
 

 

 

 

 

 

 

 

 

Copyright © 1977, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



INTERLIBRARY LOAH DEPARTMENT
!(PMOTODUPLICATION SECTION)
THE GENWAL LIBRARY
UNIVERSITY OF CALIFORNIA
BERKELEY. CALIFORNIA »4*t0

A SET OF STRATEGY-INDEPENDENT RESTRUCTURING ALGORITHMS

by

M. Kobayashi

Memorandum No. ERL-M77/5

21 January 1977

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



A SET OF STRATEGY-INDEPENDENT RESTRUCTURING ALGORITHMS*

Makoto Kobayashi

Computer Science Division
Department of Electrical Engineering and Computer Sciences

and the Electronics Research Laboratory
University of California
Berkeley, California 94720

U.S.A.

Summary

This paper proposes a set of new program restructuring algorithms which

can be used to reorganize programs so as to increase their performance

under various memory management strategies in virtual-memory computer systems

The new algorithms are based on a recently proposed program behavior model

called the bounded locality intervals model, which allows us to give a

precise definition of the localities of a program. The paging activities

of a program restructured with the new algorithms under working-set and

global LRU-like memory management strategies are simulated to evaluate the

new algorithms. Some of them are shown to be almost as good as the strategy-

oriented algorithms, which have been reported to be very successful.

Keywords: virtual memory, program restructuring, performance improvement,

working set, page survival index, bounded locality intervals

*

The research reported here has been supported by the National Science
Foundation under grant DCR74-18375.



Introduction

The overall system performance of a virtual memory computer system

strongly depends on the performance of the memory subsystem, which consists

of physical memory devices and the system programs in charge of the manage

ment of the information stored on the devices. Since the concept of vir

tual memory has emerged, memory management policies, particularly page

replacement strategies, have been paid much attention and have been exten

sively studied, both to reduce software overhead in implementing virtual

memory systems and to achieve reasonable performance over a wide spectrum

of programs.

Another relatively new approach to performance improvement is to

rearrange programs so that they can be efficiently executed in virtual

memory systems. This is especially true for complicated and large programs,

e.g., system programs, compilers and large simulation programs, etc., and

it is often the case that these programs actually behave poorly. This

second approach is called program restructuring.

If we knew, or were able to estimate, the performance improvement that

would be obtained by restructuring and the frequency of execution, we could

decide whether a given program should be restructured or not. Unfortunately,

the improvements that restructuring will afford are generally very difficult

to predict reliably. System programs and compilers, as well as other programs

in certain installations, however, have such a high frequency of execution

that restructuring is likely to be advantageous even if the performance

improvement for each execution is small, since the cost of restructuring

will be paid off quite soon.

The algorithms used to restructure programs can be divided into two

categories. Restructuring algorithms in the first category take advantage



of the knowledge of memory management strategies, whereas those in the

second category are independent of memory management strategies. The

restructuring algorithms in the first category are expected to be superior

to those in the second category due to the fact that they use additional

2 3
information. Several experiments have confirmed this intuitive result. *

However, programs should be exclusively restructured for each virtual memory

system in which they are executed. Thus, in certain cases, for example

when little is known about memory management strategies, or when a program

is to be executed on a number of different systems, it would be desirable

to use restructuring algorithms in the second category, provided that their

efficiency were comparable to that of the algorithms in the first category.

This paper presents and evaluates a set of new restructuring algorithms

of the type we have just described. Though being strategy-independent,

these algorithms produce restructured programs which in general perform

substantially better than those produced by the previously proposed algo

rithms in the second category under a variety of memory management strategies,

In the next section, two classes of widely used memory management

strategies will be discussed. They correspond to the environments in which

the performance of the restructured programs will be evaluated. In the

following section, several previously proposed restructuring algorithms and

a set of new restructuring algorithms will be introduced, following a

description of a general restructuring procedure. Then, the experimental

results produced by the new restructuring algorithms in the two different

environments will be given.



Memory Management Strategies

In multiprogrammed virtual memory systems, an executable program does

not usually fit entirely into main memory. Therefore, a copy of the program

is stored in fast secondary memory before execution. Segments of a program

containing instructions or data to be referenced are transferred automatically

from secondary memory to main memory or vice versa according to a memory

management strategy which is implemented in a module of the operating system.

The memory management strategy determines when and which segment of a program

is to be transferred to what part of the main memory, and when and which

segment resident in the main memory is to be transferred back to the secon

dary memory to make room for an incoming segment. In the sequel we assume

that the segments of a program are of equal size and the main memory is also

divided into frames of the same size asthe program segments. The fixed-

sized segments are called pages. We also assume that the pages needed are

transferred into main memory on demand, as in most virtual memory systems.

The pages to be transferred back to secondary memory are determined by the

so-called page replacement algorithm, which is a component of the memory

management strategy. There are two groups of widely used page replacement

algorithms: global LRU-like page replacement algorithms and working-set-like

strategies. Under a global LRU-like page replacement algorithm, a page

which has not been referenced for a relatively long period of time is likely

to be replaced. This algorithm is simple to implement, for example, by

maintaining a table of reference bits, each of which corresponds-to a page

frame in main memory, and a pointer to an entry of the table. When a page

resident in the main memory is referenced, the reference bit associated with

the page frame is turned on. The pointer circles around the reference bit-

table so that, when it is necessary to choose a page to be replaced, the



pointer proceeds turning off the reference bits until it encounters a

reference bit off. The page associated with that reference bit is the one

to be replaced. Algorithms of this type are implemented, for example, in
MULTICS4 and 0S/VS1.5

The paging activities of the programs executed concurrently under a

global LRU-like page replacement strategy interfere with each other. For

instance, programs which require many pages in a short time interval tend

to steal page frames from other programs resident in the main memory. The

determination of paging activities in this situation is too complicated to

be performed by analytical methods. Therefore, simulation is to be used.

However, the simulation of paging activities under aglobal LRU-like strategy
would require that several programs were fed into avirtual memory simulator

simultaneously, and it is very difficult to choose and procure enough pro
grams whose combinations constitute reasonable and representative job

mixes in avirtual memory system. Fortunately, asimulation model of pag
ing activities under global LRU-like strategies in time-sharing environments
has been proposed and successfully verified with the CP-67 system.6 This

model is based on the following observations. Aprogram loses its pages
resident in the main memory only while it is in the interrupted state, that,
is, when its execution is suspended. Aprogram interruption (simply called
an interruption in the sequel) occurs when the program issues a.page request
or an I/O request, or when its time quantum expires. When the system paging
activity is low and the demand for page frames is small, the unreferenced

pages of aprogram can survive (that is, remain in main memory) arelatively
larger number of interruptions. On the other hand, when the system paging
activity is high, the unreferenced pages will be lost from aprogram after
relatively few interruptions. The effect of the overall system activity on



a single program is thus characterized by a single parameter called the

page survival index (PSI), which is defined as the number of interruptions

that an unreferenced page resident in the main memory can survive, that is,

stay in the main memory. The set of pages of a program which reside in the

main memory at time t under the PSI model with a particular value ty of

PSI is called the resident set at a given virtual time t with PSI = ip,

and is denoted by R(t,i|>). The resident set size is defined as the number

of pages in the resident set.

The working set of a program at a given virtual time t, W(t,x), is

dynamically defined as the set of pages referenced by the program during the

time interval (t-x,t], where t is a parameter called window size. The

working set size is defined as the number of pages belonging to the working

set. The working-set memory management strategy ensures that the working

set of a program at any given time t, W(t,x), is maintained in the main

memory. The Working set is, in most cases, not updated continuously at

each memory reference, but only at sampling times, so as to reduce the

software overhead. Working-set-like memory management strategies are imple

mented, for instance, in MANIAC II,7 VMOS,8 and 0S/VS2 Release 2.9

The PSI and working-set memory management strategies have been used in

our experiments as the environments in which the execution of programs was

simulated and their paging activities were measured.

. Throughput and response time for time-sharing systems or turnaround

time for batch systems are ideal performance indices for the evaluation of

virtual memory computer systems performance. The evaluation of these system-

wide indices requires a relatively complex analytical or simulation

model. However, for the sake of simplicity, we decided to use intermediate

performance indices like the number of page faults generated by a program



and its memory demand, which will be defined below. The number of page faults

(NPFs) is the total number of pages not found in the main memory when needed

by the CPU during a program's execution. If the number of page faults of

a program is reduced, the execution of the program finishes in a shorter

time and less main memory is unnecessarily wasted during page transfers.

The memory demand is defined as the average resident set size in a global

LRU-like environment or the average working set size in a working set

environment over the total virtual time used for the program's execution.

If programs occupy less main memory space on the average, then the degree

of multiprogramming can be increased and therefore the throughput should be

expected to increase.

Program Restructuring

A program to be restructured is divided into relocatable segments

(called blocks in the sequel) such that the relative addresses of instruc

tions or data within a block are not modified but the ordering of blocks

can be changed in the virtual address space. COMMONS in FORTRAN and BLOCKS

in ALGOL can be blocks. Then the block reference string, which is a series

of block identifiers ordered by the time of reference, is obtained. There

are two methods to obtain block reference strings. The first method con

sists of instrumenting a program before its execution so that the instru

mented program generates and records the block reference string on a file

during its execution. The second method is to execute, under control of a

software interpreter or instruction tracer, an uninstrumented program inter-

pretively instruction by instruction, and to record on a file the addresses

referenced. The block reference string is obtained from the address

reference string by mapping addresses into blocks. A restructuring graph



8

of a program is obtained by applying a restructuring algorithm to the block

reference string which was recorded on a file. Alternatively, the graph

may be generated directly from the program during its execution. A restruc

turing graph is non-directed. The nodes of the graph represent blocks of

the program and the edge labels represent the strength of connectivity

between the corresponding nodes. By applying a clustering algorithm to the

restructuring graph, nodes, i.e. blocks, are grouped together so that the

total strength of connectivity among blocks which belong to different groups

is minimal. Finally, the blocks of the program are reordered in the virtual

address space so as to obtain!the groups suggested by the clustering

algorithm.

The restructuring algorithms may be divided into two categories:

r>trategy-orientod algorithms and yJC.aJr.?iIy^JJLc,eJ,f?^<,(lM, algorithms. A

strategy-oriented algorithm assumes a particular target memory management

strategy and takes advantage of the knowledge of that strategy. The goal

isto obtain a restructured program which can be executed efficiently in a

virtual memory system controlled just by the target memory management

strategy. Some successful strategy-oriented restructuring algorithms are

summarized in the sequel.

Before proceeding to describe these restructuring algorithms, we will

introduce some notations and assumptions. We assume that references are

made at the discrete time instants 1,2,3,...,t,... to the blocks

b(l),b(2),b(3),...,b(t),..., respectively. In this section, blocks are

the units of memory management. Therefore, the working set and the resi%

dent set are defined in terms of blocks rather than of pages. The working

set at time t with window size t is denoted by Wb(t,x), and the resi

dent set with the PSI value \\) is denoted by R.(t,i/>). A critical reference



is defined as a reference to a block which is not resident in the main

memory, which causes a block fault.

The Critical Working Set (CWS) restructuring algorithm is intended to

decrease the number of page faults generated by a program which is executed

in a virtual memory system with the working-set memory management strategy. ,

CWS increments by one, whenever a block fault occurs, the labels of the edges

(b.,bf), where bf is the block the reference to which causes ablock

fault at time t, and bi is any block which belongs to Wb(t,x). When
the program is executed under the working set strategy after it has been

restructured by using the CWS algorithm, it is expected to generate fewer

page faults than the unrestructured original program, because a number of

former critical references will not be critical anymore.

12
The Minimum Working Set (MWS) restructuring algorithm has also been

suggested for the working set strategy in order to decrease the working set

size. The MWS algorithm increments by one the labels of all the edges

(b.,b.), where both blocks b. and b. are members of Wh(t,x) at
N l j' i . J D

sampling time t.

The Critical PSI (CPSI) restructuring algorithm, which is proposed and
"I o

described in detail in a companion paper, intends to decrease the number

of page faults generated by programs which are executed in global LRU-like

environments. The basic concepts behind the CPSI algorithm are the same as

those behind the CWS algorithm. That is, if a block bf referenced at time

t+1 is not amember of Rb(t,i|0, then the CPSI algorithm increments the

label of all the edges (b.,bf), where b. is amember of R(t,ip).

The Minimum PSI (MPSI) restructuring algorithm, also proposed and
"1*5 .

described in the companion paper, tries to minimize the resident-set size

by incrementing by one the labels of all the edges (b..,b.), where b.. and

b. are members of Ru(t,^).



10

The strategy-independent restructuring algorithms do not require any

specific information about the memory management strategies under which

programs to be restructured are executed. The Nearness Method (NM) is a

classic strategy-independent restructuring algorithm.14 The NM just incre

ments the edge labels of block pairs referenced consecutively. That is,

NM increments the label of the edge (b(i),b(i+l)) for i = 1,2,3,...,t,... .

Programs almost always exhibit the so-called locality of reference in

the virtual address space and in virtual time.15 This means that a proper

subset of a program is accessed for relatively long periods of virtual time

and the items in the subset are located relatively close to each other.

Virtual memory computer systems take advantage of this property of programs.

Memory management strategies, for instance global LRU-like strategies and

working-set-like strategies, assume that programs exhibit some locality of

reference and can only achieve reasonable levels of performance if this

assumption is satisfied. Thus a restructuring algorithm which enhances a

program's locality will improve the efficiency of program execution much

more than the NM, which makes little use of the locality.

Bounded Locality Intervals (BLIs) have been recently proposed by Madison

and Batson to model dynamic program behavior from the locality's point of

view. Some of the nice features of Madison and Batson's model are that it

contains no parameters, so that localities are determined naturally, and .

that it defines hierarchies of localities. A locality in this context is

a proper subset of a program's blocks defined by the BLI model. A set of

k distinct blocks of a program is said to be "formed" when it consists of

the k most recently referenced blocks of the program, and is said to be

"terminated" when a block not belonging to the set is referenced for the

first time after the set is formed. An activity set at time t is defined



11

as any set of blocks all members of which have been re-referenced since the

set was formed. Activity sets can be conveniently identified by the Extended

Least Recently Used (LRU) stack defined by Madison and Batson. The

Extended LRU stack at time t consists of the following, three vectors:

L(t) = (L1(t),L2(t),...,Ln(t)) ;

a(t) = (a1(t),a2(t),.'..f-an.(t)) ;

T(t) = (T1(t),T2(t),...,Tn(t)) ;

where n is the number of blocks in the program, L(t) is the normal LRU

stack and L.(t') is the i-th most recently referenced block at time t,

a.(t) is the time at which the block in the i-th position of L(t) was

last referenced, and T.(t) is the most recent time at which a reference
1 .

was made to a stack position greater than i. Therefore, T.(t) is the.

formation time of the set S. = {L,(t),L2(t),...,L.(t)>. If at time t+1

a reference is made to the block L.(t), then the Extended LRU stack

is updated as follows:

L^t+1) =L.(t) ; -Ojft+l) =t+V; T.(t+1) =T^t) ;

for 1 £ j < i-1

Lj+1(t+l) =L3.(t) ; aj+1(t+l) =Oj(t) ; Tj(t-H) =t+1;

for i+1 < k < n

Lk(t+1) = Lk(t) ; ak(t+l) =ak(t) ; Tk(t+1) =Tfc(t) .

An activity set at time t, A.(t), is defined as any set S.(t) for which

^.(t) > T.(t)



The lifetime of an activity set is defined as the interval between the

time the activity set is established and the termination time. In other

words, all members of an activity set have been re-referenced after it was

formed. A Bounded Locality Interval (BLI) is defined as the pair consisting

of an activity set and its lifetime. Suppose that two activity sets at time

t, A.(t) and A.(t), exist with i < j. Then, 'A.(t) is a subset of

A.(t) and the lifetime of A.(t) is shorter than that of A.(t), because .

the set of the i most recently referenced blocks is a subset of the set of

the j most recently referenced blocks. Thus, BLIs at a particular time

constitute a hierarchy in terms of both set membership and lifetime. The

top level (level 1) of the hierarchy corresponds to the largest BLI and the

level of a BLI is defined as its distance from the top of the hierarchy

minus one. Thus, the higher the level of a BLI, the smaller the activity

set size and the shorter its lifetime,

A set of new strategy-independent restructuring algorithms can be

derived from the concept of BLI. If a set of blocks belong to an activity

set of high level, they should be put close to each other in the virtual

address space so as to decrease the working set size or the resident set

size of the program. In order to reflect this situation, the Activity Set

algorithm- 1 (AS!) is defined as a restructuring algorithm which increments

the label of the edge between blocks b. and b. by an amount equal to the

level of the smallest activity set to which blocks b. and b. belong.

Practically, the labels are incremented by one when an activity set is

established because of the inclusion property of BLls. Suppose that blocks

b^ and b. belong to an activity set of level 3. This implies that these

blocks are the members of the three activity sets, say, A0(t), A (t), and

An(t), with I >m>n, where A£(t) is the activity set of level 1

12



13

and A (t) is the smallest activity set which includes b. and b.. Since
nx J i j

A.(t), A (t), and A (t) are established in this chronological order,

incrementing by one the label of the edge between b. and b. each time

one of the three activity sets is established, is equivalent to incrementing

the label by three, which is exactly what the AS1 algorithm does.

A simpler algorithm can be used if the hierarchy has only a few levels

or if the average size of the activity sets of level 1 is small enough to

fit in the main memory. The Activity Set algorithm -2 (AS2) keeps track of

the activity sets of level 1 only and may be described as the algorithm

which increments by one all the labels of the edges between the blocks

which belong to an activity set of level 1.

Establishment of an activity set does not necessarily mean that all

the members of the set will be referenced repeatedly in the future. Some

of them can stay in the set unreferenced. In other words, not all the mem

bers of an activity set are always active. Therefore, a stricter termination

condition of activity sets is required in order to remove inactive members.

One possible solution to the termination condition problem is to introduce

a parameter a which plays a role similar to the one of-the window in the

working set strategy. This allows us to define a set of blocks called a

strict activity set. A strict activity set at time t is defined as any

activity set all the blocks of which have been rereferenced after the time

t-a. Note that strict activity sets also have a hierarchical structure.

By using the notion of strict activity sets, two restructuring algorithms -

analogous to AS1 and AS2 may be introduced. The Strict Activity Set

algorithm- 1 (SAS1) is defined as the algorithm which increments the label

of the edge between a pair of blocks b. and b. by the level of the

strict activity set to which blocks b. and b. belong. The Strict Activity



14

Set algorithm -2 (SAS2) is defined as the algorithm which increments by one

the label of the edge between a pair of blocks only when these blocks belong

to a strict activity set of level 1.

The performance of the restructured programs obviously depends also on

12
the clustering algorithm employed in the restructuring procedure. However,

since investigating the clustering algorithms was not the objective of this

research, we used the same simple clustering algorithm throughout the

experiments. The clustering algorithm will, be described briefly in the

next section.

Experimental Results

Trace driven simulators were developed for the working set environment

and the PSI environment. Some experiments were performed to evaluate the

performances of programs restructured with the new algorithms under the two

memory management strategies using five block reference strings which had

17
been obtained from an actual program by Ferrari and Lau. The reference

strings (called SI through S5 in the sequel) were generated from an instru

mented PASCAL compiler compiling five different source programs. The PASCAL

compiler is 17,836 60-bit words large and has 139 instruction blocks

(procedures). The mean block size is 129 words, the maximum 669 words and

the minimum 18 words. The reference strings contain only instruction

references. However, it is worthwhile to mention that the instruction and

the data portions of a program can be restructured independently, resulting

in the same orderings and performance improvements as if the restructuring

were based on the complete reference string, provided that the program runs

in a working set environment and instructions and data are stored in

different pages. The input data to the PASCAL compiler, used to obtain



15

the five strings, were: SI) a part of the PASCAL compiler itself; S2) a

program of about 500 predominantly arithmetic statements; S3) the same as

in S2) but with numerous errors inserted; S4) aglobal flow analysis program

of about 400 source statements; and S5) a tree traversal program of about

65 statements.

There are many, factors which influence the performance indices of the

restructured programs: the program to be restructured; the restructuring

algorithm; the input data used in the restructuring procedure; the memory

management strategy; and the input data to the program. Since a multivariate

analysis performed by Ferrari and Lau17 shows that avery large portion of
the variation about the grand mean of the number of page faults in aworking

set environment is to be attributed to the restructuring algorithms, and

since it is obvious that the memory management strategy is another major

factor, only these two major factors were varied during the experiment. The

other factors were fixed, that is, the same input data was used for restruc

turing and for executing the program, the page size was set equal to 1024

words, the window size was chosen to be 50 ms both for the working set

strategy and for the CWS and the MWS algorithms, and a PSI value of 13 was

selected both for the PSI environment and for the CPSI and the MPSI

algorithms. In the PSI environment, interruptions were caused by page faults

and quantum time expirations, and the quantum time was fixed at 400 ms.

The clustering algorithm used throughout the experiment is a hierarchical

clustering algorithm suggested and used in previous experiments by Ferrari.
The algorithm proceeds as follows: the two vertices in the restructuring
graph whose connecting edge has the highest label are clustered into a

single node if the sum of their sizes is not greater than the page size; the

label of the edge connecting any other node to the new node is computed as



16

the sum of the labels of the two edges connecting the node to these two nodes

clustered into a new node; and the process is repeated until no further clus

tering is possible.

As an example of the impact of restructuring, the paging characteristics,

which are curves relating the number of pages to the average resident set

size for various values of PSI, of the original and the restructured programs

are presented in Figure 1.

Performance indices of the original and the restructured programs under

a working set environment and under a PSI environment are presented in Table 1

and in Table 2, respectively. The performance indices of the programs restruc

tured by the strategy-oriented algorithms, the CWS and the MWS algorithms in

Table 1 and the CPSI and the MPSI algorithms in Table 2 are shown for com

parison.

In the working set environment (see Table 1), restructuring algorithms

can be divided into the following four classes according to the numbers of

page faults (NPF). The algorithm in class 1 is better than those in class 2,

which are better than those in class 3, and so on.

1) CWS

2) AS1 and AS2

3) MWSS

4) SAS1, SAS2, and NM

Table 1 shows that the CWS algorithm is superior to the AS1 and the

AS2 algorithms. However, the differences among the NPFs are not significant

enough to reject the hypothesis that there is no difference between the CWS

and the AST algorithms. This result has been obtained by performing a multi

variate analysis of variance (MANOVA) at the U level. The same hypothesis

between the CWS and the AST algorithms is rejected at the same level. The



17

hypothesis that there is no difference between the average working set sizes

(AWSS) of the algorithms is not rejected by MANOVA at the 5% level. The

CWS, ASl, AS2, and MWS algorithms decreased AWSS by about 13%, and the SAS1,

SAS2, and NM algorithms decreased AWSS by about 5%.

In the PSI environment (see Table 2), restructuring algorithms can also

be categorized into the following four classes in order of increasing NPFs

and decreasing performance.

1) CPSI and MPSI

2) ASl and AS2

3) NM

4) SAS1 and SAS2

A statistical difference between the NPFs of the CPSI and the AS2 algorithms,

but not between those of the CPSI and the AS] algorithms, is found by MANOVA

at the 5% level. The CPSI, MPSI, ASl and AS2 algorithms decrease the

average resident set size (ARSS) by about 10%, whereas the SAS1, SAS2, and

NM algorithms have very little impact on it.

The performance of the program restructured with the ASl or AS2 algorithm

is satisfactorily close to the performance obtained by restructuring it

with a strategy-oriented algorithm. However, the SAS1 and SAS2 algorithms

are not as effective as the ASl and AS2 algorithms. In order to investigate

the causes of their poor performance, another set of experiments were per

formed with the string S2 and the SAS2 algorithm for various values of a

in the PSI environment. The results are presented in Table 3. Note that

the SAS2 algorithm with a = °° is actually the AS2 algorithm. Table 3

shows that the poor performance of the SAS2 algorithm is probably to be par

tially attributed to the relatively long average lifetime of the BLIs of

level one.



18

Conclusion

A set of new strategy-independent restructuring algorithms has been

presented and their effectiveness in a working set environment and in a

global LRU-like (PSI) environment has been evaluated with trace-driven simu

lators and block reference strings obtained from aPASCAL compiler. The

new algorithms have been derived from the concept of bounded locality inter

vals, which allows us to give a precise definition of the localities of a

program. Even though the strategy-oriented algorithms are the most effective,

the new ASl and AS2 algorithms have been shown to be almost as good as the

strategy-oriented algorithms in terms of the number of page faults and the

average memory demand. The other new algorithms, SAS1 and SAS2, perform

often as poorly as the classic strategy-independent algorithm NM.

The conclusions of the experiments are of course limited to the program

and the input data we have used. However, the evidence we have gathered

makes the ASl and AS2 algorithms likely to be effective in most cases for

programs running under various memory management strategies. The ASl and

AS2 algorithms have been derived by focusing on the locality of reference/

It is reasonable to expect that even better strategy-independent algorithms

will be obtained by considering also locality transitions.

Acknowledgments

The author wishes to thank D. Ferrari for his suggestion to study

restructuring problems, for his clustering program and for the working set

simulator. The author is also grateful to E. Lau and D. Ching for the

reference strings used in the experiments reported in this paper. Finally,

Iwould like to express my thanks to Ruth Suzuki for her elaborate typings
of the manuscript.



\9

References

1. P.J. Denning, "Virtual Memory", Computing Surveys, v.2, n.3, September- t^
1970, pp. ,153-189. • ' *- . ._ ::,^;^:M^

2. D. Ferrari, "Improving Locality by Critical Working Sets," Comm. ACM,
v.17, n.ll, November 1974, pp. 614-620.

3. D. Ferrari, "Tailoring Programs to Models of Program Behavior," IBM J.
Res^. Dev., May 1975, pp. 244-251. "~

4. E.I. Organick, The Multics System, MIT Press, Cambridge, Mass., 1972.

5. T.F. Wheeler, Jr., "IBM 0S/VS1 -An Evolutionary Growth System,'? NfX
1973, AFIPS Conference Proceedings, v.42, pp. 395-400.

6. Y. Bard, "Characterization of Program Paging in a Time-Sharing
Environment," JBM J. Res. Dey_., September 1973, pp. 387-393.

7. J.B. Morris, "Demand Paging Through Utilization of Working Sets on
the MANIAC II," Comm. ACM, v.15, n.10, October 1972, pp. 867-872.

8. M.H. Fogel, "The VMOS Paging Algorithm: A Practical Implementation of
the Working Set Model," ACM Operating Systems Review, v.8, n.l, January
1974, pp. 8-17. — "

9. M.A. Auslander, J.F. Jaffe, A.L. Scherr and J.P. Birch, "Functional
Structure of IBM Virtual Storage Operating Systems," IBM Syst. J., n.4,
1974, pp. 368-411. " "

10. A. Sekino, "Performance Evaluation of Multiprogrammed Time-Shared
Computer Systems," MIT Project MAC, MAC TR-103, September 1972.

11. N.R. Nielsen, "The Simulation of Time Sharing Systems," Comm. ACM,
v.10, n.7, July 1967, pp. 397-412.

12. T. Masuda, H. Shiota, K. Noguchi and T. Ohki, "Optimization of Program
Organization by Cluster Analysis," Information Processing 74, North-
Holland Publishing Co., Amsterdam, 1974, pp. 261-265.

13. D. Ferrari and M. Kobayashi, "Program Restructuring Algorithms for
Global LRU Environments," in preparation.

14. D.J. Hatfield and J. Gerald, "Program Restructuring for Virtual Memory,"
IBM Syst. J., n.3, 1971, pp. 168-192.

15. J.R. Spirn and P.J. Denning, "Experiments with Program Locality,"
FJCC 1972, AFIPS Conference Proceedings, v.41, part I, pp. 611-621.

16. A.W. Madison and A.P. Batson, "Characteristics of Program Localities,"
Comm. ACM,.v.19, n.5, May 1976, pp. 285-294.



20

17. D. Ferrari and E. Lau, "An Experiment in Program Restructuring for
Performance Enhancement," Proceedings of the 2nd international Conference
on Software Engineering 1976, pp. 203-207.



TABLE 1

Number of Page Faults in the Working Set Environment

String Original ASl AS2 SAS1 SAS2 NM CWS MWS

SI 5868 4144 4353 5805 5255 5938 3830 4524

S2 1963 976 1028 1569 1762 1387. 778 1004

S3 .1843 983 851 1324 1489 1783 832 1032

S4 1316 909 821 1399 1289 1258 658 840

S5 170 80 92 97 126 122 93 111

Mean 2232 1418 1429 2039 1984 2098 1238 1502

Average Working Set Size

String Original ASl AS2 SAS1 SAS2 NM CWS MWS

SI 5.36 4.77 4.72 5.29 5.92 6.07 4.41 4.88

S2 8.16 6.09 6.31 7.93 7.99 7.28 6.33 6.97

S3 8.03 6.82 6.93 7.26 6.96 7.82 7.12 6.58

S4 8.18 8.03 7.78 7.69 9.38 7.62 7.68 7.61

S5 8.49 8.14 7.53 8.38 7.57 7.18 7.67 7.19

Mean 7.64 6.77 6.65 7.31 7.56 7.19 6.64 6.65



TABLE 2

Number of Page Faults in the PSI Environment

String Original ASl AS2 SAS1 SAS2 NM CPSI MPSI

SI 603 192 266 445 375 367 192 191
S2 397 89 121 215 226 144 72 87

S3 347 143 120 218 228 161 59 76
S4 250 77 70 307 196 188 51 75

S5 54 24 25 36 31 26 15 19

Mean 330 105 120 244 211 177 78 90

Average Resident Set Size

String Original ASl AS2 SAS1 SAS2 NM CPSI MPSI

SI 12.00 9.99 10.42 11.57 11.56 11.99 10.75 10.30

S2 13.30 • 11.31 11.46 12.77 12.78 12.16 11.39 11.52

S3 13.33 11.63 11.41 12.78 12.81 12.43 11.63 11.28

S4 13.21 12.30 12.26 13.31 13.14 12.99 11.22 11.90

S5 12.49 12.48 12.10 13.00 13.12 13.16 11.32 11.13

Mean 12.87 11.54 11.53 12.69 12.68 12.55 11.26 11.23



TABLE 3.

The Effect of a of SAS2 On the Performance Indices

of the Program for the String S2 in the PSI' Environment

Original a = 25 ms a = 50 ms a=100 ms a=200.ms 01 = oo

NPF

ARSS

397

13.30

279

13.11

226

12.78

148

11.96

204

13.03

121

11.46



10000 —

o

a>

o 1000
a.

JO

E

100 —

20-

^-

\ 6>2

\ v

He
\ He

\

\
*x Input data ! SI

10

\

6\

\

A
\IZ

0 • Original

x -x Restructured with AS!

9\

io\

12

ll3

V

\

114

14 x

16 x

,8*X
20*

\
•

i
\

116
i

v \
\ «I8

SOW"
\40

«<>N.60
60 \\

\\

293

i • i • r • r
4 8 12 16

Average resident set size (pages)

30 0

20

Fiq. 1 Paging characteristics of the program


	Copyright notice 1977
	ERL-77-5



