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Abstract

It is shown that certain problems of optimal preemptive scheduling of

unrelated parallel processors can be formulated and solved as linear program*

ming problems. As a byproduct of the linear programming formulations of

these problems, upper bounds are obtained on the number of preemptions

required for optimal schedules. In particular, it is shown that no more

than 0(m ) preemptions are necessary, in order to schedule n jobs on

m unrelated processors so as to minimize makespan.

*

This is a revised version of the paper "Scheduling of Parallel Machines
with Preemptions," IRIA Rapport de Recherche No. 203 (1976), prepared while
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1. Introduction

The general problem we wish to deal with in this paper is that of find

ing optimal preemptive schedules for independent jobs on unrelated parallel

processors. We show that certain specific scheduling problems of this type,

e.g. minimization of makespan, can be formulated and solved as linear pro

gramming problems. We also show that the linear programming formulations

provide a means for establishing upper bounds on the number of preemptions

required for an optimal schedule.

As part of the general problem formulation, we assume that there are

m processors, indexed i = 1,2,...,m and n jobs, indexed j = l,2,...,n.

A processor can work on only one job at a time, and a job can be worked

on by only one processor at a time. The processing of a job may be inter*-

rupted at any time and resumed at a later time, by the same processor or

a different processor. There is no cost and no time loss associated with

such an interruption or "preemption."

We assume that the input data for a problem instance include mn

positive numbers p.., where p.. represents the total processing time

required to complete job j, if the job is worked on exclusively by

processor i. More generally, if processor i works on job j for a

total time t.., then it is necessary that

m t..

•S p.. ' '
1=1 K1J

in order for the job to be completed.

We assume no particular relation between the p... values. That is,

the processors are unrelated. This is in contrast to two more specialized

cases, as follows. If, for all i, j, k, p^ = p^, then the processors



are identical. If each p.. can be expressed in the form p.. = q.p.,
———————- ij ij i j

where q. (a "slowness factor") and p. are parameters associated with

machine i and job j, then the machines are said to be uniform.

For a given feasible schedule, the last point in time at which job j

is processed is its completion time C.. The first and most important
j

problem we wish to consider is that of finding a feasible schedule for which

"makespan" or maximum completion time,

Cmax =mf{cj} '

is minimized. We shall demonstrate that there is a polynomial-bounded

reduction of this problem to a linear programming problem. More specifically,

we shall formulate a linear programming problem in mn+1 variables and

2n +m (equality and inequality) constraints. We shall then show that one

can obtain an optimal schedule (via "open shop" theory) from an optimal

solution to the linear programming problem. As a byproduct of this analysis,

we prove that there exists a C -optimal schedule with no more than 0(m2)
11Id A

preemptions.

These results are in contrast to the situation for identical and uniform

processors. A y/ery simple 0(n) algorithm, due to McNaughton [4], yields

a Cmax-optimal schedule, with no more than m-1 preemptions. Gonzalez and

Sahni [2] have obtained a more complex 0(n) algorithm for the case of

uniform processors, and show that no more than 2(m-l) preemptions are

required for an optimal solution.

There is no known polynomial-bounded algorithm for the general linear

programming problem, nor has the problem been shown to be NP-complete. It

follows that our solution to the C problem for unrelated processors does

not resolve the question of whether the problem is either NP-complete or



polynomial bounded. However, in a later paperwe shall show that for any

fixed number of processors m, there is a polynomial-bounded algorithm,

with a time bound of 0(n ^m" '), (Note: For the case m = 2, there is

a particularly efficient algorithm [3],)

Following our discussion of the C _ problem, we consider extensions
J max

of the linear programming method of solution to objective functions more

general than C .In particular, we consider the problem of minimizing
J max

L_ = max{L,} , (1.1)

where

"max j J

L. = C.-d. . (1.2)

denotes the lateness of job j with respect to a given due date d..

Upper bounds on the number of preemptions required for an optimal schedule

are obtained for this, and for a much more general class of objective

functions.

2. Linear Programming Formulation of C Problem

We suppose all jobs are available for processing at time t = 0.

Consider any feasible schedule of n jobs on m unrelated processors,

where with respect to this schedule,

t.. = the total amount of time that processor i works

on job j.

It is evident that the values of Cmav and t._. for the schedule consti
max ij

tute a feasible solution to the following linear programming problem:



minimize C v
max

subject to

m t..

I 7^= 1 , j= 1,2,....n (2.1)
1=1 Pij

m

I
1=1

n

i

.L^W J=1.2,...,n (2.2)

•L^W 1=1'2 m (2-3)

tij>o.

We assert that the converse is also true. That is, for any feasible

solution to the linear programming problem, there is a feasible schdule

with the same values of t._. and C . In order to prove this assertion,
ij max

we solve what Gonzalez and Sahni [1] call the preemptive "open shop"

scheduling problem. In the next section we indicate a solution to this

problem, rather than merely referring to [ 1], in order to have the tools

more readily at hand for obtaining a bound on the number of preemptions

required for an optimal solution.

3. Construction of a Feasible Solution

Suppose we are given an mxn nonnegative matrix T = (t..) and a

value C , where

Cmax =max<max<I t^.}, max{£ t^.}} . (3.1)

We wish to show that it is possible to construct a feasible schedule with

the given value of C
3 max



The pertinent assumptions are as follows. Processor i is to work

on job j for a total amount of time t... A processor can work on only

one job at a time and a job can be worked on by only one job at a time.

There is no restriction on the order in which a given job can be worked on

by the different processors, or on the order in which a given processor can

work on jobs. (Hence the term "open shop.") There is no loss of time

occasioned by the interruption or preemption of jobs. All jobs are avail

able for processing at time t = 0.

Let us call row i (column j) of matrix T tight if £ t.. = C
• ij max

(I tss - cmav)> and slack otherwise. Suppose we are able to find a subset
• ij max

of strictly positive elements of T, with exactly one element of the subset

in each tight row and in each tight column and no more than one element in

any slack row or column. We shall call such a subset of elements a

decrementing set, and use it to construct a partial schedule of length 6,

for some suitably chosen 6 > 0. In this partial schedule processor i

works on job j for min{t..,6} units of time, for each element t.. in
ij ij

the decrementing set. We then replace t.. by max{0,t. .-6}, for each
ij ij

element in the decrementing set, thereby obtaining a new matrix T', for

which C = C -6 satisfies condition (3.1).
max max

For example, suppose C _ = 11 and
max

T =

'300 4'
0 0 6 0
4 0 0 (§X
11 4 6 10

11

10

10

with row and column sums as indicated on the margins of the matrix. One

possible decrementing set is indicated by the encircled elements. Choosing

6=4, we obtain C' = 7 and T' as shown below, with the partial
max



schedule indicated to the right:

r =

r@ 0 0 4 ' 7 2

0 0®0 6 1

[4 0 0 ®j 6 4

7 0 6 6 L

A decrementing set of T' is indicated by the encircled elements.

There are various constraints that must be satisfied by 6, in order

for C* = C -6 to satisfy condition (3.1) with respect to T'. First,
max max

if t.. is an element of the decrementing set in a tight row or column,

then clearly it is necessary that 6 < t..., else there will be a row or

column sum of T' which is strictly greater than Cm_ -6. Similarly, if

t.. is an element of the decrementing set in a slack row (slack column),

then it is necessary that

6 < t.. +C -J t..- ij max ^ lk

(6 < t.. +C -It..).
v - ij max f; kj'

And if row i (column j) contains no element of the decrementing set (and

is therefore necessarily slack), it is necessary that

6 < C -It..
- max i u

(6 < C -I t..) .
x - max £ i:r



Thus for the example above we have

6 <t12 =4 ,

6 < t21 = 4 ,

^M+Wpaic- 7

^^^rax-J^" 7

6 < C -J tn = 5 .
- max f k3

Suppose 6 is chosen to be maximum, subject to conditions indicated

above. Then either T' will contain at least one less strictly positive

element than T or else T' will contain at least one more tight column

or tight row (with respect to C' J than T. It is thus apparent that no
** max

more than r+m+n iterations, where r is the number of strictly posi

tive elements in T, are necessary to construct a feasible schedule of

len9th W
To illustrate this point, we continue with the example. Choosing

6=3, we obtain from T' the matrix T", with the augmented partial

schedule shown to the right:

T" =

'0 0 0 ©'

0 0 0 0

0 0 0 0.

4 0 3 4

2 1

1 3

4 4 0

4 6 7

(The symbol "0" indicates idle time.) The final decrementing set yields

the complete schedule:



2 1 4

1 3 3 0

4 4 1 0 1

4 6 7 10 11

To complete our proof, we need the following Lemma

Lemma 1. For any nonnegative matrix T and Cmax satisfying condi

tion (3.1), there exists a decrementing set.

Proof. From the m*n matrix T construct an (m+n) * (m+n) matrix

U, as indicated below:

U =

T D
m

D„ T*
n

Here T denotes the transpose of T. -D and DM are mxm and n*n
r m n

diagonal matrices of nonnegative "slacks," determined in such a way that

each row sum and column sum of U is equal to C^ . It follows that
^ max

1 U is a doubly stochastic matrix. The well-known Birkhoff-von Neumann
max

theorem states that a doubly stochastic matrix is a convex combination of

permutation matrices. It is easily verified that any one of the permutation

matrices in such a convex combination is identified with a decrementing

set of T. Q.E.D.

There are several possible ways to construct a decrementing set. For

our purposes, it is sufficient to note that one can construct the matrix U

from T and then solve an assignment problem over U, which can be done



in polynomial time. This observation, together with the observation that no

more than a polynomial number of such assignment problems need be solved, is

sufficient to establish a polynomial bound for the schedule construction

procedure. Gonzalez and Sahni [1] have obtained time bounds of 0(r )

and 0(r(min{r,m }+mlogn)), where r is the number of strictly positive

elements in T.

4. Bounding the Number of Preemptions

We now seek to establish an upper bound on the number of preemptions

required for a C -optimal schedule on unrelated parallel processors,
max

To be precise, we say that a job is preempted at time t if execution

of the job is suspended on some processor at time t before its completion.

If a processor begins or resumes execution of a job at time t' and its

processing is continuous until time t, when the job is either completed

or preempted, then [t',t] is called an active period for the job. The

total number of preemptions in a schedule is thus equal to the total number

of active periods in excess of n.

Now consider the linear programming problem formulated in Section 2.

This problem has n equality constraints (2.1), m inequality constraints

(2.2) and m inequality constraints (2.3). It follows from elementary

linear programming theory that there exists an optimal basic solution with

no more than n+r2 +r3 strictly positive variables, where r2 and r3
denote the number of inequality constraints (2.2) and (2.3) which

are satisfied with strict equality. Clearly 0 < r3 < m. If n> m,

0<r2<m-l. And if n<m, at most m-1 constraints (2.3) are nonredun-
dant. Hence, in all cases, r2 <m-1. It follows that there is an optimal
solution with at most n+2m-l strictly positive variables, one of which

is Cma .
max

10



We may thus assume there exists an optimal solution to the linear

programming problem with no more than n+r2 +r3 -1<. n+2(m-l) strictly

positive t.. values. If we could construct a schedule (with the given
'«j

value of C ) with exactly one active period for each positive t..
max 'j

value, then we should have an upper bound of 2(m-l) on the number of

preemptions required for a C -optimal schedule. However, the schedule
IllCX A

construction procedure generally introduces additional preemptions. We

must now establish an upper bound on this number.

We shall propose a variation of the schedule construction procedure,

with the objective of reducing the number of preemptions in the resulting

schedule. (This variation also happens to admit a better polynomial bound

on its running time, but this is not our principal concern here.) What we

shall do is to replace all of the jobs which are represented by a single

positive t.. value by m dummy jobs. We shall then apply the schedule

construction procedure to find a feasible schedule with these dummy jobs.

Finally, we shall create a schedule for the original set of jobs by reas

signing the active periods for the dummy jobs to the jobs which they replaced

Consider the example from the previous section where CmQX = 11 and

T =

f 3 4 0 4 1

4 0 6 0

4 0 0 6

11 4 6 10

11

10

10

(This is actually not a basic feasible solution to the linear program, but

this is of no consequence.) Let us remove the columns containing exactly

one strictly positive t.. value and add dummy columns, to obtain the

matrix T':

11



T' =

3 4 4 0 0 11

4 0 0 7 0 11

4 6 0 0 1 11

11 10 4 7 1

The indices of the jobs identified with the first two columns of T'

are 1 and 4. Let us assign indices V, 2', 3' to the dummy jobs. Note

that we have given the dummy jobs t... values so that all rows of T" are

tight.

The schedule construction procedure applied to T' yields as a

schedule:

V 1 4

1 2
i

4 |3' 1

i% 6 •1 11

We now fill in the active periods for the dummy jobs with active

periods for the jobs which they replaced, plus idle time, obtaining the

same schedule as we happened to obtain by the original procedure:

2 1 4

1 3 |»
4 | 0 .1

i% 6 •7 10 11

In the case of this example, a schedule was constructed for the matrix

T' in which there were no preemptions of the dummy jobs. Hence it was

possible to create aschedule for the original set of jobs in which there
were no preemptions of any of the jobs which the dummy jobs replaced. In
general, the number of preemptions required for the original set of jobs

12



is bounded by the number of preemptions in the schedule constructed for the

matrix T*.

The matrix T1 has at most m+r2 +r3-l columns and at most

m+2(r,>+r~-l) strictly positive elements. Each iteration of the schedule

construction procedure either reduces an element of the T' matrix to zero,

or causes an additional column to become tight. Exactly m elements become

zero at the last iteration. Hence there are at most 2(r2+r3) -1 itera

tions of the first kind. There are m-r2 iterations of the second kind,

and hence no more than m+r2 +2r3-l iterations in all. Each iteration
introduces at most m active periods into the resulting schedule, so there

are at most m(m+r2+2r3-l) active periods in all. The number of active

periods in excess of m+r2 +r3-l, and hence the number of preemptions,

is thus bounded by m(m+r2+2r3-l) -(m+r2+r3-l). Taking r2 =m-1,

r~ = m, we have the following theorem.

Theorem 2. An upper bound on the number of preemptions required for
2

a C -optimal schedule on unrelated processors is 4m -5m + 2.
max r

The bound indicated by the theorem is certainly not tight, inasmuch

as it is known that no more than 2 preemptions are required for the case
2

m = 2 [1,3]. Moreover, we have not been able to establish that 0(m )

preemptions may be required for an optimal schedule, or even that more

than 2(m-l) may be necessary.

13



5. The L Problem
— max

We now formulate a linear programming problem to minimize Lmax, as

defined by (1.1) and (1.2).

Assume the jobs are numbered in nondecreasing due date order, i.e.

d, < d0 < ••• < d . Let
1 — 2 — — n

tW =the total amount of time that processor i works

on job j in the time period [°»d-|+Lmaxi »

and, for k = 2,3,...,n, let

t^ =the total amount of time that processor i works

on job j in the time period [dk-1 +Lmax» dk +Lmax^

Then we have the linear programming problem

minimize Lm,v
max

subject to

l l -JJ-- 1 , 0 = 1,2 n
i=l k=1 pij

14

It^ <dk-dk_1 ,j=k.k+1 n, k=2,3,...,n

J-l

I *iV <dlr"dlf 1• 1"1'2'---'"1' k= 2'3'"--'n
j-k 1J K

t|«>0.



Given an optimal solution to this linear programming problem, an

L -optimal schedule can be obtained by applying the schedule construction
max

procedure of Section 3to each matrix V '=(tL*)• k=l,2,...,n. Let
p(m,k) < 0(m2) be an upper bound on the number of preemptions required

for the subschedule constructed from V '. Then an upper bound on the

total number of preemptions required for an L^-optimal schedule is seen

to be
n 2
I p(m,k) £ 0(m n) .
k=l

It is not difficult to construct examples for which 0(n) preemptions are

necessary for an L -optimal schedule.

6. Costs of Processing

The linear programming formulations we have obtained suggest that we

might include a "cost of processing" in the objective functions for these

problems. Let

c. = the cost processing job j on processor i for

one unit of time.

Then, for example, rather than only minimizing Lmax, we may choose to

minimize

L +H IctW .Lmax 44£ ij ij

It is a well-known fact that the convex combination of any two feasible

solutions to a linear programming problem is also a feasible solution.

Thus, if L , T and L* , T\ are feasible solutions, then so is
max max

XL™v +0-X)L' y* XT+(1-A)r, for any X, 0<X<1.
max max

15



Let us say that (L,C) is a feasible pair of values if there exists

a feasible schedule for which

VI I c..t(^ <C
ij k 1J 1J "

Lmax±L'

The preceding remarks about convexity indicate that the feasible points

(C,L) form a convex region in the plane, as indicated in Figure 1. Or, to

put it another way, if L(C) denotes the minimum attainable value of L-max»

over all schedules with cost of processing not exceeding C, then L is

a convex function of C.

7. A General Bound on the Number of Preemptions

We shall now obtain an upper bound on the number of preemptions required

for an optimal schedule, with respect to a very broad class of optimization

criteria. Specifically, we suppose that we wish to find a schedule which

minimizes

f(Cl'C2 Cn} +\ I c1J*1j '

where f is a monotone nondecreasing, but otherwise arbitrary, function

of the completion times of the jobs, and c.. is defined as in the previous
'j

section.

Suppose there is an optimal schedule with completion times Cj,C2,...,Cn

We can let these completion times assume the roles of deadlines and solve

a linear programming problem of the form described in Section 5. The

schedule construction procedure can then be applied to obtain an optimal

16
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Figure 1. Convex region of feasible solutions.
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schedule for which we can bound the number of preemptions as follows. From

our previous observations, we have the following theorem:

Theorem 3. For any monotone nondecreasing function f and coeffi

cients c, there exists an optimal schedule in which the number of pre-
j

emptions is bounded by

n 2
I p(m,k) < 0(m n) ,
k=l

where p(.m,k) is an upper bound on the number of preemptions required for

a C -optimal schedule for k jobs on m unrelated processors,
max

Theorem 3 can easily be generalized to the case in which we seek to

minimize

f(SrS2,...,Sn,CrC2 Cn) +11 c.jt-.j ,

where f is monotone nonincreasing in the starting times S^,S2,,..,Sn

and monotone nondecreasing in the completion times Cj,C2,..->Cn- We leave

details to the reader.

17
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