and tt

functions [ZADEH 1976]. The 5-function is defined (we have changed Zadeh's notation some

what) :

S(v\ z,c,p) =

0

2x((v-z) \2
(p-z)

l-2x((v-p)
(p-z)

» v^z

> z<v^c

)2. c<v<p

v^p

(3.1)

where:

v is the base value

z is the v at which 5=0 (Zero)

p is the v at which 5=1 (Peak)

c is the v at which 5 = .5 (Crossover)

Normally the "crossover" would be halfway, that is c=—r^—

of Figure 3.1 might be generated by:

Mhigh(«) = S(w; 5,7,9)

Mbw(w) = 1-S(u; 1,3,5)

Then the high and low curves

(3.2)

(3.3)

The tr function generates a pulse which may be used to form the meaning of medium. It

is defined in terms of the S function, a peak parameter (p), and a bandwidth (b). The

bandwidth is just the distance on the base scale between crossover points.

7r(v; b,p) =

5(v; p-b,p-—,p) , v^p

1-S(v; p,p+—,p+b) , v>p
(3.4)

36

With reference to Figure 3.,1 medium might be generated by:

Mmedlum(w) = *("'•> 2,5) (3.5)

The S and it functions are convenient because they make it easy to specify the limits and

likely "interesting" point* of the generated compatibility functions. However, other forms

which approximate these curves are possible. For example, Shaket has experimented wuh the

exponential as a canonical form for generation of fuzzy sets [SHAKET 1975]. An exponential

which produces a form much like Zadeh's n function (we will call it the E function) is:

£(v; p,s) = exp s

where:

v is the base value

p is the "peak" value of E

s is the "spread" (£"=— at p+s and p—s)
e

The typical £ curve is shown in Figure 3.2 which is adapted from [SHAKET 1975].

Figure 3.2 An exponential-based compatibility function

(3.6)

Note that "spread" is analogous to "bandwidth" as defined earlier. The difference is that spread

gives the /*«=»— points rather than /t=0.5 points. There are no /u=0 points on the £ curve since

its behavior is asymptotic. This property may be of some use in limiting cases. At any rate,

suitable rounding functions exist in our implementation to optionally force the very low fi-

37

values to 0 when desired.

If p=l or p=9, the Ecurve peaks at one of the boundaries of the base scale and one half

of the curve disappears. The E curve then approximates the S function described above. Thus

the E function gives us some computational simplicity at the expense of some of the flexibility

and intuitive appeal of th? S and tt curves. All of these canonical forms are available as default

functions in our implementation. In the general case the primary terms of the rating system

will be specified by the user and the fuzzy sets which represent the "meanings" will probably be

given by the user explicitly or determined empirically (see Section 7.6).

3.3 Linguistic Hedges

Given the three primary terms (low, high, medium) we next define a set of modifiers each

of which operates upon a primary term to effect a change in meaning, either through a

modification of the form of the curve (that is the fuzzy set) or through a shift of its position on

the rating scale or both. Modifiers of this type are classified as hedges. The subject of hedges is

treated very completely in the references. The interested reader should especially note

[ZADEH 1972], [ZADEH 1973] and [LAKOFF 1973]. As we shall see shortly, hedges work

best with the end point primaries high and low. We have included medium as a primary

because it seems to be a concept which is as intuitively basic as low or high. The fact that it is

difficult to use hedges with medium and get semantically meaningful composite terms suggests

that it may in reality be more of a complex notion.

One modifier which is very useful is negation which is represented by the adverb not as in

not high. We use the complement operator as presented in Section 2.3 to model not:

not P = P' (3.7)

where P is a primary term such as high and "'" represents the taking of the complement of the

fuzzy set which is the meaning of P. We shall often use the same symbol (here P) to represent

the label of a linguistic value and the fuzzy set which is its meaning when the context removes

ambiguity. We shall retain the convention of representing actual linguistic values in boldface.

Using the primary functions shown in Figure 3.1, the hedged value not high is illustrated

in Figure 3.3 along with high and low. Notice that not high has quite a different meaning than

low. Negation is usually considered to be an operator rather than a hedge but since its seman

tics are very similar in operation to a hedge we will consider it as such for the purposes of rat

ing language design.

The basic operations CON and DIL presented in Section 2.4 enable us to define hedges

which increase and decrease fuzziness in primary terms. The hedge very has the effect of

38

^NOT HIGH

/^HIGH

Figure 3.3 Comparison o/low and not high

steepening the slope of a term such as high. All compatibility values less than 1 are reduced

with the net effect that base values which had a low compatibility with the concept of high will

have a much lower compatibility with the concept of very high. In other words, fewer base

values will have a strong association with the hedged value. Moreorless has an opposite effect.

All ^-values less than 1 are increased. Since more base values attain a strong association with

moreorless high than with high the effect is to increase the fuzziness of the concept. In terms

of our basic operations (see Chapter 2):

very P = CON(P)

moreorless P = DIL(P)

(3.8)

(3.9)

Incidentally, moreorless is written without intervening blanks to emphasize that the phrase

behaves semantically as a single indivisible operation. The effect of these two hedges is illus

trated in Figure 3.4.

As Lakoff points out [LAKOFF 1973], the power of 2 in CON (see Equation 2.12) is

chosen somewhat arbitrarily. In fact, we can gain a more satisfactory degree of generality by

defining very in terms of a parameterized concentration function (CONC) which is a slightly

liberalized version of the CON function of Zadeh. Thus:

MCONc(^fl)= (MA•), (3.10)

Now we may define very as before (3.5) and additionally define the hedge extremely as an even

stronger concentration:

39

very/> = CONC(/>,2)

extremely P = CONC(/> 3)

^MORE OR LESS LOW

^LOW

^VERY LOW

Figure 3.4 Comparison o/very and moreorless

(3.11)

(3.12)

It is possible to similarly parameterize the DIL operator but we will not do so here.

Operationally, the parameterized CON and DIL functions are identical except that CON accepts

powers greater than 1 while DIL is concerned with fractional powers. This redundancy is useful

in making clear the meaning of these operators, so we will retain it.

We should point out that moreorless has also been interpreted as a fuzzifier in the litera

ture [ZADEH 1972]. As pointed out in Section 2.4, this operation makes a non-fuzzy set fuzzy

or increases the fuzziness of a fuzzy set by modifying the support of the set. Rather than

define two versions of moreorless we introduce a new hedge about which is specifically

intended to fuzzify a numerical rating. Thus the phrase about five means that the non-fuzzy

singleton:

five =1 [5] (3.13)

is fuzzified by the hedge about. Our definition of about is in the same spirit as Zadeh's use of

"approximately" in connection with the definition of fuzzy numbers (see [ZADEH 1975b].) In

our implementation (see Chapter 5) a default value for the kernel of the fuzzification is pro

vided but may easily be changed by the user. For the purposes of illustration in this chapter,

we will use the following formulation:

KERNEL(/)=.4[/-2], .8[/-l], ![/], .8[/+l], .4[/+2] (3.14)

40

where values beyond the end points of the rating scale are dropped (that is,

fjLj=0, j<lorj>9). Then:

about five = FUZ(five; KERNEL(5))

= lx(.4[3], .8[4], 1[5], .8[6], .4[7]) (3.15)

= {.4[3], .8[4], 115], .816], .4[7]}

Fuzzification is illustrated in Figure 3.5.

i-I

2 5 8 9

Figure 3.5 The fuzzification operation

^ABOUT FIVE

FIVE

For the purpose of contrast intensification we define the hedge indeed as simply:

indeed P = INT(/>) (3.16)

This interpretation of indeed is due to Wenstop [WENSTOP 1975]. The effect of indeed differs

from very in that it modifies membership values which differ significantly from 0.5 (the "cross

over points"). The hedge very concentrates the entire set about its peak value. Figure 3.6

displays both of these hedges for comparison.

41

INDEED LOW

l± 0.5-

Figure 3.6 Comparison of'very and indeed

3.4 Connectives

These basic hedges may be combined to form more complex functions which will cause

peak shifts of the primary values. In this way we may generate rating values which "lie

between" the primary fuzzy values on the rating scale. First we need to add connectives to our

rating language.

Our most useful connective will be and which is simply defined as:

A and B = A pj B (3.17)

where A, B are (possibly hedged) primary values. Zadeh has shown [ZADEH 1965] that the

intersection operation preserves convexity. Similarly, we could define or as the union of two

fuzzy sets. This definition can be found in [ZADEH 1972]. However, the connective or is not

useful in forming complex rating terms because it does not preserve convexity. For example,

high or medium would peak at 5 and 9 (using the earlier definitions of the primary terms).

Since ^-values between the peaks would be less than 1, convexity is lost. This issue of convex

ity is discussed in greater detail in Section 2.2 where the operation of or is graphically illustrated

(Figure 2.3).

The simplest solution is to make all of the ^i-values between these peaks equal to the

peak values so that a (very broad) convex curve results. The corresponding intuitive argument

is that when we say an object value (or feature resistance, or whatever) is high or medium we

really mean the value is less compatible with base values below 5 and above 9 but equally com

patible with all points between these bounds. In other words we are giving the end points of an

42

interval which is interpreted as a range of equally compatible values. In order to avoid confu

sion with the more usual notion of or we shall employ the connective to as in high to medium.

This connective will be defined as the union with the result corrected to maintain convexity.

Through the use of combinations of basic hedges and connectives it is possible to define

more complex hedges. These will operate upon the end point primary values to yield terms

which have meanings (in the sense of fuzzy sets) which peak at base values between the pri

mary terms. This allows greater flexibility in specifying a fuzzy rating.

We define the hedge pretty to perform a very slight peak shift in the end point curve.

For example, pretty high will have a maximum at 8 on the 9 point rating scale used in our

implementation. Using the hedges we have already discussed, the definition of pretty is:

prettyP=NORMmoreorless ((extremely P)and moreorless not very/0 (3.18)

where evaluation proceeds from right to left except when overridden by parentheses. The pro

cess is illustrated in Figure 3.7; the reasoning proceeds as follows. The hedge very creates a

curve lying to the right of high. The hedge extremely yields a curve which is even further dis

placed toward the high end of the base scale (Figure 3.7a).

o

Extremely
High

5 9

Figure 3.7a Forming the portions o/pretty high

This latter curve will form the left half of the result (before dilation and normalization).

Applying hot to very high results in the dashed curve of Figure 3.7b. The hedge moreorless

shifts the dashed line slightly right. Applying the connective and yields the intersection of the

two fuzzy sets represented by the heavy solid lines in Figure 3.7b. This result is labeled X in

Figure 3.7c. The leftmost moreorless acts upon the result and it is in turn normalized. Nor

malization must be applied since and does not preserve normality in general. We assume all

43

0

Not Very
High

More or Less
Not Very High

Extremely
High

Figure 3.7b Negation forms the left halfof the phrase

h Norm
More or Less X

Figure 3.7c Combining portions to arrive at the final phrase

rating phrases to be modeled by normal fuzzy sets. Since the scoring functions preserve nor

mality and convexity (see Chapter 4), the linguistic approximation process is greatly simplified.

The final rating will be similar in shape (normal and convex) to the meanings of terms which

are generated by the rating language grammar (see Section 3.8).

We give the definitions of two more hedges without detailed explanation. Their relation

ship to each other and the primary term low is illustrated in Fig. 3.8. The two hedges are fairly

which shifts further than pretty and sortof which shifts further than fairly but still remains to

one side of medium:

44

fairly />=NORM (indeed />)and not indeed very P (3.19)

sortof P=NORM (moreorless moreorless/1)and moreorless not P (3.20)

Recall that indeed is an intensifier and steepens the slope of the curve in a slightly different

manner from very.

Low
Fairly Low

Sort of Low

1

9

Figure 3.8 Fffectof the hedges fairly and sortof

This method of constructing hedges was inspired by Lakoff [LAKOFF 1973] although we

have modified his formulations somewhat. A difficulty with hedges designed in this way is that

they tend to be sensitive to small changes in the membership functions of the primary values.

Additionally, the complexity of the formulations can grow rapidly and soon become counter

intuitive and difficult to analyze. Shaket has suggested a method of hedge construction

[SHAKET 1975] which is simple computationally although perhaps less linguistically satisfying.

Recall that primary terms in his system are based upon the exponential.

Shaket defines a hedge by explicitly declaring the ju-value of the primary term at which

the hedged primary should reach it's maximum. An exponential is then generated which peaks

at the base value at which the primary possesses the /x-value of interest.

45

For example, suppose:

high = £(/; 9,2.5)

= {.02[4], .08[5], .2416], .53[7], .S5[8], 1[9])

(3.21)

where I is the universe of discourse made up of the integers 1 to 9, 9 is the peak, and 2.5 is the

spread. We have rounded to two places for simplicity. In actuality, there would be no zero /it-

values due to the asymptotic behavior of the exponential. We may then define pretty to peak

when Athigh=0.8 and to behave exponentially. Then (see [SHAKET 1975] for more detail):

Mprettyhigh = ^^highi 0.8,0.25)

(3.22)

= .01 [6], .32[7], 1[8], .55[9]

The result has been normalized and rounded for simplicity. The spread value of .25 is given

for purposes of illustration and represents one possible choice. Notice that the E function here

operates upon the fuzzy set for high rather than upon the base scale. Similarly, we can define

fairly and sortof:

Mfairly P - E(lLp, 0.5,0.25) (3.23)

Msortof P = E(fLP-y 0.2,0.25) (3.24)

While this method is conceptually simple, its effective usage requires a deep knowledge of

the specific membership functions of the scale end point primary terms. We now suggest a

third alternative hedge formulation which operates more directly upon information about the

base scale. Suppose we define pretty as a hedge which shifts its input fuzzy set one unit on the

base scale. Thus, pretty High will peak at a base value of 8 while pretty low peaks at 2. We

define the function SHF which takes a shift count and a fuzzy set as input. SHF determines the

base value at which the input set peaks, shifts that value toward mid-scale by the count given

and generates a fuzzy set of the same form as the input (that is the primary term) with the new

peak. For example, using the exponential system:

Mpretty low ~ SHF(/Aj0W, 1)

(3.25)

= £(/; 2,2.5)

46

Of course, this method may also be applied when S and tt functions are being used by simply

generating a 7r-pulse at the proper peak.

While less linguistically intuitive since the fuzzy sets themselves are not operated upon

directly, this method has the advantage of conceptual simplicity. Additionally, the hedged

values will possess fuzzy sets with similar "shapes thus making things easier for the linguistic

approximator.

It is likely that none of these methods will provide the ultimate answer to hedge formula

tion. Further study is needed to determine which (if any) of these schemes most closely

models the hedge process in humans. It may be that hedges will ultimately require an empirical

formulation of some sort. Therefore, our system allows the user to define his or her own

hedge operators and/or primary terms.

3.5 Fuzzy Relations

We now discuss the use of fuzzy relations to gain additional flexibility in formulating rat

ings. Two particular binary relations are of interest: lower and higher. We wish to investigate

the effect of applying a relation such as lower to a (possibly hedged) primary term in the rating

system. Recall that in Section 2.6 we defined the meaning of a binary relation applied to a

fuzzy set to be the composition of the set with the relation. For example, let the primary term

be denoted by P and the relation be labeled R. Then the meaning of a phrase such as

lower than medium is given by the solution of:

P = medium

R = lower

lower than medium = POR (3.26)

= medium O lower

We therefore define than to be a binary operator which performs the composition of its right
operand with its left operand. Allowing the than operator to perform the function of order

reversal allows us to formulate relations in the familiar row-to-column matrix format while

retaining the ordering of natural English in writing rating phrases. The idea of associating than
with composition is due to Wenstop [WENSTOP 1975].

In the interest of simplicity, we will define higher and lower explicitly and model these

relations with matrices. In order to keep the examples short, let us choose the integer interval
1 to 6 as the rating scale (universe of discourse). We define lower as:

47

10 0 0 0 0

1 .1 0 0 0 0

1 .5 .1 0 0 0
lower = j <8 .5 .! 0 0 UZ/J

1 1 .8 .5 .1 0

1 1 1 .8 .5 .1

The higher relation may be thought of as a matrix which is symmetrical to the above about the

diagonal. Notice that we are interpreting lower here in a fuzzy manner. For instance,

lower3# 3=0.1 whereas a non-fuzzy model of lower would contain a zero entry for that pair.

Also, the property of being lower increases with the separation of base scale values. Finally, we

recognize the fact that there is a minimum base scale value by setting lowers i=l. Therefore a

more exact interpretation of this relation might be "lower or to a lesser extent similar or

minimal". The reader may find these additional properties counter-intuitive to the familiar

notion of "lower". As we shall see shortly, a fuzzy notion of lower as in (3.27) simplifies the

design of relational hedges.

We do feel compelled to indicate an alternative formulation, however. One may begin

with the familiar notion of "lower":

0 0 0 0 0 0

1 0 0 0 0 0

1 1 0 0 0 0

1 1 1 0 0 0

1 1 1 1 0 0

1 1 1 1 1 0

lower = i i i a a n (3.28)

and then define relational hedges as fuzzifiers (see Section 2.4) to get fuzzy relations such as

slightly lower or much higher. This approach is illustrated briefly in [ZADEH 1972]. Either

method of relation definition will serve in general. We choose to work with a fuzzy relation for

lower in the interest of simplicity of operation. Since the original relation is fuzzy, we may

employ relational hedges which are as simple as the value hedges defined above. The inter

mediate step of fuzzification is avoided. Additionally, a fuzzy definition of lower allows us to

model the effect of increasing membership values as the base values move further apart. In

other words, the notion of "lower" becomes stronger for base values which are further toward

the low end of the scale from the input value when composition is performed.

48

3.6 Relational Hedges

Returning to our original definition of lower (3.27), we next define hedges which operate

upon relations in a manner analogous to the primary term hedges discussed earlier. Since our

relations are simply fuzzy sets in Ux £/, many of our earlier hed^e formulations can be adapted

easily. For example, not is just the element by element compierjent:

0 11111

0 .9 1 1 1 1

0 .5 .9 1 1 1
not lower= n 2 5 9 1 1 (3.29)

0 0 .2 .5 .9 1

0 0 0 .2 .5 .9

Notice that not lower is not the same thing as higher just as not high is not identical in mean

ing to low. We may also equate much with very in meaning. Then for a relation R:

much/> = CON(/*) (3.30)

or equivalently:

A*very & ~ PR

The compatibility function is now bivariate since R is bivariate. In other words, the hedged

relation is also defined in Ux U\

10 0 0 0 0

1.01 0 0 0 0

lower =
1 .25 .01 0 0 0

= 1 .64 .25 .01 0 0

1 1 .64 .25 .01 0

1 1 1 .64 .25 .01

(3.31)

Similarly, we may define moreorless lower in terms of the DIL operator.

As a more complicated example, consider the hedge slightly which we define as an analog

of the primary term hedge fairly:

slightly R = NORM (indeed /?)and not indeed much R (3.32)

where indeed is just the intensification operation described earlier and and is fuzzy set intersec

tion. All these operations are extensions of the simple fuzzy set operators to relations. This

just means the base values are ordered pairs rather than singletons. Our implementation of

slightly (see Appendix B) is somewhat more complicated in that slightly (R) is automatically

adjusted to have a fji\j value of 1 for lower or (with the present base scale of 1 to 6) a /x66

value of 1 for higher so that we preserve the "slightly lower or minimal" property.

49

Additionally, we round to two places as a matter of course. The result is:

10 0 0 0 0

1 .04 0 0 0 0

0 1 .04 0 0 0
slightly lower = 0.57 1.04 0 0 *3,33)

0 0.52 1 .04 0

0 0 0 .52 1 .04

In each of these cases, the fact that the diagonal entries have been non-zero reflects the fuzzi

ness of the value which will be composed with the relation as illustrated below. If the value to

be operated upon by lower were non-fuzzy, a relation of the form (3.28) would be more

appropriate since a number is not lower than itself. When the number is not precisely known,

however, the division between "lower" and "equal" is not as clear. Hence the small but non

zero diagonal values in (3.27), (3.29), (3.31) and (3.33).

We can now give an example of a relation operating upon a rating value. Using our 1 to 6

scale, we define high:

high = .2[4], .8[5], 116] (3.34)

The meaning of the phrase slightly lower than high is given by.the composition of the primary

term (3.34) and the hedged relation (3.33):

slightly lower than high = high O (slightly lower) (3.35)

10 0 0 0 0

1 .04 1 .52 0 0

0 0 .04 1 .52 0
= 0 0 0 .2 .8 lO0 0 0 04 1>52

0 0 0 0.04 1

0 0 0 0 0.04

= 0 .2 .52 .8 1 .04

which might approximate to fairly high or pretty high depending upon the exact form of those

hedges.

50

3.7 Compound Rating Phrases

These relations may be employed along with the previously defined connective and to

create compound terms which convey finer shades of meaning than a hedged primary alone.

As a simple but typical example, consider the compound rating phrase: higher than -

medium and lower than pretty high. The process is depicted graphically in Figure 3.9 where

the curves are to be viewed as qualitative approximations for the purposes of illustration.

Lower Than
Pretty High

Pretty
High

Figure 3.9a Meaning o/lower than pretty high

Higher Than
Medium

Figure 3.9b Meaning o/higher than medium

Notice in Figures 3.9a and b that the application of these particular relations generates a

pair of monotonic compatibility functions. When these are intersected via and and the result

51

m (Lower Than
Pretty High and

gher Than Medium)

Figure 3.9c The final compound phrase

normalized (see Figure 3.9c) a function which peaks between the two original curves is created.

In fact, one could define a connective "between" to operate in just this manner although we will

not do so here.

52

3.8 A Sample Rating Language Grammar

Let us now organize all of the above information into a simple rating language. We give

the language syntax in the familiar Backus-Naur Form [NAUR 1963]:

<sentence> ::= <compound phrase> | <simple phrase>

<compound phrase> ::= <conjunctive phrase> | <range phrase>

<simple phrase> ::= <relational phrase> | <hedged primary>

<conjunctive phrase> ::= < relational phrase> and < relational phrase>

<range phrase> ::= < hedged primary> to <hedged primary>

<relational phrase> ::= <composite relation> than <hedged primary>

<composite relation> ::= <relation hedge> <relation> | <relation>

<relation hedge> ::= not | much | slightly

<relation> ::= lower | higher

<hedged primary> ::= <hedge> < primary> | <primary> | <fuzzy number>

<hedge> ::= not |very |moreorless | fairly | pretty| sortof | really|extremely | indeed

<primary> ::= low | high | medium

<fuzzy number> ::= <fuzzifier> <number>

<fuzzifier> ::= about

<number> ::= one | two | three | four | five | six | seven |eight | nine

Some of the rating phrases which may be generated with this grammar are:

high

low

medium

not high

moreorless medium

indeed low

medium to sortof high

about four to about six

slightly lower than pretty high

not higher than medium

higher than low and lower than sortof high

53

3.9 Limitations of the Sample Rating Language

Our sample language consists of a finite number of unique rating "sentences". We have

chosen not to include any recursive productions in order to keep the exposition simple. In

addition, we allow only a single hedge application in forming a < hedged primary > or a < com

posite relation >. There are certainly reasonable intuitive arguments for removing these restric

tions but doing so leads to some semantic difficulties. A recursive formulation such as

very very high makes good sense while pretty pretty low is much less intuitively satisfying.

Good combinations of hedges are not always easy to find. Intensification works well (as in

indeed pretty high) and negation works well with concentration (not very high,

not extremely low). Other combinations are uncomfortable: fairly pretty high,

very pretty high. We adopt the view that our simple grammar should avoid recursion rather

than try to isolate semantically meaningful instances. We feel the resulting loss of power will

not be critical in most real-world uses of the rating system.

A more sophisticated grammar would sub-categorize the various hedges to prohibit certain

combinations. We wanted to give the user maximum flexibility to define the semantics of his

or her hedges without having to be concerned with combinations or recursive applications

which could yield semantically invalid or intuitively alien phrases. An alternative approach

would involve designing hedge functions which are context-sensitive in the semantic sense.

Thus a hedge might behave differently when applied to a primary term such as high than when

applied in combination or recursively.

A related phenomenon results from our interpretation of medium as a primary term.

While the concept "medium" seems intuitively as simple as high or low its behavior with

hedges argues that it may indeed be a more complex notion. While moreorless medium makes

sense as a means of increasing fuzziness a phrase such as pretty medium implies a peak shift of

some sort due to the way the hedge is defined. This is almost certainly not what is desired.

Assuming pretty medium makes intuitive sense (a debatable proposition in itself) the effect is

probably analogous to the application of dilation or concentration. The worst combination is

not medium which makes semantic sense ("either high or low") but does not have a reasonable

interpretation in the context of a rating since it is non-convex. A more complex but less gen

eral grammar would probably treat medium as a special case. We will restrict ourselves to this

prototype language for the remainder of the presentation.

54

4. Determination of the Overall Security System Rating

Let us assume a hypothetical rater has analyzed a data processing facility using the rated

security system model presented in Section 1.5. We assume a resistance has been assigned to

each security feature in the system using the rating language described in Chapter 3. Given the

individual resistances, we wish infer a rating for the security system as a whole. This system

rating should be expressed using the same rating language which was employed to rate the sys

tem elements.

4.1 The MIN Function

One possible method of rating calculation would be to employ worst case analysis. This is

in keeping with the "weakest link" philosophy (see Section 1.4). Given a set of resistance

values, we compute a composite of the lowest points of each. Therefore, we need a function

which takes two fuzzy sets over the same base scale as inputs and returns the "minimum" (in a

fuzzy sense). We call this the MIN function. Thus in Figure 4.1, we want the result to be the

linguistic approximation of /a.v. This is not the same operation as the element by element com

putation of minimum /x-values. That operation would yield the intersection (see Section 2.3) as

indicated by the broken lines in the figure. In this case fxx MIN jj.y will yield fxx. As we shall

see, when the inputs are not well separated the MIN function will yield a composite of the two.

Figure 4.1 The MIN is not the intersection

If we begin with the classical definition of minimum as a binary operator upon non-fuzzy

points in some universe of discourse - £/, we may employ the extension principle as discussed

in Section 2.7 to arrive at a definition of MIN as a binary operator upon fuzzy subsets of U. We

55

select the set of non-negative integers as our U. This more is convenient for the construction

of examples than using the real numbers. Furthermore, the implementation discussed in

Chapter 5 employs the integers as the universe of discourse. Recall that in Section 3.1 we

defined our normalized rating scale as the set of integers from 1 to 9. This will be the base

scale for all examples in this chapter. Let MIN represent the binary operation which returns

the minimum of two fuzzy ratings. The MIN operation will map two fuzzy subsets of / back

into /. We use MIN instead of the more familiar " A" because we have used the latter symbol

for operations upon /u-values. Computationally, the two operations are identical; it is the con

ceptual difference we wish to emphasize. Let X and Y represent two fuzzy ratings. Their

membership functions are given by:

X= U MjrOOM
/€/

Y= \Jhy(J)\J]

Applying the extension principle (see Section 2.7):

AT MIN 7= (J W(/)AMrO))[/MINy]
i.j€l

(4.1)

(4.2)

Recall that" (J" as used here implies a maximum operator acting upon the membership values

of identical base values (see Section 2.3). As an example, consider the MIN of two fuzzy

numbers:

about 4 = {.4[3], 1[4], .6[5])

about8={.7[7], 1[8], .3[9]}

about 4 MIN about 8 = \J
.4[3 MIN 7], .4[3 MIN 8], .3[3 MIN 9],

.7 [4 MIN 7], 1[4 MIN 8], .3 [4 MIN 9],

.6[5 MIN 7], .6[5 MIN 8], .3[5 MIN 9]

= .4[3]t 1[4], .615]

= about 4

(4.3)

(4.4)

56

A security system rated with this "weakest-link" function is presented in Chapter 6.

We have also implemented a variant of the MIN score which we call the "preselected

weakest link" score. The rater must provide a threshold which is a phrase chosen from the rat

ing language used to assign loss values and likelihoods. This threshold is used as a selector to

weed out unimportant security elements in the following manner. In addition to feature resis

tance, we assume the security system rater has assigned a loss value to each security object and

a likelihood to each threat in the system (see Section 1.5). Considering each security element in

turn, we first examine the "value" and "likelihood" of that element. Since object values and

threat likelihoods are expressed using linguistic ratings (fuzzy sets), we operate upon them with

a MAX function which is defined in a manner analogous to the MIN function of,(4.2):

X MAX Y= (J (fix(i) A/a Y(J)) V MAX j] (4.5)

Using MAX we calculate the fuzzy maximum of the object value and threat likelihood for a

given element. If this maximum is less than the above mentioned "threshold", the element is

ignored in computing the overall system rating. Those elements which remain form a subset of

the installation. Intuitively, this subset contains elements of some minimum degree of impor

tance from the standpoint of loss value or threat likelihood. A MIN score is then calculated

upon this subset. This "preselection" process allows the user to employ information about the

"importance" of the various security elements in his or her installation; less vital security objects

will not affect the overall rating. An example of a "preselected weakest link" rating is given in

Chapter 6.

The decision to include or reject an element is a binary one which must be made in the

presence of uncertainty. The function LT (see Appendix B) performs the "less than" compari

son by using the MIN function described above to determine the fuzzy minimum of the thres

hold and the previously calculated maximum of loss value and threat likelihood. The lesser of

the threshold and the maximum is defined to be the one which most closely matches the MIN

of the two. This definition is necessary since the fuzzy minimum may actually be a composite

of the two. Although this is not the only possible definition of "less than" in a fuzzy environ

ment, it will suffice for our purposes.

57

4.2 The Fuzzy Mean

Let us now consider alternative scoring functions which are more optimistic and hopefully

more realistic for real-world security system analysis. Instead of returning the lowest resistance

value, our scoring function will return an "average" resistance which is defined as the analog of

the classical numeric mean. The desired situation for two resistance values is illustrated in Fig

ure 4.2. The figure is intended as an intuitive illustration rather than a precise graphical calcu

lation.

Figure 4.2 A qualitative illustration of the fuzzy mean

If we were working with non-fuzzy values, the mean would be defined as:

2>
/-l

r = (4.6)

where each r, is a (non-fuzzy) resistance rating and n is the number of elements in the system

being rated. In order to calculate a "fuzzy mean", however, we must extend the addition opera

tion to accept fuzzy sets. Applying the extension principle (see Section 2.7):

X+Y= (J (***(/) A/a r(/» [/+./]
i+JGU

(4.7)

where, as usual, "a" signifies the taking of the minimum. Recall that the union of fuzzy sets

implies a maximum operator acting upon the membership values of identical base values (see

Section 2.3).

As an example, consider the addition of the two fuzzy numbers in (4.3):

58

about 4 + about 8 = (J
•4[3+7], .4[3+8], .3[3+9],

•7[4+7], l[4+8], .3[4+9],

.6[5+7], .6[5+8], .3[5+9]

(4.8)

= {.4[10], ,7[11], 1[12], .6[13]. .3[14]}

which might be interpreted via the process of linguistic approximation as about 12.

Therefore, the first step in the calculation of the fuzzy mean is the summation of the set

of resistances using fuzzy addition. The result is then divided by the number of elements rated

which is a non-fuzzy value. Appealing once more to the extension principle, this division is

actually a division of each of the base values by a non-fuzzy singleton since n may be

represented as |l[n]}. Division in this case has no effect upon the /t-values of the fuzzy sum

since (by definition) for any /A-value V : 1a* = x Thus division by a non-fuzzy singleton

amounts to a change in base values only. This is not the general case with fuzzy division as we

shall see in Section 4.3 below. Continuing with example (4.8), the fuzzy mean of about 4 and

about 8 is:

about 4+about 8=4[^L ^ ^ ^ ^ (4 9)

= {.4[5], .7[5.5], 116], .616.2], .3[7]}

which might be approximated as about 6.

A difficulty with the division operation is that it has mapped our result onto the real line.

We have chosen to deal with the set of non-negative integers both for simplicity in presenting

examples and in anticipation of the discussion of our rating system implementation in Chapter

5. However, the extension principle can be formulated for situations in which the base scale is

a continuum such as the real line. Such a formulation is given in [ZADEH 1975b]. We could

then choose the real line as our universe of discourse and define our rating scale as the real

interval (1,9). The fuzzy mean operation would then map back into this interval. Thus, prob

lems of scale changes and issues of convexity (to be discussed shortly) are more pragmatic than

theoretical issues. We will examine these problems in further detail in Chapter 5 when we

describe our implementation.

By way of review, the fuzzy mean is defined (in our context) as:

n

R = i=L_' (4.10)

59

where the R's are fuzzy resistance ratings and n is the number of elements in the security sys

tem under consideration. Unlike (4.6), the £ operator is here understood to represent fuzzy

summation via the addition operation of (4.7). The division by n may be thought of as simply

an operation upon base values or (more generally) as a degenerate case of fuzzy division (see

Section 4.3).

4.3 The Weighted Fuzzy Mean

One of the shortcomings of the fuzzy mean as a scoring function for rating security sys

tems is that it deals with security feature resistance only. We wish to take advantage of other

information about the security elements which our model of the rated security system (see Sec

tion 1.5) provides. In particular, each element possesses value and likelihood components. We

can think of these component values as representing subjective evaluations of the importance of

each particular element in the system to the overall rating. In other words, value and likeli

hood are weights on resistance. Suppose we assign non-fuzzy numbers from our integer rating

scale (1 to 9) to object value and threat likelihood at each element. Assume for simplicity that

each weight w is given by:

w = maximum (value, likelihood) (4.11)

where maximum has the usual definition for non-fuzzy numbers. We may then define a

weighted fuzzy mean scoring function where each of the fuzzy resistance values are multiplied by

a non-fuzzy weight before fuzzy addition:

_ j>xR,
W = — (4.12)

n

2>

The operation which is represented by "x" is a multiplication of the base values of the

various R's. Each weight may be thought of as a non-fuzzy singleton |l[w,]} with the result

that multiplication here operates analogously to division in the case of the fuzzy mean. Again,

this can be thought of as a limiting case of fuzzy multiplication (see Equation 4.15). Notice the

summation in the numerator is a fuzzy operation as in (4.10). The summation in the denomi

nator represents classical addition of the (non-fuzzy) weights which serves to normalize the

weighted fuzzy mean into the (real) interval (1,9). This normalization is desirable so that the

resultant score ranges over the original base scale thus simplifying the task of the linguistic

approximator (see Section 5.6).

60

As a simple example, using about 4 and about 8 as defined in (4.3), let:

Ri = about 4

R2 = about 8

w\ = 4

Wi =» 2

Then the weighted fuzzy mean is given by:

(4 x about 4) + (2 x about 8)
(4+2)

|.4[4x3], l[4x4h .614x5]) + |.7[2x7], l[2x8], ,3[2x9]}
6

= U

.4(12+14], .4[12+16], .3[12+18],

.7[16+14], 1U6+16], .3[16+18],

.6120+14], .6120+16], .3[20+18]

={.4[-f-], .4[^-], .7[^-], l[f], M^-l .61^-], .31^-]}

= {.4[4.5], .4[4.67], .7[5], 1[5.4], .6[5.67], .6[6], .3[6.33]}

(4.13)

(4.14)

which might approximate to about 5.4 if the final base scale were the real line. Our implemen

tation (see Chapter 5) assumes the base scale is integer valued, however. An approximation

under such assumptions would be somewhat less precise. Possible linguistic approximations

are: slightly higher than about 5 or about 5 to about 6 or perhaps medium.

61

4.4 Fuzzy Weighting

In the general case, one would expect the object value and threat likelihood components

to be assigned fuzzy values from the same normalized base variable scale as the resistance

values. Therefore, weights may also be fuzzy. This leads us to define a more general scoring

function which we name the fuzzy weighted mean. Here both the resistance and weight values

are fuzzy so that multiplication must operate upon fuzzy sets. Furthermore, the sum of the

weights will be a fuzzy value as will of course the weighted sum. Evidently, we require

definitions for fuzzy multiplication and fuzzy division. Fortunately, both operations may be

defined via the extension principle (see Section 2.7) in a manner analogous to the earlier

definition of fuzzy addition. Let X and Y be fuzzy ratings as above. Then multiplication is

defined via the extension principle as:

Xx Y= (J bix(l)AiLY(j))[ixj] (4.15)
ixj€U

Similarly, division is defined as:

j = U </a*</)a/aK/))[-t] (4.16)
J

Note that division does not map into the set of positive integers as does addition and mul

tiplication. We signify this by the use of R instead of U in the above definition. This presents

no theoretical difficulties if the rating scale is taken as the positive reals but does present prag

matic implementation problems since we assume the base scale is integer valued. Essentially,

some of the information resulting from fuzzy division is lost under an integer implementation

where the fuzzy sets are necessarily discrete. This issue is treated further in Section 5.4.

The following two examples use the values about 4 and about 8 from (4.3). First con

sider multiplication of fuzzy values:

about 4 x about 8 (4.17)

-u

.4[3x7], .4[3x8], .3[3x9],

.7[4x7], 114x8], .3[4x9L

.615x7], .6[5x8], .3[5x9]

= {.4[21], .4[24], .3[27], .7[28], 1[32], .3[36], .6[35], .6[40], .3[45]}

which might be approximated as about 32. Now consider division:

62

about 8

about 4 -u

•4[1], .4[f]. .9[f],
.7[1]. l[f], .3[{],
.61 j], .6[-|], .3[-|]

(4.18)

= {.4[2.33], .4[2.67], .3[3], .7[1.75], 1[2], .3[2.5], .6[1.4], .6(1.6], .3[1.8]}

which might approximate as about 2.

Notice that in applying multiplication and division to these fuzzy sets over a discrete base

scale, convexity is lost. In the multiplication example we have as a portion of the answer set:

1(32], .6(35], .3(36], .6[40] (4.19)

The compatibility value for 36 is lower than the /t-values at 35 and 40. Similarly, the result of

(4.18) shows a value of .3 for the compatibility of 2.5 which is lower than the /^-values at 2.33

and 2.67. We mentioned in Section 2.2 that we would be dealing with fuzzy ratings expressed

as normal convex sets. Since the linguistic approximator expects to match the fuzzy score to

some combination of linguistic phrases (see Section 5.6), the process will be greatly simplified

if the score is represented by a normal convex set. Furthermore, for the reasons outlined in

Section 3.4, there is an intuitive appeal to restricting ratings to possess convexity in the fuzzy

sets which are their meanings.

Fortunately, the loss of convexity in the above examples is due to the use of a discrete

base scale. Suppose we had defined our ratings as fuzzy sets in the real line. Mizumoto and

Tanaka have shown [MIZUMOTO 1976] that addition, multiplication, and division (as defined

above) are normality preserving. They also prove that addition and multiplication are convexity

preserving. Finally, division is convexity preserving if the base scale does not include 0. We

may be confident that our calculated rating will possess a final form which is similar to that of

the group of linguistic values we employ if we operate with a base scale over some segment of

the non-negative reals.

For ease of implementation, we will model fuzzy sets over the non-negative integers. The

problem of maintaining convexity becomes a pragmatic rather than theoretical issue. We will

employ a form of interpolation to restore convexity when necessary (see Section 5.4).

We are now in a position to define the fuzzy weighted mean. The formula of (4.12) is

modified to include fuzzy weights:

W =

IW.xR,
i-i

iw,
i-i

(4.20)

63

Here "£" represents fuzzy summation in both the numerator and denominator. The multipli

cation indicated by "x" is the fuzzy operation of (4.15) and the division which normalizes the

score is defined by (4.16).

As a final example, we extend (4.14) to include fuzzy weights and calculate a fuzzy

weighted mean. Let:

about2 = {.5[l], \[2), .5[3]) (4.21)

and let about 4 and about 8 be taken from (4.3). We assume the rater has made the following

rating assignments in a security system of two elements:

Ri = about 4

R2 = about 8

Wi = about 4

W2 = about 2

Then the fuzzy weighted mean of this two-element security system is:

(about 4 x about 4) + (about 2 x about 8)
about 4 + about 2

U

.4[3x3], .4[3x4], .4[3x5],

.4[4x3], l[4x4], .6[4x5],

.4[5x3], .615x4], .6(5x5]
+ U

.5[lx7], .511x8], .3[lx9],

.712x7], l[2x8], .3[2x9],

.513x7], .5[3x8], .3[3x9]

U

.4[3+l], .413+2], .413+3],
•5[4+l], 1[4+2], .5[4+3],
.5[5+l], .615+2], .5[5+3]

.4[9], .4112], .5(7], .518], .3[9],

u .4(15], 11161, + u .7[14], 1[161. .31181. •
.6[20], .6[25] .5121], .5[24], .3(27]

{.4[4], .515], 1[6], .6[7], .5[8]}

(4.22)

(4.23)

Now addition will yield 54 non-zero /x-values some of which will combine during the union

operation of (4.7). Division will then yield approximately 270 values for the fuzzy set which is

the final score. In the interest of keeping the example as brief as possible, we will choose only

64

three fuzzy set elements for each operand. Since we are working with convex sets we will

choose elements close to the peak i±-value. This will minimize any loss of information which

might otherwise render the example useless. This is done only to simplify this example. In

our implementation such intermediate simplifications are not used. A hypothetical computer

installation is rated in Chapter 6 using the "fuzzy i.iean" and "fuzzy weighted mean" as defined

here without intermediate simplifications. Choosing the "best" three values in each case:

_ {.4[15], 1[16], .6[20]} + (.7(14], 1[16], .5(21])
{.5[5], 1161. .6171}

.4(15+14], .4115+16], .4(15+21],

.7(16+14], 1(16+16], .5(16+21],

.6(20+14], .6(20+16], .5(20+21]

{.5(5], 1(6], .6(7]}

{.4(291, .4(31], .6(36], .7(30], 1(32], .6(34]. .5(37], .5(41]}
{.5(51, 1(6], .6(7]}

Once again we choose three values from the above fuzzy sum which are nearest the base

scale value of 32 and use these in a reduced complexity calculation: calculation: which are near

the base value of 32:

_ {.7(30], 1(32], .6(34]}
{.5(5], 1(6], .6(7]}

=.5(f], J[f]. Mf1. .5(f]. Iff], .6[f]. .51^], .61^-1. .61^-1

= .5(6], .7(5], .6(4.29], .5(6.4], 1(5.4], .6(4.57], .5(6.8], .6(5.67], .6(4.86]

which has a /x-value of 1 at 5.4 and so might be approximated as slightly higher than about 5.

Notice the similarity between these results and the example on the (non-fuzzy) weighted fuzzy

65

mean. The fuzzy weights serve to add more terms to the resultant fuzzy set which the linguis

tic approximation process may sometimes use to advantage. We may expect in general a

decrease in the sharpness of the peak of the resultant fuzzy set (viewed as a curve). It is intui

tively reasonable that these "fuzzy arithmetic" operations increase the fuzziness of the final rat

ing. This is the penalty .ye pay for the use of fuzzy values throughout the rating process. We

are trading precision for utility and flexibility of expression. The end goal is the production of a

score which is realistic though inexact.

66

5. Overview of the Implementation

A complete listing of the APL code which constitutes our Security Rating Calculator is

given in Appendix B. In this chapter we wish to give the reader a general idea of the system

operation and to discuss some of our design decisions and their consequences. We assume the

reader has a basic knowledge of programming in APL [GILMAN 1974], [GREY 1973],

[WIEDMANN 1974]. In addition we employ certain features of APL*PLUS (STS 1974], in

particular the file subsystem.

5.1 Fuzzy Sets as APL Vectors

Our most fundamental design decision was to model fuzzy sets as vectors (i.e. arrays of

one dimension). This familiar data structure is simple and yet powerful enough to facilitate the

implementation of all of the operations upon fuzzy sets described in Chapter 2. The decision to

employ discrete rather than continuous fuzzy sets has some implications for the fuzzy arith

metic operations of Chapter 4. Within certain limits, these difficulties are manageable. We dis

cuss this problem in detail below. Since vectors are the fundamental entity in our implementa

tion, the attractiveness of APL is obvious. All of the basic mathematical operations in APL

extend to multi-element variables in a natural way. Both unary and binary APL operators act

upon vector operands by performing the operation in question on an element by element basis

[GILMAN 1974]. This is exactly the effect of the majority of the fuzzy set operations we have

discussed.

The contents of an APL vector is usually displayed as a sequence of values:

0 0.2 1 0.5 0 0 0.1 0 0 (5.1)

The index of the leftmost value is assumed to be 1 and the remaining indices are just the

integers in ascending order. Vector element values may be any set of valid APL constants

[GILMAN 1974]. We will restrict ourselves to values in the real line interval (0,1). As men

tioned in Section 3.1, we assume a normalized rating scale which is dimensionless. It is there

fore convenient to consider the APL index of each vector element to be a base value and the

element value to be its grade of membership (/a-value) in the fuzzy subset which the vector

represents. Under this interpretation, the above vector represents the fuzzy set (using our ear

lier notation):

(0.2(2], 1131, 0.5141, 0.1(7]} (5.2)

67

5.2 Linguistic Modifiers in APL

There are additional advantages in using APL to model a linguistic rating system. The

syntax of APL functions is such that monadic functions expect a parameter immediately to the

right of the function name and dyadic functions expect a parameter on the left and the right

(infix notation). Blanks are used as separators. If we use the v: rious linguistic values in our rat

ing language (see Chapter 3) as the names of APL variables and functions, the writing of a

complex rating phrase corresponds directly to a series of APL function evaluations. That is, a

rating phrase is also a legal APL expression. Furthermore, expression evaluation in APL

proceeds strictly right to left with no operator precedence. This is quite natural for most of the

linguistic expressions we shall use. Exceptions of interest occur in the use of the connectives

(and, to) and in composition (than) where parentheses are sometimes needed. For example,

suppose HIGH is the name of an APL variable which is currently assigned a value which is, say,

a nine element vector of /^-values. Let VERY be the name of a monadic APL function which

returns the square of its input (see Appendix B). Then execution of the APL statement:

VERYHIGH (5.3)

yields a nine-element vector each element of which is the square of the corresponding element

value in the vector HIGH. This is exactly the semantic operation we wish to model for the

hedge very (see Section 3.3). Similarly, AND is the name of an dyadic APL function which

applies the "minimum" operator to its two inputs thus achieving the intersection operation

which represents the semantics of the and connective (see Section 3.4).

Operating with fuzzy relations is also quite easy in APL. In Section 2.5 we modeled a

relation in a discrete universe of discourse as a matrix (array of two dimensions). Such arrays

are directly available as data structures in APL. All basic APL operators act upon arrays on an

element by element basis [GILMAN 1974]. Thus, relational hedges are simply modeled as

monadic functions which receive a matrix (i.e. a relation) as input. Furthermore, the definition

of composition of relations via the max-min inner product [ZADEH 1975b] is quite straightfor

ward to implement in APL. Recall that than is the linguistic operator which performs this com

position (see Section 3.5). The syntax of composition (3.35) requires that the operand order be

reversed:

lower than high = high O lower (5.4)

where "O" represents composition (see Section 2.5). We implement "O" as a max-min inner

product. In APL the operator "." performs a generalized matrix inner product operation

68

[GILMAN 1974]. The operator is "generalized" in the sense that any binary operator pair may

be chosen for the row and column operations. Recall that " x " represents multiplication in

APL [GILMAN 1974]. Then conventional matrix multiplication may be formulated in APL as:

AOB~A+.xB (5.5)

If we replace "+" by "f" which is the APL maximum operator and n x " by T (the APL
minimum operator) we have a formulation of the max-min product. Our implementation of

relational composition takes the form of a dyadic APL function named THAN (see Appendix

B). If A and B are fuzzy sets (vectors or matrices):

A THAN B = B\.[A (5.6)

performs the desired composition.

5.3 Implementation of Fuzzy Arithmetic

The modeling of the fuzzy arithmetic operators of Chapter 4 is slightly more complex.

The additional complexity is due to the fact that the universe of discourse changes. Recall that

in Section 4.2 we defined fuzzy addition as a mapping from the base scale to the set of all possi

ble sums of the base scale elements with themselves (i.e. a"x"product). Thus the fuzzy sum of

two sets defined on a base scale of 1 to 9 results in a set (vector) over the range 2 to 18. This

turns out to be straightforward to implement in APL. The main problem is the proper accumu

lation of intermediate "sums". As an aid to the reader we present a brief example of the opera

tion of the APL function PLUS (see Appendix B). In the interest of brevity we will assume a

base scale of 1 to 4. Let:

A = .5 1 .4 0

(5.7)

B = .2 .5 .8 1

The execution of A PLUS B proceeds as follows. First A \ is combined with each element

of B using the "A" (minimum) operator. This implements the definition of PLUS using the

extension principle (see Section 4.2). The (intermediate) result is:

.2 .5 .5 .5 (5.8)

The base scale of the intermediate result is simply the result of the integer addition of the vec

tor indices involved in this step: (1+ 1), (1+2), (1+3), (1+4) or the interval (2 to 5). Next

69

A2 is combined with each element of Byielding the intermediate result:

.2 .5 .8 1 (5-9)

However, the base scale has shifted since the index sums are: (2+1), (2+2), (2+3), (2+4)
giving a ntw interval (3 to 6). The /x-values of corresponding base values in each of these

intermediate results must be combined using the "v" maximum operator in accordance with

definition (4.7). We accomplish this in APL by first adding leading and trailing zeros to prop

erly align the vectors to a scale of (1 to 6) where the zero for index 1 is included because APL

normally assumes vectors are indexed from 1. Then:

0 .2 .5 .5 .5 0

(5.10)

0 0 .2 .5 .8 1

yields:

0 .2 .5 .5 .8 1

Next A3 a Byields a vector over (4 to 7):

.2 .4 .4 .4 (5.11)

which is adjusted to:

which yields:

0 0 0 .2 .4 .4 .4

V (5.12)

0 .2 .5 .5 .8 1 0

0 .2 .5 .5 .8 1 .4

Since A4 = 0 it offers no contribution to the fuzzy sum other than the lengthening of the vector

to conform to the interval of the final result (1 to 8):

0 .2 .5 .5 .8 1 .4 0 (5.13)

Notice that our result has a maximum at a base value of 6 which is intuitively plausible since A

exhibits a maximum compatibility value at 2 and B has a maximum at 4.

70

Fuzzy multiplication is implemented in an analogous fashion. In this case the scale shifts

are more complex than for addition. For instance, given the A and B values of (5.7), A\ a B

now maps to (lxl), (1x2), (1x3), (1x4) and A2 A fields (2x1), (2x2), (2x3), (2x4). We

must combine intermediate results which are defined over (1,2,3,4) and (2,4,6,8). Therefore,

it is necessary to insert zeros in the resultant vectors as well as adding them to the beginning

and end. The reader may examine the code for the function TIMES (see Appendix B) to see

how this is done. We will show only the intermediate results of multiplication using (5.7) as

operands. These values are repeated here for convenience:

.5 1 .4 0

B = .2 .5 .8 1

A TIMES B =

.2 .5.5.5 000000000000

V

0.2 0.5 0.8 0100000000

V

00.2 00.4 00.4 00.4 0000

V

0000000000000000

= .2 .5 .5 .5 0 .8 0 1 .4 0 0 .4 0 0 0 0

The fuzzy product shows a maximum fi-value at 8 on the base scale. The result is thus at least

intuitively reasonable since A peaks at 2 and B peaks at 4.

(5.7)

(5.14)

71

5.4 Convexity

Notice that the result of (5.14) is not a convex fuzzy set according to definition (2.8). In

particular, there are zero fi-values at 5, 7, 10, and 11 which should be non-zero. This occurs

because no product of two integers in the interval (1 to 4) will yield these values. We inserted

zeros in these positions ./hen shifting the intermediate result vectors before combination with

the "v" operator. As pointed out in Section 4.4, the results of Mizumoto and Tanaka

[MIZUMOTO 1976] show that convexity is preserved when the universe of discourse is the real

line. Therefore, we may be assured that our loss of convexity is a purely pragmatic conse

quence of modeling fuzzy sets over a discrete universe. Accordingly, we will restore convexity

using "interpolation" for the benefit of the linguistic approximator and to insure that successive

operations (e.g. multiplication followed by division) will not intensify the problem.

There are several ways in which this loss of convexity may be remedied. The most con

servative approach would be to adjust all low fi-values which lie between higher values in the

vector which represents the fuzzy set. From the definition of convexity (2.8):

ii<J<k)-+nx(j)>(iix(0 A/MA:)) (5.15)

we can assume that all zero values must be corrected to be at least as large as the smallest of

their nearest surrounding values in the vector. Applying this form of "interpolation" to the

result of example (5.14):

A TIMES B = .2 .5 .5 .5 .5 .8 .8 1 .4 .4 .4 .4 0 0 0 0 (5.16)

Of course, given more information about the shape of the compatibility functions of A and B,

more complex types of interpolation might be employed. If it is known that the fuzzy sets used

will always exhibit smooth and monotonic behavior on either side of the peak point (s), it would

be possible to use linear interpolation (or non-linear curve fitting techniques) to change the

"stair step" function of (5.16) to a smoother form. This might make things easier on the

linguistic approximator but such an approach requires certain (perhaps unwarranted) assump

tions about the shape of the compatibility functions which define the semantics of the rating

language. We prefer to change the intermediate fuzzy sets as little as possible. The code for

our "interpolation routine CONVEX is given in Appendix B.

72

5.5 Fuzzy Division and the Fuzzy Weighted Mean

We now turn to some of the difficulties involved in the implementation of fuzzy division

in an integer environment. Our motivation for defining fuzzy division is to make possible the

calculation of the fuzzy weighted mean (see Section 4.4). It is important to emphasize that we

are not trying to exactly duplicate the operation of the classical mean or weighted mean.

Rather, we are trying to construct a mechanism which will act upon fuzzy values in an analo

gous way. The result of the fuzzy calculation (when properly interpreted through linguistic

approximation) should possess properties which are qualitatively similar to the results of apply

ing the classical mean or weighted mean when the environment is precise numbers.

Fuzzy division is implemented in a manner analogous to multiplication and addition. In

the case" of division we do not have to deal with an increase in vector size. This is due to the

fact that division maps onto the real line (see Section 4.4) and so the increase in the number of

set elements is due to the generation of non-integer base values by the division process. Since

we cannot model non-integer base values directly, we choose to ignore those quotients which

do not fall back into the original rating scale integer set.

There is, of course, a loss of information in this process. We feel the problem is not too

severe from a practical standpoint since we use division only once in the rating calculation pro

cess and then only to normalize the fuzzy sum (if calculating a fuzzy mean) or fuzzy weighted

score back to the original rating scale interval. We do this so that the linguistic approximator

may operate with a single group of rating language terms which are defined over the original

integer scale. The code for the function DIVBY is given in Appendix B. Our next example

illustrates division using the result of (5.14):

(A TIMES B) DIVBY A =

.2 .5 .5 .5 0 .8 0 1 .4 0 0 .4 0 0 0 0

DIVBY (5.17)

.5 1 .4 0

73

Looking at the effects of the first three divisor elements:

.2 .5 .5 .5 0 .5 0 .5 .4 0 0 .4 0 0 0 0

V

.5.5.8 10.4 0000000000

V

.4.4.4.4 000000000000

We ignore the contribution of A4 which will be a vector of all zeros. Taking the maximums

yields:

.5 .5 .8 1 0 .5 0 .5 .4 0 0 .4 0 0 0 0

which might be approximated as about 4. In practice, the linguistic approximator assumes the

result lies entirely in the interval which defines the original rating phrases. In examples (5.14)

and (5.17) the base scale is 1 to 4. We therefore disregard /n-values associated with base values

above 4 when performing linguistic approximation. The information which is lost is not really

of use in finding a rating phrase which most nearly fits the resultant fuzzy set in meaning since

all combinations of rating phrases still result in a fuzzy set in the original base interval. When

the result of (5.17) is truncated for linguistic approximation we have:

(A TIMES B) DIVBY A = .5 .5 .8 1 (5.18)

It is particularly important to note that we do not arrive at our original value for B:

B = .2 .5 .8 1 ^ .5 .5 .8 1 (5.19)

That is, fuzzy division is not the exact inverse of fuzzy multiplication. In fact, fuzzy numbers

do not possess inverses. This is proven in detail in [MIZUMOTO 1976]. We must therefore

rely upon the robustness of the linguistic approximator. The approximation process must not

demand that the fit of our final result and the closest rating phrase be too exact.

Another practical difficulty with fuzzy arithmetic operations is that their repeated applica

tion tends to increase the fuzziness of the accumulated score. The fact that the resultant

"curve" may be quite broad makes it difficult for the linguistic approximator to arrive at a rela

tively simple phrase which closely matches the result in "meaning". This is especially true in

calculating a score in which the resistances and weights are all fuzzy.

There is a certain amount of intuitive justification for this. We would expect a score

based upon some combination of fuzzy values to be at least as fuzzy as any individual value.

74

Nevertheless, from the practical standpoint of performing linguistic approximation, it may be

necessary to apply concentration (see Section 2.4) during the process to allow the approximator

to make a reasonable guess. A good rule of thumb might be to apply concentration (if neces

sary) to reduce the breadth of the resultant "curve" so that it is about as fuzzy as the fuzziest of

the original rating value" assignsd during the scoring process. We have not investigated this

problem in great detail and therefore do not apply such modifications to the final result In our

implementation. In the case of the real-world security systems evaluated by the student raters

(see Chapter 6), the results of fuzzy weighted mean scoring were found to be quite complex

linguistic phrases. Nevertheless, the raters reported that the results were not so broad as to

defy interpretation. The problem of increasing fuzziness requires much more study to deter

mine its impact upon practical rating systems.

5.6 Linguistic Approximation

A detailed description of the linguistic approximator will not be presented here. The

interested reader should examine the APL code in Appendix B. For now, we are interested in

its overall operation. The approximator accepts two inputs. The first is a vector (fuzzy set)

which is the overall rating of the security system calculated by some scoring function. The

second input is a character matrix which is a list of the linguistic terms in the rating vocabulary

and their syntactic categories. Thus, the rating vocabulary is parameterized. The grammar is

fixed in the current implementation and corresponds to the rating language presented in Section

3.8. Extending the linguistic approximator to handle a user defined grammar is discussed in

Section 7.4.

The underlying assumption in the operation of the linguistic approximator is that the final

rating phrase will be some syntactically legal combination of terms from the rating vocabulary.

First all of the primary terms (e.g. high, low, medium) are considered. Each is executed as an

APL expression and the resulting vector is compared on an element-by element basis with the

"score" vector which is the first input mentioned above. The sum of the squares of the

differences in //,-values of corresponding vector elements is computed and retained. Hen

ceforth, "nearest" will mean minimal in the sum of squares deviation. The primary term on the

low side of the rating scale which is nearest to the unknown score is remembered as well as the

nearest primary on the high side. The idea is to bracket the unknown score and attempt to

move nearer to it by applying modifiers to the primary terms.

Next the hedges are executed one-by-one as APL functions with the low side primary

term as hedge input. The hedged primary which is nearest is remembered along with the new

sum of squares deviation and the process is repeated with the high side hedge. Currently, only

75

one pass is made through the hedges. It should be quite easy to allow combinations of hedges

as well as recursive use of hedges if the hedges are properly constructed.

The best low hedged primary and best high hedged primary are joined with the to operator

and the result compared with the unknown. If no improvement in the sum of squares error is

i found this compound phrase is rejected. Next the uest low hedged primary (possibly a primary

itself if no improvement resulted from hedging) is composed with the higher relation. The
*-

n. same process occurs with the upper hedged primary and the lower relation. The two relational

phrases are connected via the and connective and tested against the unknown. If no improve

ment in error is found this phrase is ignored. Each of the two relational phrases is combined

with the set of relational hedges such as slightly and much and tested against the unknown. In

all cases the phrase which shows the best fit is retained as the current approximation.

Thus the approximator may output one of the following types of phrases:

primary (high)

hedged primary (ratherlow)

compound phrase (high to sortof low)

relational phrase (lower than pretty high)

compound relational phrase (lower than high and higher than medium)

hedged relational phrase (slightly higher than medium)

The approximator will thus investigate a "reasonable" subset of the phrase combinations

allowed by the (non-recursive) grammar of Section 3.8. In all cases the best single combination

is output. It may be that the approximator arrives at a very close solution early in the search.

The process may be terminated early when the sum of squares deviation is less than EPSILON,

a global scalar variable which may be set by the user.

5.7 Using the Rating Calculator

Our software rating calculator is a file driven system. The APL*PLUS file subsystem

functions [STS 1974] are used to manipulate two files for each user. One file holds the user's

personal set of APL functions which transform linguistic values into fuzzy sets. That is, these

are the functions which model primary terms, hedges, relations, etc. A default file is provided

by our system based upon the grammar of Section 3.8 and the semantics forms discussed in

Chapter 3. The second file contains the rating phrases assigned to the security elements of the

computer facility being evaluated.

76

The first phase of security system evaluation comprises the construction of APL functions

for the rating language semantics. The user may execute GETSEMANTICS (see Appendix B)
which will enable him or her to construct a file of personal semantics in the form of APL func

tions. These are loaded into the rating calculator by executing The function SEMANTICS.

jt This routine reads the file of semantics in as character matiics and converts them to active

APL functions. The symbol table for the linguistic approximator is also constructed at this

time.

The second phase constitutes the input of the rating phrases which are the subjective

measures of object value, threat likelihood, and feature resistance at each security element (see

Section 1.6) in the data processing installation being rated. The user executes the function

GETRATINGS to accomplish this. Each triple of rating phrases is written onto a user-named

file as a separate record. Thus each record represents an element in the rated system. In the

current implementation no syntax or semantic checking of input phrases is performed. Input

checking is an area for future work (see Section 7.5). It was decided to record the ratings as

character phrases so that a user could preserve his or her own list of element scores, possibly

run several scoring functions, change the rating language semantics by changing his or her

semantics file and rerun the scoring functions without constructing a duplicate rating file.

In the third phase one of the scoring functions described in Chapter 4 is executed. The

APL code for these functions may be found in Appendix B. The ratings phrases are read from

the user's file. Each resistance value (for example) is in the form of a phrase from the rating

language and is executed as an APL statement. This results in the execution of the various

semantic functions supplied by the user in phase 1. The resultant vector (the meaning of the

resistance as a fuzzy set) is input to the proper scoring function and the process iterates until

the entire ratings file is read.

The output of the chosen scoring function serves as the input to the linguistic approxima

tor function LAPPROX (see Appendix B) during the fourth and final phase of the scoring pro

cess. The action of the linguistic approximator has been discussed above. The output of the

t approximator is a phrase in the original rating language which represents the overall linguistic

security rating of the computer installation under study.

77

6. Sample System Ratings

We now present an example of the use of the rating calculator in evaluating a data pro

cessing installation. The rating calculator was exercised by several students in conjunction with

a graduate course in computer security at University of California, Berkeley during the winter

term of 1977. Each of the students selected a "real-world" data processing installation with

which he or she had a high degree of familiarity and rated the various security "elements" (see

Section 1.6). The students performed the decomposition of the installation to be rated via a

hierarchical analysis program designed by Michelman [MICHELMAN 1977] which served as an

input/output "front end" to our ratings calculator.

It was not the purpose of these exercises to establish a "correct" evaluation for any of the

installations rated. Since some subjectivity is involved in the rating process, the notion of a sin

gle "correct" rating is not very meaningful or important to the problem of security evaluation.

We felt it was important, however, to establish the practicality of using the model of Chapter 1

as a vehicle for the analysis and evaluation of security systems. We were also interested in get

ting some feel for the difficulty involved in developing a rating language and "training" a rater

to a language. A "standard" rating language was designed based upon the grammar of Section

3.8 with the stipulation that minor changes in vocabulary would be accommodated. For exam

ple, one user preferred the terms less and greater to higher and lower. The "standard" seman

tics (i.e. compatibility functions) of Chapter 3 were also employed rather than attempt to have

each student rater provide his or her own semantics. This approach seemed advisable given the

current primitive state of the art in determining language semantic functions specific to the

individual.

While it is impossible to draw very strong conclusions from the small amount of testing

which the student exercises provided, some useful observations can be made. None of the

raters expressed strong objections to the rating language. There was some disagreement about

the relative effect of some of the hedges which indicates that, in the long run, an individual

language approach may be best. Nevertheless, all of the raters were able to adjust their think

ing to conform when necessary. This indicates that the language design problem, while cer

tainly non-trivial, should not be insurmountable. It was encouraging to discover that none of

the raters found the calculated scores for their systems to be bizarre or very different from their

own intuitive estimates of the overall performance of their systems. More importantly, several

indicated that when they found scores to be lower or higher than expected, a closer examina

tion of their system analysis revealed elements that they had overlooked or rated erroneously.

There were comments that the way they were forced to enumerate all of the system elements

was quite useful. This exhaustive property of our methodology is, we feel, a very important

feature.

78

We resist the temptation to present the description and ratings of one of the installations

studied during the student exercises discussed above. A set of 100 or more security elements

was quite common in the analysis of these installations. Such a presentation would be quite

lengthy and difficult for the reader to assimilate. It is our intention here to give the "flavor" of

security analysis without losing the reader in a vasi amount of detail. Our example should be

easily understandable and illustrative. We therefore present a small and fictitious system

analysis which is based upon and typical of the installations which were used in the student

study. In using a totally hypothetical installation as an illustration here we avoid the need to

justify the validity of the individual object value, threat likelihood, and feature resistance rat

ings as exact real-world component scores. Accordingly, the linguistic values to be presented

should be viewed as arbitrary but typical.

6.1 The Sample Installation

The security objects in our sample installation are listed in outline form in Figure 6.1.

The installation has been divided into three main areas more or less by function. The com

ponents listed under each of the main areas taken together make up the set O (see Section 1.3).

1. Hardware

1.1 CPU

1.2 Main memory
1.3 Secondary memory
1.4 Input/output devices

2. Software

2.1 Operating system
2.2 Applications Programs
2.3 Data

3. The Computer Center
3.1 Operations area
3.2 Data input/output area

Figure 6.1 Sample installation - the security objects

Of course it is likely that there would be many more objects to consider in a complex real facil

ity. This sample analysis may be thought of as a high level or breadth first initial look at the

overall installation. Using a hierarchical system for specifying security elements

79

[MICHELMAN 1977], the rater may easily pursue whatever level of detail is most appropriate.

Recall that in the rated system model (see Section 1.5) the "element" relation is made up of

the objects (O) and their associated "values" (V) along with the set of threats (T) and their

associated "likelihoods" (L) and, finally, the security features (F) with their "resistances" (R).

The element relation for our sample system is presented in Figure 6.2 in tabular form. In order

to make the example more concrete and realistic, we employ functional descriptions instead Of

our original subscripted letter notation in identifying set elements. The assigned ratings appear

in boldface in accordance with our convention for identifying linguistic values. These ratings

might vary considerably from installation to installation and perhaps from rater to rater. A

specific installation may possess any or all of these security elements as well as many more

which we have omitted in the interest of brevity.

Element
Object
Name

Value
Threat

Name
Likelihood

Feature

Name
Resistance

1 CPU high Malicious

Destruction

pretty

low

Guard medium

2 CPU high Hardware

Tampering
fairly
high

Alarmed

Cabinets

high

3 Main

Memory
medium Hardware

Tampering
fairly
high

Alarmed

Cabinets

high

4 Secondary
Memory

pretty

high
Human Error low Volume

Labels

low

5 Secondary
Memory

pretty

high
Unauthorized

Read

very

high
Volume

Labels

pretty

high

6 I/O Devices fairly
low

Hardware

Tampering
medium Keys on

Terminals

pretty

low

7 Operating
System

high Modifying
OS Routines

pretty-

high
Privileged
Programs

sortof

high

8 Operating
System

high Defective

Implementation
high Validation

Programs
medium

9 Applications
Programs

low Improper
Operation

medium Explicit
Documentation

pretty

high

10 Data very

high
Unsecured

Storage Media
high Library

Facility
fairly
low

11 Data very

high
Exposed
Output

high Physical
Security

sortof

high

12 Operations
Area

medium Natural

Calamities

low Building
Construction

sortof

high

13 Operations
Area

medium Manmade

Disasters

medium Contingency
Plans

fairly
high

14 Data

I/O Area

fairly
low

Unauthorized

Intruders

fairly
low

Guard high

Figure 6.2 Sample Installation - the element relation

80

Figure 6.2 illustrates the need for a true relation rather than a jingle-valued mapping in

specifying elements. A portion of the relation (elements 1, 2, 3, and 6) has been extracted and

converted to the graphical form of the original model in Figure 6.3 to emphasize this.

Figure 6.3 A portion of the sample system element relation

Notice that the "alarmed cabinets" device is an example of a security feature which protects

more than one object from a single threat. Similarly, the threat of "hardware tampering" evokes

a different feature depending upon the object being protected. It is also worth pointing out that

the feature "volume labels" is used in elements 4 and 5 with different resistance values; the rat

ing is dependent upon the context of the entity being rated.

6.2 Ratings for the Sample System

The scenario for use of the rating calculator was outlined in Section 5.7 and will not be

repeated here. We assume the value, likelihood, and resistance of each element have been

entered and stored in a file. We will employ the semantic functions discussed in Chapter 3 as

the rating language for this sample system. Overall scores for this system are displayed in Fig

ure 6.4 which shows the results of invoking four of the scoring functions described in Chapter

4.

81

One possible method of rating calculation would employ worst case analysis in keeping

with the "weakest link" philosophy. From the file of component ratings which define the ele

ment relation, only the resistance linguistic values are chosen. The minimum resistance in the

installation is calculated by the WEAKLINK scoring function (see Appendix B) as is illustrated

in Figure 6. fa.

WEAKLINK

RATINGS FILE NAME? SAMPSYS

LOW

Figure 6.4a Sample Installation - Weakest Link Rating

The reader may verify by inspection of the list of resistances in Figure 6.2 that the overall score

of low is correct.

It may be the case that a weakest link score is desired with only high value objects and

high likelihood threats considered. We have termed this scoring function the "preselected

weakest link" (see Section 4.1). In this case a threshold must be supplied in the form of a

linguistic value as shown in Figure 6.4b.

SELWEAKLINK

RATINGS FILE NAME? SAMPSYS

THRESHOLD'. PRETTY HIGH

FAIRLY LOW

Figure 6.4b Sample Installation - Selected Weakest Link Rating

For each element in the installation, the fuzzy maximum of the object value and threat likeli

hood is computed. If this result lies above the threshold the element is considered in the weak

est link calculation which proceeds as before. In this example we have chosen pretty high as

82

the threshold value. Visual inspection of Figure 6.2 indicates that elements 5, 7, 8, 10, and 11

are to be considered. Since element 10 has the lowest resistance in this subset, we expect a

score of fairly low. This is indeed the score returned by the rating calculator (Figure 6.4b).

We now consider an alternative scoring function which is more optimistic and possibly

more realistic for real-wcid security system analysis. Instead of returning a rating based upon

the worst case, we select the fuzzy mean scoring function which returns an "average" resistance

value. As explained in Section 4.2, this is the analog of the classical numeric mean. As in the

case of the "weakest link" score, only resistance values are considered but now a "mean" is

returned as the score (Figure 6.4c).

MEAN

RATINGS FILE NAME? SAMPSYS

SORTOF HIGH

Figure 6.4c Sample Installation - Fuzzy Mean Rating

Since the the majority of resistance values in our sample system lie above medium we would

expect the mean to lie in the high end of the scale. On the other hand, the mean will not lie

very far above mid-scale since most of the ratings are hedged high values which fall nearer to

the middle of the scale than the upper end. For example, three of the resistances are rated sor

tof high which ranges just above medium in the example grammar. The actual score returned

(see Figure 6.4c) agrees with our intuition in this case.

Finally, we exhibit the result of scoring with the fuzzy weighted fuzzy mean. For variety,

we will evaluate the software subsystem (see Figure 6.1) rather than the entire installation. This

subsystem consists of elements 7, 8, 9, 10 and 11 in Figure 6.2; the subsystem rating is shown

in Figure 6.4d. Recall that this is a fuzzy mean weighted by the maximum of object value and

threat likelihood (see Section 4.4) and is thus the counterpart of the preselected weakest link.

We would expect elements 10 and 11 to dominate somewhat because of the very high values or

likelihoods there. The resistance values for these elements essentially balance each other and

so it appears the score will be near mid-scale. The calculated score (see Figure 6.4d) is quite

imprecise and displays a wider range of values than any of the previous scores. In particular,

the moreorless medium component indicates a large degree of fuzziness which is due to the

83

WMEAN

RATINGS FILE NAME? SAMPSUB

(SLIGHTLY HIGHER) THAN MOREORLESS MEDIUM

Figure 6.4d Sample Installation - Fuzzy Weighted Mean Rating

way in which fuzzy sums, products, and quotients are calculated (see Chapter 4). This increase

in fuzziness is in agreement with our intuition since it is reasonable to assume an aggregate of

fuzzy values will be less precise than any of its components. It is important to emphasize that

this penalty for flexibility of expression must be paid. The fuzzy ratings must be recognized for

what they are: gross estimates based upon imprecise knowledge.

The scores presented should give the reader a flavor for the operation of the rating calcu

lator. We have only implemented a few of the possible variants of scoring calculations. In par

ticular, Michelman has implemented scoring of subsystems and composite scores based upon

subsystem results [MICHELMAN 1977]. The use of the present rating calculator requires the

rater to be familiar with APL and use many or our individual system functions directly. We are

currently implementing an improved user interface based upon the work of Michelman and the

suggestions of the student raters mentioned above.

84

7. Summary and Extensions

There is little existing work aimed at formalizing security design guidelines. Turn has

proposed one view [TURN 1974] of the computer security environment (Figure 1.1). We have

used his work as a starting point for the development of our model (see Section 1.3). Much

literature exists concerning the abstraction of protection mechanisms within operating systems

and data base management systems, including [HARTSON 1976], (HARRISON 1976],

[HSAIO 1974], [LAMPSON 1971], [POPEK 1974], [DENNING 1976]. The various costs of

ensuring compliance with privacy regulations has been investigated [GOLDSTEIN 1976]. We

know of no attempts to apply the methodology of mathematical modeling via fuzzy set theory

to the measurement of computer security. With the exception of [HOFFMAN 1974], possible

mechanisms for comparative rankings of data processing security systems have not been

explored. We believe fuzzy security ratings will provide an important first step in the develop

ment of security metrics.

While we are firmly convinced of the need for such security metrics, we are just as certain

that, given the state of the art, ratings must be based upon human judgement. There are just

too many complex and poorly understood aspects of the security problem. We are skeptical of

numeric rankings based upon qualitative (and usually subjective) evaluations by human audi

tors. Such numeric rankings suggest more precision than reasonably exists and are difficult to

interpret meaningfully. One definition of this dilemma is the principle of incompatibility: As sys

tem complexity increases, analytical precision decreases (paraphrasing [ZADEH 1975b]).

We therefore believe the present limits of security engineering dictate an evaluation

methodology which is as exhaustive as is practical in locating system vulnerabilities, but some

what imprecise in estimating the relative effectiveness of various security techniques and their

contribution to the overall security design goal. Accordingly, we have introduced the concept

of a fuzzy rating as a tool for formalizing the usually subjective and imprecise process of evaluat

ing the security of a data processing installation. We know of no other attempts to build a rat

ing scheme around the linguistic variable although Wenstop has applied the linguistic variable

to the problem of simulation in the analysis and evaluation of organizations [WENSTOP 1975].

We presented the basic and rated security system models as abstract vehicles to aid in the

organization of the analysis and rating processes. We recognize that these models are simple

and therefore perhaps inadequate for exactly representing real-world data processing facilities.

Simplicity was required to attain the generality needed to deal with the diverse types of techni

cal, administrative, and physical security techniques in use today. We discuss extensions to the

rated security model below.

85

Through the use of Zadeh's extension principle we have proposed scoring functions for

use in inferring the overall security rating of a system based upon the security contributions of

its components. The scoring functions introduced were:

Weakest LI ik

Preselected Weakest Link

Fuzzy Mean

Weighted Fuzzy Mean

Fuzzy Weighted Mean

We wish to emphasize that these scoring functions are not to be considered the final word in

calculating composite ratings. Further research will doubtlessly produce more complex methods

for the inference of overall security system ratings. We do believe however, that the basis for

these improved scoring functions will be linguistic ratings because of their ability to remain

meaningful in the face of imprecision and to facilitate the human evaluation process.

7.1 Status of the Security Evaluation Field

Our interpretation of security system evaluation is diagrammed in Figure 7.1 as a "flow

chart" for the entire process. Those portions of the evaluation methodology which have been

fully or partially developed in this work are enclosed in boxes.

Referring to the upper left of Figure 7.1, the security system is analyzed through the

mechanism of the security audit [FARR 1972], [KRAUSS 1972], [WOOLDRIDGE 1973]. A

hierarchical organization of the data [MICHELMAN 1977] aids in the decomposition of the sys

tem into a form compatible with the Basic Model of Section 1.3 of the present work. Building

upon work in measurement scale design [TORGERSON 1958], [THURSTONE 1967],

[COOMBS 1970] and the vast amount of research in natural language theory, a rating language

must be designed. The language allows flexible expression of judgmental measurements over a

"linguistic rating scale" as discussed in Chapter 3. The linguistic variable [ZADEH 1975b]

serves as the focal point for the development of such a measurement language. The design of a

"standard" or "optimal" (in some yet undefined sense) rating language is a topic for future work.

Armed with the above tools, the security rater must perform the analyses shown in Figure

7.1 to arrive at an evaluated set of components which is exemplified by the Rated System

Model (see Section 1.5). In the case of risk analysis we include probabilistic techniques

[BALL 1977] as well as subjective estimates of the attractiveness of a particular vulnerability to

an intelligent interloper operating under a "protector-intruder" scenario [TURN 1972]. Values,

likelihoods, and resistances are all assumed to be relative values on the single rating scale

86

security

audit

security
system

Basic Security
System Model

hierarchical

decomposition

risk

analysis
security

effectiveness

analysis

Rated Security
System Model

1

rating
scale

theory

linguistic
rating
scale

linguistic natural
variable language

theory

rating
language

value

analysis

Scoring Functions

cost sub-system overall scores

effectiveness ratings system from other

studies rating raters

modified security
system

normalization

"standard"

security
rating

Figure 7.1 The security evaluation process

87

postulated above. Three separate rating scales and languages would perhaps be more useful but

add too much complexity to be within the scope of our present efforts (see, for example, the

discussion of Assumption 5 in Appendix A).

One or more of the scoring functions presented in Chapter 4 may then be applied to gen-

3 erate an overall system rating. In the event that standardization techniques are formulated for

use with linguistic ratings one final result of all of these efforts will be a "standard" security rat-

x. ing which may be compared against data processing installations of similar type. Of course,

alternative scoring functions may also be useful. This is another field for future research. We

are currently studying the application of scoring functions to subsystems (defined mainly by

function within the installation) as a technique for isolating the weaker security areas

[MICHELMAN 1977]. Armed with relative ratings which indicate the areas of security impor

tance and the resistance of these areas, proposed modifications to the existing security system

may be studied for cost-effectiveness and an iterative process utilized to raise the security rating

of the installation as desired within the limits of cost or other external constraints.

Some of the items in Figure 7.1 represent the on-going efforts of other researchers. We

are primarily concerned with the security analysis portions of the methodology, trusting that

further advances in linguistics and the psychology of measurement will yield improved rating

languages. We also await the development of normalization techniques which will be directly

applicable to the linguistic approach to evaluation. The remainder of this chapter will be

devoted to the brief exploration of some specific recommendations for extending the present

work.

7.2 Improving the Implementation

There are a number of ways in which the implementation described in Chapter 5 and

Appendix B might be improved. In this experimental rating system issues of space and time

efficiency have been largely ignored. For example, the linguistic approximator concatenates

terms from the rating language and then executes the resulting string as a set of APL function

calls. This results in a large number of re-executions as different combinations of linguistic

terms are combined to find a "best-fit" fuzzy set for the final score. A useful space-time trade

off may be had by redesigning the approximator to "remember" the fuzzy sets which are the

meanings of the various rating phrases as the approximation heuristic proceeds.

There are definite considerations of storage efficiency in connection with the calculation of

the fuzzy scoring functions presented in Chapter 4. The arithmetic operators are defined upon

the fuzzy Cartesian product of their operands. For example, assume a base scale of the integers

1 to 9. The addition of two fuzzy sets on the base scale will yield a fuzzy set on the interval

2 to 18. For simplicity, the interval 1 to 18 is actually used. Multiplication will map to the

interval 1 to 81. Since we implement fuzzy sets as APL vectors (see Section 5.1), the applica

tion of the scoring functions presents the requirement for large intermediate vectors in the APL

workspace. The division operation presents no additional demands upon intermediate storage

because of .he way in which it is implemented. Division maps back to the original base scale

but only integer base values are retained by the APL function which performs fuzzy division.

In general, given a base scale of k elements with n security elements to be rated, the calcula

tion of the fuzzy mean will generate a summation vector of kn values. During the calculation

of the fuzzy weighted fuzzy mean, each weighted resistance (recall the weight is also a fuzzy

set) is a vector of k2 values. Summation of these weighted values yields a vector of k2 ele

ments. For a large number of security elements (as in the analysis of a complex real-world data

processing installation) the demands for workspace size become significant.

The APL code of the fuzzy various fuzzy arithmetic functions is given in Appendix B.

These are loop-driven calculations which are not designed in keeping with the philosophy of

APL programming [GILMAN 1974]. Alternate methods based upon the APL outer product

operator could be implemented but it is not clear at this point that any significant gain in

efficiency would result. In general, our code has been designed with the goal of maximizing

clarity and ease of modification rather than efficiency. This was, we feel, a reasonable design

decision given the prototype nature of the Ratings Calculator software.

7.3 Adding Scoring Functions

The scoring functions presented in Chapter 4 are intended to illustrate what might be

done and should not be considered the only approach to the generation of a composite security

system rating. It may be that a more complex function than the mean or weighted mean may

ultimately be more useful in determining the performance of the security system as a whole.

Our definition of the weight as the maximum of value and likelihood is probably an

oversimplification. It may be that a weighted average of these two parameters would be more

satisfactory. It is possible that the makeup of the weight might be varied depending upon the

particular security element being rated. Further work in the form of field studies of the use of

this method of evaluating security systems is needed to attack these problems.

Recall that a fuzzy mean scoring function was introduced in Section 4.2. It would be use

ful to be able to calculate an analog of classical variance just as the fuzzy mean was defined as

an extension of the classical numeric mean. We begin with one formulation of variance:

89

HOc,-*)2
o-2 = — (7.1)

n

where x is the mean. All that is necessary to extend this computation to yield a fuzzy variance is

to define the operation of fuzzy subtraction. This is easily done by employing the extension

principle (see Section 2.7) as was done in Chapter 4 in defining the various fuzzy binary opera

tors used in fuzzy arithmetic. A fuzzy squaring operation is also easily defined. Alternatively,

fuzzy multiplication could be used. A minor implementation difficulty results since fuzzy sub

traction would necessitate extending the base scale to accommodate zero and negative base

values.

A more serious complication arises due to the fact that the result of the variance calcula

tion will not, in general, map back onto the original ratings base scale (e.g. the interval 1 to 9).

This implies an increase in the complexity of the linguistic approximator which would have to

handle a second language defined over a "variance scale". These problems do not appear to be

too difficult but their solution is beyond the scope of the present work. This is an important

extension however. The use of the fuzzy mean as a composite rating of a real-world computer

security system would require some indication that the variance was low to assure the system

design was not too unbalanced.

7.4 Better Linguistic Approximation

The existing linguistic approximator employs a rather "brute force" heuristic. While the

user is allowed to provide his or her own primary terms, hedges, and relations, the approxima

tor is designed around the syntax described in Section 3.8. A useful extension would be the

incorporation of a more general approximation function which would accept the syntax of the

rating language as an input. This would facilitate field studies of the rating language which

might determine the most "natural" rating language (from the rater's point of view). The

linguistic approximator performs essentially two operations in an iterative fashion: 1) - phrase

generation and 2)- matching against the composite rating. The proposed extension would make

the first operation more general.

Another improvement to the approximator would result from the design of better heuris

tics for generating phrases which have a high probability of matching the meaning of the com

posite rating. While the development of such heuristics is beyond the scope of our present

efforts, we feel compelled to point out this useful area of research.

90

7.5 User Interface

There are almost limitless possibilities for extending and improving the interaction of the

rating system with the security system rater. As things now stand, the rater has the responsibil

ity for providing correctly written APL functions for the generation and manipulation of the

fuzzy sets which represent the "meaning" of the linguistic ratm& nhiases. The alternative is to

use the default language functions (see Appendix B) in whole or in part. There are no facilities

for performing any really useful amount of syntax checking on the linguistic rating phrases

which are input by the rater as values of resistance, likelihood, etc. Certain of these syntax

errors will be flagged by the APL interpreter during execution of the scoring functions. It

would be more useful to the rater to be informed of syntax errors when the ratings are entered

initially.

It is of course, possible for a rating phrase to be syntactically correct yet be semantically

meaningless or, at least, ambiguous. For example, the phrase not medium is permissible given

the grammar of Section 3.8. The interpretation of this phrase would yield a fuzzy set with high

membership values near the base scale end points and low values at the middle of the scale.

This is equivalent to saying that the resistance of a security feature (for example) is either high

or low but not medium. Of course the tools of Chapter 2 and 3 allow us to formulate such a

phrase and there may be other applications where phrases of this sort make sense. However,

this kind of linguistic expression is not useful in a rating system because it can only be given a

contradictory interpretation as an evaluation measure. This is just a restatement of the general

problem of maintaining convexity which we have mentioned earlier. A useful extension to the

present system would be the testing of each input linguistic value for the convexity property.

7.6 Calibrating the System

Our justification for the form of the fuzzy sets and semantic operations which underlie the

rating language (see Chapter 3) relied upon an appeal to the reader's intuition. Such plausibil

ity arguments are necessary in the absence of hard data about the way in which the rater would

relate the base scale numbers to the various linguistic values. There are several approaches to

the problem of calibration, that is, to the generation and justification of rating semantics.

One possibility would be to expand the user interface of the rating system program to

include a software package which would gather information from each rater in some systematic

way. This information would relate to the rater's internal conception of concepts such as high

and low as well as ideas such as very, lower, and so on. In essence, the software builds the

fuzzy sets in an empirical fashion by calculating the linguistic bias of the rater. A different fuzzy

set might be associated with the term high for each rater.

91

Since each rater would have his or her own personal rating language (at least the seman

tics), it would be useful to investigate methods of normalizing ratings so that the scores of a par

ticular installation by different security raters could be compared. A normalization process

would aid in comparing different computer security systems which have been rated by different

people. This normalization process could also serv* to train student raters by comparing their

own installation ratings with the standard ratings of security "experts" for the same installation.

A related approach might be the development of a standard rating scale. The base scale

could be some standard interval such as the nine-point scale used in our implementation, or

perhaps an interval on the positive real line. More importantly, the syntax and semantics of the

rating language as well as the vocabulary which is used to generate a rating phrase could be

standardized. It is our feeling that such a standard would be very difficult to enforce, however.

Linguistic bias is a very personal and subjective thing; it would probably take quite a bit of

"training" to assure each rater meant the standard fuzzy set when he or she said high. A first

step in devising a standard for rating semantics would probably be the statistical analysis of data

gathered in a manner similar to the operation of the calibration program discussed above. This

particular extension would demand much more field research into the way people internalize

linguistic values. Since the research would be statistical in nature, this might suggest an avenue

for relating the linguistic variable and fuzzy sets to classical probability theory.

7.7 Extending the Model

A major shortcoming of the rated security model of Section 1.5 is that it ignores possible

interdependencies of the security elements in an installation. For example, it may be that the

password scheme at Installation A has a very high resistance to compromise. However, if the

system password file is stored in plaintext form (or perhaps using an inadequate encryption

algorithm), the actual resistance of the password scheme may be no higher than the resistance

of the cryptography process.

One possible method of capturing this element interdependence would be to state the

password feature resistance value using a conditionalrather than simply declarative phrase. Let

the password scheme resistance be denoted R| and the file cryptography system resistance be

denoted R2. The relationship we wish to model might be stated:

IF R2 = medium high

THEN R, = high (7.2)

ELSE Rj = low

92

It is possible to model the implication as a binary fuzzy relation [ZADEH 1975a],

[ZADEH 1975b] in the following way:

IF A THEN B ELSE C = (A x B) (J (A'x C) (7.3)

where "'" signifies complementation (see Section 2.3), A, B * id Care fuzzy sets in a (non-

fuzzy) universe of discourse U and " x " denotes the fuzzy Cartesian product:

A x B = |J Qjla (/) A/iB(/))[IJ] (7.4)

Thus IF-THEN-ELSE is modeled as a fuzzy relation which may then be composed using the

methodology discussed in Section 2.5. Let us label this particular relation S. Returning to

example (6.2), if

S = medium to high x high U not (medium to high x low) (7.5)

then an assignment to R2 will allow the calculation of Ri through the compositional rule of

inference (see Section 2.6):

R!=R205 (7.6)

Similarly, interrelationships of threats or other system dependencies could be explicitly

modeled in the rating language. The analysis phase of evaluation of the data processing instal

lation would be a good time to generate a set of conditional rating phrases. The rater would at

that time make assignments to the element value, likelihood and resistance variables and the

scoring calculation would proceed normally. During the accumulation of the scores by the rat

ing system, the relations which represent the conditional ratings would be evaluated to arrive at

the inferred linguistic values.

7.8 Hierarchical Analysis

The model of Section 1.3 treats the computer security system as essentially a single set of

triples. Each element of the system is encountered at the same level of analysis as any other.

As a result, one would expect the number of triples being enumerated to be quite large in any

real-world computer installation. An alternative approach which would reduce the amount of

information to be considered at one time has been suggested by Michelman

[MICHELMAN 1977]. His approach would model the installation as a hierarchy of security

subsystems. Each level of the hierarchy would consist of a number of rated security subsys

tems, where each subsystem was modeled using the rated security system model of Section 1.5.

93

Thus, at the top level, the installation might be analyzed as three subsystems: hardware,

software, and personnel. Each of these subsystems has a security rating which is calculated

using the methods suggested in this work. A subsystem rating is inferred by analyzing it using

the rated security system model and rating each of its elements. Each element may in turn be a

subsystem so that a hierarchy is established.

Such a hierarchical analysis affords the user a great deal of flexibility. The system

manager may choose to examine the "important" subsystems in more detail while accepting

rough approximations to the security performance of less vital subsystems. The level of detail

to be employed at each stage is user-controlled.

94

Appendix A Major Assumptions

We present here a more detailed discussion of the assumptions listed in Section 1.1 of the

thesis. Included are justifications and background material as well as references to existing

works which support our plausibility arguments.

Assumption 1

Current methods for evaluating security systems are inadequate.

There does not currently exist a standard methodology which allows one to evaluate the

security performance of the entire data processing installation with the goal of producing a

"measure" or index of adequacy. An obvious way to approach the development of such an

index is to build upon existing techniques. One common contemporary technique is the secu

rity audit process. ([FARR 1972], [KRAUSS 1972], [WOOLDRIDGE 1973]). These are usu

ally check list procedures which yield binary results - a particular security mechanism exists at

the installation or it doesn't. Sometimes an attempt is made to incorporate knowledge of an

estimate of the probability of an intrusion at a particular point in the installations defenses or of

the relative effectiveness of a particular security mechanism [FARR 1972].

Our work is concerned with the generalization and formalization of this approach. The

ultimate goal is the transformation of the binary audit procedure (Is it present?) into a "meas

urement" procedure (How adequate is it?). The term "measurement" must be loosely inter

preted since we will attempt to attain a very gross qualitative indication of overall system per

formance. There is no claim that this method is the "best" way to evaluate security systems.

The claim is that no best way yet exists although this methodology is at least as adequate as

current consultant procedures since it is based upon consultant evaluations. The individual

sub-system evaluations are provided by the security "expert" who performs the audit. The

resulting rating or index is no better than the inputs.

We are modeling and formalizing the procedures used by a security consultant in produc

ing an evaluation report and we are simplifying the process. We do not claim to be duplicating

the consultants thinking process. We are developing a tool to aid him or her by automating

much of the bookkeeping required in infering from an examination of the individual system

components the overall performance of the security system. Additionally, we are helping the

consultant form a more complete analysis since the computerized check list approach based

upon the model and developed by Michelman [MICHELMAN 1977] helps avoid oversights in

enumeration of security objects, threats and features. As the student responses during our

95

experiment (see Chapter 7) indicate, items are often overlooked in current risk analysis

approaches.

Assumption 2

A rating methodology is a valid way to handle the security evaluation problem.

The question most often asked in real-world computer security is "How secure is XYZ's

computer facility really?" It seems to us that a single system score would be a useful way to

answer that question. After all, this is the bottom line which the consultant produces and

management needs to make security improvement decisions. It is unclear that any current

methodology (actually several methodologies are in use) for analyzing complex real-world

installations are any more or less adequate than a rating approach. The only reasonable alterna

tive seems to be a case by case examination of the system components without attempting to

draw any conclusions about the performance of the facility as a whole. It may be that this is

the best that anyone can do but we believe not. At any rate, our methodology also allows one

to look at interesting sub-systems once a hierarchy is suitably defined [MICHELMAN 1977].

More importantly, we feel a composite measure, however imprecise, will serve the useful role

of drawing the data processing manager's attention to potential weak areas. This simplifies deci

sions about where to spend money - in security features or elsewhere.

We assume our rating methodology is at least as effective if not superior to existing secu

rity analysis methods. This cannot be proven without a substantial amount of empirical testing

and therefore must be assumed. Much depends upon the definition of "better". We are not

claiming great precision, only that the precision is not there due to the complexity of the sys

tem being evaluated and the human elements involved. It is interesting to note that none of

our student "experts" (see Chapter 7) found the rating results less justifiable than their personal

evaluations of their computer facilities. Some found the ratings to be more reasonable than

their original estimates after they had reviewed the results.

We will not attempt to produce a large body of empirical evidence that this evaluation

methodology produces completely accurate results. We won't know if the rating approach to

security is useful until it is tried out for some time. Our experiment with the student raters

(see Chapter 7) cannot give too much support because the sample is so small and they are not

true security experts. We must learn more about the way in which raters formulate individual

element linguistic values and more about integrating the user into the rating calculation

environment. It is not necessarily true that the calculated rating should match the opinion of

the security rater about the overall performance of the system. If the calculated rating seems

96

reasonable or causes the security rater to re-evaluate his or her position on the total system per

formance, then the methodology and scoring functions are justified.

While some security features may lend themselves to precise quantification, the majority

will be evaluated linguistically. The linguistic approach is compatible with and contains the

numeric approach as a subset [ZADEH 1965], [ZADEH 1975b]. U is true that the composite

rating will be less precise than one in which numbers are used exclusively. We assume the

sacrifice of precision for generality is worthwhile. In many cases precise measurements of secu

rity effectiveness just do not exist [GLASEMAN 1977].

At any rate, it is not clear that the pure technical features can be evaluated independently

of the less objective elements of security systems. For example, the effectiveness of a password

against intelligent guessing may depend upon the cleverness with which the password was

chosen or its "randomness". Thus an objective criterion such as expected safe time may be

inadequate as an estimate of the resistance of the password. In keeping with Assumption 1, we

need a measure of overall system security performance. The accuracy implied by objective,

physically measurable security features is traded for this ability to form a gross aggregate to

allow what boils down to decision (about where to spend the security dollar) in the presence of

uncertainty.

At the present time, it is not possible to assert that a particular rating language or scoring

function is the only or best. Our goal is to present the basics of rating language design and to

study alternative scoring functions. The development of a "standard" or "optimal" rating

language is beyond the scope of this work. We make no judgement concerning the scoring

functions presented in Chapter 4. "Weakest link" enjoys the advantage of historical use in mili

tary security system studies. "Weighted score" enjoys the advantage of allowing the rater to

employ information about the relative value of security objects and the likelihood of threats in

calculating a system rating. There are probably situations where each would be appropriate

depending upon the ultimate use of the rating. For example, weakest link may be the only

choice in analyzing a computer or plant security system which relates to nuclear energy. On the

other hand, a weighted score may be sufficient in data processing installations where the threats

are more in the line of petty embezzlement or misuse of computing resources. In the latter

case, a loss may be sustainable if the cost of security is high. Only widespread usage of the rat

ing system in practical situations will determine which language features or scoring functions

are most useful or accurate.

The suggestion of the weighted score as an alternative to the purely weakest link approach

is an attempt to incorporate the information from the risk analysis aspect of security evaluation

into the generation of an "indicator" of the general performance (from a security standpoint) of

the entire security system. If industry standards for weights (object value and threat likelihood)

97

were ever to be established, the weighted score might be useable for comparing systems with

bench marks. It is, of course, unknown if such standard weights are obtainable and whether

they would be precise numbers, ranges of values with well-known statistical properties, or sub

jective fuzzy values determined by a panel of industry experts. The weighted score concept has

been around a long time outside of the security Iield. Security people have used it in some

cases [FARR 1972]. The weakest link has long been the choice of the Department of Defense

and related agencies. Many private security consulting firms use an initial risk analysis followed

by weakest link on the "important" elements. Our function for "preselected weakest link" scor

ing is an attempt to model this hybrid approach. This preselection amounts to risk analysis in

the broadest sense of the word.

We don't contend that an individual rater always internalizes one of these scoring func

tions in estimating the security performance of a system. The rater may or may not, there is

too little data to tell. We have no proof that these are valid scoring functions beyond their past

usage by security organizations. At this stage our scoring functions are simply suggestions. A

scoring function based upon a probabilistic approach may also be useful. It is important to

emphasize that this work supports the use of a probabilistic scoring function. We are not

excluding that approach but are not advocating it either.

Designing optimal semantics is beyond the scope of this work. We really can't empirically

justify any set of semantic functions. This is the province of the social scientist, psychologist,

and linguist. We assume that our selections for defaults have a certain intuitive appeal. Some

of the student raters (see Chapter 7) have explicitly indicated their intuitive agreement. Where

disagreement was encountered, we were able to provide alternative formulations quite easily.

Intuition is inadequate for the design of a standard. Accordingly, the user is allowed to provide

his or her own compatibility functions. This was one of the reasons we chose to program the

rating calculator in APL. The English-like syntax of function composition makes it simple to

substitute terms and meanings in the rating language. The rating program allows the user to

preserve his or her individual compatibility functions (semantics). We allow changes in the

basic rating vocabulary although the grammar of the linguistic approximator is fixed (it employs

the user's vocabulary with a fixed syntax.)

Although security feature effectiveness may be properly measured with different units

depending upon the nature of the feature, it is meaningful to assign relative values so that a

score may be calculated. Resistances may have different physical or psychological units. The

expected safe time of a password has a different scale than the integrity of a security guard. We

assume the security rater has an internal or externally specified "standard of performance" for

the ultimate password scheme (for example). He or she compares the existing password

mechanism against this standard to arrive at a "normalized" work factor value which is the

98

resistance of the password. If the rater is able to confidently assign a numerical value (e.g. 7

out of 9) well and good but he or she is not compelled to do so. We suspect he or she will not

produce a number in evaluating the work factor due to the presence of the guard. The linguis

tic rating language with its underlying fuzzy semantics provides the vehicle for specifying less

than precise evaluations. Similar mechanisms apply in the fo mulation of object values and

threat likelihoods.

The design of individual language semantic functions for each system rater is beyond the

scope of this work. For each security rater, we assume it is possible to determine the compati

bility function which matches his or her notion of the meaning of a given rating term with

sufficient accuracy for the purpose of "calibrating" the rating calculator for a given rater. A very

few studies indicate that methodologies exist and have been employed with limited success.

Zadeh has an algorithm based upon the concept of a branching questionnaire but it is unclear

that this technique has been proven in practice. The design of a calibration process is beyond

the scope of this work (but see Section 7.6). We are more concerned with the results of com

bining rating terms and the ensuing approximation process. The area of primitive compatibility

function construction is a fertile field for future work.

We assume statistical methods for normalizing the computer security system scores from

individual raters exist or can be developed. It is not clear that a "standard" rating scale is the

best way to attempt to force consistency among raters. Although the training of raters to a sin

gle language met with success in the case of our student raters (see Chapter 7) it would be

premature to claim that this procedure will work in general. Since individual linguistic bias is

likely to be very strong, we may never be able to adequately train individuals to a standard rat

ing scale. This argues against a statistical approach to a certain degree. An alternative use of

statistical techniques would be to accept individual languages and normalize scores across

languages which have the same numeric base scale (universe of discourse). The development

of such normalization procedures is beyond the scope of this work.

The selection of a competent security rater is not considered here. An incompetent rater

will produce a score of limited usefulness. Hopefully, the enumeration methodology implied by

the model will limit errors of omission. Unrealistic or unsupported scores must still be detected

by independent means. A pure numerical rating system would share the same problems in this

regard. The fact is that a single subjective evaluation is often used now as the sole measure of

the effectiveness of a security system. This is essentially what the security consultant provides.

Our rating methodology is intended to provide an indicator of system performance. When com

bined with a suitable "front end" which facilitates the decomposition of the security system

under study in a manner consistent with our model, it is also possible to get an indication of

the area of the security system which deserves immediate attention to gain the best

99

improvement in system performance. We assume our tool will be employed by knowledgeable

though not necessarily expert security raters.

Assumption 3

It is desirable to evaluate security systems on a component by component basis.

We assume experts can rate system components with more reliability and accuracy than

rating the system as a whole. We must not confuse imprecision with incompleteness. Our rat

ing calculator does not attempt to make a set of imprecise values more precise . Nor are we

asserting that the final score will be in any way more accurate than any of the individual ele

ment scores. We do believe that the enumeration and analysis which our methodology requires

of the security rater (especially when Michelman's analysis aid [MICHELMAN 1977] is used as

a front end) will make the score which the program calculates more reliable. The rater has less

opportunity to overlook elements of the system. There could easily be several hundred ele

ments to consider. It is reasonable to assert that a calculated score is at least as reliable as an

overall estimate arrived at in some unknown manner. There is also the possibility that a stan

dard rating language and a standard weighting set would allow a panel of raters to divide the

work and assign sub-systems to raters according to individual expertise. However, standardiza

tion is beyond the scope of this work.

Assumption 4

Imprecision is a characteristic of complex real-world security systems.

The many sources of imprecision and the high degree of complexity in data processing

systems justifies the use of an admittedly imprecise and sometimes subjective technique for

gross evaluation of security system performance. We believe an estimate of "degree" of secu

rity is called for. There have often been arguments that we must view security as a binary con

dition and that "secure" means all entities which are used to promote security in the system

must be perfectly effective. In other words, each feature's resistance to penetration must be

infinite. We don't believe such a goal is reachable. A possible exception is the operating sys

tem and such related large scale software sub-systems. We may be able to achieve some form

of "total protection" in these sub-systems if correctness proof techniques [LINDEN 1972] are

ever made practical. Currently, such techniques are quite a long way from practical application.

At any rate, such protection is likely to be quite narrowly defined. Even were we to wait for

100

these developments, the administrative and other personnel related security problems will

remain. In a sense, what we are evaluating is computer system IN-security. We believe a

notion of "degrees" of security is needed and that such a degree can be only estimated in many

instances. In a less precise vein, conversations with security experts indicate that a "ball park"

approach which does not require the rater to justify non-existent precision would be more use

ful than a "physical reliability" measure since the current state of the art in security cannot pro

duce such measures.

There are at least two sources of imprecision in this problem. First is the absence of rea

sonable amounts of historical data for the broad range of security violations we know about

[BALL 1977], [GLASEMAN 1977]. We know that many existing operating systems are full of

trap doors, for example. We know some data processing managers are willing to live with the

holes since in their estimation the cost of the patches is not justified by the risk of their exploita

tion. Our goal is a tool which would force the explication (albeit imprecisely) of this estimation

process so that management could at least challenge the system rater on the "reasonableness" of

his or her loss estimates (object values) and his or her risk estimates (threat likelihood).

Outside of the realm of purely technical features, there is a vast area of security which

depends directly or indirectly upon the human element. This administrative environment is the

source of a second kind of imprecision which is, we believe, "inherent" in Zadeh's sense

[ZADEH 1975b], Here security feature effectiveness or resistance depends upon human quali

ties such as integrity, morale, competence, motivation and so on. We are a very long way from

objective and precise measures of security effectiveness in this area. Yet this is the area which

sees a lot of computer crime [PARKER 1976]. We also know that data processing managers

and security consultants evaluate the administrative area constantly. We are advocating an

evaluation methodology which recognizes the imprecision and subjectivity but demands a

degree of consistency and exhaustiveness which doesn't exist now.

We believe the computer scientist cannot ignore the human element in addressing secu

rity. This implies a broad notion of what constitutes a computer science problem. We will con

cern ourselves, then, the environment in which the hardware and software function. The prob

lem is interdisciplinary and the computer scientist must be included since he or she may be the

only one with the expertise to analyze the specific security problems which his or her machine

generates.

We must assume that people rate in a way which is compatible with the mechanisms of

the Fuzzy Set Theory. The establishment of a "fuzzy thinking" hypothesis is beyond the scope

of this work. This issue has only recently begun to receive the attention of psychologists and

social scientists. One experimenter [KOCHEN 1975] has attempted to empirically verify the

existence of fuzzification in humans. He solicited responses concerning agreement with the

101

statement: "X is much larger than 5" where agreement was expressed by the position of the

subject's mark on a continuous scale. Kochen found that about half of his small population

were fuzzy estimators and half were more attuned to a threshold approach.

The numeric approach is actually a subset of the linguistic approach since classical set

theory is a subset of fuizy set theory. If one really has a numeric value available it may be

used. It is expressible as a fuzzy singleton at that value on the support scale (see Chapter 2).

We suspect a pure numeric approach would not be useful for people who are described by

Kochen as "estimators" (the half of his sample who measured in a fuzzy way).

[KOCHEN 1975] There would be borderline cases where the results of the approximation pro

cess would be further off base than the fuzzy case where a multiple valued result is available for

finding "best fit". Composite rating terms (such as "low to medium", "not very high" and "-

slightly lower than medium") might be difficult to define in a straight word-to-number system.

When a rater is asked to assign a value in the presence of imprecision, linguistic values

are more useful than numeric values. A 1-1 mapping of linguistic values to numbers is

insufficient since this implies the words are as precise as the numbers. We do not wish to hide

the numbers but to offer an alternative which does not force reliance upon a precise numeric

quantity.

Assumption 5

The classical concept of probability (in particular the random event) is not always

appropriate as a model for the mechanism by which security threats occur. Additionally, it is

unclear that people formulate concepts such as "low" in a probabilistic manner. We are assum

ing they do not.

In the case of natural disasters or accidents due to human error which lead to security

losses, classical probability may be adequate. It is not clear that sufficient historical data exists

at this time to apply probabilistic measures however. At any rate, in the case of a malicious

intrusion the random variable is clearly inadequate since it cannot capture the effect of the

intelligent intruder. A game-playing approach may be more suitable in these cases

[TURN 1972], [IVANOV 1975], [GLASEMAN 1977]. The end result of any analysis on the

part of the security rater is a notion of how likely the intruder is to select the particular security

feature under study as his or her target. In some cases the intruder may be nature. We have

used the term "likelihood" to name this estimate in order to minimize confusion with classical

probability. Likelihood is often subjective. We assume the rater uses objective historical data

when available in formulating his or her likelihood estimate. The rater also draws upon past

102

experience in analyzing similar systems. For simplicity we have assumed a non-dimensioned

base scale of 1 to 9 for likelihood. A scale of 0 to 1 would work as well and yield compatibility

with the classical probability scale but might be construed as an unwarranted claim of similarity

between these disciplines. This would needlessly complicate our discussion however. The

design of more complex scales of measurement is discussed in Chapter 7.

The point is that a threat may be viewed as a random variable in some cases but not all.

We expect most cases of interest to be non-random in nature. It might be useful to separate

the two main classes of threats into accidental/natural disaster types as opposed to

intentional/criminal activities. We could then have different scoring functions for the two types

of security sub-systems. It is not clear that different scoring functions are really necessary in

this case, however.

In the area of security effectiveness, it is not clear that all security techniques fit the clas

sical probability model. We expect probability would be applicable only in the case of hardware

security techniques. It seems inappropriate to attempt to model software bugs or human

integrity with a probability distribution. In the area of risk analysis we acknowledge that many

threats are probabilistic in nature with the term "likelihood". We have not addressed the area of

interacting risks such as the memory bounds register partially failing just as the user program

attempts an illegal memory access. These failures might be amenable to a joint probability

approach but other security compromises are not probabilistic in the precise sense but are the

result of intelligent analysis by an intruder of the point of highest profit (which may not be the

point of highest loss to the owner) or of the intruder's point of easiest penetration. The model

is general enough to allow these two varieties of security threats to be considered separately. In

a hierarchical analysis approach such as Michelman is developing, these two types of threats

might naturally partition but it is too early to tell. This does indicate an area for future work.

Linguistic probabilities [ZADEH 1975b] could be chosen as the basis for evaluating threat

likelihoods. We have rejected this approach for two reasons. First, the universe of discourse

must be the interval [0,1] for linguistic probabilities. Our rating scale of 1 to N (which is

dimensionless) allows the use of a single base scale for object value, threat likelihood, and

feature resistance. This simplified the design of the prototype rating calculator. An integer

valued rating scale (as opposed to the [0,1] interval) allows the simple implementation of fuzzy

sets as APL vectors. There is no inherent advantage to the [0,1] scale since we are not multi

plying in the probabilistic sense. Secondly, linguistic probabilities (as defined by Zadeh) employ

a language based upon terms such as "likely", "unlikely", instead of the more neutral adjectives

"high", "low" and so on. Thus, at least two rating languages would be required. There is cer

tainly no reason why there couldn't be three rating languages and three base scales. There is

no inherent restriction in the model which prevents this. Future work will have to address this

103

issue since the linguistic values are likely to be dependent upon the concept being measured.

Our rating system is based upon a linguistic rating scale which employs fuzzy sets as the

language semantics (see Chapter 3). The translation of the linguistic phrase to a numeric scale

allows computation to be performed and composite scores to be generated. These fuzzy set

semantics bear a close resemblance to classical probability distributions. This is perhaps unfor

tunate since it is not necessary that statistical or probability methods be employed in the

development of the rating language semantics. While there is no inherent restriction in the

theory of fuzzy sets or in the rating system design proposed in this work which would preclude

the meaning of "low" being defined as a probability distribution over the underlying support set,

we feel that such an approach may not always reflect the rater's evaluation process.

We are adopting the view of Zadeh [ZADEH 1977] that the meaning of the information

conveyed by a term such as "low" is more properly treated in a possibilistic (to employ Zadeh's

terminology) rather than probabilistic framework. The theory of possibility [ZADEH 1977] is

analogous to, yet slightly different than, the classical theory of probability. The distinction

between a possibility and a probability is a subtle one in practice. Essentially, a possibility state

ment places some restriction upon the values which some variable may assume. As an example

from the realm of computer security, suppose we are attempting to evaluate the resistance of

our security guard to errors in identifying authorized users from their security badge photo

graphs. Suppose we are interested in rating our guard on a scale of one to nine. In general,

our rating scale is relative and dimensionless (see Chapter 3) but in this case we may think of

the scale as representing the number of errors in nine identifications.

Under suitable assumptions about the randomness of identification errors, etc. we might

arrive (given sufficient historical data or some other empirical means of probability determina

tion) at a probability distribution such as:

errors 123456789

prob. .1 .8 .1 0 0 0 0 0 0

which indicates we generally expect the guard to make two errors in each nine trys.

Now consider the case in which sufficient historical data is not available to allow a reliable

probability distribution calculation. Perhaps our assumption of random errors is not justified.

We suspect intuitively that the guards error rate may be much more closely related to job

motivation or the amount of sleep he or she had before starting the shift. In the role of secu

rity rater, we may observe the guard's performance, study past performance records and gain

some estimate of his or her effectiveness. We may then have sufficient information to attempt

to bound the possibility of error in identification of a masquerading intruder. We might decide

104

that the guard has a low error rate or equivalent^ (in the context of our model - see Chapter 1)

a high resistance to error. The term "low" might be represented by the following possibility dis

tribution:

errors 1234 56789

poss. 1 1 1 .7 .5 .2 .1 .1 .1

Although our rating of "low" conveys much less precision than our probability distribution,

there is a certain loose relationship which is intuitively reasonable: an impossible event is cer

tainly improbable but a high possibility does not imply a high probability. Also an improbable

event is not necessarily restricted to a low possibility. This relationship is further explored in

the references [ZADEH 1977] in the form of the possibility/probability consistency principle.

It is important to emphasize that the 0.7 possibility of an error rate of 4 does not mean

the guard will mistake 4 out of 9 people 70% of the time. What is indicated is that the rating of

"low" is not as compatible with an error rate of 4 as with 1,2 or 3. We have restricted some

what the error rate which we expect to see from this particular security guard. In other words,

the value of 0.7 is much less precise than a comparable probability value. It merely indicates a

trend.

At this point in time, we cannot prove that humans evaluate via a probabilistic or possi

bilistic mechanism. A great deal of empirical work must be done to ascertain the internal

mechanism by which people operate upon possibilities and probabilities. Such studies are

beyond the scope of this work. We use as a given the theory of possibility in this work. Possi

bility distributions are numerically equivalent to the compatibility functions discussed in

Chapter 2. We will adopt the latter terminology.

Why do we choose a rating language instead of just working with numeric ratings? The

evaluations by the system rater will in many instances be quite imprecise. In these instances,

the rating language allows the rater to express the imprecision succinctly. We are assuming

(see Assumption 4) that in at least some of these instances, this imprecision is inherent. In the

areas of rating people, physical and administrative security techniques, etc. no one has yet

presented a precise metric. We are offering an alternative to the unnatural modeling of human

performance as some analog to physical component failure rates.

105

Assumption 6

A suitable foundation for the construction of a subjective and/or imprecise rating methodology

is the Fuzzy Set Theory.

We know of no existing work directly linking Fuzzy Set Theory to the concept of "ratings"

or "indices" of adequacy. There is a close parallel in the work of Wenstop however

[WENSTOP 1975]. He has studied the analysis of human organizations via simulation. He

found the appropriate vehicle for the evaluation of human characteristics such as motivation,

satisfaction, etc. was the linguistic variable since it is more natural to speak of "fairly high"

motivation or "low" competence rather than a motivation of 6 on a scale of 9. His conclusion

was that a number implies too much precision to be useful in such evaluation processes.

In the area of computer security, we feel the human component is ignored too often.

Many security features rely upon human integrity or competence for their effectiveness. Some

examples are identification via security badges, two-key systems, most administrative controls

such as tape sign-out logs, etc. If possible, a rating methodology should allow the use of

numbers in situations where they are meaningful. This includes the more purely technical

security mechanisms such as passwords, cryptography, and protection features in the operating

system. Fuzzy Set theory seems well suited to this goal since it is essentially an extension of

classical set theory and thus facilitates the combining of numeric performance measures with

non-numeric ratings in a consistent and meaningful way. Mechanisms which are similar in

effect to Zadeh's linguistic approach are now in use. The clearest example is the classification

of security mechanisms into "high", "low", and "moderate" categories suggested by Farr

[FARR 1972].

Only minor extensions to existing Fuzzy Set Theory are needed to allow its application to

the security rating problem. We are not primarily concerned with theoretical contributions to

the theory of fuzzy sets. We have implemented new linguistic features (e.g "to") in Chapter 3

and contributed to the theory of fuzzy arithmetic (see Chapter 4). Our main goal is an applica

tion of the theory to a real world problem: measurement in the presence of imprecision which is

in a sense inherent in the structure due to the human component in data processing installa

tions.

We assume that arithmetic which approximately parallels classical arithmetic is satisfactory

for defining the fuzzy mean and fuzzy weighted score. Fuzzy numbers do not have inverses

[MIZUMOTO 1976]. Therefore the fuzzy mean is not the precise equivalent of the classical

mean. It does reduce to the classical mean when the component values reduce to single

numbers. The error seems to be within the range of the linguistic approximator in the practical

106

situations we have considered. We have seen no bizarre approximations so far.

The specification of any given fuzzy set is quite precise in contrast to the need for impre

cision in security ratings. Does "about 1" mean .8[0], 1[1], .8[2] or .6[0], 1[1], .7[2] or some

thing else? One can argue that this is quite a constraint upon the concept of "about". How

ever, in the manipulation of fuzzy sets (at least in our application) it is the general form of the

curve which is important. Once the scoring is completed, the process of linguistic approxima

tion generates the phrase which is the final answer. Small changes in the compatibility function

values will not greatly influence the approximator since it works upon the principle of finding a

close match between the final fuzzy value and some reasonably simple combination of linguistic

phrases in the original rating language. The fuzzy calculation and approximation process is

robust and forgiving enough to allow minor variances among users without significantly

different end results. We do not have a large body of empirical evidence to back up this claim

but close study of the way the scoring functions, linguistic hedges, and relations operate seems

to support this position. In other words, there seems to be a high degree of consistency in the

linguistic variable approach.

Assumption 7

A simple model is best for dealing with the diversity and complexity of real-world security

problems.

Our model (see Chapter 1) is simple and ignores the more complex interactions we would

expect to occur in a real-world data processing installation. Security features interact and can

not be considered in isolation. Threats are not isolated occurrences but may appear simultane

ously and have greater effect in combination than individually. An extreme example is the

operating system. There is no mechanism for taking into account the dependence of one secu

rity feature upon the effectiveness of another in the system. This is discussed in Chapter 7.

There is no explicit mechanism for handling multiple security features on a single object-threat

pair. The model would separate the features by generating extra triples. Each would then be

on equal footing as far as the scoring was concerned although the weights could be different.

This is not really what you want if all of the features for the particular object-threat pair must

be overcome to penetrate. In that case the resistances are in some sense additive. We will not

investigate this issue.

At any rate, the model is very broad and simple because we wish to include technical,

physical, administrative, and legal security techniques. The more complex models in the litera

ture generally deal with protection problems in the classical sense of information flow or access

107

within the operating system or data base. These models are very important to the development

of secure systems but they ignore all of the other areas which studies [PARKER 1976] show

contain most of the threats and most of the penetrations in real computer installations. This

model is more concerned with all of the various ways in which a computing facility might be

attacked. We attempt to encompass the major areas of securiu jy sacrificing depth for breadth.

Our goal is not to establish any major theoretical results about the model. We are using it

strictly as a vehicle for organizing and explicating the rating methodology.

108

Appendix B The Rating Calculator Software

Our rating calculator has been written in APL*PLUS and runs on the IBM 360/91 at

UCLA through the Campus Computing Network. The listings on the following pages are

ordered to roughly correspond with the presentation of the fuzzy set primitive operations, the

rating language semantics and the scoring functions presented in the main body of this work.

These are followed by the APL functions which facilitate the generation of individual user

language semantics and the gathering of component rating scores. Finally, some utility func

tions are listed. The functions AKI, A YN and NIP are conversational input functions available

in APL*PLUS as implemented at UCLA.

Veteran APL programmers will note that the functions listed here bear little resemblance

to the usual tightly designed functions of APL. We have chosen to program in short explicit

statements with few operators per statement and few statements per function. There is, of

course, a consequent loss of efficiency. We emphasize that the rating calculator is still very

much in the prototype stage; we have sacrificed efficiency of expression for clarity whenever we

felt it necessary to do so.

109

V OUT+NORM INiMAX
[13 ^NORMALIZATION FUNCTION
[23 *ROW REDUCE TWICE TO HANDLE MATRICES
[33 OUT+IN ^DEFAULT
[43 MAX+S/S/IN
[53 +0 IF MAX = Q
[63 OUT<-IN*MAX

V OUT+CON IN

[13 ^FUNCTION CONCENTRATOR
[23 0UT+IN*2

V

V OUT+PWR CONC IN

[13 ^PARAMETERIZED CON FUNCTION
[23 0UT+IN*PWR

V

V OUT+DIL IN
[13 ^FUNCTION DILATOR
[23 OUT+IN*0.5

V

V OUT+INT IBiLOiHI
[13 nINTENSIFIER, BROADENS AND STEEPENS
[23 L0«-2x(IiV<O.5)xltf*2 ^DIMINISH LOWS
[33 ff!«-(IiVS!0.5)xi-2x(l-lAn*2 ^INCREASE HIGHS
[H3 OUT+ROFF LO+HI ^COMBINE

7 OUT+FUZ IN\LEN\DIFF
[13 *FUZZIFIER> KERNEL IS GLOBAL
[23 flltf 15 4 SCALAR
[33 LEN+pBASE f\PAD KERNEL FOR ENDOFF SHIFT
[43 OUT+iLENpO).KERNEL,LENpO
[53 DIFF-(KERNEL\1)-IN *SHIFT COUNT
[63 OUT*-DIFF$>OUT fiSHIFT ENDOFF
[73 OUT+LEN+(-LEN)+OUT ^REMOVE PADDING

110

IN (WENSTOP 197 5)

V OUT+REL INiI
[13 ^PRIMITIVE RELATION
[23 fiSAME IDEA AS HIGHER
[33 OUT+IN fiFIRST ROW
[43 I«-l
[53 L00PiIN+Q*~2\IN
[63 IN+IN.l BRIGHT
[73 OUT+OUT ATTACH
[83 1*1+1
[93 +L00P IF KpIN

t\END OFF RIGHT SHIFT

COL ALL l'S

IN *TACK ON NEW ROW

V OUT+SFN PARMS\Z\C\P
[13 fiS-FUNCTION (SEE CHAPTER 3)
[23 ftPARMS IS Z.C.P
[33 ' Z+1+PARMS
[43 P+~1+Pi4/?M5
[53 C+IM+PARMS
[63 0ff!T«-(p£MSS)pO ^INITIALIZE
[73 0UT+0UT+(BASE>P)*1 f\PEAK
[83 OUT+-OUT+(BASEZC)x (BASE>Z) x 2x ((B45E-Z) *P-Z) *2
[93 0tfT<K?tf!r+(Bi45ff>C)x(Byl5ff<P)xl-2x((B45£-P)*P-Z)*2
[103 OUT+ROFF OUT

V OUT+PFN PARMSiBiP
[13 *PI-FUNCTI0N
[23 nPARMS IS B,P
[33 B«-lfP>U?A/5
[43 P«-l*Pi4i?MS
[53 0UT+(BASE$P)*SFN(P-B),(P-B*2),P
[63 0UT+0UT+(BASE>P)*1-SFN P,(P+B*2),P+B
[73 OUT+ROFF OUT

V OUT+EFN PARMS\PEAK\SPREAD
[13 *SHAKET*S EXPONENTIAL
[23 P£M«-l+P,4i?MS
[33 SPf?ff;4Z?«-liPi4i?MS
[43 OUT+*-((BASE-PEAK)*SPREAD)*2

V

V OUT+IN SHF NUM\PK\DIR
[13 aSHIFTS PEAK MAINTAINING CURVE SHAPE
[23 fl**0/? 1/55 J/ITB EFtf
[33 P£«-Iffil ^CURRENT PEAK
[43 0Ii?«-x5-PK ^DIRECTION TO SHIFT
[53 PK+PK+DIRxNUM *NEW PEAK
[63 OUT+PK EFN BASE

Ill

V OUTWEIGH

[13 OUT+SFN 5 7 9
V

V OUTFLOW

[13 OUT+1-SFN 13 5
V

V OUT+MEDIUM
[13 OUT+PFN 3 5

V

7 OUT+VERY IN

[13 OUT+CON IN
7

V OUT+EXTREMELY IN
[13 0tfF«-3 00ffC Iff

V

V OUT+MOREORLESS IN
[13 OUT+DIL IN

7

V OUT+INDEED IN
[13 OUT+INT IN

V

V OUT+-ABOUT IN
[13 OUT+FUZ IN

V

V OUT+PRETTY IN

[13 ^CLOSEST TO ENDPOINT
[23 OUT+ROFF NORM DIL(3 00ff0 Iff) MB BIL ff0T 00ff Iff

7

7 OUT+FAIRLY IN
[13 nPEM 5ffIFr FURTHER THAN PRETTY
[23 OUT+ROFF NORMdNT IN) AND NOT INT CON IN

7

7 OUT+-SORTOF IN
[13 *CLOSEST TO MIDDLE
[23 OUT+ROFF NORM(DIL DIL IN) AND NOT IN

7

112

7 OUT+NOT Iff

[13 ^COMPLEMENTATION
[23 OUT-l-IN
[33 OUT+ROFF OUT

7

7 OUT+LEFT AND RIGHT

[13 ^INTERSECTION FUNCTION
[23 *SEE (ZADEH 1972)
[33 OUT+LEFTlRIGHT

7

7 OUT+LEFT OR RIGHT

[13 BUNION
[23 OUT+LEFTfRIGHT

7

7 0^2*^ T0 7

[13 «02? J/IFJ? CONVEX FILL
[23 OUT+XtY
[33 0tf!T«-l CONVEX OUT

7

7 OUT+LOWER

[13 OUT^eHIGHER
7

7 OUT+HIGRER

[13 OUT+REL RELGEN
7

7 OUT+SLIGRTLY IN

[13 OUT«-(INT IN) AND NOT INT VERY IN
[23 OUT+NORM OUT

7

7 OUT+MUCR IN

[13 OUT+CON IN
7

7 OUT+LEFT THAN RIGHT
[13 ^RELATION EVALUATOR
[23 OUT+RIGHT\.ILEFT

7

113

7 OUT+X MIN Y\ROW\I\LIM
[13 bFUZZY MINIMUM FUNCTION
[23 OUT*-\Q ^INITIALIZE
[33 1*0
[43 LIM+pX
[53 L00P:I*I+1
[63 +0 IF I>LIM
[73 ROW+XiniY
[83 0£/Z*«-0£/:rr(I-l)+/rW bMERGE IN UP TO I
[93 0UT+0UTA/(I-1)+R0W bTACK ON MAX OF REST
[103 +LOOP

7 OUT+X MAX Y

[13 fiFUZZY MAXIMUM FUNCTION
[23 *JUST REVERSE VECTORS
[33 BAND DO MINIMUM
[43 X+t>X
[53 Y+$Y
[63 OUT+QX MIN Y '

7 OUT+X PLUS IiIiLIM
[13 BFUZZY ADDITION
[23 0tfr<-(pr)po
[33 LIM+pX
[43 1*0
[53 L00P:I*I+1
[63 ^5^P IP *[I3=0
[73 OUT+OUTf((I-l)pO),XiIllY
[83 SKPi+QUIT IF I>.LIM
[93 OUT+OUT.O ^LENGTHEN FOR NEXT ROW
[103 +LOOP
[113 QUITiOUT+0,OUT ^INITIAL ZERO TO KEEP SCALE

7 OUT+X TIMES Y\I\MSK\LIM
[13 bFUZZY SET MULTIPLICATION
[23 0Z7!T*(pY)pO ^INITIALIZE
[33 LIM+pX
[43 1*0
[53 Af5£*l nSUBMASK
[63 L00P:I*I+1
[73 +5KP IF £[13=0
[83 0C/2,*0^2*r((p0£/27)pW5iC)\^[l3Ly
[93 SKPi+QUIT IF I>LIM
[103 OUT+OUTApY)pQ ^LENGTHEN RESULT
[113 MSK+Q.MSK RAND SUBMASK
[123 +L00P
[133 QUIT:OUT+l CONVEX OUT

114

7 0UT+X DIVBY Y\I\MSK\LEN\L\LIM
[13 B FUZZY SET DIVISION
[23 LEN+pX
[33 L+pBASE
[43 LIM+pY
[53 OUT+LpQ BlNITIALIZE
[63 1*0
[73 tiSK+1 BSUBMASK
[83 £00P:I*I+1
[93 +QUIT IF I>LIM
[103 +SKP IF y[i3=o
[113 0UT+0UT\L +YLllKLENpMSK) IX
[123 SKP:MSK+0,MSK bLENGTHEN SUB-MASK
[133 +L00P
[143 QUIT-.OUT+l CONVEX ROFF NORM OUT

7 OUT+WEAKLINKiLIM;I
[13 LIM+TIEFILE bSETUP
[23 0UT+EXEC(FREAD 1,1)[3; 3 bFIRST RESISTANCE
[33 1*1
[43 L00P:I*I+1
[53 +QUIT IF I>LIM
[63 0UT+0UT MIN EXEC(FREAD 1,I)[3;3 bACCUMULATE MINIMUM
[73 +L00P
[83 QUITiFUNTIE 1
[93 OUT+DEBLANK SYMTAB LAPPROX OUT

7 OUT+SELWEAKLINK\X\TRR\LIM\WT\I
[13 LIM+TIEFILE
[23 THR+EXEC AKI 'THRESHOLD:'
[33 1*0
[43 OUT+\0
[53 L00P:I*I+1
[63 -•gtfir IF I>LIW
[73 X+FREAD 1,1 flffEXZ7 ELEMENT
[83 WT+(EXEC I[l;3) AMI FXFC JT[2;]
[93 +L00P IF J/T L!T rflfl BSELECT ELEMENT
[103 +5KP IF 0<pOUT
[113 OUT+EXEC X[3;3 BFIRST RESISTANCE
[123 +L00P
[133 SKPiOUT+OUT MIN EXEC XL 3;3 BACCUMULATE
[143 +L00P
[153 QUITiFUNTIE 1
[16 3 OUT+DEBLANK SYMTAB LAPPROX OUT

115

7 OUT+MEANiLIM;MASK;I
[13 LIM+TIEFILE
[23 OUT+-EXEC(FREAD 1,1)[3;3
[33 1*1
[43 L00P:I*I+1
[53 +QUIT IF I>LIM
[63 OUT+(EXEC(FREAD 1,I)[3;3) PLUS OUT bACCUMULATE
[73 +LOOP
[83 QUIT:MASK«r(LIM-l)pQ bINTERVAL MASK
[93 MASK+MASK.l
[103 MASK+(pOUT)pMASK BREPEAT
[113 OUT+MASK/OUT bSAMPLE TO 'DIVIDE*
[123 OUT+DEBLANK SYMTAB LAPPROX OUT
[133 FUNTIE 1

7 OUT+WMEANiLIMiXiWTiWSUMd
[1] LIM+TIEFILE
[23 1*0
[33 L00P:I*I+1
[4 3 -•Gtfir IF I>LIAf
[53 X+FREAD 1,1
[63 WT+(EXEC X[l;]) MM EXEC X[2;3
[73 +5*? IF I>1
[83 WSUM+-WT BFIRST WEIGHT
[93 OUT+WT TIMES EXEC Z[3;3 bFIRST RESISTANCE
[103 +L00P
[113 SKP:WSUM+WT PLUS WSUM BACCUMULATE
[123 0UT+(WT TIMES EXEC Z[3;3) PL05 OUT
[133 +L00P
[143 QUITiOUT+OUT DIVBY WSUM
[153 OUT+DEBLANK SYMTAB LAPPROX OUT
[163 FUNTIE 1

7 00T*;: lt r

[1] BRETURN 1 IF X 'LESS THAN' Y
[23 BLESS IS FUZZY HERE
[33 BBEST FIT TO MIN IS USED TO MAKE DECISION
[43 OUT+X MIN Y
[53 0UT+(X FIT 0UT)*Y FIT OUT

7 OUT+EXEC IN
[13 0UT*-R0FF NORM ROFF EXQ IN
[23 bMAKE A FUNCTION FROM CHARACTER STRING
[33 bEXECUTE IT VIA EXQ, A MODIFIED
[43 BVERSION OF XEQ (SEE UCLA APL DOCUMENTATION)

7

116

7 OUTSPEAK CONVEX IN\LEFT;RIGHT\MID
[13 BIN IS FUZZY SET
[23 BMAKE IT CONVEX VIA INTERPOLATION
[33 LEFT+IN\PEAK bLEFTMOST MAX
[43 OUT^IN
[53 RIGHT+OUTiPEAK bRIGHTMOST MAX
[63 LEFT+FILL LEFTMN bFILL LEFT SIDE
[73 RIGHT+QFILL RIGHT+OUT bFILL RIGHT AND REVERSE
[83 MID+(pIN)-(pLEFT)+pRIGHT fiDIST BETWEEN 1'S
[93 OUT+LEFT AMIDpPEAK),RIGHT

7 OUT+FILL IN\LEFT\RIGRT\MASK
[13 BIN IS INCREASING EXCPT AT SOME PTS
[23 BFILL BY SETTING HOLES TO CURRENT NON-ZERO VALUE
[33 L£Fr*((Iff>0)il)-l BLEADING ZEROS
[43 +SKP IF LEFT<pIN bCHECK FOR NONE
[53 LEFT+Q BNO LEADING ZEROS
[63 SKPzOUT+LEFTpQ BLEADING ZEROS OUT
[73 LOOPiIN+LEFT+IN bSTART HERE
[8] L£F!T*ltIff BLOW VALUE
[93 +QUIT IF 1'pIN
[103 RIGHT+((IN>LEFT)\1)-1 bNEXT INCREASE LESS 1
[113 OUT+OUT,RIGHTpLEFT bADD ON FLAT SEG
[123 LEFT+RIGHT bNEW LEFT END LESS 1
[133 +LOOP
[143 QUITx+Q BSMOOTHED Iff LESS RIGHT END 1
[153 plff

7 GETRATINGS\NEWF\CNO%PART\RATING
[13 BPROMPTS WITH BARRIER NUMBER
[23 BWANTS 3 RATINGS IN 0-T-F ORDER
[33 BSTORES IN (MAYBE NEW) FILE
[43 0ff0*l
[53 NEWF+GETFILE 1
[63 ZOOPi+LOOPl IF NEWF
[73 0ff0*ffIP 'C-NUMBER?' bCOMPONENT TO REPLACE
[83 +QUIT IF 0ff0=O
[93 LOOPli'ELEMENT ' \CN0
[103 RATING*AKI 'VALUE?'
[113 +QUIT IF 0=pRATING
[123 RATINGS-RATING ATTACH AKI 'LIKELIHOOD?'
[133 RATINGS-RATING ATTACH AKI 'RESISTANCE?'
[143 RATING FUPDATE ltCN0,NEWF
[153 ! •
[163 0ff0*0ff0+l
[17 3 +L00P
[183 QUITiFUNTIE 1

117

7 SEMANTICS\NEWF%CN0\NAME\BODY\FLG\OUT\LINE
[13 bMAKES CANONICAL FORM (CHAR MAT)
[23 fi0F FUNCTION FROM KEYBOARD OR EXISTING FUNC
[33 BSAVES ON FILE
[43 0ff0*O
[53 NEWF+-GETFILE 1
[63 FLG+AYN 'FROM KEYBO/RD?'
[73 LOOPi+LOOPl IF NEWF
[83 0ff0*ffIP 'C-NUMBER?' bCOMPONENT TO REPLACE
[93 +QUIT IF 0ff0=O
[103 LOOPl:NAME<-AKI 'NAME?' bFUNCTION NAME
[113 +QUIT IF EMPTY NAME
[123 B0DY+-NAME ATTACH AKI 'TYPE?'
[133 +GETIN IF FLG bFUNC FROM KEYBOARD
[143 BODY+BODY ATTACH 2 LFD NAME bUSE EXISTING FUNC
[153 +UPDT
[163 GETINx'ENTER CODE:'
[17] L00P2:LINE+AKI '?' bACCUMULATE LINES
[18 3 +UPDT IF EMPTY LINE
[193 BODY+BODY ATTACH LINE
[203 -»-L00P2
[213 UPDT:BODY FUPDATE l.CNO.NEWF
[223 +LOOP
[233 QUIT-.FUNTIE 1

7 OUT+-LOADSEMANTICS;NAMEF;Cff0; FUNC%NAME;fffli?;TYPE;2MBLE
[13 BREADS FUNCTIONS FROM FILE
[23 NAMEF+AKI 'FILE NAME?'
[33 ffdAfEF FTIff 1
[43 TTAB«-TABLE<r\Q
[53 0ff0*l
[63 LOOP:FUNC+FREAD l,0ff0
[73 ff;4A/£*,Ftfff0Ll;3 bNAME
[83 NAME+(NAME*' ')/NAME bBLANKS OUT
[93 TABLES-TABLE ATTACH NAME bSYMBOL TABLE
[103 2,yPff*,F£/ff0[2;3 a5M£ FOR TYPE
[113 TYPE+-(TYPE*' ')/TYPE
[123 TTAB+TTAB ATTACH TYPE bSYNTACTIO TYPE TABLE
[133 FtfffC* 2 0 +F(/ff0
[143 F/?i?*6 AFB NAME BERASE OLD FUNCTION
[153 FJ?ff*3 LFD FUNC bNEW FUNC
[163 SKIP-.NAME*' FORMED'
[173 CNO+-CNO+1
[183 -•LOOP IF 0ff0< 0 10 0 IFSIZE 1 bENDFILE CHECK
[193 QUIT:FUNTIE 1
[203 TTAB+-TTAB PAD RLEN TABLE RMAKE CONFORMABLE
[213 TABLEs-TABLE PAD RLEN TTAB
[223 O£/2**2MBL£,[0.53 T2MB BLAMINATE

118

7 OUTs-TABLE LAPPROX X\RERR\LERR\LIST;BESTLH-,LIST1;MERR
[13 BLINGUISTIC APPROXIMATOR
[23 bX IS RESULTANT MU VALUE
[33 bTABLE IS TERM LIST WITH TYPES
[43 BFIND BEST PRIMARY ABOVE AND BELOW X
[53 BREPEAT FOR HEDGES
[63 LERRs-pBASZ bGLOBAL TO FUNC LATRY
[73 HERRs-LERR BLOW AND HIGH ERRORS
[83 LISTS-TABLE GETLIST 'P' bGET PRIMARIES
[93 BESTLHs-0 BlNIT
[103 BESTLHs-X LATRY LIST bBEST LOW AND HIGH
[113 HOLDs-BESTLH bTEMP STORAGE
[123 +QUIT IF EPSILON>HERRlLERR
[133 LISTs-TABLE GETLIST 'H' bHEDGE LIST
[143 LISTls-LIST ,R0LDll\1 REPEAT CLEN LIST
[15] BESTLHs-BESTLH PAD RLEN LISTl
[163 BC0MP0SITE OF HEDGES AND BEST LOW PRIMARY
[173 BESTLHs-X LATRY LISTl bHEDGES ON LOW PRIMARY
[183 LISTls-LIST,ff0LB[2;3 REPEAT CLEN LIST
[193 BESTLHs-BESTLH PAD RLEN LISTl
[203 BNOW TRY BEST HIGH PRIMARY
[213 BESTLHs-X LATRY LISTl
[223 MERRs-HERRlLERR bGLOBAL MINIMUM ERROR
[233 +QUIT IF EPSIL0N>MERR
[243 BTRY 'TO' CONNECTIVE
[253 OUT+'C ,BESTLHll;l,') TO (' ,BESTLHi2\ 3,')'
[263 +0 IF EPSILON>X FIT ROFF NORM EXQ OUT
[273 bNEXT APPLY RELATIONS
[283 LISTs-,TABLE GETLIST 'L' BLOWER REL
[293 LI5T1*,TABLE GETLIST 'G' bHIGHER
[303 LISTs-LIST,') THAN ' ,BESTLHl 2; 3
[313 LISTls-LISTl, f) THAN ' ,BESTLHllO
[323 BTRY 'AND' CONNECTIVE
[333 0UT*-'(C ,LIST,') AND ((',LISTl,')'
[343 +0 IF EPSIL0N>X FIT ROFF NORM EXQ OUT
[353 OUTs-LIST LARHEDG LISTl bCHECK BEST COMBINATIONS
[363 +0
[373 QUIT:OUTs-BESTLHll+HERR<LERR;l

7 OUTs-LEFT FIT RIGHT

[13 BCOMPUTES CLOSENESS OF FIT
[23 bSUM OF SQUARES OF ERRORS
[33 OUTs-+/ (LEFT-RIGHT) *2

7

7 OUTs-TABLE GETLIST CODE;MASK
[13 bRETURNS LIST OF TERMS
[23 BWHOSE SECOND ENTRY MATCHES CODE
[33 MASKs-CODE=TABLEl2; -,1]
[43 OUTs-MASKiTABLEl 1; ;3

119

[13
[23
[33
[43
[53
[63
[73
[83
[93
[103
[113
[123
[133
[143
[153
[163
[173
[183
[193
[203
[213
[223
[233
[243
[253

[13
[23
[33
[43
[53
[63
[73
[83
[93
[103
[113
[123
[133
[143
[153
[163
[173
[183
[193
[203
[213

' OUTs-X LATRY LIST;LIM\I;ffERR-,Y
BMATCH X AGAINST PHRASE LIST
BCHECK GLOBAL HERR,LERR FOR IMPROVEMENT
BREPLACE PHRASES AS APPLICABLE
BTHUS BOUNDING ON LOW AND HIGH SIDE

OUTs-BESTLH BGLOBAL CURRENT PAIR
+PD IF Q*?P0UT BIF EMPTY
OUTs-LISTl^ 2 ;3 bDEFAULT ANY PRIMARIES

PD:0UTs-0UT PAD RLEN LIST
LIMs-CLEN LIST bNUMBER OF PHRASES
1*0

L00P:+QUIT IF I*LIM
1*1+ 1

Ys-ROFF NORM EXQ LI5!T[I;3 bEXECUTE RATING
NERRs-X FIT Y bCHECK FIT

+LOOP IF NERR>HERR\LERR bNO HELP
+SKP IF Y LT X BBRANCH IF RATING LOWER

+LOOP IF NERR>HERR bNO HELP HIGH SIDE

HERRs-NERR bUPDATE GLOBAL HIGH SIDE ERR

0i/2'[2;3*LI52,[I;3 BNEW TERM
+LOOP

SKP-.+LOOP IF NERR>LERR bNO HELP LOW' SIDE

LERRs-NERR

0tfT[l;3*LI5I[I;3
+L00P

QUIT-.+O

' OUTs-LWR LARHEDG HGHR;LIST',LISTl
BFIND best combo of hedged relations

OUTs-BESTLHll+HERR<LERR-,] bDEFAULT
HERRs-pBASE bNEW GLOBALS FOR LATRY
LERRs-HERR

LISTs-TABLE GETLIST 'R' bRELATION HEDGES
LISTl*-' (' ,LWR ATTACH LIST,LWR REPEAT CLEN LIST

BFIND BEST HEDGED LOWER

LWRs-X LATRY LISTl

LWRsr9LWRll+HERR<LERRO bBEST ONE OF TWO
+SKP IF MERR<HERRlLERR
OUTs-LWR BCHOOSE HEDGED RELATION

MERRs-HERRlLERR
SKP:HERRs-pBASE bRESET SEMI-GLOBALS

LERRs-HERR

LISTls-' (',HGHR ATTACH LIST,HGHR REPEAT CLEN LIST
BNOW BEST HEDGED HIGHER

HGHRs-X LATRY LISTl

RGRRs- ,HGRRll+HERR<LERR;'\
+0 IF MERR<HERRlLERR
OUTs-HGHR
MERRs-HERRlLERR

120

7 OUTs-GETFILE FNO;NAMEF
[13 bCREATES OR TIES FILE
[23 BRETURNS 1 IF NEW FILE
[33 OUTs-AYN 'NEW FILE?'
[43 NAMEFs-AKI 'FILE NAME?'
[53 +TIE IF-OUT
[63 NAMEF FCREATE FNO
[73 M) BEXIT
[83 TIE:NAMEF FTIE FNO

7 OUTs-TIEFILEiNAMEF
[13 NAMEFs-AKI 'RATINGS FILE NAME?'
[23 NAMEF FTIE 1
[33 OUTs- 0 10 0 /FSIZE 1
[4] OUTs-OUT-1 BLAST ELEMENT

7 Iff FUPDATE FCFLG;FNO;CNO
[1] BUPDATES A FILE .
[2] bFCFLG IS FNUM,CN0,NEWF
[3] Fff0* 10 0 /FCFLG
[4] 0ff0<- 0 10 /FCFLG
[5] -»»i4PP IF 0 0 1 /FCFLG BNEW FILE, APPEND ONLY
[6] -MPP IF 0ff0> 0 10 0 /FSIZE FNO BADD TO OLD FILE
[7] Iff FREPLACE FN0,CN0
[8] +0
[9] APP:IN FAPPEND FNO

7 FDUMP;NAMEF;CNO',LIM
[I] flFILff DUMPING UTILITY
[2] NAMEFs-AKI 'FILE NAME?'
[3] iMA/EF FTIF 1
[4] 0ff0*l
[5] LIMs- 0 10 0 /FSIZE 1 bFILE LENGTH+1
[6] LOOP-.+QUIT IF CN0>LIM
[7] • '-,CNO bLABEL WITH CNO
[8] FREAD l,CNO
[9] • »
[10] 0ff0*0ff0+l
[II] +LOOP
[12] QUIT-.FUNTIE 1

121

7 OUTs-OLD ATTACH NEW

[I] BADDS TO TABLE (OLD)
[2] BIF BOTH OLD AND NEW ARE VECTORS
[3] BOUT WILL BE A TWO ROW MATRIX
[4] NEWs-MAKMAT NEW bCONVERT VECTOR
[5] +ADD IF 0<pOLD bEMPTY TABLE CHECK
[6] OUTs-NEW BSTART TABLE
[7] +0
[8] ADD:OLDs-MAKMAT OLD
[9] NEWs-NEW PAD RLEN OLD bEQUALIZE ROWS
[10] OLDs-OLD PAD RLEN NEW
[II] EQU:OUTs-OLD,Ll] NEW bCATENATE

7 OUTs-MAKMAT IN

[1] BMAKES MATRIX OF A VECTOR OR SCALAR
[2] +MATRIX IF 2-ppIN bLEAVE MATRIX ALONE
[3] INs-,IN BMAKE A VECTOR
[4] Iff*(l,plff)plff BMAKE A TABLE OF 1 ROW
[5] MATRIX: OUTs-IN

7 OUTs-IN PAD LEN;INC;TAIL;SHAPE
[1] BADDS BLANK COLUMNS TO IN (IF NEDDED)
[2] INCs-LEN-RLEN IN bCALCULATE WIDTH OF BLANK ARRAY
[3] +FAIL IF INCZO bNO NEGATIVE PADDING ALLOWED
[4] SHAPEs-CLEN Iff bCOLUMN LENGTH OF INPUT
[5] +DONE IF SHAPE=Q BlNPUT IS VECTOR OR SCALAR
[6] INCs-SHAPE,INC BlNPUT IS AN ARRAY
[7] DONE:TAILs-INCp' ' bFORM BLANK ARRAY
[8] OUTs-IN,TAIL bTACK IT ON
[9] +0 BRETURN
[10] FAIL:0UTs-IN bNOOP A NEG. PAD TRY

7 OUTs-IN REPEAT NUM

[1] BMAKE LIST OF NUM ROWS OF IN
[2] bPREFIX WITH BLANK FOR CONCATENATION
[3] Iff*1 ',IN
[4] OUTs-(NUM,pIN)pIN

122

7 OUTs-CLEN IN
[1] BMATRIX COLUMN LENGTH
[2] BOR RETURNS 0 FOR SCALAR OR VECTOR
[3] OUTs-pIN BGET SHAPE
[4] +NOMAT IF 2>pOUT bCHECK RANK
[5] OUTs-l\QUT BGET FIRST COORDINATE
[6] +0
[7] NOMAT:OUTs-Q «0 IF VECTOR OR SCALAR

7 OUTs-RLEN IN

[1] BGETS ROW LENGTH (1 FOR SCALAR)
[2] OUTs-~l*,pIN BGET LAST COORDINATE OF SHAPE
[3] OUTs-OUT+OUT=0 bRETURN 1 FOR ZERO

7

7 OUTs-LABEL IF IN

[1] BAN APL IF STATEMENT
[2] BIN SHOULD BE A SCALAR 0 OR 1 (>1 WILL WORK AS 1)
[3] filF Iff IS A VECTOR, DOMAIN MUST BE {0,1}
[4] BOUT IS 10 IF FALSE (0)
[5] OUTs-LABEL* \ 0* A/Iff

7 FLAGs-EMPTY VEC

[1] BRETURNS 1 IF VEC IS NULL VECTOR
[2] FLAGs-0 = pVEC

7

7 OUTs-ROFF IN

[1] BROUNDS TO PLACES DECIMAL PLACES
[2] BNEEDS TO HANDLER-NUMBERS ONLY
[3] 0UTs-IN*10*PLACES bSHIFT LEFT
[4] OUTs-lOUT+O.S bROUND UP AND TRUNC
[5] OUTs-OUT*10*-PLACES bSHIFT RIGHT

7 OUTs-DEBLANK IN;MASK
[1] BREMOVE EXTRA BLANKS
[2] INs-dN BMAKE VECTOR
[3] MASK*(iff=» t)

[4] MASKs-~l$MASK<l$MASK BONE OF EACH SERIES
[5] OUTs-(IN*' ') BNON-BLANKS
[6] OUTs-(MASKvOUT)/IN

123

-<

Bibliography

Annotations are included with those references which are especially useful and/or relevant

to the present work.

ANDREWS 1975

BALL 1977

BELL 1973

BELLMAN 1973

BERKELEY 1974

BROWNE 1973

CBEMA 1975

CLEMENTS 1974

Andrews, Gregory R., "Partitions ana Princip'es for Secure Operating
Systems," Proceedings of the 1975 ACM National Conference, pp. 177-
180.

Ball, Leslie D. and Hora, Stephen C, "Computer Security and Privacy
Threats: A Bayesian Approach to the Estimation of Their Risk and
Cost," Proceedings 1977 Trends and Applications Symposium, IEEE Com
puter Society, (May 19, 1977), pp. 14-18.

The authors' approach could perhaps be employed to arrive at our "likeli
hoods'' under the assumption of random threats and our "values" under the as
sumption that losses can be statistically predicted. One difficulty lies in estimating
prior probabilities; the authors suggest subjective estimates (which supports an as
sumption of this work).

Bell, D. and LaPadula, L. J., "Secure Computer Systems: A Mathemat
ical Model," MITRE Corporation, Bedford, MA., MTR-2547, vol. II,
Nov. 1973, ESD-TR-73-278.

Bellman, R. and Giertz, M., "On the Analytic Formalism of a Theory
of Fuzzy Sets," Information Sciences, vol. 5 (1973), pp. 149-156.

The authors suggest min and max are the "only reasonable" operators for im
plementing intersection and union offuzzy sets. This paper lends intuitive insight to
the use of these fundamental operators.

Ordinance Number 4732-N.S., "Social Impact Statement for Automated
Record Keeping Systems," Berkeley California City Council, 1974.

Browne, P., "Taxonomy of Security and Integrity," in (HOFFMAN
1973).

A very broad and complete checklist without being voluminous. A good start
ing point for security analysis.

Computer and Business Equipment Manufacturers Association, Period
ical Lists of State Legislation on Privacy and Security.

Clements, D., and Hoffman, L.J., "Computer Assisted Security System
Design," ERL Memo M-468, Electronics Research Laboratory, Univer
sity of California, Berkeley, Nov. 1974.

A prototype for a computer aid to security design. The central idea is to pro
vide a "menu" ofrisks and security countermeasures for the designer.

124

COOMBS 1970

DENNING 1976

FARR 1972

GILMAN 1974

GLASEMAN 1977

GOLDSTEIN 1975

GOLDSTEIN 1976

GRAHAM 1972

GREY 1973

HARRISON 1976

Coombs, C.H., Dawes, R.M. and Tversky, A., Mathematical Psycholo
gy, Prentice-Hall, 1970.

Denning, D. E., "A Lattice Model of Secure Information Flow," Com
munications of the ACM, vol. 19, no. 5 (May 1976), pp. 236-243.

Perhaps the most general and completeprotection model to date.

Farr, M., Chadwick, B., and Wong, K., Securityfor Computer Systems,
National Computing Center Ltd., Manchester, England, 1972, 172pp.

A checklist and security audit approach. The authors provide menu matrices
ofsecurityfeatures classified in terms of"high", "low" and "medium" effectiveness.

Gilman L. and Rose A.J., APL -An Interactive Approach, John Wiley,
NY, 1974.

A very detailed introduction designedfor use at the terminal. There are many
well-explained examples of all standard features as well as a short overview offile
systems andformatted output.

Glaseman, S., Turn, R. and Gaines, R.S., "Problem Areas in Computer
Security Assessment," Proceedings of the 1977 National Computer
Conference, pp. 109-112.

Goldstein, R.C., The Cost of Privacy, Honeywell Information Systems,
40 Guest Street, Brighton, MA., 02135.

, Seward, H.H., and Nolan, R.L., "A Methodology for Evaluat
ing Alternative Technical and Information Management Approaches to
Privacy Requirements," NBS Technical Note 906, National Bureau of
Standards, June 1976.

A questionnaire based methodology for evaluating the costs of complying with
privacy regulations in computer systems.

Graham, G.S. and Denning, P.J., "Protection Principles and Practice,"
Proceedings 1972 Spring Joint Computer Conference, May 1972, pp. 417-
429.

Grey, L.D., A Course in APLI360 with Applications, Addison-Wesley,
Reading, Mass., 1973.

A fairly useful presentation of basic APL with many scientific application ex
amples.

Harrison, M. A., Ruzzo, W. L., and Ullman, J. D., "Protection in
Operating Systems," Communications of the ACM, vol. 19, no. 8 (Au
gust 1976), pp. 461-471.

125

HARTSON 1976

HOFFMAN 1973

HOFFMAN 1974

HOFFMAN 1977

HR 1984

HSIAO 1974

IVANOV 1975

KAUFMANN 1975

KOCHEN 1975

Hartson, J. R. and Hsiao, D. K., "A Semantic Model for Database Pro
tection Languages," Proceedings Second Very Large Data Base Confer
ence, Brussels, Belgium, 1976.

Hoffman, L.J., Security and Privacy in Computer Systems, Melville Pub
lishing Company, Los Angeles, 1973.

A collection of the most important papers on computer security and privacy up
to 1973.

_, "Constructing Security Ratings for Computer Systems," Proceed
ings of the 1974 IEEE National Telecommunications Conference, San
Diego, CA.

First attempt to apply linear weight and score technique to the rating of com
puter security systems.

, Modern Methods for Computer Security and Privacy, Prentice-Hall,
Englewood Cliffs, NJ.

House Resolution 1984, "Comprehensive Right to Privacy Act," A Bill
in the 94th U.S. Congress, First Session, January 23, 1975.

Also appears as Appendix B in [HOFFMAN 19771.

Hsiao, D.K., Kerr, D.S. and Nee, C.J., "Context Protection and Con
sistent Control in Data Base Systems (Part I)," Ohio State University,
Computer and Information Science Research Center, Report OSU-
CISRC-TR-73-9, Columbus, Ohio, 1974.

Ivanov, K., "Privacy and the Management of (Data) Security," IBM
Sweden, 1975.

Kaufmann, A., Introduction to the Theory of Fuzzy Subsets - Volume 1,
Academic Press, NY.

An excellent text on fuzzy set theory providing a detailed treatment with many
intuitive examples.

Kochen, M., "Applications of Fuzzy Sets in Psychology," in Fuzzy Sets
and thier Applications to Cognitive and Decision Processes, Zadeh, L.A.,
Fu, K.S., Tanaka, K. and Shimura, M. (eds.), Academic Press, Inc
(1975), pp. 395-408., New York.

An experiment to determine if there are fuzzy estimators. Unfortunately, the
sample was small and the results somewhat inconclusive.

126

KRAUSS 1972

LAKOFF 1973

LAMPSON 1971

LINDEN 1972

MICHELMAN 1977

MIZUMOTO 1976

NASIS 1974

NAUR 1963

PARKER 1976

Krauss, L.I. SAFE: Security Audit and Field Evaluation for Computer Fa
cilities and Information Systems, Firebrand, Krauss and Co., P.O. Box
165, East Brunswick, N.J. 08816, 1972.

A very extensive and detailed checklist intended for the professional security
audit team. This gives the reader a feel for the magnitude of the security analysis
problem.

Lakoff, G., "Hedges: A Study in Meaning Criteria and the Logic of
Fuzzy Concepts," Journal of Philosophical Logic, vol. 2, no. 4 (October
1973), pp. 458-508.

This paper contains very intuitive arguments for the formulation of linguistic
hedges using composition of the basic fuzzy set operations.

Lampson, B.W., "Protection," Fifth Annual Princeton Symposium on In
formation Sciences and Systems, March 25-26, 1971, pp. 437-443. Re
printed in Operating Systems Review, vol. 8, no. 1 (January 1974), pp.
18-24.

Linden, T.A., "A Summary of Progress Toward Proving Program
Correctness," 1972 Fall Joint Computer Conference, vol. 41, pp. 201-211.

Michelman, E. and Hoffman, L.J., "SECURATE: A Security Evalua
tion and Analysis System," Memorandum No. UCB/ERL M77/36,
Electronics Research Laboratory, University of California, Berkeley,
June 1977.

This work extends the checklist audit approach to security analysis through a
hierarchical model. The system described serves as a user interface and "front end"
for our rating calculator.

Mizumoto, M. and Tanaka, K., "Algebraic Properties of Fuzzy
Numbers," Proceedings of the International Conference on Cybernetics and
Society, Washington, D.C., (1976),
pp. 559,564.

Several results concerning fuzzy arithmetic are presented. In particular, our
work relies upon the convexity preservation properties proven here.

National Association for State Information Systems, Suggested Guide
lines for a State Information Practices Act.

Naur, P. (ed.), "Revised Report on the Algortihmic Language ALGOL
60," Communications of the ACM, vol. 6, no. 1 (January 1963), pp. 1-
17.

Parker, Donn B., Crime by Computer, Charles Scribner's Sons, New
York, 1976.

Case histories of various types of computer-related abuse.

127

PL 93-579

POPEK 1974

SAFE 1974

SALTZER 1974

SHAKET 1975

STS 1974

THURSTONE 1967

TORGERSON 1958

TURN 1972

TURN 1974

US 1974

Public Law 93-579, "Privacy Act of 1974," 93rd Congress, December
31, 1974.

Also appears as AppendixA in [HOFFMAN 1977].

Popek, G. J., and Kline, C. S., "Verifiable Secure Operating System
Software," Proceedings 197* National Computer Conference.

"What Every Executive Should Know About Privacy in Information
Systems," Project SAFE, State of Illinois, 1974.

Saltzer, J. H., "Ongoing Research and Development on Information
Protection," ACM Operating Systems Review, vol. 8 no. 3, July 1974.

Shaket, E., "Fuzzy Semantics for a Natural Like Language Defined
over a World of Blocks," Master of Science Thesis, University of Cali
fornia, Los Angeles, 1975.

The author proposes the use of exponential curves as the semantics of the
linguistic values. This provides a useful alternative to the curves suggested by Za-
deh.

A Users Guide to Enhancements in the APL*PLUS System, Scientific
Time Sharing Corporation, Bethesda, Maryland, December 1974.

Covers the APL*PLUS file subsystem and many other special system functions
which extend the standard APL language.

Thurstone, L.L. "Attitudes can be Measured," Readings in Attitude
Theory and Measurement, M. Fishbein ed., John Wiley, NY, 1967.

Torgerson, W.S., Theory and Methods of Scaling, John Wiley, NY,
1958.

Turn, R. and Shapiro, N., "Privacy and Security in Databank Systems:
Measures of Effectiveness, Costs and Protector-Intruder Interactions,"
RAND Corporation, Memo P-4871, July 1972.

This is the classic protector-intruder model which offers an alternative to pure
probabilistic risk analysis.

Turn, R., Memo P-5142, Rand Corporation, Santa Monica, California,
January 1974.

Qualitative discussion of proposed field of Data Security Engineering. His
view of the security environmentforms the basis for the Basic Model in Chapter 1 of
this work.

U.S. Congress, Public Law 93-579.

128

^

WALTER 1974

WEISSMAN 1969

WENSTOP 1975

WENSTOP 1976

Walter, K.G., Ogden, W.F., Rounds, W.C., et al., "Primitive Models
for Computer Security," EDS-TR-74-117, Case Western Reserve
University, Cleveland, Ohio, January 23, 1974.

Weissman, C, "Security Controls in the Adept-50 Time Sharing Sys
tem," Proceedings 1969 Fall Joint Computer Conference, pp. 119 ff.

This paper is also reprinted in [Hoffnun 1973].

Wenstop, F.E., "Application of Linguistic Variables in the Analysis of
Organizations," Ph.D. Thesis, School of Business Administration, U.C.
Berkeley, July, 1975.

An application of linguistic variables to simulation of interactions in manage
ment organizations. His development of a simulation measurement language has
greatly influenced the design of the rating language in this work.

., "Deductive Verbal Models of Organization," International Journal
of Man-Machine Studies, vol. 8 (1976), pp. 293-311.

A more recent version of [WENSTOP 1975].

WIEDMANN 1974 Wiedmann, C, Handbook of APL Programming, Petrocelli Books, NY,
1974.

This is a terse and well organized reference manual. There are many good
exercises and demonstrations of the behavior of the primitive functions in limiting
cases.

WOOLDRIDGE 1973 Wooldridge, S., Corder, C, and Johnson, C, Security Standards for
Data Processing, Halsted Press, New York, 1973.

ZADEH 1965

ZADEH 1971

ZADEH 1972

ZADEH 1973

A good basic reference on auditing and effectiveness measuresfor security sys
tems.

Zadeh, L.A. "Fuzzy Sets," Information and Control, vol. 8 (1965), pp.
338-353.

Thefundamental paper onfuzzy set theory.

., "Similarity Relations and Fuzzy Orderings," Information Sciences,
vol. 3 (1971), pp. 177-200.

., "A Fuzzy Set Theoretic Interpretation of Linguistic Hedges,"
Journal Cybernetics, 2:3 (1972), pp. 4-34

Discusses the various forms of linguistic modifiers. Much of the development
of Chapters 2 and 3 draws upon this work.

, "Outline of a new Approach to the Analysis of Complex Sys
tems and Decision Processes," IEEE Transactions on Systems, Man, and
Cybernetics, vol. 3 (January 1973), pp. 28-44.

129

ZADEH 1975a

ZADEH 0975b

ZADEH 1976

T

, "Calculus of Fuzzy Restrictions," in Fuzzy Sets and Their Applica
tion to Cognitive and Decision Processes, Zadeh, L.A., Fu, K.S., Tanaka,
K. and Shimura, M. (eds.), Academic Press, New York (1975), pp. 1-
39.

, "The Concept of a Linguistic Variable and its Application to Ap
proximate Reasoning," Part I, Information Science, vol. 8 (1975), pp.
199-249; Part II, Inf. So, 8 (1975), pp. 301-357; Part III, Inf. Sci., 9
(1975), pp. 43-80.

The most complete work on the principles and application of the linguistic vari
able. Includes the extension principle and principle ofcompositional inference.

, "A Fuzzy-Algorithmic Approach to the Definition of Complex
or Imprecise Concepts," International Journal of Man-Machine Studies,
vol.8 (1976), pp. 249-291.

130

	Copyright notice 1977
	ERL-77-41 (1 of 4)
	ERL-77-41 (2 of 4)
	ERL-77-41 (3 of 4)
	ERL-77-41 (4 of 4)

