

Copyright © 1977, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

A UNIFORM NOTATION FOR EXPRESSING QUERIES

!

by

C. J. Prenner

Memorandum No. UCB/ERL M77/60

8 September 1977

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

947 20

A Uniforn Notation for Expressing Queries

by

Charles J. Prenner

Department of Electrical Engineering and Computer Sciences

University of California at Berkeley

Abstract

Aquery languaee which Is suitable for use with a relational
database systen Is discussed. The langua<5e Is developed as an
extension of ideas found in progranming languages as well as the
relational calculus. The developnent Is a step towards the
interratlon of oro^ranalng lanBuac;es, query languages and data
base systems. The language offers a simple logical ^e
way in which the query might be processed ^n order to s-~-pl- y
quLy construction. However, the model does not constrain ^e
actual processing method used by the database sys m.
language has a single construct, the relational expression,
appears in either a "short" or "long" form. The
vides a uniform notation for expressing queries in that any
retrieval request can be expressed by suitable nesting of
single construct.

This research was suoported in part by U.S. Army Research Office
Grant DAAG-29-76-G-02y5. and by the National Science
under an NSF Participation Fellowship at IBM San Jose Research
Laboratory.

1. Introduction

Most query languat^es developed in conjunction with relational
data base systens were desirned Independently of any progranming
language. Hov:ever, it was soon realized that the query languages
could not stand alone, and thus, these languages have been
loosely coupled [1] [2] to existing prograrnning languages in
order to allow free novenent of data fron the programming
language to the data base, and conversely. In considering the
query language as part of the programming language one finds that
the notation and orientation of the two are quite different.
Many programming languages are procedural, with powerful facili
ties for data definition, iteration and list processing. On the
other hand, most query languages are non-procedural and use such
terms as universal and existential quantification, composition.
Join, and so on. This difference can be confusing for a program
mer who must switch back and forth between the two.

In this paper we will consider relations and query languages from
a programming languare viewpoint. Such a consideration is a
step towards the integration of programming languages and query
languages. In section- tv/o we consider some difficulties with
existing query languages. In section three we introduce some
notation and discuss the correspondence between relations and
sequences of records. This provides the background for sections
four through six in which we develop a nev; query language, UNEQ
(Uniform Notation for Expressing Queries), based upon the fami
liar concept of iteration. In section seven we indicate why we
believe that UNEC provides a uniform notation and consider possi
ble objections to the language.

2. Current Query Languages

Virtually all query lancruages for relational data base systems,
such as SE0USL[11], QUELC2], S0UAREC13], and DEDUCECU], are
non-procedural, i.e. the approach is to describe what information
is desired as opposed to describing how it is to be obtained.
Since the query itself imposes no constraints on the processing
order the data base system is free to choose the best method
available to process the query, given the information it has
about the size of relations, access paths, and so on. However,
except for the simplest of queries, the non-procedural approach
can make it difficult to actually construct a query. Alterna
tively, it can be difficult to understand what computation is
being expressed by an existing query- This can be true for pro
grammers because they are accustomed to specifying computations
procedurally, as well as non-programmers who typically possess
less computational skills than the former group. An alternative
approach, which we v/ill consider in this paper, is to allow a
query to be written in terms of how it might be processed in such
a fashion that would still allow the data base system to choose

it JL§. to be processed.

-1-

An additional difficulty with existing query languages is that
they often do not adhere to custonary practices in progranning
language design. Unconventional aspects of query languages
include the following:

- Unusual name scoping rules are sometimes used.

- Some keywords suffer from "semantic overload", i.e. they
have different meanings in different contexts.

- The meaning of a query can be changed radically by the
inclusion of a single delimeter.

- An excessive number of variables are often required to
express the query.

- It is often difficult to determine in what ^ order the
parts of the query should be read in order to understand
the query as a whole

- The constructs are not designed to nest easily with one
another.

To illustrate some of these problems, we will consider queries
written in a number of different query languages. In section
seven we will reconsider these queries and contrast them with
their counterparts in UNEQ. Throughout the paper we will use the
following relations taken from [11].

EMP(EMPNO, NAME, DNO, JOB, MGR, SAL, COM)

DEPT(DNO, DNAME, LOG)

USAGE(DNO, PART)

SDPPLY(SUPPLIER, PART)

The following query is written in ALPHA[11].

Q-A : Find the names of employees who work in Detroit.

0-A: RANGE E EMP
RANGE D DEPT
GET W E.NAME 3D(D.DN0=C.DN0

AND D.LOC=:"DETROIT")

In ALPHA, one declares the range of each variable, e.g. E ranges
over EMP. The output is to go into a named relation (W) and the
relation is to contain a single column consisting of a subset of
the NAME column of E (E.NAME). The NAMEs chosen are those E.NAMEs

-2-

for which there exists sone D where D.DNOrE.DNO and
D.LOC="DETROIT."

In this notation it is hard to see that it is the enployees that
are beinp: considered in turn (as opposed to departnents}. in
addition, the specification of qualifyinr; tuples by requiring the
existence of sone D for which the departnent number matches E s
department number and D's location is Detroit is substantially
less direct than sinply asking (for each employee E) if Detroit
is the location of E's departnent.

The next query, taken from [11], is written in SEQUEL.

Q-B: List the suppliers which supply all parts used by departnent
50.

Q.B: SELECT UNIQUE SUPPLIER
FROM SUPPLY SUP
WHERE

(SELECT PART
FROM SUPPLY
WHERE SUPPLIER = SUP.SUPPLIER)

CONTAINS
(SELECT PART

FROM USAGE
WHERE DN0=50)

In SEQUEL one indicates that a distinct (UNIQUE) subset of the
SUPPLIER column of SUPPLY is desired. The variable SUP is to
range over the tuples of SUPPLY and the SUPPLIER component is
output for all tuoles satisfying the WHERE clause. Here one con
siders all of the tuDles of the SUPPLY relation, and duplicate
suppliers are removed during the processing of the query. Note
that if a comma was inserted between SUPPLY and SUP then it would
indicate that the join of two relations (SUPPLY and SUP) is
desired.

The concept of considering each supplier in turn can be expressed
in SEQUEL using additional syntax, viz

SELECT SUPPLIER
FROM SUPPLY
GROUP BY SUPPLIER

HAVING SET (PART) CONTAINS
SELECT PART
FROM USAGE
WHERE DnO=50

Here, the GROUP BY specifies that each of the distinct suppliers
is to be considered, and the HAVING clause states that only those
suppliers should be considered for which the set of parts

-3-

(SET(PART)) contains all parts for department 50. Thus, SEQUEL
has two unrelated syntactic forms for expressing the same kind of
conputation.

The following query is written -in QUEL[2].

Q-C; For each department, find the average salary of those
employees whose salaries are greater than the average salary of
their department.

Q-C; RANGE OF E IS EMP
RANGE OF F IS EMP
RETRIEVE(COHPs

AVG(E.SAL BY E.DNO
WHERE

E.SAL>AVG{F.SAL WHERE F.DNOsE.DNO)),
DEPT.E.DNO)

As in ALPHA, OUEL requires declaration of
F). The order of declaration is irrelevant. RETRIEVE specifies
that a two column relation is to be constructed
and DEPT. The "BY E.DNO" indicates that the
to contain the distinct department numbers
component since E.DIIO is repeated there) and the ^ of
fer each department number, is to contain P^® ?*®^®|®.° are
the saleries of E frOn the department where the sala^J®® "®®® |̂ ®
those which are greater than the average salary (F.SAL) of
employees in the deparment.

As mentioned in [2], this query is "hard is
the semantics of aggregation are known * has
that the "BY E.DNO" controls the rhl tame as
global meaning. Yet "it appears syntactically the same as
E SALARY which has only local meaning. Furthermore,
equivalent to "=". Thus, the second WHERE clause could be writ
ten "F.DHO BY E.DNO" causing further confusion. BY
used in other contexts for updating'relations.

3. Programming Language and Data Base Concepts

Before we consider UNEO itself, we must first introduce somenotation. Host modern programming languages, such ^
ECL [i»], and ALGOL/68 [5] allow the user to define data types for
records, i.e. compound objects consisting of a fixed number of
oblects of specified types. These sub-objects may be accessed bylelectir nimis which'̂ ^re given in the definition of the type.
For example,

DEPTREC = RECORD
DNOrlNT,
DNAME:STRING,
LOCiSTRIKG

END

defines the type DEPTREC as consisting of 3 objects. In addi
tion, sone of these lanjjua^^es allow the
lencth sequences, i.e. one-dinensional arrays of objects where
all objects are of one particular type and individual constitu-
tent objects nay be selected by integer index. For example,

DEPTROW = ARRAY [1:] DEPTREC

defines the type DEPTHUW as a one-dinensional array of objects of
type DEPTREC." The sequences are considered to be variable J®"Sth
in the following sense: any DEPTROW object has a fixed
different DEPTROW objects nay have different lengths. To
struct an object of type DEPTREC or DEPTROW, one can use a con
structor function (whose nane is identical to the type
where arguments to the function are objects of appropriate type.
For example,

DEPTROVU DEPTREC(3, "TOY", "DETROIT"),
DEPTREC(lt, "CAHDY", "DEHVER"),
DEPTREC(7, "PEHCIL", "BOSTOt!"))

constructs a DEPTROW consisting of three DEPpECs.
DEPTROWO creates a DEPTROW of lengh zero. If D is an object of
type DEPTROW, then D[2].DNANE gives the department name of the
second record in the sequence, LENCTHCD) gives the number
records in the sequence, and

CONCAT(D, DEPTREC(9,"PAPER","PORTLAND"))

creates a new DEPTROW which is identical to D except that it has
one additional record at the end of the sequence.

There is an obvious correspondence between a relation ^
sequence of records. A record definition can be viewed as de in-
ing the data tyoe for the tuples of the relation and a sequence
of such records is the type definition for the relation as a
whole. Of course, the problem with this correspondence is that
relations are intended to be unordered while sequences are
inherently ordered. We nake the correspondence because program
mers are accustomed to processing sequences of records. Thus, it
serves as a starting point for the construction of a query
language from a programming language viewpoint. An additional
problem is that relations do not contain duplicates. At least
one relational system, SYSTEM R [1], has removed this restric
tion. Here, we choose to follow SYSTEM R and consider relations
as bags [15], i-e unordered collections of objects which nay con-

duplicates, as in artificial intelligence languages.

-5-

Queries fron a Progranming Language Viewpoint

Although query languages also contain facilities for updating and
deleting relations, in this paper we will only be-concerned with
retrieval requests, I.e. requests to list Infornatlon (e.g.» on a
terninal) in the forn of a table, or requests to construct a new
relation from existing relations.

One of the simplest types of query is one in which a subset of
the columns of a relation are listed for all tuples which satisfy
some predicate. For example,

Q1: Find the names of employees in department 10.

Viewing the relations defined in section 1 as sequences of
records, the following program fragment will yield this informa
tion .

FOR I <- 1 : LENGTH(EMP) DO
IF EriP[I].DN0s10

THEN PRINTLINE(EHPCI].NAME)

A slight variation on this query is one in which the information
obtained is itself formed into a relation.

Q2: Create a table of the names and Jobs of employees whose
salaries are over 50,000.

EREC = RECORD
NAME:STRING,
JOB:STRING

END

EROW = ARRAY [1:] EREC

BEGIN
RESULT<-EROW();
FOR I<- 1:LENGTH(EMP) DO

IF EMP[I].SAL>50000 THEN
RESULT <- CONCATCRESULT,

EROW(ERECORD(EMP[I].NAME,
EMP[I].JOB)));

RESULT

END

Here, the relation is constructed by repeated concatenations to
the variable RESULT. RESULT is initialized to a null sequence so
that CONCAT will operate correctly the first time it is called.
The last statement of the block is simply ""RESULT," which
becomes the value of the block as a whole. If no records satisfy
the predicate of the FOR loop then a null relation will be
returned.

-6-

The progran fragnent for 02 can be rewritten to avoid repeated
reference to EM?[I] within the body of the FOR loop*

BEGIN
RESULT<-EROW();
FOR I<- 1: LENGTH(EMP) DO
BEGIN

DECLARE X:E!1PREC; X <- EMPCI] ;
IF X.SAL>50000 THEN

RESULK—.COnCAK RESULT,
EROW(ERECORDC X.NAME,X.JOB))

END;
RESULT

END

Here the body of the loop is a block. Each tine the block is
entered a local variable X is declared and initialized to EMP[IJ.

In the evolution of high-level progranning languages, new
linguistic forns are introduced to replace connonly occurring
progran fragments when it is recognized that such forns will add
clarity, conciseness and structure to the resulting code* The
idea, as expressed by Perils [7]» is to suppress what is constant
and display what is variable. Considering the two queries above,
we can see that the data tvpe definitions, the order of the
sequence entries, the RESULT variable and the successive concate
nations can all be suppressed since all sudh queries will
require data types, processing of all records, and either the
listing or construction of a new relation. Thus, we introduce a
new linguistic form, the FOR EACH expression, which captures and
suppresses all of the above and displays only that which is vari
able, i.e. the predicate aoplied to each record and the set of
columns to be output. The foilowin? two FOR EACH expressions are
semantically equivalent to the corresponding progran fragments
above *

Ql: FOR EACH X:EMP
X.DNO =: 10 => X.NAME

02: [FOR EACH X:EMP
X*SAL>50000 => X.NAME, X.JOB)

Here, X acts like the variable declared in the inner block above;
it is bound to each record of EMP in turn. For each binding of
X, the infix oper^ator => evaluates its left argument. If the
value is TRUE, then the list of components on the right of the
arrow are output to some output device. If the FOR EACH (perhaps
abbreviated as FE) is surrounded with square brackets, then the
components are output as a tuple of a new relation. In this
latter case the FOR EACH expresses the creation of a relation,
i.e. a relational expression.

-7-

The general forfn of a relational expression is5

[FE X:REL {predicate on X} s> (selectors on X}]

This form of a relational expression is similar to one described
in [12] for PASCAL. However, further suppression is possible.
The variable X nay be omitted and the record selectors used by
themselves. The short form of a relational expression is.

[{selectors}I PEL:{predicate}]

For example, in short form Q2 is as follows

[NAME, JOB!EM?: SAL>50000]

which may be read "Construct a relation consisting of the
and job components from the EMP relation, for those tuples whose
salary component is greater than 50000.

If all components of qualifying tuples are desired, t**®"
the keyword ALL may be used or the selectors and the vertical
nay simply be dropped. For example, both

[ALL!EMP: JOB s "PROGRAMMER"]

[EMP:JOB s "PROGRAMMER"]

construct relations concerning only those tuples from .-MP for
employees who are programmers.

If the predicate is TRUE, i.e. all tuples satisfy the predicate,
then the colon and TRUE nay be dropped. Thus,

[NAME!EMP]

constructs a one column relation consisting of all employees
names from the Ef'P relation.

Combining both of the above defaults we have
[ALL!REL:TRUE] s [REL] a REL

Host relational systems provide a set ^SIr^o?%uSes
nay be applied to relations. For example, the number of tuples
in the relation is obtained by applying the function COUHT to the
relation

COUNT[EHP]

COUNT is analagous to the LENGTH function defined on sequences.
However, COUNT may be applied to any relational expression, e.g.

COUNT[EMP:JOB s "PROGRAMMER"]

-8-

returns the nunber of enployees who are propiranners.

Some functions are defined for sinp^le colunn relations only, e-f^.

AVG[SAL!EMP]

^ives the averap^e salary of all enployees.
MAX, MIK and SUfI are also defined.

Functions such as

Since the result of applyinc one of these functions is a scalar
(non-relational) value, the function application nay be embedded
in the predicate of a relational expression. However, the use of
embedded expressions could result in name conflicts because
record selectors appearinf: in the short form are unqualified. To
avoid such conflicts, unqualified selectors are restricted to
have neaninr only within the current expression (delimited by
square brackets), and are not accessible within embedded rela
tional expressions. For example.

Q3: V/hat is the average salary of all enployees
than the average salary for all employees?

03: AVGCSALIEMP: SAL > AVG[SALIEMP]]

who earn more

The first use of SAL stands for the desired column. The second
use is to get qualifying tuples, as in [EMP:SAL>1000]. The third
use is in the embedded relational expression. Since the square
brackets delimit the scope of meaning for the terns of the
expression, this third use of SAL is distinct from the other two.
This is best seen by considering the sane query stated in "long
form."

AvnrpF Y-FMP

' X.SAL>AVG[FE Y:EMP TRUE => Y.SAL]
=> X.SAL]

Here, the three uses of SAL may be clearer, but the query itself
may be harder to read because of the focus on the two variables
which are not actually required.

In the above query, AVG[SAL!EMP] appears inside the predicate of
the relational expression. Since the value of AVCCSAL| Ef!P] is
constant it need only be computed once. However, it is possible
to construct relational expressions in which embedded expres
sions must be recomputed each tine throurh the loop. Consider

0^: List enployees who earn more
their Jobs.

than the average salary for

01: FE E:EMP

E.SAL > AVG[SAL|EMP:JOB = E.JOB] =>

-9-

E.HAME

Here, since E.JOB nay have a different value each tine
tha loon, the Inner expression nay have to be evaluated n ythe loop, the inner expression
times.

We close this section with a discussion of user
on relations. This facility is desirable since it Jf
that the built-in functions provided (AVC, MAX, hIN,
will be sufficient for all users. Although it is possible to
define functions which take entire relations as arguments, this
approach is undesirable for two reasons. f ? « ir
tions of this form have to iterate through the
relation it is better to make this iteration implicit in the
noiltloS: second, in order to relation as
it would be necessary to materialize the where
ity. Instead, we view such functions as co-routines HO], where
the function is repeatedly resumed to process each of the tuples
in turn. In addition, it will be n®®®®®®';^," and
tialization before any tuples are passed to the °p-p®"P*"®'
final computations after all tuples have been processed in order
to compute the result. The general form for such functions is as
follows

FUNCTION F(X1:T1,...,XN:TN): TRESULT
BEGIN

{declare locals}
ON ENTRY DO (entry block)
ON EXIT RETURN (exit block)
{body of F using RESUME)

END

^alul for the ith column (Ki<n). Whenever F1®^:?®®!?^®'-®^^^^^,,^!
restarted fron the last resumption point. Finally, the exit
hiorw Is executed after all tuples have been processed in ordertJ obtLr th^ va^Sr If the'function (which could be a tuple).
For example, AVG could be defined as follows.

FUNCTION AVG(X:INT):REAL
BEGIN

DECL count,SUM:INT;
ON ENTRY DO

BEGIN COUNT <- 0 ; SUM <- 0 END;
ON EXIT RETURN BEGIN SUM/COUNT END;

WHILE TRUE DO
C0UNT<-C0UNT*1;
SUM <- SUH^X;
RESUME

END

-10-

END;

In this context it is reasonable to pass expression values to
such functions, e.i?.

AVG[SAL+C0K!EMP)

Here, the sun of the two coluinns is conputed and is passed to
AVC,

User defined functions can pose problens These
base security because of the potential for
problens can be avoided if the functions are shown to be well
behaved through the use of existing progran verifcation tech
niques.

5. Nested Iterations.

up to this point, the range of a FOR EACH variable has sl"sys
been a constaht relation. Arelational expression could be used
instead. For exanple,

[FE X:[EMP:JOB = "PROGRAMMER"]
X.SAL>1000 => X.NAHE]

Here X iterates over only those tuples for Qf
no.nit Is the nanes of progranners who earn over 10000.
course, this query could have been expressed as an iteration over
the entire EMP relation.

"PROGRAMMER" AND X.SAL> 10000 => X.NAME]

The utility of iterating over relational expressions
clear when we consider the issue of duplicate tuples. As
tioned earlier, the result of a relational expression can containtionea earx-c , roAT irMpi Tr is sonetifies desirable to
duplicate elenents, e.s^. [SAL.tMPJ. it -s sonetxn« elements.
have the result of the expression contain no duplicate .
This is soecif^ed in UNEO by usin^: two vertical bars in the"sSort" for^of ^he expression, or by including the keyword
UNIOUE in the long forn, e.g.

[SAL!!EMP]

or

[FE X:EMP TRUE => UNIQUE X.SAL].

Thiies rniiMTf SAL! EMPl sinoly produces the count of the number oflupf^s in EMP but COUNTC^ ?:ives the count of the nunber
-11-

of different salaries of EHP. [DKOi!EHP:JOB="PROGRAMMER"] gives
a list of the different departnents that enploy progranmers.

A relational expression which contains no duplicates is useful as
the range of a FOR EACH variable whenever one wishes to perform
some computation for each of the different values of some column.
Consider

Q5: List departments and the average salary for employees in the
departments.

Q5: FE D:CDNO!lEMP]
TRUE => D, AVG[SAL1EHP:DN0=D]

Here, D iterates over the different departments of EMP. Since
[DNOIIEHP] is a single column relation we allow D to be used
without a selector (as opposed to D.DNO). Also, we allow an
expression to appear as part of the output list.

Some queries may be written as nested iterations. For example,

Q6: Find employees who earn more than their managers.

Returning to our programming language notation for a moment, a
programmer might write

FOR E<-1:LENGTH(EMP) DO
FOR M<-1:LENGTH(EIIP) DO

IF EMP[E].MGR=EMP[M].EMPNO AND
EMP[E].SAL> EMP[fI].SAL

THEN PRIHTLINE(E.HAME)

Here, E iterates over the employees and the body of the FOR loop
is itself a FOR loop which iterates over the employees until it
finds E's manager and then determines if E's salary Is greater
than his manager's salary. This nested iteration translates into
UNEQ as a nested FOR EACH,

FE E:EMP
FE M:EMP

E.MGR s M.EMPHO AND E.SAL > H.SAL s> E.NAME

Here, the inner FE is executed once for each binding of E.

In programming, it is often the case that the range of an inner
loop depends upon the value of the iteration variable from the
outer loop, e.g.

FOR I <- 1:N DO
FOR J<- 1:1 DO

-12-

BEGIN ... END

In UNEQ a sinilar effect is achieved when the range of the inner
PE is a relational expression which uses the outer variable.
Consider

07: List departnent nunbers and enployees who earn more than the
average salary for their departments.

07: FE DiCDNCl IEf!P]
FE E:CEnP:DNO=Dj

E.SAL > AVG[SALlEr!P:DnO=D] => D.E.IIAME

Here, we iterate over distinct departments and for each depart
ment, we consider all employees within that departnent. 07 could
also be written as

FE D:[D!JO! lEMP]
FE E*EI!P

E.DKOzD AIID E.SAL>AVG[SAL!EnP:DHO=D] => D, E.NAHE

or as

FE D:[DN01 ! EIIP]
FE E:CEnP:DKO=D AND E.SAL>AVGCSAL IEMP:DNO=D]

TRUE => D,E.NAME

Choice between the three is a matter of taste. The author
prefers the first version in that it is a natural expression of
"for each department and for each employee within that depart
nent ...".

It is sometimes desirable to declare a so-called
tion in order to improve the clarity of the query. In UNEQ this
nay be achieved by associatinrc a name with a relational expres
sion just before the predicate portion of the query.

08: List departments and their average salaries and commissions.

08: FE D:CDNO!|EMP]
LET E BE [SAL,CON!EnP:D!IO=D]

TRUE=>D,AVG[SAL|E], AVGCCOMjE]

*e close this section with a query in which a relational expres
sion is included in the list of objects to be printed on the
output device.

Q9; List all parts and the cities where the parts are used.

09: FE P:[PART!!USAGE]
FE D:[DrJO|USAGE:PART=P]

TRUE=> UNIQUE P, [LOCIBEPT:DNOsD)

-13-

When a relational expression is used in case
evaluate to a sin?le colunn, single tuple '•flf^ion, in which case
the single scalar value contained in the relation

6. Other Features

in this section we consider =<>">« ®^erles Sh^ch
lanffuaee including set operations on relations, queries wn-cJrSducrscaiar valuls, and an aditional linquistic form which nay
be used as an alternative to FOB EACH in some situations.
So far the oredicate of a FOR EACH may only be a boolean expres-
fLn in Lrnr of scalar objects. Arelational expression may
only appear in such an expression if it is prefixed with a func-

"^ite! if a scalar quantity is to be oomputed. However it
is often necessary to express predicates in terms of relation
ships anong relational expressions themselves. Towards this end^
we allow the following set operations on records and relations
appear in predicates.

'(U.rt , - REL X BEL —> BEL

{C, s, <>}: BEL X BEL —> BOOL

{IN}: RECORD x BEL —> BOOL

All of these operations have their obvious definitions from set
theory. V/e adopt the convention that "[]" represents the null
relation. With respect to duplicate tuples, multiple instances
are removed from operands before the operations are applied.

Queries 10,11,12 compute information about
operations. Because these queries appear to be complex, we will
step slowly through the construction of the first one. The
ers should then be obvious.

QIC: List names of suppliers who supply at least one part sup
plied by ACME.

• First, we see that we wish to consider each of t^^e distinct sup
pliers, and to list those that satisfy some predicate. Thus we
have

FE S:[SUPPLIERI{SUPPLY]
{predicate on S) => S

Ue need an expression to capture "parts supplied by ACME," i.e.
rPART'SUPPLY' SUPPLIER s "ACME"] and since we wish to compare[hlf'Ier 3ith parL for the particular
[PART!SUPPLY:SUPPLIER = S]. "At least one" means that the two
expressions have at least one element in common, i.e.
intersection is non empty, this yields

-14-

010: FE StCSUPPLIER!ISUPPLY]
[PART!SUPPLY:SUPPLIEP = S] n

[PARTjSUPPLYrSUPPLIER = "ACME"] <> [] => S

Oil and 012 are similar except that different predicates are
required.

Oil: List names of suppliers who do not supply part P2-

011: FE S:[SUPPLIER1ISUPPLY]
N0T("P2" IN [PARTISUPPLY:SUPPLIER=S]) => S

Q12: List suppliers who supply all parts.

012: FE S:[SUPPLIER! ISUPPLY] ttto ci
[PARTI SUPPLY] = [PART ISUPPLY: SUPPLIER = S] s> S

Set operations nay also be used to combine relational expressions^n order to produL a new relation to be listed on an output dev-
ice.

013: List all parts supplied by ACME or ACE.

[PART!SUPPLY:SUPPLIER = "ACHE"] U[PART!SUPPLY:SUPPLIER = "ACE"]
Some queries require either "yes" or "no" answers or a scalar
value to be conputed. To allow for this, any expression that can
appear in a predicate may simply stand alone:

QIM: How many programmers are in the organization.
QIH; COUNTCEHP: JOB="PROGRAMMER"]

015: Are there more programmers than clerks in the organization?
015: COUNTCEMP: JOB="PROGRAMMER"] > COUNT[EMP: J0Bz"CLERK"3
The final query for the section requires some explanation.

Q16: Do all departments use parts supplied by ACME?

This is equivalent to asking if the number of departments in the
organization is equal to the number of departments that use parts
supplied by ACME? Thus, we start with

COUNTCDNO!lUSAGE] = COUNT [?]

where "?" stands for the departments that use parts supplied by
ACME. To determine this set we must consider each department and
see if any of the parts used by the department are supplied by
ACME, i.e.

-15-

FE D:[DriO! jUr^AHE)
FE P:[PART|USAGE:DriO=D]

"ACME" IN [SUPPLIER ISUPPLY; PARTsP] => D

However, if more than one part used by a given department is sup
plied by ACME,, then D will appear more than once. Thus we must
indicate that we wish to have no duplicates in the. output.

016: COUNTCDNO}!USAGE]s
COUNT[FE:[DN011 USAGE]

FE P:[PART!U$AGE:DNOsD]
"ACHE" IN [SUPPLIER|SUPPLY:PART=P]

s> UNIQUE D]

Although this query is correct, it is sli.ghtly unnatural because
for a given D we would really like to stop the inner loop as soon
as some part supplied by ACME is found, i.e. to stop when the
existence of such a part is determined. We introduce the nota
tion FOR SOME (FS) which gives the same result as the version
above. However, "UNIQUE" is not required since the inner loop
terminates (for a given value of D) as soon as some P is found.

016: COUNTCDNOIjUSAGE]=
COUNT[FE D:[DNO!iUSAGE]

FS P:[PARTI USAGE:DNOsD]
"ACME" IN [SUPPLIER1SUPPLY:PART=P]

=> D]

Since "FOR SOME" nay be considered to mean "FOR 1" it is tempting
to allow any integer value to appear instead of SOME, e.g. FOR 5$
which in the above query would determine departments that use
exactly five parts supplied by ACME. We do not include this
facility since we believe that while the concept of existence
(FOR SOME) is natural for the former query, the latter query is
best handled using existing mechanisms, e.g.

COUNT [DNO!|USAGE]=
COUNT [FE D:[DNO!|USAGE]

COUNT C FE P:[PARTI USAGE:DNOsD]
"ACME" IN [SUPPLIERI SUPPLY:PARTrP]

=> P] = 5
=> D]

7. A Uniform Notation

In the introduction we mentioned that UNEQ provides a uniform
notation for expressing queries. A query is expressed as a rela
tional expression (perhapis with the outermost square brackets
removed to force listing on an output device), where a relational
expression is a combination of relational expressions using the

-16-

o^loTForoI":'whirl I'fIWIch »''<"-^
iteration over elthll I consists of a (possibly nested)

fairly^^lbvlous?^ "pirlt^ 'there to express queries are
llV"' °0"°ePt of'I FOR llcr*' lir"lf®'thl
lllI!'(orveirhllh'L%efrn il LnfhiS!vor very nigh level) progranraing languages,

thlrl'̂ ll'̂ 'e®''!/®!"''®''® Inportant, advantage is that since

sKiJsl" "IS
Let us reconsider the queries discussed in section 2.
0-A: Find the nanes of enployees who work in Detroit.

Q-A' FE E:EMP
"DETROIT" = [LOCIDEPT: DNOrE.DNO] s> E.NAME

O-B: List the suppliers which supply all parts used by department

Q-B: FE S:[SUPPLIER!ISUPPPLY]
[PARTI USAGE: DNO = 50] £ [PART{SUPPLY: SUPPLIER s S]

their departraent. greater than the average salary of

FE D:[DNO!|EMP]
TRUE => D,

AVG[SAL!EMP : DNO r D AND
SAL>AVG[SAL!EMP:DMOrD]]

-17-

When written in UNEQ, each query nay be read back in ®
is sinilar to the way in which the query is stated. Consider the
following restatenents of the queries which have been indented to
reflect their counterparts in UMEO.

0-A: For each enployee, ,
if Detroit is the location of that enployee s dept.

then list the employee's nane.

Q-B: For each distinct supplier,
if the set of parts supplied by dept. 50 is equal to

the set of parts supplied by this supplier
then list the supplier.

Q-C: For each distinct department,
list the departnent and

the avera<5e salary of employees
who are in the department and whose

.salaries exceed the average salary for the dept.

The major objections to the language style of UNEO are ^^^t,
first, by giving the user a model in which to express how the
query might be processed, the data base system may be constrained
to process the query in this way. We maintain, however, that
allowing the user to use such a model makes writing the queries
easier than in an environment in which all notions of processing
have been removed. The latter is reminiscent of
systems in which the loop invariant is substantially harder to
write than the loop itself.

Second, the processing objection may itself be erroneous in that
the UNEQ language processor may be able to •*deconstrain tne
query. For example, in 06, the two FOR EACHs may be interchange
by UNEQ without changing the meaning of the expression. In Q7#
we demonstrated that by transforming the predicate the inner FE
could be changed to iterate over the entire relation. Having
transformed the predicate in this way, the nested FEs may be
interchanged

Finally, it may be argued that the iteration model and the con
cise notation may be difficult for non-programming users to
understand. He believe that for more complex queries the model
gives the user a basis for understanding the processing and thus
much of the magic is removed. Although a keyword notation could
be develooed, we believe that considerable power is derived from
the notation, especially when.relational expressions are used in
predicates. These considerations are the proper domain of a
human factors study and we plan to conduct such a study in the
future using an implementation of UNEO developed as as an alter
native query langugage for the INGRES system.

-18-

ackhowledgemehts

ltonebraker'''an%ead'"ear^Ur"v^^^ thirnanSsckpt" I wish
them for their many valuable comments.

•19-

REFERENCES

1. Astrahan, H.M et. al., "System R: A Relational .
Database Management", ACM Transactions on Database Systems,
Vol 1. Ho. 2, June 1976, pp. 97-137.

2. Allman, E. and Stonebraker, M., "Embedding a Relational Data
Sublanguage in a General Purpose Programming Language , sio-
PLAN tloticesi Special Issue, March 1976, pp. 25-35.

3. Jensen, K. and Hirth, H., "PASCAL Users Manual and Report",
(2nd ed.), Springer-Verlag, 1975.

I. Wegbreit, B., "The ECL Programming System", FJCC 1971, PP*
253-262.

5. VanWijngaarden, A. (editor), "Report on the Algorithmic
LsnguagB ALGOL 68"f Nunerish© MaLheinatik, 1m (19o9/*

6. Held, Ce D., Stonebraker, M., and Wong, E., "INGRES " ^
tional Database Management System", Proceedings 1975 NCC,
AFIPS Press, 1975.

7. Perils, A. J., "The Synthesis of Algorithmic Systems",
of 21st National Conference, ACM (1966), Thompson Book Co,
Washington, D.C., pp. 1-6.

8. Codd, E.F., "A Database Sublanguage Founded on the Relational
Calculus", Proceedings 1971 ACtl-SIGFIDET Workshop on Data
Description, Access and Control, San Diego, Ca., Nov. 1971.

9. Codd, E.F., "A Relational Model of Data for Large Shared Data
Banks", CACM Vol. 13f No. 6 (June 1970), pp. 377-387.

10. Conway, M.E., "Design of a Separable Transition-Diagram Com
piler", CACM Vol. 6, No. 7, (July 1963)t PP« 396-408.

II. Chamberiin, D. et. al., "SEQUEL 2: A Unified Approach to Data
Definition, Manipulation, and Control", IBM
Research and Development, 20, 6, November 1976, pp. 560-575.

12. Schmidt, J. W., "Some High-level Language Constructs for Data
of Type Relation", Proceedings 1977 ACM-SIGMOD Conference on
the Management of Data, Toronto, Canada, August 1977.

13. Boyce, R. F., et. al., "Specifying Queries as Relational
Expressions; SQUARE", CACM, Vol. IB No. 11,(November 1975),
pp.621-b28.

-20-

Re!alion4l''*Datr''BaL;": PattfrrUco^^nitlon anrArtiflclal
Intellli5ence, Acadenic Press 1976.

, p ai "OAU: ALanguage for Writing Problen
Soiling"Progra^ '̂. Proceedings IFIP Congress. 1968.

-21-

	Copyright notice 1977
	ERL-77-60

