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Abstract

In a recent paper in this Journal, L.A. Zadeh has defined the concept

of a conditional possibility distribution. In the present paper, we show

that, in order to be consistent with the notion of noninteraction of fuzzy

variables, the expression for conditional possibility distribution must be

normalized. A comparison of the properties of conditional possibility and

probability distributions is made, and an application to the optimization of

a possibilistic finite-state system is outlined.
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1. Introduction

In a recent paper [1], L.A. Zadeh has introduced the concept of a

possibility distribution and presented a preliminary account of some of its

basic properties.

Formally, the possibility distribution associated with a fuzzy variable

is analogous to the probability distribution of a random variable and, like

the latter, gives rise to the concepts of conditional and marginal possibility

distributions, as described in [1]. The main result of our note is that,

in order to achieve consistency with the concept of noninteraction of fuzzy

variables, it is necessary to normalize the conditional possibility distribu

tion in the manner described in Section 3. In addition, in Section 4 we

outline an application of the concept of a conditional possibility distribu

tion to the control of a possibilistic finite-state system -- an application

which is suggestive of other possible applications of this concept to problems

in which the variables are associated with possibility rather than proba

bility distributions.

2. Possibility Distributions as Set Functions

Let X be a variable taking values in a universe of discourse U. As

defined in [1], a possibility distribution, Ilj^, associated with X is a

fuzzy relation which acts as an elastic constraint on the values that may

be assigned to X. Thus, if u is an element of U, then, by definition,

7Tj^(u) ^ Poss{X =u} (1)

where ttj^(u), the possibility distribution function, is the membership

function of Ilj^ and Poss{X =u} is the possibility that X may take the

value u, with the understanding that the function is defined



subjectively. A discussion of the connection between and the informa

tion conveyed by a fuzzy proposition may be found in [1].

The definition of suggests that the possibility measure of a subset

A of U be defined as an extension of (1) to subsets of U, i.e.J

7rv(A) = sup 7Ty(u) (2)
^ ueA ^

An immediate consequence of (2) is that ttj^CU) = 1 if is normal and

TTj^CU) <1 if is subnormal. Another direct consequence of (2) may be
stated as the proposition:

Proposition. Given ir: U [0,1] such that

sup^ tt(u) =1 (i.e., n is normal)

then, for any possibility measure tt (which is a mapping from the power set

of U to [0,1]) such that

7t(0) = 0 , Tr(U) = 1

we have, for any index set I,

TT(y A^.) =sup tt(A^.) (3)

For our purposes, we note that:

(a) TT is an increasing function, i.e., ACB =>• Tr(A)£7r(B).

(b) The subadditivity expressed by (3) is analogous to the relation

between a metric and an ultrametric.

(c) tt({u}) = 7t(u) is not, in general, identically zero.

^The concept of a possibility measure may be viewed as a special case of the
more general concept of a fuzzy measure defined by Sugeno and Terano [10,11]



(d) If U is a Hausdorff topological space and tt Is an upper semi-

continuous function, then tt is a Choquet capacity which is, formally, a

function of the inverse of some generalized information measure in the sense

of Kampe de Feriet [5,6],

Now, if A is a fuzzy rather than nonfuzzy subset of U, what is the

meaning that could be assigned to Poss{X is A}? In [1], it is proposed

that Poss{X is A} be defined as

Poss{X is A} = sup[y^(u) ATTj^(u)] (4)

where is the membership function of A. We shall proceed to justify

this definition. First, note that if A is nonfuzzy, then by (1)

Poss{XeA} = tt(A) = sup Try(u) . (5)
A A

When A is fuzzy, (5) may be viewed as requiring the maximization of the

real-valued function over the fuzzy constraint A [2], In this

connection, let b(U,K) be the space of real-valued and bounded functions

defined on U. If f G b(U,F) , we write S(f), 1(f) for sup f(u) and

inf f(u), respectively.

Definition 1. The maximizing set of f [7] is the fuzzy subset M(f)

of U characterized by

I"

where

a(f) = S(f) vO - 1(f) AO (7)

6(f) = S(f) AO + 1(f) AO (8)

(v and A stand for max and min respectively).



The minimizing set of f is the fuzzy subset m(f) of U characterized

by

Definition 2. For f G b(U,lR) and A G P(U) (set of fuzzy subsets of

U), the restriction of f to A, associated with the maximizing set M(f),

is defined as

f^(u) =a(f)u^l^j^j(u) +3(f) > " ^ ^A 00)

where AM(f) = AnM(f), i.e.

and = {uly^(u) 0}. The function f^(«) can be written as

f^(u) =f(u) A(j)(^^y^)(u) (12)

where 4)(^^^j(u) =a(f)y^(u) +3(f) •

Remark. In the case of the minimizing set, m(f), we define

f^(u) =- o^(^)^Am(f)^"^ +6'(f) » uG (13)

where 3'(f) = S(f)VO + 1(f) VO.

Definition 3. By the supremum of f over A, we mean the expression

S(f,A) = sup f^(u) . (14)
^A

In the same way, the infimum of f over A is expressed as

I(f,A) = i^nf f^(u) . (15)



It is shown in [2] that S(f,A) and I(f,A) have all of the basic properties

of ordinary supremum and infimum (i.e., over nonfuzzy sets).

Remark. The motivation for defining S(f,A) and I(f,A) as above is

to provide a general formulation for the optimization of real-valued functions

under elastic constraints.

Now, if f = TTj^: U [0,1], then it is easy to check that

Poss{X is A} = sup f-(u) = sup[y-(u) Af(u)] (16)
uESa

since i'̂ (u) = u^(u)Af(u) in this case.

3. Conditional Possibility Distributions

General Considerations

Let T: [0,1] x [0,1] -»• [0,1] be given, and let (X,Y) be a variable

taking values in UxV. Suppose that we can associate with (X,Y) some

function f^j^ y) defined on UxV and taking values in the unit interval
[0,1]. Then, in terms of this function, we define (or infer) the marginal

distributions

where 0^ denotes some specific operation on v.

Based on T, we say that X and Y are T-independent iff

^(X.Y)^"'*' =T[fj({u),fY(v)] , V(u,v) €UxV .

Note that we have to have the following consistency condition

6^[T(f^{u),fY{v))] = fx(u) , ¥u€U.

(18)

(19)



Next, the conditional distribution is expressed as

fx|Y("|v) =

where the normalization function a(',') is a mapping from [0,l]x(0,l]

such that f^jy £ 1 and the following consistency condition holds

fx^Y(u,v) =T[fx(u),fY(v)] => fx|y(u|v) =fx(u) , Vu e U. (21)

Remark. The essential idea here is that a(-,') is a function of

fY(v) and ^x^"' fy(v), as is suggested by analogy with

probability theory.

Now, the notion of non-interaction of two elastic constraints A and B

implies that

7r(AnB) = Tr(A) Att(B) (22)

which corresponds to T(x,y) =

T(x,y) = XAy , x,y e [0,1] .

a) Marginal possibility distributions [1]

Taking

0,.(») = sup (•) (23)

leads to
^ vGU

7Tj^(u) = sup iT(x,y)^"'̂ ^

from which it follows at once that for the case where ttx and are normal

7Tx(u) = sup[7rj^(u) AiTy(v)] . (24)



b) Conditional possibility distribution

The function a: [0J]x(0,l] F"*" must be such th^t

(i) ^ Vu,v. (25)

(ii) [tTj^Cu) ATTY(v)]«a[7Tj^(u),7rY(v)] ='fTj^(u), Vu e U. (26)

Solution. Consider the functional equation

(a Ab)•a(a,b) = a (27)

for a G [0,1], b G (0,1].

The unique continuous solution (in a) of this equation is given by

^ for a ^ 0
a(a,b) = <®

for a = 0

or, in a more compact form.

a(a,b) =^ . (28)

It will be shown below that this is the unique choice of a(«,') such that

the proposed expression for the conditional possibility distribution is con

sistent with the definition of non-interaction. First, we note that from

(1 if a £
a(a,b) = <

( r if a >

it follows that a(a,b) £ 1.

Now

tt(uIv) = ^

and



TTj^{u) _< TTyCv) => 7t(u|v) = yjlUjV) <'ITj^(u) AlTyCv) £ 1 (30)
TTj^Cu)

TT^Cu) >7ry(v) => fT("lv) =Trjj^^yj(u,v) (31)

=-4^7 1V")
since TTy(v) =sup ir^j^ yj(u,v).

It is easy to see that, if

iT(x^Y)(u,v) = Trx(u) ATry(v)

then

11(017) =
77^(0) AtTy(v) = iTx(u) if iTx(u) < iry(v)

iTv(u)

< 1

Thus, we are led to the definition of the conditional possibility distribu

tion expressed by

it(u|v) =
If 7rx(u) < Wy(v)

iTx(ii)
^(X.Y)("'̂ ) '̂ 771 ^x(") >"Y^^)

Remark. It should be observed that the value of it(u|v) depends not

only on ir^^ iTy(v), but also on ^^(u) or, more specifically,
on TT^x y)(li>v) and the ratio of irx(u) to iry(u).

We now proceed to derive a relation between ttx(u), iTy(v) and it(u,v),

namely,

iTy(u) = V [Tr(ulv) A7rY(v)] , (33)
^ vev ^

which is analogous to a corresponding relation for probabilities in probability

theory.
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First, we note that

7r(xj)(u5v) < tt(uIv) < Trx(u) => ttx(u) = sup

£ sup Tr(u|v) £ TTxCu) => TTx(u) = sup tt(u|v) .

Now, let (|)(u) = V [71(0!v) Atty(v)]. Then
V *

(i) 7r(ulv) ATTyCv) £ Trx(u) ATrY(v) (35)

since tt(u| v) £ ttj^Cu) . Thus

SUp['ir(u|v) ATTy (v)] £ supCtTj^Cu) ATTy (v)] = TTj^Cu)

and hence (|)(u) £ 7Tj^(u) .

(ii) TT^Cu) £ Try(v) => 7r(u|v) ATry(v) = (36)

= tt/w

Trx(u)
TT^Cu) >TTy(v) => ir(u|v) ATry(v) =TTjx j)(u,v);jj:-^ATry(v)

- '̂ (X,Y)^"'̂ ^ AlTy(v)
TTx(u)

Y'

(X.Y)'"= TT/u wx(u,v)

and hence

Tr(u|v) AlTyCv) >TTjX J)("'V) .
Now,

0(u) =sup[tt(u|v) AiTyCv)] £ sup '̂ (x,Y)^"'̂ ' ^
V

which implies that

(|)(u) > 7Tx(u)

and consequently

7Tj^(u) = (j)(u) = sup[Tr(u|v) ATry(v)] . (37)



n

Remark. Given y)' i'f' we associate with the variable Y a possi

bility distribution G which is not necessarily a marginal distribution

that is induced by we then say that is particularized

by G [1].

Denote by G the cylindrical extension of G, i.e.

G = U xG .

Then the max-min composition y^oG represents a particularized possi

bility distribution of X given that iTy = G.

In particular,

=V['n'jj^^yj(u,v) ATry(v)] (38)

which shows that (33) holds also for non-normalized conditional possibility

distributions. Thus the main reason for the normalization of the expression

for a conditional distribution relates to the need for consistency with

non-interaction.

4. Application

We proceed to outline how a problem in the analysis of a probabilistic

system gives rise to an analogous problem involving possibility distributions

Consider a time-invariant discrete-state system such as considered in

[9]. In the notation of [9], when the system is probabilistic, from

x^.(7r) = E[C^.j(TT^.)+Xj(tt)] (39)
n+1

= I P.^[C. .(it.)+x.(Tr)] , i=l,...,nj_"l "J 'J ' J
n n+1

y P. .('rT.)x.(7r) + y P. .(tt. )C. .("IT.)1^] V 3 ,-=1 iJ V
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we obtain the vector equation ^

X(tt) = P(Tr)X(7r)+C(Tr) . (40)

In [9] it is shown that if at least one proper policy exists, then the

equation

X° =Min[P(Tr)X° +C(Tr)] (41)
TT

has a unique solution which is the minimum expected cost vector associated

with an optimal policy. It is given by X^ = lim t'̂ (X), where Xis arbitrary;
p-HX)

T(x) = Min[P(Tr)x +C(7r)] ; (42)
7T

r* thand T is the r iterate of T. The proof of this result involves an

application of Banach's fixed point theorem.

Now, if the system is possibilistic, the notion of a conditional possi

bility distribution can be used to replace

P^j(k) =ProbCs^^^ =qjI= q.. =a^] (43)

by a corresponding expression involving Poss in place of Prob. Then, the

expectation is replaced by a weighted mean

n+1

I^(w.)[Ci.(w.)+X.U)]
fTfl (44)

j=l ^

and

n+1

,I^P.j(ir.)Cij(Wi)
n+1

j=i ^

(45)
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and thus

Y(Tr) = P(Tr)X(TT) + C(Tr)

where Y(Tr) is the vector (a-jX^ (it) ,... ,a^X^(Tr)),

n+1^
= I » i=l,2,...,n , (46)

^ j=l ^

y\ /sand P(Tr) is the nxn matrix with generic element P.j(Tr^.), P^j(Tr^.) being
the transition possibility from q. to q. when command tf. is applied.

1 j 1

Define S: -^r" by

s(X) = (S^(X) S^(X))

where S.(X) =^(P-X).+C.]. Now let T(X) =min S(X)(Tr). Then the
i TT

optimal policy will correspond to the solution of

x° =T(Xq) . (47)

5. Concluding Remarks

The concept of a possibility distribution serves to provide a basis for

the analysis of situations in which the uncertainty is nonstatistical in

nature. In addition, it is useful when the uncertainty is partly statis

tical and partly nonstatistical, as in the case where the probabilities are

characterized in linguistic terms. In this context, the mathematical formu

lation described in this note provides a rigorous basis for defining a

normalized conditional possibility distribution which may be used in a

variety of situations. In a forthcoming paper, we shall describe additional

applications of the concept of a conditional possibility distribution,

particularly to the theory of belief and the mathematical theory of evidence

(Shafer [4]).
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