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Summary
This paper proposes a set of new program restructuring algorithms which
can be used to reorganize programs so as to increase their performance
under various memory management strategies in virtual-memory computer systems.

The new algorithms are based on a recently proposed program behavior model

called the bounded locality intervals model, which allows us to give‘a

precise definition of the localities of a program. The‘paging activities

of a program restructured with the new a]gorithms under working-set and
global LRU-1ike memory management strategies are simulated to evaluate the
new algorithms. Some of them are showh tb be almost as good as the strategy-

oriented algorithms, which have been reported to be very successful.
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Introduction

~ The overall system performance of a virtual memory computer system
strongly depends on the performance of the memory subsystem, wh1ch cons1sts
of physical memory devices and the system programs in charge of the manage-

1 Since the concept of vir-

ment of the information stored on the devices.
tual memory has emerged, memory management policies, particularly page
replacement strategies, have been paid'much attention and have’been.exten-
sively studied, both to reduce software overhead in imp]ementing virtual
memory systems and to achieve.reasonable performance.over a wide spectrum
of programs. | |

Another relative1y new approach to performance,improvement is to
rearrange programs SO that they can be efficiently execoted‘in vjrtual
memory systems. This is especially true for comp]tcated and large programs,
e.g., system~programs, compilers and large simulation programs, etc., and
it is often the case that these ‘programs actually behave poorly. This

second approach is called program restructuring.

If we knew, or were ab1e to estimate, the performance 1mprovement that
would be obtained by ‘restructuring and the frequency of execution, we cou]d '
decide whether a given program should be restructured or not. Unfortunately,
the improvements that restructuring will afford are genera]ly very difficult
to predict reliably. System programs and compilers, as well as other programs
in certain installations, however, have such a high frequency of execution
that restructuring is like1y to be advantageous even if the performance
improvement for each execution is small, since the cost of restructuring
will be paid off quite soon. |

The algorithms used to restructure programs can be divided into two

categories. Restructuring a]gorithms‘in the first category take advantage



of the knowledge of memory manégement strategies, whereas'those in the
second category are independent of memory management strategies..‘The;
restructuring algorithms in the fifst cétegory are'éxpected to be superiof
to those ih the second categéry due to the fact that they‘use additional
information. Several experiments have confirmed.this ihtuitive resu]t.2’3
However, programs should be exclusively restructured for each virtua]imemOry .
'system in which they are executed. Thus, in certain cases, for example
wﬁen little is known about memory manggément strategies, or when a program
is to be executed on a number of different systems, it would be desirable .
- to.use restructuring .algorithms in'the second category, provided that their
effiéiency were comparable to'that of the algorithms in the first categpry.
This paper presents and evaluates a set of new restruéturing algorjthms
of the type we have just described. Though being strategy-indepgndent, .
these algorithms produce restructured programSVWhich in general perform
substantially better than those‘produced by the.previously proposed algo-
rithms in the second category under a Variety of memory manégement stréfegies;
In the next section, two classes of widely used memory management
strategies will be discusSed.> They correspond to the environments in which
the performanCe_of the restructured programs will be evaluated. In the
fo]lowiﬁg:section, several previods]y propo§ed festructqring a]gorithms“and
a set of new restructuring algorithnis will be introduced, foliowing a
description of a general restkucturing proéedufe. Then, the experimental
results produced by the new restructuring a]gor{thms in the two different

environments will be given.



Memory Management Strategies

In multiprogrammgd virtual memory systems; an executab]e-program déeé
not usually fit entirely into main memory . Thereforé; a copy of the program
is stored in fast secondary memory befere execution. Segments of.a program
containing instructions or data to Se’referencedaretraﬁsferred.automatical]y.
from secondary memory to main memory or vice versa aﬁcording‘to a memory
management strategy which is implemented in a module of the operating Sy§tem.
The memory. management strategy determines when and which segment of a program
is to be transferred to what part of the main memory, and when and which
segment resident in the main memory is to be transferred back to the secon-
dary memory to make room for an incoming segmént. In the séque] we‘aSSUme
that the segments of a program are of equal size and the main memory is also
divided into frames of the same size as the program éegments. The fixed-
sized segments are called pages. We alsdléssume that the pages héeded are
transferred ihto main memory on demand, as in most virtual memory Systems.'
The pages to be transferred back to secondary memory are determined by the
so-called page replacement algorithm, which is a’component of the memory
management strategy. There are fwo groups of widely used page replacement
algorithms: global LRU-like page repiacement algorithms and working-set-1ike
strategies. Under a global LRU-like page replacement algorithm, a page
which has not been referenced for a relatively long period of time is likely |
to be replaced. - This algorithm is siﬁple to implement, for example, by
maintaining a table of reference bits, each of which éorrespondS*té a page
frame in main memory, and a pojntér to an entry of the table. When a page
resident in the main memory is referenced, the referehceﬂbit associated with
the page frame is turned on.. The pointer circles around the reference bit

table so that;‘when it is necessary to choose a page to: be replaced, the



pointer proceeds turning off the reference bits until'it encounters a
reference bit off. The page associated with that reference bit is the one
to be repiaced Algorithms of this type are implemented, for example, 1n
-muLtics? and os/vst.

The paging activities of the programs executed concurrently‘under a
global LRU-1ike page replacement strategy interfere with each efher. For
" instance, programs.which requfre many pages in a short time interval tend
to steal page frames from other programs resident in the main memory; "The
determiﬁation of paging activities in this situation is too complicated to
be performed by analytical methods. Therefore, simulation is to be used.
However, the simulation of paging activities under a global LRU-1ike strategy
would require that several programs were fed into a virtual memory simulator
simultaneously, and it is very difficu]t to choose and procure enough pro-
grams whose combinations constitute reasonable and representative jbb
~ mixes in a virtual memory system. Fortdnate]y,‘a simulation model of pag-
ing activities under global LRU-]jke strategies in time-sharihg environments
has been proposed and succeésful]y verified with the CP-67 system.6 This
model is based on the foi]owing observations. A program loses its pages
resident in the main memory only while it is in the intefrupted state, thatt
is, when its execution is suspended. A program interruption (simply called
an interruption in the sequel) occurs when the program issues a.page request
or an I/0 request, or when its time quantum expires. When the system pag1ng
activity is low and the demand for page frames is small, the unreferenced
pages of a program can survive (that is, remain in main memory) a relatively
larger number of interruptions. On the other hand, when the system paging
activity is high, the unreferenced pages will be lost from a program after

relatively few interruptions. The effect of the overall system activity on



a single prdgram‘is thus characterized by a single parameter called the

page survival index (PSI), which is defined as the number of interruptions
that an unreferenced page residenfiin the mainAmemory can survive, that is,
stay in the maim memory. The set of pages of a program which reside in-fhe
main memory at time t under the PSI model with a particular value ¢ _of

PSI is called the resident set at a given virtual t1me t with PSI = v,

and is denoted.by R(t,w). The resident set size 1s def1ned as the number
of pages in the resident set. R |

The workxng set of a program at a given virtual time t, w(t,r), is.
~ dynamically defined.as the set of pages referenced by the program during the
“time interval - (t-t,t], where is a parameter ca]]ed'!ggggg_glgg, The
working set.size is defined as the number of pages belonging to the working
set. The working-set memory management strategy ensures that the working"-
set of a program at any given t1me t, N(t 1), 1is maintained in the main
memory. .The WOrk1ng set- is, im most cases, not updated cont1nuously at
each memory reference, but only at sampling-times, so as to reduce the
sqftware overhead. Working-set-1ike memory managemehf strategies are imple-

7 ymos, 8 9

mented, for instance, in MANIAC II, and 0S/VS2 Release 2.
The PéI and working-set memory management strafegies have been'used in
our experiments as the environments in whichvfhe‘execﬁtion of ‘programs was
simulated and their paging activities were measured: |
Throughput and response time fom time-sharing systems or turnaround
time for batch systems are ideal performance,indices for'the evaiuatiom of
virtual memory computer systems performance. The eva]uatfon of tﬁese system-
wide indices mequires a relatively complex ana]ytical]0 or simu]ation]]
model; However, for the sake of simplicity, we decided to use intermediate

performance indices like the number of page fau]tslgenerated by a;program}



and its memory demand, which will be defined'be]ow. AThe number of page faU]te
(NPFs) is the total number of pages net-found in the main memory when;needed
by the CPU during a program's execution. If the number of page faults of

a program is reduced, the execution of the program finishes in a shorter

time and less main nemory is unnecessarily wasted during.page'transfers.“
The.memory demand is defined as the average resident set size in a global
LRU-Tike envirbnment or the average working set size in a working set
ennironment over the totel virtual time used for the program's execution.

If prbgrams occupy less main memory space bn the average, tnen tne degreer.

of muftiprogramming can be increased and therefore the throughput sheuld be

expected to increase.

Program Restructuring

A program to be restructured is divided into relecatab1e segments
(called blocks in the sequel) such that‘the re]ative addresses of instruc-
tions or data within a block ‘are not modified but the ordering of blocks
~can be changed in the virtual addrese space. COMMONs in FORTRAN and BLOCKs
~in ALGOL can be blocks. Then the block reference str1nq, which is a series
of block identifiers ordered by the time of reference, is obtained. There
are two methods to obtain block reference strings. -The first method con-
sists of jnstrunenting a program before its exeeution eo that the instru-
mented program generates and records the b?ock reference string on a file
during its execution. The second method is to execute, under control of a
software interpreter or instruction tracer, an uninstrumented program inter- ‘
pretively instruction by instruction, and to record on a f1le the addresses

referenced The block reference string is obtained from the address

reference string by mapping addresses into b]ocks A restructurjng graph



of a program is‘obtained_by'app1ying a restr9cturing aigorithm>to the block

reference string which was recorded on a fiie. Alternatively, the graph
may be generated.direétly from the program during its. execution. A restruc-
turing gréph is non-directed. The nodes of the graph répresent biocks of
the program and the edge labels represent the strength af c&nnectiyity
between the éorresponding nddes.. By app]ying.a clustering algorithm to the
rgstructuring graph, nodes, i.e. blocks, are grouped togéther'so that the |
totalrstrehgth_of connectivity among blocks which be10n§ to different groups
is minimal. Finally, the blocks of the program are.reordered in the virtual
address space so as to obtain.the groups suggested by the cTustering
algorithm.

The restructuring algorithms may be divided into two categories:

strategy-oriented algorithms and strategy-independent algorithms. A

strategy-oriented algorithm assumes a particular target memory management.
sfrategy and takes advantage of the knowledge of thdt sfrategy. The goal
is to obtéin a réétructured program which can be executed efficiently in;a
virtual memory system controlled just by'the target memory management
strategy. SdmeVSUCcessfu1 sfrategy-orientéd rgstfucturing algorithms are
summarized in the sequel. | . |

Before proceeding to describe thesé restructuring algorithms,.wé will
introduce some notations and assumptions. MWe assume that réferenceS'are
made at the discrete time instants 1,2,3,...,t;... to the blocks
vb(l),b(z),b(3j,.;.,b(t),..., respectiVely. In this section, blocks are
the units of‘memory management. Thefefore, the workingrsét~and tﬁe resie
dent set are defined in terms of B]qcks rather than of pages. The working

set at time t with window size T 1is denoted by wb(t,r), and the resi-

dent set with the PSI value ¢ is denoted'by 'Rb(t,w). ~A critical referencev



is defined as a reference to-a b1oek which.is not resident in the main
memory, which causes a block fault.

The Critical WOrk1ng,Set (CNS) restructuring algomthm2 is intended to

decrease the number of page faults generated by a program which is executed
in_a virtuaIAmemory system.with the work1ng-set memory management strategy. ,
‘CWS increments by one, whenever a block fault occurs, the labels of the edges
(bi,bf), where bf is the-b]ock Fhe reference to which causes a block
fault at time t, and bi is any block which belongs to wb(t,r).' When
the program is executed undervthe.working set strategy after it has been
restructured by using the CQS algorithm, it is expected to generate'fewer :
page faults than'the unrestructured original program,'because a number of

former critical references will not be critical anymore.

The Minimum Working Set.(MWS) restfycturing a1-gom’1:hm]2 has also beenh.
suggested for the working set strategy in order to decrease the wonking set
size. The MWS algorithm increments- by one the labels of all the edges
(bi’bj)’ where both blocks b, and’ bj are members of Nb(t,T) at
sampling time t.

The Critical PSI (CPSI) restructuring algor1thm, wh1ch is proposed and
13

descr1bed in detail in a companion paper, ° intends to decrease the number
- of page faults generated by programs whiéh are executed in g]obal«LRU-1Jke
" environments. The basic concepts behind the CPSI algorithm are the same as
. Ithose benind the CWS algorithm. That is, if a block’ bf refereneed at‘tine
t+1 is not a member of Rb(t,w), then the CPSI algorithm increments fhe |
label of all the'edges (bi,bf), where bi is a member of R(t,¥).

The Minimum PSI (MPSI) restructuring algorithm, also proposed and

13 tries to minimize the resident-set size -

described in the companion paper,
by incrementing by one the labels of all the edges (bi’bj)? where bi and

Bj are members of Rb(t,w);
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The strategy-independent restructuring a]goritth‘do not require any

specific information about the memory management strategies under which

programs to be restructured are executed. The Nearness Method (NM) is a

14 The NM just incre-

classic strategy-independent restructuring algorithm.

ments the edge labels of block pairs referenced consecutiveTy.j That is,

NM increments the label of the edge (b(i),o(i+1)) for-‘i =1,2,3,...,t
‘Programs almost always exhibit the so-called 1oca1fty of reference in

15 This means that a proper

the virtual address space and in virtual time.
subset of a program is accessed for relatively long per1ods of v1rtua1 t1me
and the 1tems in the subset are located relatively close to each other,
Virtual memory computer systems take advantage of this property of programs.
Memory management strategies, for instance global LRU-like strategies and
working-set-Tike strategies, assume that programs exhibit some locality of
reference and can only achieve reasonable levels of performance if this_v
assumption is satisfied. Thus a restructuring algorithm which enhances a
program's 1oca]ity will improve the efficiency'of‘program execution much

more than the NM, which makes little use of the loca11ty

Bounded Locality Intervals (BLIS) have been recent]y proposed by Madxsonr'
16

and Batson = to model dynamic program behavior from the locality's point of
view. Some of the nice features of Madison and Batson's model are tpat it
contains no’parameters, so that localities are,determined naturally, and.
that it defines hierarchies of localities. A 1oca1ity'in this context is

a proper subset of a program's blocks defined by the BLI mode]. A set of

k distinct blocks of a program is saio to be "formed";mhen it consists of
the k most recently referepced b]ocks of -the program;'and is said to be

"terminated" when a block not belonging to the set is referenced for the

first time after the set is formed. An activity set at t1me t is def1ned




1

as any set of blocks all members of which have been. re-referenced since the
set was formed. Activity sets can be convéniently identified by the Extended

16

Least Recently Used (LRU) stack defined by Madison and Batson. The

Extended LRU stack at time t consists of the following three vectors:

L(t) = (Ly(£)sLy(e)sennul (£D) 5
a(t) = (ay(t)s0p(t),.ceuo (8)) 5
T(t) = (T;(1),Tp(t),..uT (1)) 5

where n is the number of blocks infthe program, L(f) is the norﬁaleRub.
stack and Li(t) is the i-th moét recently referenced block at time t, - |
_ ai(t) is the time at which the block in the i;th poéition of L(t) was
last referenced, and Ti(t) is the most recent time at which a reference
was made to a staqk position greatef than 1i. Therefore, Ti(t) is tﬁe;
formation time of the set S, = {L,(t),L,(t),...,L;(t)}. If at time t+

; a reference is made to the block Li(t), then the Extended LRU stack

" is updated as follows:

L) = L) 5 o (1) = t41 5 Ty(6) = Ty(t) 5
Cfor 1< j<i-l

Lj+](t+1),= Lj(t) : aj+](tf1) = aj(t) 5 Tj(tfl) = t+1 |
for i+l <k<n

L(E41) = L () 5 o (t4) = @ (t) 3 T (tH) = T (t) .

we

" An activity set at time t, Ai(t), is defined as ahy set Si(t),_for'which
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The lifetime of an activity set is defined as the intefvaf between the
time the activity set is established and the termination time. In other

words, all members of an activity set have been re-referenced after it was

formed. A Bounded Locality Interval (BLI) is defined as the pair consistihg
of an activity set and its lifetime. Suppose that two activity sets at time |
t, Ai(t) and Aj(t), exi;t with i < j. Then, Ai(t). is a subset of
Aj(t) and the lifetime of Ai(t) is shorter than that of Aj(t),‘ becgq;e.
the set of the i most recently referenced blocks is a subset of the set of
.the' J most recently referenced blocks. Thus, BLIs at a bafticular timé
constitute a hierarchy in‘terms of both set membership,aﬁd ]ifetime. The
top level (level 1) of the hierarchy corresponds to the 1argést BLI and the
level of a BLI is Qefined as its distance from the top of the hierarchy.
minus one. 'Thus, the higher the level of a BLI, the smailer the activity' .
set size and the shorter its lifetime,

A set of new strategy-independent restructuring algorithms can be-
derived from the concept of BLI. If a set of blocks belong to an acfivfty
set of high 1eVe]; they should be put,closé tb each other in the virtual |
address space so as to decrease the working set size or the residentléet'

size of the program. In order to reflect this situation, the Activity Set

algorithm -1 (AS1) is defined as a restructuring algorithm which ihcremehts
the label of Fhe edge between b]ocks_ﬁbi and bj by an amount equal to the
1eye1 of the smallest activity set to which blocks bi' and bj belong.
Practically, the labels are incremented by one when an-activity set is
established because of the inclusion property of BLIs. Suppose thét blocks
b, " and b ‘belong to an activity set of level 3. Thié'implies that these
blocks are the members of the three activity sets, say, Az(t), Am(t), and

—_—

:An(t), with & >m>n, where A(t) is the activity set of level 1
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and An(t) is the smallest -activity set which includes bi and bj. Sjﬁce
Al(t), Am(t), and An(t) are established in this chronological order,
incrementing by one the label of the‘edge between bi and bj each time
one of the three activity sets is established, is equivalent to incrementing
the label byvthree, which is exactly what the AS1 algorithm does.

A simpler algorithm can be uﬁed if the hierarchy has only a few levels
or if'the.average size of the activity sets of level 1 is small epough to -

fit in the main memory. The Activity Set algorithm - 2 (AS2) keeps track of

the activity sets of level 1 only and may be described as the algorithm
which increments by one all the labels of the edges between the blocks
which belong to an activity set of level 1.

Establishment of an activity set does not neceﬁsari]y mean that all
the members of the set will be referenced repeatedly in the future. Soﬁe
of them can stay in the set pnreferenced. 1n other wobds, not all the mem-
bers of an activity sét are always actiye. Therefore, évstricter termination '
condition of activity sets is'requ{red in order to remove inactivg meﬁbers.
- One possible solution tojthe termination cbndition problem is to introduce
a parameter d which plays a role similar to the one of-the window inxthg’
working set strategy. This allows us to define a set of blocks called a-

strict activity set. A strict activity'set at time; t 1is defined as any

activity set all the blocks of which have been rereferenced after the timé
t-o. Note that strict activity sets also have-a hierarchical structure.
By using the notion of strict activity sets; two restructuring algorithms -

analogous to AS1 and AS2 may be introduced. The Strict Activity Set

algorithm-1 (SAS1) is defined as the algorithm which increments the label

of the edge between a pair of blocks bi- and bj by the level of the

strict activity set to which blocks bi and bj belong. The Strict Activity
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Set algorithm-2 (SAS2) is defined as the algorithm which increments by one

the label of the edge between a pair df'blocks only when these blocks belong
to a strict activity set of level ]. ' |

The performance of the restructured nrqgrams obviously depends also on
the clustering aigorithm employed inAthe reetructuring procedure.]? However,
since investigating the clustering algorithms was not the objective of this
research,,we used the same simple clustering algorithm throuéhout the
experiments.. The C]ustering algorithm will be described briefly in the

next section.

Experimental Results

Tnace dniven simulators were deve]oped’for the working set environment
and the PSI environment. Sonelexperiments were performed to evaluete the
- performances pf programs restructured with the new algorithms under the two
memory management strategies using five block reference etrings which had -

been obtained from an actual program by Ferrari and Laug]7

~ The reference
strings (called S1 through S5 in the sequel) were generated from an instru-
mented PASCAL compiler compiling five different source pfograms[ The PASCAL
compiler is 17,836 60-bit words large and has 139 inStructionlblocks |
(procedures). The mean block size is 129 words,.the~maxinum 669 words"énd
the minimum 18 words. The reference strings cnntain only instruction
references. However, it is worthwhile to mention that the instruction and
the data portions'of a program can be restructured independently, resu]ting '
in the same orderings and.nerformance.imp¥ovements as if the restrdcturing
were besed on the complete referenee'string, provided that the program runs

in a working set environment and instructions and data are stored in

different pages. The input data to the PASCAL compiler, used to obtain
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the five stringe, were: S1) a part of the PASCAL eompiIer itée]f;-sz) a
program of about 500 predominantly arithmetic statements; 53) the same as

in S2) but with numerous errors 1nserted S4) a global flow analysis program
of about 400 source statements, and S5) a tree traversal program of about
65_statements. |

There are many factors which influence the performance inoices of'the_
restructured programs: the program to .be restructured; the restructuring
algorithm; the ioput data used in the restructuring procedure; the memory
management sfrategy; and the input data to the program. Since a mu1t1var1ate
analysis performed by Ferrari and Lau]7 shows that a very large portion of
the variation about the grand mean of the number of page faults in a working
set environmene is to be attributed to the restructuring algorithms, and
since it is obvious that the memory management strategy is another Major
factor, only theSe two major factors were varied during the experiment. The
other factors were fixed, that is, the same input data was used for‘restruc-
turing and for executing the program, the Page size was set equal to 1024
words, the w1ndow size was chosen to be 50 ms both for the work1ng set
strategy and for the CWS and the MWS algorithms, and a.PSI value of 13 was
selected both for the PSI environment and for the CPSI and the‘MPSI
algorithms. 1In the PSI environment, interruptions were caused by page faulte
and quantum time.expirations, and the quantum time was fﬁxed at 400 ms.

The clustering algorithm used throughout the experiment is a hierarchical
clustering algorithm suggested and used in previous experlments by Ferrari.
The algorithm proceeds as follows: the two vertices in the restructur1ng
graph whose cohnecting edge has the highest label are clustered into a
siogle node if the sum of their sizes.is not greater than the page.size; the

label of the edge connecting any other node to the new node is computed as
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the sum of the‘labels of the two edges connectfng the node to these two nodes
clustered into a new node; and the procees is repeated until no further clus-
. tering is possible. '

As an example of the impact of restructur1ng, the- paglng character1st1cs,
which are curves relating the number of pages to the average res1dent set
size for various values of PSI, of the original and the restructured programs
are presented in F1gure 1.

Performance 1nd1ces of the original and the restructured programs under
a working set env1ronment and under a PSI env1ronment are presented 1n Table 1
and in Table 2, respect1ve]y. The performance 1nd1ces of the programs restruc- |
tured by the strategy or1ented algorithms, the CWS and the- Mws algor1thms in
‘Table 1 and the CPSI and the MPSI algorithms in Table 2 are shown for com-
parison.

In the working eet environment (see Table 1), restructuring algorithms
can be divided"into the following four classes adcording to the numbers of h:
page faults\(NPF). The algorithm in class 1 is better than those in class 2,
which are better than those in class 3, andlso on.

1) CWS |

2)  AS1 and AS2

3)  MWSS

4)  SAS1, SAS2, and NM | |

Table 1 shows that the CWS-algorithm is superior to the AS] and the
AS2 a1gortthms However, the dlfferences among the NPFs are not significant
enough to reJect the hypothes1s that there is no d1fference between the CWS
~and the AS1 a}gor1thms. This result has been obtained by performing a mu1t1-
variate analysis of variance (MANOVA) at the 1% level. fhe same hypothests

between the CWS and the AS1 algorithms is rejected at the same level. The
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hypothesis that there is no difference between the average_working set'éizes
(ANSS) of the algorithms is not rejécted by MANOVA at-tne 5% level. The
tws AS1, AS2, and MwS algorithms decreased AWSS by about 13%, and the SAS]
SAS2, and NM a]gor1thms decreased ANSS by about 5%.

In the PSI environment (see Table 2), restructuring algorithms can also
be categorizéd into the following four classes in order of increasing NPFé
and decreasing performancef

1)  CPSI and MPSI

2) AS1 and AS2

3) WM

4)  SAS1 and SAS2

A statistical dlfference between the NPFs of the CPSI and the AS2 a]gor1thms,

but not between those of the CPSI and the AS1 algorithms, is found by MANOVA
at the 5% 1eye]. "The CPSI, MPSI, AS1 and AS2 algorithms decrease the
average resident set size (ARSS) by about 10%, whereas the SAS1, SAS2, and

NM a]gofithms-haVe very little impact on it.

The performance of the program reétructuned with the}A51 or AS2 algorithm

is satisfactori]y close to the performance obtained by restructuring it

with a strategy-oriented algorithm. However, the SAS1 and SAS2 algorithms

‘are not as effective as the AS1 and AS2 algorithms. In-drder to inveStigate'

the causes of the1r poor performance, another set of exper1ments were per-
formed with the string S2 and the SAS2 algorithm for var1ous values of a

in the PSI environment. The results are presented in Table 3. Note that
the SAS2 algorithm with o = « is actually the AS2 algorithm. Table 3
shows that the boor performance of the SAS2 algorithm is probably to be par-
tially attributed‘to the relatively long average lifetime of the BLIs of-

level one.
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Conclusion | . A v

A set of new strategy-independent restructuring algorithms has been
presented and their effectiveness in a working set environment and in a
global LRU-1ike (PSI) environment has been evaluated wfth trace-driven simu-
lators and block reference strings obtained from a PASCAL compiler. The
new algorithms have been derived from the concept of bounded 1oea]ity inter-
vals, which allows us to give a precfse definition of the localities of a _
program. Even though the strategy-oriented algorithms are the most effective,
the new AS1 and AS2 algorithms have been shown to be almost as good as the
strategy-oriented algorithms in terms of the number of page faults and the
average memery demand. The other new algorithms, SAS1-and SAS2, perform
often as-poorly as the classic strategy-independent a]gorithm‘NM;

The conclusions of the experiments are of course limited to the program
and the input data we have used. However,‘the evidence we have gathered
makes the AS1 and AS2 a]gdrithms 1ikeiy to be effective in most cases for
programs running under'various memory management strategies The AS1 and
AS2 algorithms have been derived by focusing on the ]oca11ty of reference
It is reasonab]e to expect that even better strategy- 1ndependent algorithms

will be obtained by considering also locality trans1t1ons
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TABLE 1.

Number: of ‘Page Faults in the Working Set Environment

String | Original AS1 AS2 | SAS1 | SAS2 | - NM CWS | MWS
St 5868 4144 | 4353 | 5805 | 5255 | 5938 | 3830 | 4524
S2 - 1963 976 | 1028 | 1569 | 1762 | 1387. 778 | 1004
33 1843 983 851 | 1324 | 1489 | 1783 832 | 1032
S4 1316 909 821 | 1399 | 1289 | 1258 658 840
S5 170 80 92 97 126 122 93 111

Mean - 2232 1418 | 1429 | 2039 | 1984 | 2098 | 1238 1502

Average Working Set Size

String | Original AS1 AS2 | SAS1 | SAS2 NM CWS MWS

S1 5.36 4.77 | 4.72 | 5.29 | 5.92 | 6.07 | 4.41 | 4.88
S2 8.16 6.09 | 6.31 | 7.93 | 7.99 | 7.28 | 6.33 | 6.97
S3 8.03 6.82 | 6.93 | 7.26 | 6.96 | 7.82 7.12 | 6.58
S4 8.18 8.03 | 7.78 | 7.69 9.38 | 7.62 | 7.68 | 7.61
S5 8.49 8.14 | 7.53 | 8.38 | 7.57 | 7.18 7.67 | 7.19

Mean 7.64 6.77 | 6.65 | 7.31 | 7.56 | 7.19 | 6.64 | 6.65




- . Number of Page Faults in the PSI Environment

TABLE 2

String { Original | ASI AS2 | SAS1 | SAS? NM CPSI | MPSI
S1 603 | 192 | 266 | 445 | 375 | 367 192 191
52 397 89 | 121 215 226 | 144 72 87
s3 347 143 120 | 218 228 161 59 76
s4 250 77 70 | 307 196 188 51 75
S5 54 24 25 36 31 26 15 19

Mean 330 105 | 120 | 288 | 21 177 | 78 90
Average Resident Set Size

String-| Original | ASI AS2 | SAS1 | SAS2 NM CPSI | MPSI
s 12.00 9.99 | 10.42 | 11.57 | 11.56 | 11.99 | 10.75 | 10.30
52 13.30 - | 11.31 | 11.46 | 12.77 | 12.78 | 12.16 | 11.39 | 11.52
53 13.33 | 11.63 | 11.41 | 12.78 | 12.81 | 12.43 | 11.63 | 11.28
s4 13.21 | 12.30 | 12.26 | 13.31 | 13.14 [ 12.99 | 11.22 | 11.90
s5 12.49 | 12.48 | 12.10 | 13.00 | 13.12 | 13.16 | 11.32 | 11.13

Mean 12.87 | 11.54 | 11.53 | 12.69 | 12.68 | 12.55 | 11.26 | 11.23




* TABLE 3.

The Effect of o of SAS2 on the Performance Indices

of the Program for the String S2.in the PST" Environment

0=25 ms

a=100 ms

=200 ms |. ¢

Original =50 ms o=
NPF 397 279 226 148 200 | 121
13.30 13.11 12.78 | 11.96 13.03 | 11.46

| ARSS
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