Copyright © 1977, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

UNIFORM NOTATION FOR EXPRESSING QUERIES

!
by

C. J. Prenner

Memorandum No. UCB/ERL M77/60

8 September 1977

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

S

o

A Uniform MNotation for Expressing Queries
by
Charles J. Prenner
Department of Electrical Engineering and Computer Séiences

University of California at Berkeley

Atatract

A query language which is suitable for use with a relational
database system 1is discussed. The language is developed as an
extension of ideas found in progranming languages as well as the
relational «calculus. The development 1is a step towards the
integration of prosramming languages, query languages and data-
base systems. The language offers a sinple logical model of the
way in which the query mirht be processed in order to simplify
query construction. However, the model does not constrain the
actual processing method used by the database systen. The
language has a single construct, the relational expression, which
appears in either a "short" or "long" forn. The language Dro-
vides a uniform notation for expressing queries in that any
retrieval reguest can be expressed by suitable nesting of this
single construct.

This research was supported ‘in part by U.S. Army Research Office
Crant DAAG-29-76-G-0245, and by the National Science Foundation
under an NSF Participation Fellowship at IBM San Jose Research
Laboratory. ‘

1. Introduction

Most query languages developed in conjunction with relational
data base systens were desirned independently of any progrannmning
language. However, it was soon realized that the query languages
could not stand alone, and thus, these 1lancuazes have been
looselv coupled [1] [2] to existing programming languages in
order to allow free nmnovement of data from the progranning
lanpguaze to the data bhase, and conversely. In considering the
query language as part of the programning language one finds that
the notation and orientation of the two are quite different.
Many vprogramming lanzuares are procedural, with powerful facili-
ties for data definition, iteration and list processing. Cn the
other hand, most query lanzuares are non-procedural and use such
terms as universal and existential quantification, composition,
join, and so on. This difference can be confusing for a progran-
mer who nust switch back and forth between the two.

In this paper we will consider relations and query languages fron

a programning lanpuare viewpoint. Such a consideration is a
step towards the inteegration of programminz languages and query
languacres. In section two We consider some difficulties with

existing query languaces. In section three we introduce sone
notation and discuss the correspondence between relations and
sequences of records. This provides the background for sections
four throursh six in which we develop a new query language, UNEQ
(Uniform MNotation for Expressinz Queries), based upon the fami-
liar concept of iteration. In section seven we indicate why we
believe that UNEC provides a uniform notation and consider possi-
ble objections to the language.

2. Current Query Languages

Virtually all query lansuages for relational data base systens,
such as SEQUEL{11], QUEL[2], SOUARE[13], and DEDUCE([14], are
non-procedural, i.e. the approach is to describe what information
is desired as opposed to describing how it is to be obtained.
Since the query itself imposes no constraints on the processing
order the data base system is free to choose the best method
available to process the query, given the information it has
about the size of relations, access paths, and so on. However,
except for the simplest of queries, the non-procedural approach
can mnmake it difficult to actually construct a query. Alterna-
tively, it can be difficult to understand what conputation {is
being expressed by an existing query. This can be true for pro=-
grammers because they are accustomed to -specifying computations
procedurally, as well as non-procrarmmers who typically possess
less computational skills than the former pgroup. An alternative
approach, which we will consider in this paper, is to allow a
query to be written in terms of how it night be processed in such
a fashion that would still allow the data base system to choose
how it is to be processed.

-1-

An additional difficulty with existing query languages 1is that
they often do not adhere to customary practices in programming
language design. Unconventional aspects of query languages
include the following:

- Unusual name scoping rules are sometimes used.

- Some keywords suffer from "semantic overload", i.e. they
have different meanings in different contexts.

- The meaning of a query can be changed radically by the
inclusion of a single delimeter. :

- An excessive number of variables are often required - to
express the query.

- It is often difficult to determine in what order the
parts of the query should be read in order to understand
the query as a whole

- The constructs are not designed to nest easily with one
another. .
To illustrate some of these problems, we will consider queries
written in a number of different query languages. In section
seven we will reconsider these queries and contrast them with
their counterparts in UNEQ. Throughout the paper we will use the
following relations taken from [11]. ‘ :

EMP(EMPNO, NAME, DNO, JOB, MGR, SAL, COM)

DEPT(DNO, DNAME, LOC)
USAGE(DNO, PART)
SUPPLY(SUPPLIER, PART)
The following query is‘writteﬁ in ALPHA([11].
Q-A : Find the names of employees who work in Detroit.
Q-A: RANGE E EMP
RANGE D DEPT

GET W E.NAME 3D(D.DNO=E.DNO :
' AND D.LOC="DETROIT")

In ALPHA, one declares the range of each variable, e.g. E ranges
over EMP. The output is to go into a named relation (W) and the
relation is to contain a single colurnn consisting of a subset of
the NAME column of E (E.NAME). The NAMEs chosen are those E.NAMEs

-2-

for which there exists sone D where D.DNO=E.DNO and
D.LOC="DETROIT."

In this notation it is hard to see that it is the employees that
are being considered in turn (as opposed to departnents). In
addition, the specification of qualifying tuples by requiring the
existence of some D for which the departnent number matches E’s
departnent number and D’s location is Detroit is substantially
less direct than simply asking (for each employee E) if Detroit

-

is the location of E’s department.
The next query, taken from [11], is written in SEQUEL.

Q-B: List the suppliers which supply all parts used by departnment
50.

Q-B: SELECT UNIQUE SUPPLIER
FROM SUPPLY SUP
WHERE
(SELECT PART
FROM SUPPLY
WHERE SUPPLIER = SUP.SUPPLIER)
CONTAINS
(SELECT PART
FROM USAGE
WHERE DNO=50)

In SEQUEL one indicates that a distinct (UNIQUE) subset of the
SUPPLIER column of SUPPLY is desired. The variable SUP is to
range over the tuples of SUPPLY and the SUPPLIER component {is
output for all tuples satisfying the WHERE clause. Here one con-
siders all of the tuples of the SUPPLY relation, and duplicate
suppliers are removed during the processing of the query. MNote
that if a comma was inserted between SUPPLY and SUP then it would
indicate that the join of two relations (SUPPLY and SUP) is
desired. ,

The concept of considering each supplier in turn can be expressed
in SEQUEL using additional syntax, viz

SELECT SUPPLIER
FROM SUPPLY
GROUP BY SUPPLIER
HAVING SET (PART) CONTAINS
SELECT PART ‘
FROM USAGE
WHERE DNO=50

Here, the GROUP BY specifies that each of the distinct suppliers

is to be considered, and the HAVING clause states that only those
suppliers should be considered for which the set of parts

-3-

(SET(PART)) contains all paris for department 50. Thus, SEQUEL
has two unrelated syntactic forms for expressing the same kind of
computation. '

. The following query is written :in QUEL(2].

Q-C: For each department, find the average salary of those
enployees whose salaries are greater than the average salary of
their department. :

Q-C: RANGE OF E IS EMP
RANGE OF F IS EMP
RETRIEVE(COMP= - =
AVG(E.SAL BY E.DNO
WHERE
E.SAL>AVG(F.SAL WHERE F.DNO=E.DNO)),
DEPT=E.DNO)

As in ALPHA, QUEL requires declaration of range variables (E and
F). The order of declaration is irrelevant. RETRIEVE specifies
that a two column relation is to be constructed with columns COMP
and DEPT. The "BY E.DNO" indicates that the output relation is
to contain the distinct department numbers fronm EMP (as the DEPT
component since E.DIIO is repeated there) and the CONMP component,
for each department number, is to contain the average of all of
the saleries of E from the department where the salaries used are
those which are greater than the average salary (F.SAL) of all
employees in the deparment.

As mentioned in [2], this query {s "hard to understand even ir
the semantics of aggregation are known". Part of the problen is
that the "BY E.DNO" controls the interaction and therefore it has
global meaning. Yet -it appears -syntactically the sane as
E.SALARY which has only 1local neaning. Furthermore, "BY" 1s
equivalent to "=". Thus, the second WHERE clause could be writ-
ten "F.DNO BY E.DHO" causing further confusion. nBY" is also
used in other contexts for updating ‘relations.

3. Programming Language and Data Base Concepts

Before we consider UNEO itself, we must first introduce sone
notation. Most modern progranning languages, such as 'PASCAL [3],
ECL {4], and ALGOL/68 [5] allow the user to define data types for
records, i.e. compound objects consisting of a fixed number of
objects of specified types. These sub-objects may be accessed by
selector nanes . which are given in the definition of the type.
For exanple, : : '

i

DEPTREC = RECORD
DNO:IMNT,
DNAME :STRING,
LOC:STRING
END

defines the type DEPTREC as consistine of 3 objects. In addi-
tion, some of these languagzes allow the definition of variable-
length sequences, i.e. one-dimensional arrays of objects where
all objects are of one particular type and individual constitu-
tent objects may be selected by integer index. For exanple,

DEPTROW = ARRAY [1:] DEPTREC

defines the type DEPTHUW as a one-dimensional array of objects of
type DEPTREC. The sequences are considered to be variable length
in the following sense: any CEPTROW object has a fixed length but
different DEPTE0OW objects may have different lengths. To con-
struct an object of type DEPTREC or DEPTROW, one can use a con-
structor function (whose name 1is identical to the type name),
where arguments to the function are objects of appropriate type.
For exanple,
DEPTROVW(DEPTREC(3, "TOY", "DETROIT"),
DEPTREC(4, "CANDY", "DEHVER"),
DEPTREC(7, "PENCIL", "BOSTON"))

constructs a DEPTROVW consisting of three DEPTRECSs. Note that
DEPTRCW() creates a DEPTROW of lengh zero. If D is an object of
type DEPTRCW, then D[2].DNAME gives the department nane of the
second record in the sequence, LENGTH(D) gives the number of
records in the sequence, and

CONCAT(D, DEPTREC(9,"PAPER™,"PORTLAND"))

creates a new DEPTROW which is identical to D except that it has
one additional record at the end of the sequence.

There is an obvious correspondence between a relation and a
sequence of records. A record definition can be viewed as defin-
ing the data type for the tuples of the relation and a sequence
of such records is the type definition for the relation as a
whole. Of course, the problen with this correspondence 1is that
relations are intended to be unordered while sequences are
inherently ordered. We nake the correspondence because progran-
pers are accustoned to processing sequences of records. Thus, it
serves as a starting point for the construction of a query
language from a progranning language viewpoint. An additional
problen is that relations do notl contain duplicates. At least
one relational system, SYSTEM R [1], has removed this restric-
tion. Here, we choose to follow SYSTEM R and consider relations
as bags [15], i.e unordered collections of objects which may con-
tain duplicates, as in artificial intelligence languages.

-5-

4. Queries from a Programming Language Viewpoint

Although query languages also contain facilities for updating and
deleting relations, in this paper we will only be:- concerned with
retriesval requesta, 1.e. requosts to list information (e.g., on a
terminal) 1in the form of a table, or requests to construct a new
relation from existing relations.

One of the simplest types of query is one in which a subset of
the colunns of a relation are listed for all tuples which satisfy
sone predicate. For exarple,

01: Find the names of employees in department 10.

Viewing the relations defined in section 1 as sequences of
ricords, the following progran fragment will yield this informa-
tion.

FOR I <- 1 : LENGTH(EMP) DO
IF EMP[I].DNO=10
THEN PRINTLI“E(EMP[I].NAME)

A slight variation on this query is one in which the 1nformation
obtained is itself formed into a relation.

Q2: Create a table of the names and jobs of employees whose
salaries are over 50,000. '

EREC = RECORD
NAME : STRING,
JOB:STRING
END -
EROW = ARRAY [1:] EREC .
BEGIN

RESULT<-EROW() ;
FOR I<- 1:LENGTH(EMP) DO
IF EMP[I].SAL>50000 THEN
RESULT <- COMCAT(RESULT,
EROW(ERECORD(EMP[I].NAME,
EMP[I].JOB)));
RESULT :
EMD

' Here, the relation is constructed by repeated concatenations to
the variable RESULT. RESULT is initialized to a null sequence sSo
that CONCAT will operate correctly the first time it is called.
The 1last statement of the bloeck 1is simply ™RESULT," which
becomes the value of the block as a whole. If no records satisfy
the predicate of the FOR loop then a null relation will be

returned.

The progran frarnent for 02 can be rewritten to avoid repeated
reference to EMP[I] within the body of the FOR loop.

BEGIN
RESULT<-EROW() ;
FOR I<- 1: LENGTH(EMP) DO
BEGIN
DECLARE X:ENMPREC; X <- EMP[I] ;
IF X.SAL>50000 THEM
RESULT<--CONCAT({ RESULT,
EROW(ERECORD(X.MAME, X.JOB))
END;
RESULT
END

Here the body of the loop is a block. Each time the block 1is
entered a local variable X is declared and initialized to EMP[I].

In the evolution of high-level programming languages, new
linguistic forns are introduced to replace commonly occurring
progran fragzments when it is recognized that such forns will add
clarity, conciseness and structure to the resulting code. The
idea, as expressed by Periis [7], is to suppress what is constant
and display what is variable. Considering the two queries above,
we can see that the data type definitions, the order ‘of the
sequence entries, the RESULT variable and the successive concate-
nations can all be suppressed since all such queries will
require data types, processing of all records, and either the
listing or construction of a new relation. Thus, we introduce a
new linguistic form, the FOR EACH expression, which captures and
suppresses all of the above and displays only that which is vari-
able, i.e. ‘the predicate applied to each record and the set of
columns to be output. The followinz two FOR EACH expressions are
semantically eguivalent to the corresponding progran fragnents
above.

Q1: FOR EACH X:EMP
: X.DMO = 10 => X.NAME

Q2: [FOR EACH X:EMP
X.SAL>50000 => X.NAME, X.JOB]

Here, X acts like the variable declared in the inner block above;
it is bound to each record of EIP in turn. For each binding of
X, the infix operator => evaluates its left arsgument. If the
value is TRUE, then the list of conponents on the right of the
arrow are output to some output device. If the FOR EACH (perhaps
abbreviated as FE) is surrounded with square brackets, then the
conmponents are output as a tuple of a new relation. In this
latter case the FOP EACH expresses the creation of a relation,
i.e. a relational expression.

The general form of a relational expression is:
(FE X:REL {predicate on X} => {selectors on X}1]

This form of a relational expression 1s similar to one described
in [12] for PASCAL. However, further suppression is possible.
The variable X may be onitted and the record selectors used by
themselves. The short form of a relational expression is:

[{selectors}:REL:{predicate}]
For example, in short form Q2 is as follows
[NMAME, JOB}ENP: SAL>50000]

which may be read "Construct a relation consisting of the nane
and job components fron the EMP relation, for those tuples whose
salary conponent is greater than 50000.

If all components of qualifying tuples are desired, then either
the keyword ALL may be used or the selectors and the vertical bar
may simply be dropped. For exanple, both :

[ALL{EMP: JOB = " PROGRAMMER"]

"and
[(EMP:JOB = "PROGRAMMER"]

construct relations concerning only those tuples from EMP for
enployees who are progranners.

If the predicate is TRUE, i.e. all tuples satisfy the predicate,
then the colon and TRUS may be dropped. Thus,

[NAME!EMP)

constructs a one colunn relation _consisting of all employees
nanes fron the ENP relation.

Combining both of the above defaults we have

[ALL!REL:TRUE] = [REL] = REL
Most relational systems provide a set of built-in functions that
may be applied to relations. For example, the number of tuples

in the relation is obtained by applying the function COUNT to the
relation ' : ‘ .

COUNT[EMP]

COUNT is analagous to the LENGTH function defined on 'sequences.
However, COUMNT may be applied to any relational expression, e.g.

COUﬂT[EMP:JOB = "PROGRAMMER"]

-8~

returns the number of employees who are progranners.
Some functions are defined for single column relations on1y,~e.g.
AVG[SAL}EMP]

glves the average salary of all employees. Functions such as
MAX, MIE and SU! are also defined.

Since the result of applyinc one of these functions is a scalar
(non-relational) value, the function application nay be embedded
in the predicate of a relational expression. However, the use of
enmbedded expressions could result in name conflicts because
record selectors appearing in the short forn are unqualified. To
avoid suchi conflicts, wuncualified selectors are restricted to
have meaning only within the current expression (delinited by
square brackets), and are not accessible within embedded rela-
tional expressions. For exanple,

Q3: What is the averace salarv of all enplovees who earn more
than the average salary for all employees?

Q3: AVG[SALJEMP: SAL > AVG{SALENMP]]

The first use of SAL stands for the desired column. The second
use is to get qualifying tuples, as in [EMP:SAL>10C0]. The third
use is in the embedded relational expression. Since the square
brackets delimit the scope of neaning for the terms of the
expression, this third use of SAL is distinct from the other two.
This 1is best seen by considering the same query stated in "long
forn." ~

AVG[FE X:EMP
X.SAL>AVG[FE Y:EMP TRUE => Y.SAL]
=> X.SAL]

Here, the three uses of SAL nmav be clearer, but the query 1itself
may be harder to read because of the focus on the two variables
which are not actually required.

In the above query, AVG[SALENP] appears inside the predicate of
the relational expression. Since the value of AVG[SAL|EMNP] is
constant it need only be computed once. However, it is possible
to construct relational expressions in which enbedded expres-
sions nust be recomputed each time throurh the loop. Consider

Q4: List ermployees who earn more than the average salary for
their jobs.

ol FE E:ENMP
E.SAL > AVG[SAL!ENP:JOB = E.JOB] => E.MAME

-9~

Here, since E.JOB may have a different value each time through
tge loop, the 1inner expression may have to be evaluated nany
mes ° : '

We close this section with a discussion of user defined functions
on relations. This facility is desirable since it is unlikely
‘that the built-in functions provided (AVG, MAX, MIN, SUM, etc.)
will be sufficient for all users. Although it is possible to
define functions which take entire relations as arguments, this
approach is undesirable for two reasons. First, since all func-
tions of this form have to iterate through the tuples of the
relation, it 1is better to make this iteration implicit in the
notation. Second, in order to pass the relation as an argument
it would be necessary to materialize the relation in its entir-
ity. Instead, we view such functions as co-routines [10], where
the function is repeatedly resuned to process each of the tuples
in turn. In addition, it will be necessary to perform some ini-
tialization before any tuples are passed to the co-routine, and
final computations after all tuples have been processed in order
;pliompute the result. The general form for such functions is as
ollows

FUNCTION F(X1:T1,...,XN:TN): TRESULT

BEGIN
{declare locals} .
ON ENTRY DO {entry block}
ON EXIT RETURN {exit block}
{body of F using RESUME}
END

Here, F would be applied to a relational expression which pro=-
duces an n columnn relation, where Ti is the type for the ith
column. The {entry block]} is “executed before any tuples are
passed to F. When each tuple is passed to F, X4 is bound to the
value for the ith column (1<i<n). Whenever F is reentered, it 1is
restarted from the last resunption point. Finally, the exit
block is executed after all tuples have been processed in order
to obtain the value of the function {which could be a tuple).
For exanple, AVG could be defined as follows.

FUNCTION AVG(X:INT):REAL

BEGIN ‘
DECL COUNT,SUM:INT;
ON ENTRY DO

"~ BEGIN COUNT <- O ; SUM <~ 0 END;
ON EXIT RETURN BEGIN SUM/COUNT END;

WHILE TRUE DO
COUNT<~-COUNT+1;
SUM <~ SUH+X;
RESUME

END

-10-

END;

In this context it is reasonable to pass expression values to
such functions, e.g.

AVG[SAL+COM|EHNP]

Here, the sum of the two coluuns is computed and 1is passed to
AVG.

User defined functions can pose problens with respect to data
base security because of the potential for infinite loops. These
problens can be avoided if the functions are shown to be well
behaved through the use of existing progran verifcation tech-
niques.

5. Nested Iterations.

Up to this point, the range of a FOR EACH variable has always
been a constant relation. A relational expression could be used
instead. For exanple,

(FE X:[EMP:JOB = " PROGRAMNMER"]
X.SAL>1000 => X.NAME]

Here X iterates over only those tuples for programmers. The
result is the nanes of progranmers who earn over 10000. Of
course, this query could have been expressed as an iteration over
the entire EMP relation.

[FE X:ElP
X.JOB = "PROGRAMMER" AND X.SAL>10000 => X.NAME]

The utility of iterating over relational expressions becones
clear when we consider the issue of duplicate tuples. As men=-
tioned earlier, the result of a relational expression can contain
duplicate elenents, e.g. [sAL}EMP]. It is sonetimes desirable to
have the result of the expression contain no duplicate elements.
This is specified in UNEQ Dy using two vertical bars in the
nshort" form of the expression, or by including the keyword
UNIQUE in the long forn, e.f.

{SAL} | ENP]
or

(FE X:EMP TRUE => UNIQUE X.SAL].

Thus, COUNT[SAL}ENP] sinply produces the count of the number of
tuples in EMP but COUNT[SAL!!ENP] gives the count of the nunmber

-11-

of different salaries of EMP. [DNO}}!EMP:JOB="PROGRAMMER"] gives
a 1list of the different departments that employ progranmers.

A relational expression which contains no duplicates is useful as
the range of a FOR EACH variable whenever one wishes to perform
some conputation for each of the different values of some column.

Conaider

Q5: List departments and the average salary for employees in the
departments.

Q5: FE D:[DNO} }EMP]
TRUE => D, AVG[SAL}EMP:DNO=D]

Here, D iterates over the different departments of EMP. Since
[(DNO!!EMP] is a single colunn relation we allow D to be used
without a selector (as opposed to D.DNO). Also, we allow an
expression to appear as part of the output list.

Some queries may be written as nested iterations. For example,
Q6: Find employees who earn more than their managers.

Returning to our progranming language notation for a moment, a
~ progranner night write

FOR E<-1:LENGTH(EMP) DO
FOR M<-1:LENGTH(ENP) DO
IF EMP(E].MGR=EMP[M].EMPNO AND
EMP[E].SAL>EMP[!1].SAL
THEN PRINTLINE(E.NAME)

Here, E iterates over the employees and the body of the FOR 1loop
3s itself a FOR loop which iterates over thé employees until it
finds E°s manager and then determines if E‘s salary 1is greater
than his manager’s salary. This nested iteration translates into
UNEQ as a nested FOR EACH,

FE E:EMP
FE M:EMP
E.MGR = M.EMPNO AND E.SAL > M.SAL => E.NAME

Here, the inner FE is executed once for each binding of E.

In programnming, it is often the case that the range of an 1inner
loop depends upon the value of the iteration variable from the
outer loop, e.g.

FOR I <= 1:N DO
FOR J<- 1:1I DO

-12=

BEGIN ... ENLD

In UKEQ a similar effect is achieved when the range of the inner
FE 1is a relational expression which uses the outer variable.
Consider

Q7: List department numbers and employees who earn more than the
average salary for their departnents.

Q7: FE D:[DNC} |ENP]
FE E:(ENP:DNO=D]
E.SAL > AVG[SAL!EMNP:DNO=D] => D,E.NAHE

Here, we iterate over distinct departnents and for each depart-
ment, we ccnsider all erployees within that department. Q7 could
also be written as

FE D:[D:O} }ENP]
FE E:ELNP
E.DNO=D AND E.SAL>AVG[SAL}EMP:DNO=D] => D, E.NAME

or as

FE D:[DMO!!ElP]
FE E:[EP:DHO=D AND E.SAL>AVG[SAL}EMP:DNO=D]
TRUE => D,E.NAME .

Choice between the three 1is a matter of taste. The author
prefers the first version in that it is a natural expression of
"for each department and for each enployee within that depart-
nment...".

It is sometimes desirable to declare a so-called temporary rela-
tion in order to improve the clarity of the query, In UNEQ this
may be achieved by associating a nane with a relational expres-
sion just before the predicate portion of the query.

Q8: List departnents and their average salaries and commissions.

Q8: FE D:[DNO}}ENP]
LET E BE [SAL,COM}ENP:DNO=D]
TRUE=>D,AVG[SAL!E], AVG[COM}E]

e close this section with a query in which a relational expres-
sion is included in the 1list of objects to be printed on the
output device.

Q9: List all parts and the cities where the parts are used.

Q9: FE P:[PART!!USAGE]

FE D:(DNO!USAGE:PART=P]
TRUE=> UNIQUE P, [LOC!CEPT:DNO=D]

-13-

When a relational expression is used in this context it nust
evaluate to a single column, single tuple relation, in which case
the single scalar value contained in the relation is output.

6. Other Features

In this section we consider some additional aspects of the query
language, including set operations on relations, queries which
produce scalar values, and an aditional linquistic form which nay
be used as an alternative to FOR EACH in sone situations.

So far, the predicate of a FOR EACH may only be a boolean expres-
sion in terms of scalar objects. A relational expression may
only appear in such an expression if it is prefixed with a func-
tion, i.e. 1if a scalar quantity is to be computed. However, it
is often necessary to express predicates in terms of relation-
ships among relational expressions themselves. Towards this end,
we allow the following set operations on records and relations to
appear in predicates.

‘{u,N, - }: REL x REL --> REL
{€, =, <>}: REL x REL --> BOOL
{IN}: RECORD x REL --> BOOL

All of these operations have their obvious definitions from set
theory. Ve adopt the convention that "{]" represents the null
relation. With respect to duplicate tuples, mnultiple instances
are removed from operands before the operations are applied.

Queries 10,11,12 conpute information about suppliers using set
operations. Because these queries appear to be complex, we will
step slowly through the construction of the first one. The oth-
ers should then be obvious.

Q10: List names of suppliers who supply at least one part sup-
plied by ACHE. ‘

. First, we see that we wish to consider each of the distinct sup-
pliers, and to list those that satisfy some predicate. Thus we
have

FE S:[SUPPLIER!}SUPPLY]

{predicate on S} => S
We need an expression to capture "parts supplied by ACME," 1i.e.
[(PART!SUPPLY: SUPPLIER = "ACHE"] and since we wish to compare
this set with parts for the particular supplier we need
[PART}SUPPLY:SUPPLIER = s]. "At least one" means that the two
expressions have at least one element in conmon, 1i.e. their
intersection is non empty, this yields ‘

-14-

010: FE S:[SUPPLIER]!SUPPLY]
[PART!SUPPLY:SUPPLIER = S} N
(PART}SUPPLY:SUPPLIER = "ACME"™] <> [] => S

011 and Q12 are similar except that different predicates are
required.

011: List names of suppllers who do not supply part P2.
011: FE S:[SUPPLIER!!SUPPLY]

NOT("P2" IN [PART{SUPPLY:SUPPLIER:S]) => S
Q12: List suppliers who supply all parts.

Q12: FE S:[SUPPLIER}!SUPPLY]

[PART!SUPPLY] = [PART SUPPLY: SUPPLIER = S] => S

Set operations may also be used to combine relational expressions
in order to produce a new relation to be listed on an output dev-
ice. y

Q13: List all parts supplied by ACME or ACE.
[PART|SUPPLY:SUPPLIER = "ACME"] U [PART}SUPPLY:SUPPLIER = "ACE"]
Some queries require either "yes" or "no" answers or a scalar
value to be computed. To allow for this, any expression that can
appear in a predicate may simply stand alone:
Qi14: How many programners are in the organization.
Qik4: COUNT{EMP: JOB="PROGRAMMER"]
015: Are there nore programners than clerks in the organization?
015: COUNT([EMP: JCB="PROGRA!MMER"] > COUNT[EHNP: JOB="CLERK"]
The final query for the section requires sone explanation.
Q16: Do all departrments use parts supplied by ACHE?
This is equivalent to asking if the number of departments in the
organization is egual to the number of departments that use parts
supplied by ACHE? Thus, we start with

COUNT[DNO! }USAGE] = COUNT (21}
where "?" stands for the departnents that use parts supplied by
ACME. To deternine this set we nust consider each department and

see if any of the partis used by the department are supplied by
ACHE, ioeo

-15=

FE D:([DNO} | USAGE)
FE P:{PART}USAGE:DNO=D]
"ACME" IN [SUPPLIER{SUPPLY: PART=P) => D

However, if more than one part used by a given departnent is sup-
plied by ACHE, then D will appear nmore than once. Thus we must
indicate that we wish to have no duplicates in the output.

Q16: COUNT[DNO} } USAGE]=
COUNT[FE:[DNOj}USAGE]
FE P:[PART}USAGE:DNO=D]
"ACME" IN [SUPPLIER}SUPPLY:PART=P]
=> UNIQUE D]

Although this query is correct, it is slightly unnatural because
for a given D we would really like to stop the inner loop as soon
as some part supplied by ACHE is found, i.e. to stop when the
existence of such a part is determined. We introduce the nota-
tion FOR SOME (FS) which gives the same result as the version
above. However, "UNIQUE" is not required since the inner loop
terminates (for a given value of D) as soon as some P is found.

Q16: COUNT[DNO! | USAGE]=
COUNT[FE D:[DNO}!USAGE]
FS P:[PART}!USAGE:DNO=D]
"ACME™ I? [SUPPLIER}|SUPPLY:PART=P]
=>D

Since "FOR SOME" may be considered to mean "FOR 1" it is tempting
to allow any integer value to appear instead of SOME, e.g. FOR 5,
which in the above query would determine departments that use
exactly five parts supplied by ACME. We do not include this
facility since we believe that while the concept of existence
(FOR SOME) 1is natural for the former query, the latter query is
best handled using existing mechanisms, e.g.

COUNT (DNO! | USAGE]=
COUNT [FE D:[TCHO}}USAGE]
COUNT [FE P:[PART}USAGE:DNO=D] ' '
"ACME" IN [SUPPLIER!SUPPLY:PART=P]
=> PJ] = 5 '
=> D]

7. A Uniform Notation

In the introduction we mentioned that UNEQ provides a uniform
notation for expressing queries. A query is expressed as a rela-
tional expression (perhaps with the outermost square brackets
removed to force listing on an output device), where a relational
expression is a combination of relational expressions wusing the

-16=-

iteration over either a relation or a relational expression, with
a qualifying predicate used to deternmine the elerments to be out-
put into the conmputed relation. The predicate is itself an
expression, defined on scaler or relational exoressions. Thus,
the relationail eéxpression is a unifying construct whose recursive
definition allows any query to be expressed.

The advantages of using a single construct to express queries are
fairly obvious. First, there 1is less syntax and semantics to
learn. Aside from the basic concept of a FOR EACH, all of ‘the
expression mechanisms are similar to those found in many high-
level (or very high level) programming languages.

The second, and perhaps most important, advantage is that since
there is 2 single notation, there is only one approach used in
writing ‘a query. Cne first chooses the relation (or expression)
over which one wishes to iterate. The next step is to deternine
the information to be output. Finally, one constructs the predi-
cate. which detetnines the values of the iteration variable that
qualify. With this method one can readily translate a query from
English into UNEQ. The major imperative of the sentence deter-
nines the range of the FOR EACH and the information to be output.
The various Subordinate clauses of the query are translated into
relational expressions used in the predicate.

Let us reconsider the queries discussed in section 2.
Q-A: Find the names of enployees who work in Detroit.

Q-A: FE E:EMP
"DETROIT" = [LOC!DEPT: DNO=E.DNO] => E.NAME

0-B: List the suppliers which supply all parts used by department
50.

Q-B: FE_S:[SUPPLIER!!SUPPPLY] ‘ ,
[PART}USAGE: DNO = 50] ¢ [PART!SUPPLY: SUPPLIER = S]
=> S] ,

Q-C: For each department, find the ~average salary of those
employees whose salaries are greater than the average salary of
their departnent.

Q-C: FE D:[DNO!} !EMP]
TRUE => D'
AVG[SALJEMP : DNO = D AND
SAL)AVG[SAL}EMP:DNO:D]]

-17-

When written in UNEQ, each query nay be read back in a forn which
is sinilar to the way in which the query js .stated. Consider the
following restatements of the queries which have been indented to

reflect their counterparts in UNEQ.

Q-A: For each enmployee, ,
if Detroit is the location of that enployee "s dept.
then 1ist the employee s name.

Q-B: For each distinct supplier,
if the set of parts supplied by dept. 50 is equal to
the set of parts supplied by this supplier
then list the supplier.

Q-C: For each distinct department,
1ist the department and
the average salary of employees
who are in the department and whose
.salaries exceed the average salary for the dept.

The major objections to the language style of UNEQ are that,
first, by giving the user a model in which to express how the
query might be processed, the data base system may be constrained
to process the query in this way. We maintain, however, that
allowing the user to use such a model makes writing the queries
easier than in an environment in which all notions of processing
have been rermoved. The latter is reniniscent of verification
systems in which the loop invariant is substantially harder to
write than the loop itself.

Second, the processing objection may itself be erroneous in that
the UNEQ language processor mnay be able to "deconstrain" the
query. For exanple, in Q6, the two FOR EACHs may be interchanged
by UNEQ without changing the meaning of the expression. In Q7,
we demonstrated that by transformine the predicate the inner FE
could be chanred to 1iterate over the entire relation. Having
transformed the predicate in this way, the nested FEs may be
interchanged

Finally, it may be argued that the iteration model and the con-
cise notation may be difficult for non-programning users to
understand. We believe that for more complex queries the mnodel
gives the user a basis for understanding the processing and thus
nuch of the magic is removed. Althouzh a keyword notation could
be developed, we believe that considerable power is derived from
the notation, especially when relational expressions are used in
predicates. These considerations are the proper domain of a
human factors study and we plan to conduct such a study in the
future using an implementation of UNEQ developed as as an alter-
native query langugage for the INGRES systen.

-18-

ACKNOWLEDGEHENTS

Bruce Eneslar, Pat Griffiths, Randy Katz, Larry Rowe, and Mike
Stonebraker all read earlier versions of this manuscript. I wish

to thank them for their many valuable comments.

~19=~

10.

11.

12.

13.

REFERENCES

Astrahan, M.M et. al., nSystem R: A Relational Approach to
Database Management", ACM Transactions on Database Systemnms,

Vol 1. MNo. 2, June 1976, pp. 97-137.

Allman, E. and Stonebraker, M., "Embeddiﬁg a Relational Data
Sublanguage in a General Purpose Programmning Language", SIG-
PLAN MNotices, Special Issue, March 1976, pp. 25-35.

Jensen, K. and Wirth, N., "pPASCAL Users Manual and Report”,
(2nd ed.), Springer-Verlag, 1975.

Wegbreit, B., "The ECL Programning Systen",. FJcC 1971, pp.

VanWijngaarden, A. (editor), "Report oﬂ the Algorithmic
Language ALGOL 68",.Numerishe Mathematik, 14 (1969).

Held, G. D., Stonebraker, M., and Vong, E., "INGRES - A Rela-
tional Database Management Systen”, Proceedings 1975 NCC,
AFIPS Press, 1975.

Perlis, A. J., "The Synthesis of Algorithmic Systems", Proc.
of 21st MNational Conference, ACM (1966), Thompson Book Co,
Washington, D.C., pp.. 1-6.

Codd, E.F., "A Database Sublanguage Founded on the Relational
Calculus", Proceedings 1971 ACH-SIGFIDET Workshop on Data
Description, Access and Control, San Diego, Ca., Hov. 1971.

Codd, E.F., "A Relational Model of Data for Large Shared Data

Conway, M.E., "Design of a Separable Transition-Diagran Com-
piler", CACM Vol. 6, No. 7, (July 1963), pp. 396-408.

Chamberlin, D. et. al., "SEQUEL 2: A Unified Approach to Data
Definition, Manipulation, and Control”, IBM Journal of
Research and Development, 20, 6, November 1976, pp. 560-575.

Schmidt, J. W., "Some High-level Language Constructs for Data

of Type Relation", Proceedings 1977 ACM-SIGMOD Conference on

the Management of Data, Toronto, Canada, August 1977.

Boyce, R. F., et. al., "Specifying Queries as Relational
Expressions: SQUARE", CACM, Vol. 18 No. 11,(November 1975),
pp0621"b280

«20=

‘14, Chang, C. L., "DEDUCE --- A Deductive Ouery Language for
Relational Data Bases”, pattern Recognition and Artificial
Intelligence, Acadenic Press 1976.

15. Rulifson, J. F., et.al., "QA4: A Language for Writing Problen
Solving Prograns", Proceedings IFIP Congress, 1968.

-21-

	Copyright notice 1977
	ERL-77-60

