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TO NONLINEAR OSCILLATIONS IN CIRCUITS AND SYSTEMS

A. I. Mees and L. 0. Chua'

ABSTRACT

One of the most powerful methods for studying periodic solutions in

autonomous nonlinear systems is the theory which has developed from a proof by
E. Hopf. He showed that oscillations near an equilibrium point can be understood
by looking at the eigenvalues of the linearized equations for perturbations from
equilibrium, and at certain crucial derivatives of the equations. Agood deal of
work has been done recently on this theory and the present paper summarizes recent

results, presents some new ones, and shows how they can be used to study almost
sinusoidal oscillations in nonlinear circuits and systems. The new results are

a proof of the basic part of the Hopf theorem using only elementary methods, and
a graphical interpretation of the theorem for nonlinear lumped and distributed
multiple-loop feedback systems. The graphical criterion checks the Hopf conditions

for the existence of stable or unstable periodic oscillations. Since it is

reminiscent of the generalized Nyquist criterion for linear systems, our graphical

procedure can be interpreted as the frequency-domain version of the Hopf bifur

cation theorem.

^This work is sponsored in part by the Office of Naval Research Contract
N00014-76-0572 and by the Miller Institute which supported the second author
during the 1976-77 Academic Year as a Miller Research Professor.

^^A. I. Mees is with the Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge, Cambridge, England. L. 0. Chua is with the Department of
Electrical Engineering and Computer Sciences and the Electronics Research
Laboratory, University of California, Berkeley, CA 94720.



1. INTRODUCTION

A standard procedure for designing an almost sinusoidal electronic oscillator

is to bias a locally active device into its active region and then imbed it in

an external frequency-dependent linear circuit [1]. The device could be any of a
large variety of 2-terminal elements. For example, it could be characterized
by a nonlinear dc V-I curve having a negative resistance region, as in the case of
a tunnel diode [2], or by a nonlinear ac dynamic circuit model as in the case of a
Gunn diode [3]. It could also be a 3-terminal device such as a transistor, or a
multi-terminal device such as an operational amplifier [4]. The parameters of the
external circuit are then chosen in such a way that the linearized circuit has a

pair of complex-conjugate poles which lies slightly to the right of the jm-axis
[1,4]. It is argued that thermal noise will generate an oscillation which grows
until its amplitude is limited by the device's nonlinearity. In practice, the
oscillation frequency is usually calculated to be the frequency u)^ at which the
pole crosses the jm-axis, while the amplitude is often determined by a first-order
harmonic balance (describing function) method [1]. While this approach usually
works in practice, it is often inaccurate and appears to have no rigorous foundation
As a matter of fact, it is easy to find counterexamples where it fails.

One way to justify this common oscillator design procedure is to make the
describing function analysis rigorous. This has been done for oscillator circuits
containing a single nonlinearity in the feedback loop of a linear circuit which
may contain both lumped and distributed elements [5,22,23,25,26]. The treatment
which fits our present problem best was given by Kudrewicz and Odyniec [6] who
investigated a bifurcation problem associated with a single-loop feedback system
when a parameter p is varied. They used a first-order harmonic balance approach
and succeeded in deriving sufficient conditions for the existence of an oscillation
when p is close to a critical value p^. However, only one nonlinearity was allowed
in their study and no stability analysis was given.

It appears that the best and most general approach for studying almost
sinusoidal oscillations is the Hopf bifurcation theorem [7]. Interestingly enough,

the basic assumption of this theorem is almost identical to that invoked by

electronic engineers using the ad hoc method described earlier. In fact, the
theory of the Hopf bifurcation has been widely applied in biology [8—9], physics
[10-11], and chemistry [12]. The purpose of this paper is to show how it can be
equally useful in circuits and systems. The type of problem where it is useful
is one in which an autonomous nonlinear system has an equilibrium state and there
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is a parameter p (either naturally occurring or artificially introduced) whose

variation causes the equilibrium state to change its local stability properties.

The question is, under what circumstances will the appearance of a periodic

solution be associated with the change in stability of the equilibrium? Having

answered this, one can then ask associated questions concerning uniqueness,

stability and persistence of the periodic solution.

Loosely, the theorem says that if on linearizing the equation about an

equilibrium point we find that pairs of complex conjugate eigenvalues cross the

imaginary axis as y varies through certain critical values, then for near-criticeil

values of y there are limit cycles close to the equilibrium point. Just how near

to criticality y has to be is not determined, and indeed unless a certain rather

complicated expression is non-zero, existence is only assured exactly at

criticality. The sign of the expression determines the stability of the limit

cycle, and whether the limit cycle exists for subcritical (y<y^) or supercritical
(y>y^) parameter values. (We are adopting the convention that near y = y^ the
real parts of the relevant eigenvalues increase as y increases.) One way to prove

this theorem is to use the geometrical approach of Ruelle and Takens [11], described

at length by Marsden and McCracken [10] . This gives a very clear picture of what

is going on and we shall describe it first, in Sec. 2,with a new proof of the basic

existence result. Poore [13] proves the theoron by methods which are related to

those of [10], but which involve less algebra, but we shall not describe his proof here.

An alternative approach is to try a series solution of the differential

equations. This was what Hopf did originally [7] and a recent writer adopting

the same general attitude is Allwright [14], though his method differs in Important

respects from Hopf*s. In Sec. 3, we shall review this contribution because it

gives the result in a form that is adapted to circuit and system theoretic problems,

and because it is based on harmonic balancing, a technique well known in systems

theory. Allwright's approach is, in some respects, similar to that of Kudrewicz

and Odyniec [6], although it was developed independently. However, his method

allows multiple nonlinearlties and is more accurate because he uses a second-order

harmonic balance method. Moreover, he gave a graphical interpretation for detecting

the existence of a periodic oscillation in single-loop feedback systems. He also

made a rigorous stability analysis. The end result of Allwright*s approach is

precisely the Hopf bifurcation theorem, but his proof is substantially shorter than

other proofs known to the present authors. In view of its practical significance,

our main objective in the later part of this paper is to generalize Allwright*s

graphical method to multiple-loop feedback systems.
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Another objective of this paper is to present a unified treatment of the

Hopf bifurcation theorem from two different perspectives, and then show how this
theorem can be used to explain oscillatory phenomena arising from nonlinear circuits

and systems. In so doing, we will try to filter out the relevant aspects of

this theorem which are too often buried under a morass of unwieldy algebra and

abstractions. However, since there is now an extensive literature on the

theory [10,11,13,14], we shall not prove all results completely. Whenever

applicable, we shall indicate methods of proof while referring to the sources

that seem to give the clearest exposition. We shall, however, give a new

and hopefully more enlightening proof of the basic part of the theorem.

To distinguish between the two equivalent approaches for deriving the Hopf

bifurcation theorem, we shall refer to the first as a "time-domain approach"

because all analysis is based on the differential equations. In contrast to

this, the second approach is based on feedback systems and is similar to the

generalized Nyquist stability criterion for linear systems [15]: it will therefore

be referred to as a "frequency-domaim approach." Since the statements of the

theorem are different in the two approaches, they will be called respectively the

"time-domain" and the "frequency-domain" Hopf bifurcation theorem.

Finally, in Sec. 4, we give some examples to illustrate the theorem. It

has sometimes been used without a complete appreciation of its advantages and

disadvantages, so we emphasize the geometrical ideas of Sec. 2 as an aid to

intuition in applications. In particular, we explain the importance of the local

nature of the theorem: in its usual form it only makes predictions for

unspecified — possibly very small — regions of parameter space and state space.

As long as this is borne in mind a lot of useful information can be obtained,

though obviously it is desirable to be able to estimate the size of the regions.

(This latter problem, the principal weakness of the Hopf bifurcation theorem,

is partially alleviated by the new approach of Sec. 2 and by a recent result

due to Swinnerton Dyer [16].)

2. The Hopf Bifurcation in the Time Domain

2.1. The two-dimensional case

The geometrical idea behind the Hopf bifurcation is best seen by observing

how the phase portrait of a parameterized two-dimensional system
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= f^Cx^.x^;^) (la)

^2
= f^Cx^jX^;^) (lb)

A A T
might alter as the parameter p is varied. To be specific, let x = [x^jX^] be
an equilibrium point of (1), where x may depend on y. Now suppose this

equilibrium point changes from a spiral sink (a stable focus) to a spiral

source (an unstable focus) as y increases from y^ - e to y^ + e. Now
suppose that at the critical value y = y^, the equilibrium point is a center,
i.e., the local linearization gives rise to undamped simple harmonic motion of

period 2iT/a) , where +i<A) are the eigenvalues of the Jacobian matrix evaluated at
o — o

X = X at criticality (y=yQ). Very close to the equilibrium point, the system
behaves as if it is linear. But a little further out, the effects of nonlinearity

sometimes manifest themselves in the appearance of a limit cycle. Figures 1(a)

and (b) show two qualitatively distinct phase portraits associated with two systems

having an Identical equilibrium point and Jacobian matrix. Observe that while the

phase portraits In Figs. 1(a) and 1(b) are Identical In a small neighborhood of

the equilibrium point, they differ drastically farther out. In particular, the

limit cycle In Fig. 1(a) Is stable and occurs only after criticality (supercritical

case) whereas that In Fig. 1(b) Is unstable and occurs only before criticality

(subcrltlcal case).

A somewhat better picture of what is happening can be seen in the (x^,X2,y)
space as shown in Figs. 2(a) and (b), respectively. Here, the slices with constant

y are phase portraits and we have represented loci of attractors (or more

precisely, loci of minimal attractors) by heavy solid lines, and loci of repellors

by heavy dashed lines. Thus the "bowl" in each case represents the loci of limit

cycles parameterized by y. In Fig. 2(a), corresponding to Fig. 1(a), an attracting

limit cycle appears as y reaches criticality and grows as y increases further,

while in Fig. 2(b), corresponding to Fig. 1(b), an unstable limit cycle gets

smaller as y increases, disappearing as y reaches criticality. In both cases,

the equilibrium point is locally attracting for y < y and repelling for y > y .
o o

We can distinguish between the two cases by observing whether the bowl is

the right way up, as in Fig. 2(a), or upside down, as in Fig. 2(b). It turns out

that this criterion can be generalized for n-dimensional systems (n>2), and in fact

the complicated expression mentioned earlier is just a negative constant times the

curvature of the bowl at y = y^. It is interesting to observe that if the curvature is
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non-vanishing, the bowl is parabolic so that the maximum amplitude of the limit
cycle grows as i.e., much faster than intitially. Hence,
even though the amplitude is zero at criticalityit grows rapidly into a
respectable magnitude just slightly beyond or before criticality. This phenomenon
is consistent with that normally observed in almost all nearly sinusoidal
electronic oscillators [1]. If the curvature vanishes, it is possible, though

not certain, that the bowl is flat out to infinity, in which case the limit
cycle exists only at the critical value p = and hence has zero amplitude.
An example of this degenerate case is given by = x^* *2 ~
criticality occurs at y = 0. An example where the curvature vanishes yet the

bowl is not flat is given by = X2» ^2 ~ "^^2 " *1 where all
partial derivatives of g(*) at the origin vanish up to 4th order, but there
is a nonvanishing 5th partial derivative.

To prove the theorem, Marsden and McCracken [10] use the implicit function

theorem to guarantee that the bowl exists sufficiently close to criticality.

They also show how to calculate the curvature so as to ensure that the predicted
limit cycles are not degenerate ones, and to determine whether they are attracting
or repelling. Unfortunately the implicit function theorem proof leads to
extremely heavy algebra, particularly in the derivation of the curvature, which
occupies many pages in Marsden and McCracken's book and is claimed to take a
month to check properly. If we are prepared to prove only existence but not

uniqueness (and so to lose a proper stability proof) we can proceed much more
directly by using Lyapunov*s second method. The key idea is the realization

that the difference between case (a) and case (b) of Fig. 2 is whether the equilibrium

is attracting or repelling at criticality; when y = y^ the equilibrium x is
attracting if and only if the bowl is the right way up and repelling if and

only if it is upside down. Of course, the attraction or repulsion must be due
entirely to nonlinear effects since the eigenvalues of the linearized equations

have zero real parts when y = y^. The terms vague attractor and vague repeller
are used to describe the equilibrium at criticality.

Our goal in this section is to present a simple proof of the "existence"
part of the Hopf theorem in a neighborhood of an equilibrium point

^The limit cycle of the nonlinear system at criticality should not be confused
with the continuum of periodic orbits of the associated linearized system at
criticality. While the former has zero amplitude, the latter can have any
amplitude. Notice that we are following the traditional usage where a periodic
orbit is called a limit cycle only if it is isolated.

-5-



x(y) =^x^(y),X2(p)] of (1). We assume that the function f(x;y) is (k^4)
jointly in x and y. We assume further that at y = y^, the associated Jacobian
matrix has a pair of simple complex-conjugate eigenvalues A(y) and X(y), where
X(y) = a(y) + iti)(y), ot(y^) = 0,a'(y^) > 0, and ^ 0, We next follow
Marsden and McCracken by transforming coordinates so that (1) becomes

= f^(x^,x2;y) (2a)

(2b)

where the origin (0,0) becomes the new equilibrium point (independent of y)

and the associated Jacobian matrix assumes the standard form

(Of) (0;y)

a(y) loCy)

-a)(y) a(y)

(2c)

where to 0 for all y, while ot(y) < 0 if y < y^ and a(y) > 0 if y > y^*
We want to construct a Lyapunov function V to test stability of the origin.

Because we have to take account of higher order derivatives than the first, a

quadratic V will not do: to ensure sign definiteness of V (at least when x is

close enough to x=0), we need quartic terms. Thus we choose:

„ 1 / 2.2,
V = 2

13 2+ -j ax^ + hx^x2
2 .+ cXj|̂ X2 + 1 j 3

3 "^2
1 4 3

"4 ®*1 2x^X2
a. 1 u 2 2+ 2 a. . 3+ ^^1^2 ^ 4 ^2

( 3)

and try to pick the constants a, b, ...» k to give V the properties we want.

This task is not as fearsome as it seems, since it can be done in stages.

Let us first expand f(x;y) about the origin via Taylor's theorem and make use

of (2c) to obtain

x^ =a (y )x^ +0) (y)x2 + 0( |x| )
2

X2 = -w(y)x^ + a(y)x2 + 0(|xl )
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.2 2
where 0( |x | ) denotes the terms of order higher than the first. Next, we
calculate the time derivative of V along the trajectories of (4) in a neighborhood

of the origin; namely.

2. 2,V= a()i) (x^+x^) + 0( |x| ) (5)

It follows from (5) that for small |x|, V is negative definite when a(p) < 0
but positive definite when a(y) > 0, independent of the coefficients

a, b, ...» k in (3). Hence, it only remains to examine the case a(p) = 0. Since

we will have to look at higher order terms in this case, let us expand (4) to

include 2nd and 3rd order terms:

. / N ^ 1 2 ^ 2l ^ 1 £l 2 ^ 1 2l 3 . 1 >1 2x^ a (p)x^ + aj(p)x2 + ^ + ^12*1^2 2 22^2 6 111^1 2 112 1*2

+ —f^ Xx^ + —f^ x^ + 0(1x1^)2 122 1 2 6 222 2 "M5I (6a)

^1^2 2^ 22 ^1 >2 2.1 22 3.1 22 2x^ = -o)(y)x^ + a(u)x2 + 2 ^11^1 + ^2*1*2 + 2 ^22*2 6 ^11*1 2 ^112^2

^ 1 22 2 1 22 3 ^ ,4.
2 Wl*2 + 6 ^222*2 + I^I ^

where

. . 3^?.•ji A i
pq 9x 9x

P q x=0

and
pqr 9x 9x 9x
^ pqr x=0

(6b)

are generally functions of y. The corresponding expression for V is now given by:

'n

If X€ ]R^ we write jxj for [x. 1 . To simplify writing out unwieldy but
V 1=1 ^

often irrelevant expressions, we will frequently use the well-known "Big 0"
notation [17]; namely, we will write g(x) = 0(g(x)) in a neighborhood of x^ if
there exists a constant A such that |p(x) [ _< A|q(x)| as x -»• x . For example, we

will write ^ ^k2,*l*2 ^ neighborhood of x = 0. Similarly,
£=m k=0

we will write p(x) = 0(1) if g(x) is bounded in a neighborhood of 0.
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V=cl(xI+kI ]+(-a)b +I +(a)c +I +(a,(a-2c) +f12 +^
+^a)(2b-d) +Ŷ 22 ^12)*1*2 ("'̂ S +I ^ "*• I "6 ^lll)*l

^(u(e-h) +bf^^ +af + ^^112 5^lll)*lX,

+(3a)(g-j) +2^^ii"^2bf^2 +2^^^"^2 ^^11 ^^^12"''2 ^^22'*"2 ^122 2^112)*!^

+(w(h-k) +cf^2 *^^12 "*" ^^22 6^222 2^122) *1*2
+(o)j +I cf^2 +2^^22 6^L2)*2 0(«)*0(l?lS +0(|x|̂ ) (7)

where we simply write a and w for ct(y) and aj(]j) . Since cubic terms prevent

sign definiteness, we must make them all vanish by equating the coefficients
3 3 2 2of x^, x^j *1^2 zero. This determines the coefficients

a, b, c, and d uniquely as listed in Table 1. Likewise, we must
3 3force the fourth-order terms x^x^ ®nd x^X2 to vanish by equating the respective

coefficients in (7) to zero. This determines e and k as listed in Table 1.
• •

Recall that we already know V is sign definite when a(p) 0. Now for V to
4 4be negative (resp., positive) definitive when a(y) = 0, we need x- and x« to

2 2have negative (resp., positive) coefficients 3^^ and 3^ in (7) and to have a
non-positive (resp., non-negative), coefficient 32> namely.

Conditions for V < 0

3j^ - a)(p)g < 0

32 + 3(1)(p) (g-j) £ 0

3^ + a)(v)j < 0

where

^ A 1 %1 . 1 , j2 . 1 il
^1 2 11 2 11 6 111

Conditions for V > 0

3^ - a)(p)g > 0

32 + 3a)(y) (g-j) £ 0

3^ + w(y)j > 0

'2 " 2^^11 ^^^12 2^^22 "*• 2^^11 ^"^^12 2^^22 2^122 2^112
„ _ 1 -1 ^ 1 ,22 .1^2
^3 " 2 ^ 22 2 22 6 222*

(8)

) (9)

These three inequalities are necessary conditions which must be satisfied by
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both g and j simultaneously. Only the first and third inequalities are listed
In Table 1 opposite g and j, respectively to save space. Observe that

unlike the constraints on the coefficients a, b, c, and d which are fixed once

the function f (x,y) is given, the inequality constraints given by (8) provide
us with some "slack" to derive a simpler yet equivalent constraint. In

particular, we can try to choose g and j such that the non-zero quartic terms

in (7) are a perfect square

2

aCx^+x^) =ax^ +2ax^x2 +ax^ . ^^0)
3

Here o is a parameter yet to be determined. Equating the coefficients

of the corresponding terms in (7) and (10), we obtain

3^ - m(p)g = a

3^ + 3a)(p)(g-j) = 2a

where 3^, ^2* ^3 defined earlier in (9) . Observe that while ^2'
and 3^ are independent of g and j, they are functions of y since
the parameters a, b, c, and d in Table 1 depend on p. Solving for a from (11),
we obtain

8o(h) = + $2

2
where o = a(p) is a C function of p. Substituting the coefficients

a, b, c, d, e, h, and k as defined in Table 1 into (7) and making use of (12),
we obtain

2

V=a(x^+x2) +a(x^+X2) +a 0(|x|̂ ) +0(|x|̂ ) (13)

Now at criticality (p=p^), we have ^(Pq) 0> £^^<1 ® ^
Hence, (writing for o(yo)), (13) implies that <0 (resp., >0) is
sufficient to guarantee V < 0 (resp., '̂ > 0) at criticality. That this condition
is also necessary follows immediately from (8) . Hence, v.'e have proved that the

3 4 2 2 4
Since the coefficients of the 3 non-zero quartic terms x^, x^^x^* and x^ involve

only 2 parameters g and j, we need to Introduce a new parameter a in order for
the quartic terms to form a perfect square.
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necessary and sufficient condition for V to be negative definite (resp.» positive

definite) at criticallty is given by < 0 (resp.> > 0). It is indeed

remarkable that the sign of the single parameter — henceforth called the

curvature coefficient — completely determines the sign of V at criticallty.

Substituting the definitions of a, b, c, and d (with y = y^) from Table 1 into
(9) and (12), we obtain the following explicit expression:

^22^^12"^22^ ^^11^12"^12^22^}

"*• ^^lll"^^122**'̂ 112'*"^222^

where to = (o(y ) and f^, and f^, „ are all evaluated at x = 0 and y = y . Let us
o o jk jkJl ~ - o

now summarize the above results into the form of a lenma.

Lemma 1.
/s

At criticallty (y=y^), the equilibrium point x(y^) of (1), is a vague
attractor if < 0 and a vague repeller if > 0, where is the curvature

coefficient defined in (14).

It is reassuring to observe that our curvature coefficient in (14) is

identical — apart from an irrelevant factor 3tt/(0q — to that derived by Marsden
and McCracken (see their expression for V"'(0) on p. 133) via a much more

involved method.^ The factors of 4 and 8 in (14) and (12) are also irrelevant
but are included here in order for to be consistent with a more general

definition we shall make in Sec. 3.

Observe that when o —0, we can say nothing at all. To investigate this
o

case, we would have to generate a higher order Lyapunov Function — a tedious but
not an intrinsically difficult task. We can now make use of the above results
to prove a partial version of the Hopf Bifurcation theorem in ]R which merely
asserts the existence of a limit cycle and which only provides a partial

stability property.
2

Theorem 1. Partial version of Hopf bifurcation theorem in IR

Suppose the curvature coefficient associated with the equilibrium point

^Marsden and McCracken assumed u)(y) > 0 which is why the factor l/w^ is irrelevant.
Our expression allows w < 0 which gives a small extra degree of flexibility in

o
use.
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x(y ) of (1) does not vanish, i.e., i 0. Then there is an open neighborhood
of u and for each p^ cAI, x(p) has open neighborhoods © and ^ of

o " 1/2
diameter z and e' respectively, where e = 0(|a| ) and e' = 0(1). For each

p G lAI, writing a = a(p) and x = x(p), the following statements are true:

(a) If oa >0 and a < 0 (resp., a >0), x attracts (resp., repels) all points
o — o o -

lying in 4^.
(b) If ao <0 there is at least one limit cycle lying within the closure of U.

o

If a <0 (resp., o >0), one such limit cycle attracts (resp., repels) all points
o ' o

inside it except x, and one such (not necessarily distinct) limit cycle attracts

(resp., repels) all points outside it and contained in .

Proof. Since the coordinate transformation from (1) to (2) is analytic and has

an analytic inverse, we need only prove the theorem for (2). Now V in (3) is
positive definite in an open neighborhood of the origin of size 0(1). Call this
^ , and let ^ be the corresponding neighborhood of x(p) in (1). ^The contours

of V, i.e., the level curves V~^(y), are approximately circular in ^ and, if
has been chosen small enough, they are nested in the sense that every steepest

descent curve starting on the boundary of leads to the origin (i.e., V has

only one local minimum in viz. 0).

Notice that a(p) = cr_ + O(p-p-) so if has been chosen small enough,a(p)
o 0

and o have the same sign. Thus we can work with o = o(p) throughout. For
o

definiteness, take o < Oj the case o > 0 is exactly analogous. Then writing a

for a(p), V is negative definite on when a < 0. Hence, the origin attracts
^ when a < 0.

When a > 0 (so aa<0) the sign definiteness properties of Vfor small |x|
and large |x| are opposite to each other. We shall show that there is an annulus

bounded by two Vcontours, such that all trajectories in lAI but outside
of must eventually enter fc. Writing r = x^^ + X2> we see that V—y when

= 2y + 0(Y '̂̂ )

which implies

V= 2Y(ci+2aY) +aO(Y^^^) + 0(y^^^)
3/2

Thus if r > 0, V vanishes when y = -a/2a + 0(a ). There are therefore two
3/2values Y-j^ Y2 Y» both within 0(a ) of Yq ^0.12(3j for which y

implies V>0and Y>Y2 implies V<0. Thus all trajectories in oM must enter
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the annulus^

C]5 ={V ^(y)| 1 Y1 ^2 '̂
We now have an annulus which is positively invariant and contains no

equilibria. It follows from the Poincare-Bendixon theorem 118] that the annulus

contains at least one limit cycle and therefore the closure of ®= {xj V(x) <Y2^
contains at least one limit cycle. The stability properties follow at once.

D

Remarks.
2

1. Note that corresponds to r = -a/o, so in the transformed coordinates

each of the limit cycles are nearly a circle centered at the origin and of radius

Ia/aIin fact they all lie within 0(a^^^) of this circle.
2. Theorem 1 differs from the usual statement of the Hopf theorem in that it

fails to guarantee that the limit cycle is unique and it does not provide an
estimate for the period of oscillation (though this could be done fairly easily).
In fact, if o'CPq) i 0and the neighborhood oW is chosen to be small enough, the
limit cycle is unique and is attracting if < 0 and repelling if > 0. We
don't prove this here, however.

3. If we adopt the usual convention that ct(p^) = 0 and a'(p^) > 0, i.e., the
pair of eigenvalues crosses the imaginary axis from left to rig^t as p increases
beyond p^, then remark 2 implies that when <0, an attracting limit cycle
exists only when plies In the half-open interval [p^,p^+e] CoW. Similarly,
when a > 0, a repelling limit cycle exists only when p lies in the half-open

o ,,

interval (p -e,P ] ^ oW. This property is precisely that depicted in Fig. 2.
o o

The sign of a determines whether the limit cycle is attracting (Fig. 2(a)) or
repelling (Fig. 2(b)) and is therefore a precise way of saying whether the "bowl"
is the right way up, or upside down. This interpretation is in fact the reason
for introducing the name "curvature coefficient for o^.

4. An examination of (14) shows that = 0 whenever all second and third

partial derivatives of f^(x,p) vanish at p = p^. In this case, either the
conclusion of Theorem 1 is still true (non-vanishing higher order derivatives

^The reason why we cannot do better and make ^ a Vcontour is that the curve
V"^(0) need not coincide with some v"^(y): our expression.for Vconceals the
fact that if, say, x^ varies, then the value of y to make Vvanish will change
slightly.
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be needed) or the conclusion is actually false. An example of the latter
case occurs in the van der Pol equation [18-19]:

X, = f, (x- ,x„; li) = X,1 " "2 (15)
2

= f2(x^,X2;p) = -y(x^-l)x2 - x^

Equation (15) is already in the standard form with = 0 as required by (3).
Hence f(x;p) = f(x;p). Since all partial derivatives vanish at p = 0, we have
o =0 and Theorem 1 says nothing at all. In fact, since it is well known that
for arbitrarily small p > 0, (15) has a stable nearly circular limit cycle of
radius 2 [19], it is clear that the van der Pol oscillator works on a mechanism
quite different from most nearly sinusoidal electronic oscillators which are
designed by implicitly assuming that the oscillator operates as predicted by
the Hopf Bifurcation Theorem [1].

2.2. The general case

The Lyapunov function approach can be extended to work for an n_^ order
system but we shall not do so in the present paper because we have already
extracted nearly all the geometrical insights it can give. Amore elegant proof

for n > 2 uses the ideas of invariant manifolds; we merely sketch them here and
refer the reader to [11,20] for details because an even more appealing proof

using frequency-domain concepts will be discussed in the next section.
If one pair of complex conjugate eigenvalues of the Jacobian matrix J =

evaluated at the equilibrium point x(y) crosses the imaginary axis as p varies
through p^, we might hope that for p close enough to the phenomena of Sec. 2.1
will occur in, or near to, the eigenspace of these eigenvalues, since that

eigenspace will be locally invariant under the flow of the differential equation.
Proving that this is so is not trivial and in fact requires a rather deep invariant
manifold theorem [20]. The following is a simplified but rigorous statement of
this theorem in

Parameterized invariant manifold theorem

Suppose y G m and f(x;y) is a vector field on C (k^2) jointly in x
and y and with f(0;y) = 0. Let J(y) denote the associated Jacobian matrix

0Yaluated at x —0 . Suppose that for y in an open neighborhood cAlof the
eigenvalues of J(y) split invariantly into three disjoint sets S(p)» C(p)» and
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containing s, c, and u eigenvalues, respectively.^ Assume that all
eigenvalues in ^Cy) have negative real parts, all eigenvalues in (^(y) have
real parts with the same sign as y - y^ (and hence are pure imaginary when >
and all eigenvalues inQJ|(y) have positive real parts. Let W®(y), W^(y), and
w"(y) be the eigenspaces of J(y) corresponding to the eigenvalues in SCy)>
and respectively, and suppose

= W®(y) ©W^(y) 0w"(y)

for all y S

Then there exist 3 families (parameterized by y) of differentiable manifolds

(y) and (y) which are defined on an open neighborhood ^ of 0
in for all y G (_A(; namely,

oW^(p) = m^(x;y)=o}
where m^: ^X(^ ^ is a function, for £=s, c, oru. These manifolds
intersect only at the origin and are invariant under the flow of the vector field

f restricted to

Furthermore, at x = 0, each manifold (y) is tangent at the origin to
**0

the associated eigenspace W (y) .

Remark.

Although the stable manifold Ji?(y) and the unstable manifold oW"(y)
are uniquely defined, the center manifold (y) is not necessarily unique.

However, it can be shown that any center manifold does contain all the local

recurrence of trajectories [10]. Also, (y) depends in a way on y because

m^ is and the Jacobian matrix of m*^ evaluated at x = 0 is invertible on

so that we can apply the inverse function theorem.

With the help of the. invariant manifold theorem, it is now easy to prove

the existence of closed orbits for an nth order system having only one pair of

^By iuvariant, we mean here that if an eigenvalue Abelongs to ^ or Qjl for
some y G then the locus of X(y) remains in the same set (j , or , as y

varies over the neighborhood Ji. The notations "s", "c", and "u" denote s^table,
Renter, and _unstable, respectively.

^Restating this in more geometrical terms, it means that if x^ lies on any
one of the 3 manifolds, the trajectory of the differential equation
X= f(3f;y) passing through x^ must lie on the same manifold for all times where
it remains within Ji.
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complex conjugate eigenvalues which crosses the imaginary axis as p varies

through u . In this case, the center manifold is 2-dimensional and hence its
o 2

vector field is topologically equivalent to a vector field on 3R . Hence we can

simply invoke Theorem 1 from Sec. 2,1 to assert the existence of a periodic orbit
lying entirely in Since ^ IR » this implies the existence of at
least one periodic orbit in Pictorially, what we are doing here is to

stretch the 2-dimensipnal surface (p) as if it were a rubber sheet and then

flatten it into a plane. Clearly, the resulting phase portrait is merely

distorted: its qualitative behavior remains unchanged. This proof can be made

completely rigorous by taking a local chart for (p) (i.e., a smooth bijectlve
2

mapping of (p) onto a subset of 3R ) and then applying Theorem 1.

That there exists a unique periodic orbit in ]R^ for each p ^ oM is also
not difficult to prove (assuming we have proved it in m ) as long as all of the
other eigenvalues of J(y) are clear of the imaginary axis so that only one pair
of complex conjugate eigenvalues crosses it at p = p^.

Stability requires extra work. First, we have to make sure that the center
manifold is itself attracting for there to be any chance of the periodic orbit

being attracting. Second, the fact that the vague attractor condition involves
second and third partial derivatives of the restriction of f(x;p) to

(p) means that the curvature of ^l/l will affect the formula for a corresponding
generalized curvature coefficient o^. Given that the invariant manifold theorem
has been developed properly, however, the new formula for comes out without
too much extra work. See [10] for details. Since we shall be using a more

convenient but equivalent formula in Sec. 3.6, we do not give the extra

terms required in the following theorem.

We will close this section by stating the complete Hopf bifurcation theorem

in IR^. It is essentially taken from [10] (see also [8]). The requirement

that f be is clear in view of the need for error terms to be 0(|xl ) when we
were computing o in Sec. 2.1.

o

n

Theorem 2. Time-domain Hopf bifurcation theorem in M

Let X = f(x;p) be an nth order system (n>_2) parameterized by p ^ IR and c

jointly in pe mand xe 31^. Let f(x(p);pj =0for a locally unique
equilibrium point x(p) and write J(p) for the Jacobian matrix of f evaluated
at x(p) . Suppose:

(1) J(p) has a pair of simple complex-conjugate eigenvalues X(p) = a(p) + iu)(p)
and X(p) = a(p) - ia)(p), where a(p) = 0 at p = p^ and a'Cb^) > 0.
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(2) Every other eigenvalue v(m) of J(ii) satisfies Re v(y^) ^ 0.
(3) 0 where o^ is defined by (51) of Sec. 3.3 (or by (14) if n = 2).

Then there is an open neighborhood lAI of and for each y ^ (,AI» there is
an open neighborhood © of x(y) of size e=o(|a(y)1^^^Jsuch that the following
statements are true:

(a) If a(y)a <0, there is a unique periodic orbit in 0. For y sufficiently
o

close to y , the time waveform corresponding to this periodic orbit is almost
o

sinusoidal with an angular frequency a)(y^)/2iT + 0(|a(y)|) and an amplitude
which grows at the same rate as /| 1•

(b) If a <0 and Re v(y ) < 0 for all eigenvalues v other than A.(y^) and
^ ' o o "

X(y^), then this periodic orbit is attracting.
(c) If 0 >0 and Re v(y ) > 0 for all eigenvalues v other than X(y ) and 9

o o

then this periodic orbit is repelling.

3. The Hopf Bifurcation in the Frequency Domain

3,1, Ass""iptions for the frequency-domain Hopf bifurcation theorem

Although Sec. 2 has given us a very clear time-domain picture of what is
happening in the Hopf bifurcation, we have not yet provided a complete proof of
this theorem. Also, the invariant manifold theorem — a key step required in
the time-domain proof—has beenmerely stated because its proof is fairly long
and would not help us much in understanding the Hopf bifurcation. Our objective
in this section is to show that a self-contained frequency-domain proof of the
complete Hopf bifurcation theorem can be produced quite independently of the
invariant manifold theory. This proof is due to Allwright [14] and although our
development is slightly different, we shall refer to results in his paper at
certain vital points.

Allwright's proof has several advantages and is particularly attractive if one
is interested in feedback systems. First, it uses harmonic balance (describing
function) methods which are well-known to circuit and control engineers. Second,
Allwright gave a very useful graphical interpretation for single-loop systems.
We shall show how to extend his interpretation to multiple-loop systems and so
provide a completely general graphical method in the frequency domain
reminiscent of the Nyquist criterion. Third, even when there are many

feedback loops, Allwright's formula for calculating the curvature

coefficient in the frequency domain is never harder and is usually much easier
to use than the corresponding time-domain formula given by Marsden and
McCracken. Fourth, the frequency-domain version of the theorem can be easily
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extended to allow delays and other distributed elements such as transmission

lines. A corresponding time-domain proof for the infinite—dimensional case

would have been much more involved.

Suppose, then, that we have a standard form autonomous multiple-loop feedback

system which has been separated into a dynamical linear part with a
g

transfer matrix G and a memoryless nonlinear part f, as shown in Fig. 3(a).

For complete generality, we assume that G has "fc" inputs and "m" outputs where
S, need not be equal to m. Hence, f maps 3R into IR and G is an mxi- matrix.

Both G and f may depend on p. The elements of G need not be rational functions

of s, so we are allowing linear distributed parameter systems. Observe that

our feedback representation in Fig. 3(a) is extremely general and automatically

includes all lumped autonomous systems. In particular, consider the general

ordinary differential equation.

X = ^ + B g(Cx;y) (16)

where Ais an nxn matrix, Bis an nx£ matrix, Cis an mxn matrix, and g: IR^.
All three matrices may depend on y, and A may be the zero matrix.

The autonomous system x = f(x;p) is a special case of (16) where A=0, B=C=1,

and f = g. We will now show that given (16), there corresponds an infinitely
~ 9

many distinct but equivalent feedback representations. To do this, let us

introduce an arbitrary nxm matrix D (which may depend on p) and rewrite (16) as

follows;

X=^ + +B|g(x;p) - (17)
where

y = Cx (IS)

8
Because G is linear, the negative sign can appear at any point in the loop.

With the form shown, we are thinking of G as a system to be controlled and f as

the controller, so e in Fig. 3(a) is the error signal and d (=0, here) is the
desired behavior. The results still hold, however, if we transfer the negative
sign to the other side of G.

Q

The following formulation is standard but seems not to be well known.
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Taking the Laplace transform of both sides and solving for as a function

of the Laplace variable s, then writing e = -Cx, we obtain

(^e)(s) = -G(s;y)(Sf li)(s) a9a)
where

G(s;v) = C[sl- (A+BDC)r^B (19b)

u = f(e;y) = g(y;v) - ?y

y = —e (19d)

It follows from (19) that the autonomous system (16) Is equivalent to the

feedback system shown in Fig. 3(a), provided G and f are defined by

(19b) and(19c), respectively. Since the matrix D is arbitrary, we have in fact

produced a continuum of equivalent feedback system representations. In practice,

we will usually choose D = 0ifA?^0, and D = 1 if A = 0.

Observe that even though (16) is an n-dimensional system, the nonlinear

function f: IR™ -»• IR^ is an 1-dimensional vector. Since "l" is never
greater than "n" in (16) and in practice is usually much smaller, it is

reasonable to expect that the frequency-domain version of the Hopf theorem

would usually require much less computation than its time-domain counterpart.

For example, the equilibrium point x(p) obtained by setting x = 0 in (16) and

solving the resulting system of "m" nonlinear equations, now corresponds to the

point e(u) obtained by setting s = 0 in (19b) and solving the following system

of "il" nonlinear equations:

G(0;p)f (e;ij) e (20)

If we linearize the feedback system in Fig. 3(a) about the equilibrium point

e(y), we obtain the system shown in Fig. 3(b). It follows from feedback system

theory that if an eigenvalue of the Jacobian matrix associated with (16) assumes

the pure imaginary value io) at p = p^, then a corresponding eigenvalue of the
open—loop matrix G(iu)^,p^) J(p^) associated with the feedback system (19) must
assume the value -1 + iO at p = p^. Hence, instead of assuming that a simple
pair of eigenvalues are equal to +iu)^ at p = p^ (condition (1) of Theorem 2) as
in the time-domain Hopf theorem, we must now assume that G(ia)^;p^) J(yQ) kas
exactly one eigenvalue equal to —1 + iO for the frequency—domain Hopf theorem.

10 Otherwise, we can always replace Bg(Cx;p)by Bg(to;p) where B = 1.
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At this point we must very briefly suEonarlze the frequency domain approach

to linear multivariable system stability. Suppose we fix a value of p and

temporarily write G(ia)) instead of G(i(D;y). The square matrix G(iu))J has m
eigenvalues which depend on to* but this does not mean that one can define m

functions A.(iw), j = l,2,...,m. In fact, the characteristic equation of

G(ia))J is a polynomial of mth order in X, with coefficients which are functions

of im. If G(s) has elements which are rational functions of s, the coefficients

in the characteristic equation can be made into polynomials in s by multiplying

by the least common denominator, and X is an algebraic function of s, defined
on a Riemann surface in general [15]. (Even if the elements of G(s) are not

rational functions the stability criterion which follows is true [21], but we

shall take the simplest case.) The algebraic function will have a number of

components which correspond roughly to the X^ we would like to define, but if
X has any branch points, some components will be defined on a Riemann surface with
several sheets and will each represent several of the X^. However, the argument
principle, on which the single loop Nyquist stability criterion depends, remains

true for functions defined on Riemann surfaces [27]. This allows one to build

up a theory completely analogous to the single loop theory based on counting

encirclements of the point —1 by the Nyquist locus [15].

The end result is that one simply calculates all the eigenvalues at some

to, then repeats this at to + 6u) and so on through [0,u)). The points are joined
up smoothly to give the characteristic loci; any ambiguities in joining up are

genuine and arise from the nature of the algebraic function, but will not
affect the stability test. Next, the total number of anticlockwise encirclements

of -1 + iO by the loci is counted: if it is equal to the number of poles of X(s)
with real part positive,^the system is stable. (This counting method is just
a convenient way of determining whether 0 is in the image of the right half s—plane
under the map det(G(s)J+1).)

Notice that we are already in a position to check most of the hypotheses

of the Hopf theorem: if some component of the characteristic loci moves through

-1 + iO as p varies, and if the value of w for which an eigenvalue is -1 + iO

is itself nonzero, we have a pair of eigenvalues of the linearized time domain

equations crossing the imaginary axis. The condition that this should happen
for some w and not for integers ru (r +1) can be checked by ensuring that at

^^Poles of •X(s) are zeros of the coefficient of X in the characteristic
polynomial defining X.
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the critical y value, no other component or other part of the same component,

should pass through -1 + 10 with the relevant frequency: this will generally

be obvious from a glance at the diagram, but we shall Impose a stronger condition

In the theorem which ensures that there Is no resonance.

3.2. The graphical Hopf theorem

We shall state and prove a theorem which not only shows how to check the

eigenvalue conditions using characteristic loci but also Incorporates a check

of the sign of a Into the same diagram. It will enable us to provide estimates
o

of the frequency and amplitude of the limit cycle correct up to 0(|p-ii 1), the
2 ^3/2error In frequency being 0(ly-)i |̂ ) and that In amplitude being 0(jp-p |̂ ),

These will be read directly from our diagram, but In Sec. 3.3, we shall show

how to use the more usual approach of calculating first approximations and then

correction terms. In fact, the parameter y plays almost no role In the theorem

and It can be suppressed at little cost. Its place will be taken by a parameter
1/20 which Is essentially the amplitude, so 8 = 0(|y-y |̂ ). Although the

statement Is lengthy because we have to take care over orders of magnitude, the

theorem Is very easy to use In practice. The statement of the Theorem and the

remarks which follow It should be sufficient for practical use, without the need

to refer to the Lemmas which are used In the proof.

Theorem 3 (Graphical Hopf)

Let S be a feedback system of the form In Fig. 3(a) and which Is equivalent

to a differential equation CD of the form (16), and suppose f: R™ -»• IR^ Is
C^. Suppose e Is a locally unique solution of G(0)f(e) +e =0 and write J = (Df)g.
Write X for the corresponding equilibrium of the differential equation.

Let G(s)J have characteristic function A(s) and let X be the coiiq)onent of

X corresponding to the branch of the characteristic locus which Intersects the
A

negative real axis closest to -1 +10, the Intersection being at X(la)j^) .
Suppose C(co ) as found from Table 2 Is nonzero and the half-line from -1

A

In the direction defined by first Intersects the locus of X(la)) at P,
9 A

with X(l(o) = {• = -1 + 0 where 0 0. (See Fig. 4.)

If (1) the Intersection Is transversal

and (11) there are no other Intersections between the characteristic loci and

the closed line segment joining -1 + 10 to P

then there exist 0 >0-, >*0 and w > to. > 0 such that
o 1 o ~ X

(a) If 8 < 0 and < o) the system S has a periodic solution e(t)
o R o ~
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of frequency w = (o + 0(9 ) and such that e(t) = 6 + E exp lluot
k=-2~

+ O(e^) where (k=0,+l,+2) will be defined later.
(b) The corresponding limit cycle in T) is unique in a ball centered on

Xand of radius 0(1). If 9 < 0^ and the limit cycle is
the unique attractor in a ball centered on x and of radius 0(1) if

the following encirclement condition holds: The total number of

anticlockwise encirclements of P + by all the branches of X is

equal to the number of poles of X with positive real part. Here

6 > 0 is so small that no new intersections between the locus and the

half-line are introduced.

Remarks

1. The need for co and u), arises because by locating the intersection as ino 1 ^ 2
Fig. 4 we have solved the equation X(i(o) +1 = 6 C((i)) approximately. Doing

so does not change the order of magnitude of the error (see Lemma 3.1).

2. 0 essentially replaces p as the parameter. If one is interested in several

p values, the picture will usually have to be redrawn each time.

3. A transversal intersection is one at which the intersecting curves are not

parallel and have nonzero rates of change with respect to their parameter

izetions. Here, this means that

detf«« ^ Im C 1^0
.ReX*(i(D) ImX'(io))J

but one can check the condition immediately by looking at the diagram.

4. The encirclement condition in (b) is the familiar Nyquist stability criterion,
A.

with the critical point moved from -1 to a point just "beyond" P, where

"beyond" means we increase 0 slightly from 0. This condition is similar

to an approximate one often used with describing functions, but in the

present case it is rigorous.

Usually G(s)J (hence X(s)) will have no poles in the right half plane

and the —1 point will not be encircled except by X. Then the condition is

simply that the half—line should point outwards at the intersection P for

the limit cycle to be attracting.

5. The stability result can be understood very easily in the light of Sec. 2.

The encirclement conditions check whether all but two eigenvalues of the

original differential equations have negative real part, so that the center

manifold is attracting. The condition on the X branch determines whether

the solution exists while the equilibrium is stable (subcritical bifurcation.
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unstable limit cycle) or while the equilibrium Is unstable (Supercritical

bifurcation: stable limit cycle). However, Allwrlght*s proof of stability

Is Independent of these considerations, and hence does not require us to

prove the center manifold theorem.

6. We have imposed stronger conditions than necessary In several places. In

order to simplify the statement of the theorem. In particular, we have

assumed the state space Is finite dimensional so G Is rational. However,

the generalization of most of the theorem to the distributed case Is simple

and It Is only because of certain complications In the graphical Interpre

tation that we do not give It here.

To prove the theorem we shall need a number of Lemmas.

Lemma 3.1. (Justification of approximate graphical solution)

Under condition (1) of Theorem 3, for any e > 0 there Is an > 0 and

a 0 >0 such that If Iw-o) I < m and 0 < 0 , there Is a unique solution (m,S)
e 'Re £

to

A(la)) + 1 = 8^(C(ti))-+p(0,u))) (21)

where p Is a function which Is 0(0) for all co. Moreover, ui = w + d-(e,(i>)
*

and 0 =0+ d2(0»aj) where d^^, are C functions and jd^^l <e, |d2l <e.
Proof. This Is just a slightly modified implicit function theorem. The

2
transversallty condition ensures that If we regard the complex plane as IR

and think of

Xdoj) +1- 0^C(a)j^) (22)
2 2

as a map from a neighborhood of (0 ,u)) to ]R , this map has a nonslngular

derivative T at (0 ,u)). Consequently, the modified Newton-Raphson map

M: -> ]R^ defined by

(e^.u) ^ (e^.u) - r^fxao.) +i - e^(c(a))4p(e,<,j))| (23)
Is a contraction on a closed set 0 containing (§ ,(0) If |u)—and 0 are

sufficiently small, as we now show. Let us first rewrite (23) as follows:

M(0^,a)) =(0^,0)) - r~ |̂[X(lw)+l-e^C(Wj^)] +0^[^(Wj^)-C(w)-p(0fW)]J (24)
Recalling that T Is the derivative of (22), we obtain the following derivative

of M:

(DM) « =1 - r~Vr-H)[0^(C(a)«)-C((«))-p(0,u)))] >
(0^,0)) J

=» r''̂ D[0^(c(Wj^)-^(«»>)-p(0»w))3
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where D denotes the derivative operator. Since and p are functions of o)

and 0 , it follows from (25) that

UdmII J< k| 1 (26)

on a closed set containing (0^,0)), where Kis a constant, |*| is the
Euclidean norm on (0 ,aj) space and 11*11 is the induced matrix norm. Thus if 0

and 1(o—0) [ are sufficiently small, Mhas Lipschitz constant less than 1. Next,
R

we show that Mmaps Q. into itself if 0 and are sufficiently small. Since,

using (22) and (24), we have

M(0^,u)) - (0^,w) =M(0^,u)) - M(0^,m) +r"^0^[c ((Dj^)-C (w)-p (§ ] (27)
3 2 /V /s 2 2

and the right side is 0(0 ,0 (w-w), (to—w) ) which implies that M(0 ,a)) is closer
2 2 £/^2'^v

to (0 ,0)) than was (0 ,(o), for every (0 ,a)) within some fixed distance of (0 ,0)).

The Lemma now follows at once from the contraction mapping theorem. °

Remar^. We shall use this type of argument several times and from now on we

shall suppress the details. Condition (ii) of Theorem 3 is not needed directly

in this Lemma, but it is useful in excluding cases where |a)-(Ojj |̂ is clearly too
large,

T^nmifl 3,2. (Relation between graphical and second order harmonic balance solution)

Under conditions (i) and (ii) of the Theorem, the solution (a),0) of

A(ia}) +1 = 0 C(a)_) corresponds to a locally unique second order harmonic balance
Jx

solution for a limit cycle in the system provided 0 is sufficiently small.

Remark. The frequency and amplitude vectors will be found during the proof.

This result, together with the next Lemma which asserts that the hanmjnic

balance solution is close to a true solution, gives the required approximation

to the limit cycle.

Proof. A second order harmonic balance solution has the form
2

e(t) = e + E exp ikmt (28)
k=-2

Here the phase of one component of, say can be chosen arbitrarily by shifting

the time origin. Since e(t) has frequency m, so does f(e(t)) and we can calculate

its Fourier coefficients as functions of E^, E—E—
Equating the input and output of the linear part gives

E^ = -G(ikw)F^ (29)
""k "*k

and we wish to solve this when k = 0, +1, +2. Clearly, E = E , where the
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"bar" denotes complex conjugation. It Is convenient to solve first for and

E in terms of E . By expanding f(e) in a Taylor series about e and substituting

the trial expression for e it is simple to verify that

=(Df)^E^ +P2
where p- and p« are quartic in |E^j and quadratic in jE |̂ and |e^|. Here ®.,1-2 - ^
is the tensor product operator [28], so for example the second term in the F

expression has kth component in the notation used for derivatives
ITS IT S

in Sec. z.

2 1
Writing J for (Df)^, Q for (D {)&§ , and H for the closed loop transfer

function from v to ^ of the linearized feedback loop in Fig. 3(b), so

H(8) = (G(s)J+l)"^G(s) (32)

we have

E® =-H(0) ^91^ +0(|e |̂S (33)

E^ =-H(2ia)) |qe^ +0(|e |̂̂ ) (34)
where we have suppressed an iiq>licit function theory argument of the type

used in T,<»Tinna 3.1 and have used condition (ii) to ensure that 6(s)J + 1 is
0 2 12invertible when s = 0 and s = 2i(o. Note that E and E are 0(| E | ) .

The equation for is

F^ = (Df)E^ + (P^!)[E®® +E^Se^] +|(D^f)E^0E^® E^ +P3 (35)
where p^ is, after substituting (33) and (34), 0(1e |̂̂ ). Thus we have to solve

(36)[G(lm)J+l]E^ = -G(i(i))p(a),E^)
where

,li4g=QE® QE^ +I LE^ +0(|E |̂S (37)
and

Thus after substitution of (33) and (34), p only depends on (o and [e j and is
third order in |E^ j.

The matrix multiplying E^ on the left side of (36) is singular at
bifurcation so we cannot solve directly. Instead, we notice that since we are

looking for small E^ the left side, being first order, would be expected to
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dominate; so should be nearly an eigenvector of G(1(jj)J belonging to the

eigenvalue X(ia)) which is -1 at bifurcation. This suggests we try

= (v+w)9 (39)

where 0 is a small positive real number, v is a right eigenvector of GJ belonging
" 12

to A, u is the corresponding left eigenvector, and w is orthogonal to v. The

arbitrariness of phase of eigenvectors gives the correct arbitrariness of phase

of E^, and 8 will be fixed once the length of v has been chosen. It is
convenient to take jv| =1 and we shall do so, though it is not strictly necessary.

Substituting the trial expression for E^ into (36) and dividing by 8 gives

(G(ia))J+l)(v+w) = -G(iaj)8^p(w,v+w) +0(0^) (40)

Now G(iu3)J + 1 is not invertible at bifurcation, but condition (ii) of Theorem 3
assures us that only one eigenvalue vanishes so the matrix has rank m—1; this

means its restriction to a subspace orthogonal to v must be invertible, and the

inverse will be 0(1). Thus (by a suppressed implicit function argument) we can
2

solve for w as a function of v and 0, and w will be 0(0 ) and so can be renwved
" 3 "

from p and absorbed into the 0(0 ) terms.
T

Premultiplying the equation by u gives

(X(i(ij)+1) (u'̂ v+u^w) =-0^u^G(ia))p(uj,v) + 0(0 ) (41)

and we notice that u'̂ y is 0(1) (because A(ia)) is not a multiple eigenvalue)
T 2 T

but u w is 0(0 ). We can therefore neglect u w too, giving

A(iaj) +1 =-0^u^G(iw)p((o,v)/u^y + 0(0^) = 0^?(a)) +0(0^) (42)
2 ^

This has the required graphical interpretation (Fig. 4), namely, that 8 is
3

the vector joining A to —1 if we neglect 0(0 ) terms; Lemma 3.1 guarantees that

(42) is solved adequately even if we evaluate 4 at instead of provided

jo) -a)| is not too large. The formula for Cis summarized in Table 2 for
R

convenience in use. n

Lemma 3.3. (Justification of neglect of higher harmonics)

There exist 8 > 0, w >0 such that if 0 < 0 and < oj^, S has a
O O O K O

periodic solution

vector x is called a right eigenvector of a matrix A belonging to the
eigenvalue Aif Ax = Ax, and a left eigenvector if x"a = Ax^. The symbols u
and V here are unrelated to those of Fig. 3.
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2 , .

e(t) = e + ^ + 0(6 ) (^3)
k=-2

where w= w+ 0(0^), and are found as in Lemma 3.2. The limit cycle is
unique in a neighborhood of e of size 0(1).

Proof. Every limit cycle must have the form

e(t) = e + e (t) + e (t) (^^)
- ^ -o

2 k * *where e = 5^ E exp ikujt and e E P , the subspace orthogonal to exp ikojt
k=-2~

(k=0,l,2) on the Hilbert space P of periodic functions of period 2ir/a). (Thus
A

e consists of third and higher harmonics.)

Allwright shows [14] that for small enough |e [, e is defined as a unique
1 A ^ "a 3C function of e^ by the coii5>onent of (44) in P ; the e so obtained is 0(|g^l )

The technique uses the contraction mapping theorem as in [23] and condition (ii)

is again needed to ensure there is no resonance at multiples of the bifurcation

frequency.
A

Looking at components orthogonal to P we must satisfy

E^ =-G(ika))F^(e^,e*(e^)) (45)

f kwhere e = E exp ikojt. Thus
k=-2"'

E*' =-G(iku)r^(E°,E^.E^) +0(|e |̂S (46)
is to be solved for E^ (k=0,l,2) and o). But this is precisely the problem
solved in Lemma 3.2, since the 0(|e |̂ ) terms may be absorbed into the 0(|e |̂̂ )
terms from (33) onwards. (Note that.je | is 0(|e | ) but the effect on

^ ~ A "
(lk|<.2)is 0(|f I ) because the fact that e contains only higher harmonics

2 "-13
means it can only affect, say E through terms like EE.) Thus by Lemmas 3.1

and 3.2, the intersection corresponds, if 6 and [w-o) | are small enough, to a

unique second order harmonic balance solution which is close to an essentially

unique Fourier expansion of a periodic solution.

Proof of Theorem 3.

Lemmas 3.1, 3.2, and 3.3 prove part (a).

For part (b), note that condition (ii) ensures that the number of encircle

ments of -1 by branches other than A is the same as the number of encirclements

of P + CS by those branches. Consequently, results of [15] ensure that there

are precisely two poles of H(s) which do not have real part negative. (This is
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the only place where we make use of finite dimensionality since the fact that

S is equivalent to q) is used in all the published proofs of the characteristic
locus method. But see [21].)

Allwright shows [14] that one of these two is zero and the other has sign

determined by C in the required way. The method is to use Mees's technique for

determining the characteristic exponents from the harmonic balance solution [29].

More restrictions on the size of 6 may be required, which is why 0^^ and
appear in the statement of (b). u

3.3. Algebraic versions of the graphical results
0 1 2

The graphical Hopf theorem gives us values for uj, E , E , and E that are

accurate to second order in 8. Several authors [6,13,14,10] have given equivalent

algebraic formulae in terms of a first approximation and a second order correction

To facilitate comparison with their results, and because it is sometimes useful

to have the formulae available, we now show how to derive expressions for the

"curvature coefficient" o of Sec. 2 and the difference 6(u between m, the
o

imaginary part of the bifurcating eigenvalue, and a;, the Hopf approximation to

the oscillation frequency.

Suppose s is such that G(s)J has an eigenvalue which is -1; clearly, G(s)J

will also have such an eigenvalue, and if p = (i.e., exactly at bifurcation)

then s = io) , s = -io) . As y increases beyond y , s moves into the right half

of the complex plane, taking the value a + iu), say, with a > 0, w > 0. Let us

assume y is fixed at some value beyond y for which the techniques of Sec. 3.2
o

ensure a solution.

We want to estimate the value of w satisfying (36) in terms of a and o). If

V and u are now written for the right and left eigenvectors of G(s)J corresponding

to the eigenvalue -1, we can try the solution

= (v+w)6 (47)

in (36), where w is orthogonal to v. Now write

G(ia)) = G(s) + (-cH-i5to)G'(s) + 0(|s-iw|^)

where 6aj = ca - w and G' is the derivative of G with respect to s, evaluated

at our given s. Using this and (47) in (36) we have

13Note that s and s are just the "bifurcating eigenvalues," i.e., the local
continuation of the eigenvalues of the linearized state space equations for
values of y greater than y .

o
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u'̂ |[G(8)-G'(s)(a-i6co)J+^(y+w) =-6 +0(0^) +0(|s-ia)|̂ )
(48)

Because u is a left eigenvector of G(s)J we can rewrite (48) as

T^.-u"G* (s)(a-i6a))JY = -u^G(iw)p(a),v)e'' + 0(6"") + 0(|s-ia>|̂ ) (49)

where we have absorbed w into the 0(0 ) terms as in Lemma 3.2,

Now for fixed 0, we can use an implicit function argument to show that s
2

and iw are both within 0(0 ) of iw, so we can rewrite (49) as follows:

a - ido)

u G(jUij)p(w,y)

0*^0* (iuj) Jv
2 3

0 + 0(0-^) (50)

2 3
Call the right side of (50) v0 + 0(0 ). First we take the real part of (50).

2
To have a solution for small 0 > 0 we need a and Re v to have the same sign,

or aa <0 where a = -Re v; i.e.,
o o

0 - -Re
0

Tu G(im)p(a),y)

u^G* (i(D)Jv
(51)

This is the formula referred to in Sec. 2, Theorem 2, and is the result obtained

by Allwright [14] who shows it reduces to Poore's formula [13] in the special

case of an ordinary differential equation. It is straightforward but tedious to

show that if one writes a second order 0. D. E. in the form of (1) and calculates

from (51), the result is identical to that given by (14). Notice the two

advantages of using (51) rather than Marsden and McCracken's result for

there is no coordinate change to make and the size of the matrices in (51) is

never greater than the dimension of the state space representation, and is often

very much less.

Now if we take the Imaginary part of (50) we have

(52). „2t aim V
6(0 = —0 Im V = —

Re V

4 2
and the limit cycle has frequency oj + dm + 0(0 ) or, using a = 0(0 ), the

frequency is

r~^ aim V , «/ 2^u, = " --^ + 0(oc )

which is just the frequency (o read off by the graphical method.

(53)

4. Examples of Applications of the Hopf Bifurcation Theorem

To illustrate how to apply- the Hopf theorem in practice, we present three

examples in this final section. Both the time-domain (Theorem 2) and the frequency-

domain (Theorem 3) version of the theorem are illustrated in Example 1 to show that
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they indeed give the same answers. However, only Theorem 3 is applied in

Examples 2 and 3 since to use Tlieorera 2 would have involved a great deal more work.

Tills observation thus confirms our earlier assertion that the graphical approach

of Theorem 3 would be the most widely used in practice.

Example 1.

Consider the single tunnel-diode oscillator circuit shown in Fig. 5(a) with

the typical curve for the tunnel diode shown in Fig. 5(b). The state

equations are easily found to be:

- (1/L)v^ (54 a)

=(l/C)[g(V3-v^)-l^] (54b)
Let us assume that g(-) is a C^-function and that - 0> g"(PQ) < 0»
8"*(Pq) > 0. Replacing by (x^,X2) and choosing L= C= 1 to simplify
calculation makes (54) assume the form:

A
X 1 = X2 = f^(x^,x2;y) (55a)

X2 =g(p-x2) - = f2(x^,x2;y) (55b)

where the bias voltage V is chosen as the parameter p. The equilibrium point
D

is located at = g(y) and X2 = 0. The two complex-conjugate eigenvalues of
the associated Jacobian matrix evaluated at (x^,X2) are:

2~- "I" S'(P) ±i (y)]^ =a(y) ±iw(y) (56)
The loci of and X2 are sketched in Fig. 5(c) for y^ £ y y2* Observe that
since g'(y^) = 0 and g"(y^) < 0, we have ci(y^) = 0, to(y^) = 1, and a'(y^) > 0.
Since the Jacobian

«J(y^) =
0 1

-1 -g'(y^)
o -J

0 1

-1 0
(57)

at y = y^ is already in the standard form (2c), we have f(x;y) = f(x;y). Hence
we can apply Theorem 2 directly, without having to change coordinates. In this

case, criticality occurs at y = y^ and the bifurcation frequency is = 1.
-2

Since all partial derivatives (up to 3rd order) vanish except f-. = g*'(y ) and
^2 ZZ o
^222 ~ ^^o '̂ curvature coefficient in (14) is simply given by
o = - T g"*(y ) < 0. It follows from Theorem 2 that there exists an £ > 0 such

o 4 o

that (55) has a stable limit cycle for all y^ £ y < y^ + e.
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Observe that since a(u) also vanishes at y = in Fig. 5(b), we can define
another parameter v = -y and replace (55b) by g(y-X2) = g(-v-3C2), so that the
associated eigenvalue will again cross the jw-axis from left to right as v increases.
Using the same analysis as before, we conclude that there exists an e > 0 such
that (55) has a stable limit cycle for all y^-e < P 1

Let us analyze next the same circuit using Theorem 3. Our first task is to
transform (55) into an equivalent feedback system as ip Fig. 5(d). One simple
choice is G(s) = and f(.e ) = -g(y - e) . In this case, however, A(ia>) = G(i(D)J(yQ)

s +1

is purely imaginary. There is no conceptual or theoretical difficulty here since
we can always use the Riemann sphere to draw the conclusion that bifurcation will
take place at the north pole (i.e., at in the complex plane). However, this is
a nuisance in practice and since (17) allows us to find infinitely many other
equivalent systems, let us simply choose a more convenient representation. One
such choice is:

A =
0 1 K fol
-1 0 ' - • L-1.

, C = [0 -1], D = [-1], g(y;y) = -g(y4y) (58)

Substituting (58) into (19), we obtain:

G(s) =—2^— , f(e;y) =-g(y-e)-e (59)
s +S+1

To apply the graphical Hopf theorem, we first solve G(0)f(e;y) + e = 0

to obtain the equilibrium point e = 0. Next we sketch^^ the eigenvalue locus
X(ia)) of G(ia))J and compute ?(Wj^) ftom Table 2:

Step 1. G(iaj) = ^"7 , J(y) = f'(0;y) = g'(y)-l
(l-a)^)+ia)

X(iu)) =G(ia)) J(y) =j^g'(y)-lj
2 2 2

(1 -co )

Since Im X(ico) = 0 when cj = 1, we identify cOj^ = 1. Moreover, since X(ia)) = -1
when CO = 1 and y = y^, we have co^ = co^^ and criticality occurs at y = y^. Since
G(ico) J(y) is a scalar, the right and left eigenvectors are given

trivially by v = 1 and u = 1.

Step 2. Q is a scalar in this case:

Q = f"(Po) = -g"(Po> > °
1 A

We only need to plot X(ia)) accurately in the neighborhood of co = to ensure
an accurate intersection point P.
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Step 3. H(0) =[^G(0)J(y^)+lj"^ G(0) =0

H(i2) =|̂ G(i2) J(u^) +1
o

v° = - i H(0) Qv = 0

G(i2) = (-12)/3

H(i2) Qv =- 1 g"()i^)
Step 4. L = f"'(p^)(l)(l) =

pCoij^.v) =Qv° +i +I Lv =i 8'" (p^) +̂ [8"(p„)]^
-uG(il)p(a) v) ATI

^<V =— (60)

Observe that since g'" (p ) > 0 and
o

> 0, the vector from the point

-1 + iO in the direction i;(a) ) is located in the 3rd quadrant (relative to -1) as

shown in Fig. 5(e). Since the locus of X(i(i)) passes through ~1 when y = y ; we
o

have 0 = 0 and it follows from Theorem 3 that when Vg = y^, the circuit of Fig. 5(a)
has a stable limit cycle of zero anq)litude.

The locus of X(ia)) corresponding to different values of y is shown in

Figs. 5(f) to 5(j), along with the vector from -1 in the direction C(w^). Observe
that as y increases, the locus expands, intersects the vector, and then shrinks

again. It follows from Theorem 3 that no limit cycle exists when y < y and
o

when y > y*, while a locally stable limit cycle exists for y < y < y + and for
o o — o

< y £ Pq. These conclusions are completely consistent with those predicted
earlier using the time-domain Hopf theorem, as they should be.

Example 2.

The well-known Wien bridge oscillator circuit [4] is shown in Fig. 6(a).

The operational amplifier (OP AMP) and the two resistors and can be

modeled by a nonlinear voltage-controlled voltage source F(Vp ) as shown in
2

Fig. 6(b). The function F(vq ) can be approximated by the piecewise-linear
function shown in Fig. 6(c). ^The state equations for this circuit are easily
found to be given by:

h +2vc -F(v )] (61b)
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If we let Xj^ =V£, , =Vc . kj^ = 1/RCj^ and =I/RC2, then (61) assumes the
form ^ ^

= -kj^(Xj^-hX2) + •'i

i2 =-k2(x2+2x2) +k2FCx2) (62b)

Equation (62) has an equilibrium point at = 0, X2 = 0. Chua and Green [24]
have recently proved that this equilibrium point is a global attractor if
|F(x.)/ X I < 2 for all x. i' 0. To turn this circuit into an oscillator, a
'2 2' 2. ^
general design guideline [4] is to choose Rg and such that A= (Rg+Rp)/Rg ^3,
where "A" is the slope of the linear segment at the origin in Fig. 6(c). This

guideline was derived by a linearized analysis where it can be shown that a

pair of complex-conjugate eigenvalues crosses the jca—axis at icj^ into the RHP
when A increases beyond 3. It is observed experimentally that the circuit

oscillates with a nearly sinusoidal waveform at frequency u if A = 3+e> where
o

e is a sufficiently small number. For large e, the waveform is found to be

highly distorted and the frequency is observed to depart significantly from

In spite of its widespread usage, no rigorous theoretical analysis of the Wien

bridge oscillator has appeared in the literature because such an analysis must

necessarily be nonlinear and very few tools are available for predicting the

existence of an oscillation, let alone an estimate of its amplitude and frequency.

We will now show that the Hopf theorem fills this need admirably.

Without loss of generality, assume = k2 = 1. An inspection of (62) shows
that the Jacobian matrix evaluated at x = 0 is not in the standard form as

specified by (2c). Hence, a change of coordinates will be necessary

before Theoron 2 can be applied. Moreover, there is no natural parameter y
15

available from (62) . However, both difficulties disappear if we choose to use

the graphical Hopf theorem instead. As before, our first step is to find

a suitable equivalent feedback representation of (62) as shown in Fig. 6(d).
Although G(s) can be made into a scalar by a suitable choice of A, B, C, and D

in (17), we will choose instead

^^On hindsight, it is clear that A is a suitable parameter. However, this is far
from obvious before one makes a linearized analysis of (62).
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A =
-1 -1

-1 -2
. B= »C=[0 -1] , p=[q], p(y;

in order to emphasize that G need not be a square matrix; namely,

G(s) = C(A-sl)~^B =r -(s+1)

s +3s+l —Us +3s+l

""FC e )

F( e )
f(e) =

Iy)
F(-y)
F(-y)

(63)

(64a)

(64b)

Similarly, even though the parameter y need not be explicitly specified, we will
choose A = y in order to compare our results with heuristic design guidelines.

In order to apply the Hopf theorem, we must first replace the piecewise-linear
3

functions F(v ) in Fig. 6(c) by a C -function whose 2nd and 3rd order
Cn

derivatives do not all vanish at the equilibrium point e =0. A reasonable

approximation for F(e) is given by:

V 2 /ttA \F(e ) = ~ E arctan e ® I (65)

where F(e ) ^+E as e and where F'(0) = A, as shown in Fig. 6(e)-

If we choose y = A, then

G(s) J(y) =
1 -(s+1)

s^+3s+1 s +3s+1
-ys

sVss+l
(66)

We are now ready to compute the various quantities in Table 2:

Step 1.

Sketch the eigenvalue locus X(iw) of G(iai)J at the equilibrium point e = Q:

X(ia)) = G(ia)) J(y) =
2 2

-3oj y-iyu)(l-a) )
2

(l-m^) +(3a))^
(67)

When cu = 1, Re X(ia)) = -y/3 and Im A(ia)) = 0. Thus w = 1 and criticality
K

occurs at y = 3. Since G(ia)) J(y) is a scalar, v = 1 and u = 1.

r F"(o)"
Step 2. ^ " Lf"(0)„ -0_

Step 3.

(N
>

o

II

o
>

0
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Step 4. L =
(0)

F'" (0)
, where F'" (0) =

X ^ ^ 7. 2^1^-p(w >v) = Qv +-2QY +"8^^

Step 5. ? =

-u G(io)j^)p((Oj^,v)

U V

2 o—n 3

~ ^
2E

-IT

16E

2
-r

2 ^
16E

2 oIT 3

2 ^
48E

(68)

Observe that C(a>„) is a negative real number for any p. Hence the vector from -1
R

in the direction c(a)o) is simply a horizontal vector pointing towards the left, as

shown in Figs. 6(f), (g), and (h) for 3 different values of p = A. It follows

from the graphical Hopf theorem that the circuit in Fig. 6(a) has a locally

stable nearly sinusoidal oscillation when A = 3(l+e) where c is a sufficiently small

number.

Example 3.

Our final example is taken not from circuit theory but from mathematical

biology, but we believe it shows the power of the graphical approach (Theorem 3)
particularly well. Mees and Rapp [8] considered a model of a metabolic oscillator
which led to the equations

=^1 = - h''!

*2 ~ l+x *^2*2
n

i. = X, , - b.x , 3 < j <. n
3 J-1 3 3

(69)

where n > 3 and b. > 0 for all j. Since the represent concentrations, we are
interested in the^ositive orthant >0. There is exactly one equilibrium point
in the positive orthant and it is known to be a global attractor if all the b^ are
large enough 18].

As the b. decrease, the equilibrium point ceases to be locally attracting;
the easiest w^y to see this is to transform (69) into the equivalent feedback
form in Fig. 7 (a) , where
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G(s;vi) =

f(e) =

(s+b^)

(s+b2) (s+b^) .. •

— r -1 "1
fl(e) l+e2

"®1

^^"^2 -

Equation (70) is obtained from (69) and (19) with the following choices:

A =

and

— —

-^1 0 0 0 0 . . 0 0 -1 0

0 -^2 0 0 0 . . 0 0 0 -1

0 1 0 0 . .. 0 0

» B =

0 0

0 0 1 0 . .. 0 0 0

•

0

0 0 0 0 0 . . 1 -^n

•

0 0

w

C =

-1 0 0 0 ... 0 0

0 0 0 0 ... 0 -1

, and §(y;)j) =

_=L
1-y.

1-y2 J

D =

The equilibrium point e = obtained by solving (20); namely,

1

®1 bj^Cl+ej)

" f-, , \ 2 1
®2^ - ^ , ^

12 n

Nyquistfs criterion can be used to study the local stability and it can be shown

[8] that there is only one candidate for a stable limit cycle; namely, the first

limit cycle to bifurcate from the equilibrixam point as c = ^2^2**'^n
If "n" is large, the formulas for for the time-domain Hopf theorem as given

by Marsden and McCracken [10] and others are difficult to apply. The enormous

computational advantages of the frequency-domain approach allow us to say a good
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deal more about the system than was possible in [8]. Indeed, G(s) J(y) is only a

2x2 matrix (independent of "n"!) with just two eigenvalues. The condition
T

^(i03)= -1 determines ^ function of b = Ibj^,b2> •• ♦ »b^] and restricts b at
bifurcation to lie on a manifold of codimension 1 in We can consider

bifurcation along any curve b(y) which intersects this manifold transversally:

in many cases. Theorem 3 frees us from the need to specify b(y) explicitly.

We could go further analytically and show that for sufficiently large n,

the limit cycle is certainly stable just after bifurcation, but for present

purposes it is probably more interesting to take a numerical example. Figure 7(b)

shows the X(ioj) loci when n = 15 and b^ = b = 0.799 for all j, confirming the
statement in [8] that this is the first bifurcation present for n = 15 and for identical

b. values. The vector from the point -1 in the direction C(Wj^) is shown intersecting
X(ia)) at the point -1 and pointing outward. Hence, it follows from Theorem 3

that there exists a stable limit cycle (of zero amplitude) with an angular

frequency w = 0.176.

As b decreases, the loci expand and jc(tOj^)l decreases: when b = 0.7, we

3
not be able to neglect 0(0 ) and our theorem seems unlikely to make useful

quantitative predictions. If we neglect this and look at the case b = 0.1 as
I I —10 A

shown in Fig. 7(d), we find k(w«) | =10 » 6 = 6x10 and in fact the predicted
^ ^ 5

angular frequency is m = 0.025 and the predicted peak value of e is 1.8x10 . This

case was simulated by Mees and Rapp [8] who found values of 0.019 and 9x10 ,

respectively. So the frequency is surprisingly good but the amplitude prediction

is^ useless.

The point of all this is that the Hopf theorem only makes predictions for
At

an unspecified, probably small range of 9 values but experience tends to confirm

that predictions often remain qualitatively correct even when the system is very

far from bifurcation. This is not surprising if one imagines how the limit

cycle grows out from equilibrium in the state space: even if the limit cycle itself

bifurcates repeatedly, there will always be at least one limit cycle present (not

necessarily stable). If it does not grow to infinite amplitude it can only

disappear completely either by collapsing back into the equilibrium, as in Example 1

when y ji^, or by coalescing with another limit cycle having complementary stability
properties: this other limit cycle would have to have been generated by an

independent bifurcation process.
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Table 1. Values for Coefficients of V

Pflr-imeter in V Value to make V sign definite

a
+- f^ I/wCp)\^22 12 2 llj'

b i

c

d (®n ^12 +1
e h-{-1 u(p) +I u(p) *"^12 •*• ''̂ 11

2

=h - a)(y) \ 0>(y) "" ^12^22 " ^^12^ ' 2^12^11

+i 'lAz +i i

h arbitrary

k "̂^{e ^222 2^122 ^^22 ^^22 ^^12 ^^12} '̂̂ '̂̂ ^
= ^222 2 ^122 ~2 ^11^22 ~1 ^^22}

- \ ^L^i2 ^ ^il^l2 i

S must satisfy

i £^22 +1 +1 - "i(p)8 <0, for V<0
> 0, for ^ > 0

j must satisfy

i ^222 +1 +i "L + ^°' ^0
> 0, for V > 0



Step

Table 2. Algorichin for Computing c(a) )
R

Algorithm

Given G and f in Fig. 3, solve G(0;y) f(e;u) + c » 0 for the

equilibrium point e(p). Find the Jacobian matrix J(y) of f(g;y) at e(p).

Let X(i(i)) be the eigenvalue of G(i(i))J ^ G(i(i);y) J(p) whose intersection
with the real axis is nearest to the point -1 +iO. Let the resonant

frequency associated with ?_ Be ti)_; i.e., identify w- such that Xm X(iu„) = 0.
A K R R

Find the normalized right eigenvector v and the normalized left

eigenvector u of G(i«D )J;
* ^ R "

G(iu^)J V= UiWj^)Y

j[G(iWj^)j] X(iti)j^)u

Form the fxm matrix Q whose ikth element is:

m

= 53 fpk Vp» i =1,2,k =1,2,...,m

where
• A O

fpj^ = 3 fj(e)/3ep3ej^ (evaluated at e) .

Calculate

v° «- "I H(0) QY

° " 4 Y
where

H(s) »[g(s)J +ij"^ G(s)

Use (a), (c), (d), and (e) to calculate

g(tDj^,v) =QY°+f9Y^'''8-?

where L is an £xm matrix whose jkth element is:

where

fpqk " y)

Use (a), (b), and (f) to calculate

-u G(ia)j^)p(a) ,v)

.. ,m

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)



LIST OF FIGURE CAPTIONS

Fig. 1. Two phase portraits which are identical in a small neighborhood of the

equilibrium point, but which differ significantly farther out: the

limit cycle in (a) occurs when y > (super-critical case) and is locally

stable. The limit cycle in (b) occurs when y ^ y^ (sub-critical case)
and is unstable.

Fig. 2. Loci of limit cycles as a function of the parameter y. Each cross

section of the bowl corresponds to a limit cycle. Solid bold lines

denote minimal attractors while dotted lines denote minimal repellers.

Bifurcation occurs at y = y^. The limit cycles in (a) occur when y ^ y^
(super—critical case) and is locally stable because the bowl is the right

way up. The limit cycles in (b) occur when y ^ y^ (sub-critical case)
and is unstable because the bowl is upside down. The local nature of

the equilibrium point (x^=X2—0) is identical for all values of y in both
cases. However, at y = y^, the center is a vague attractor in (a) and
a vague repeller in (b).

Fig, 3. A nonlinear multiple feedback loop representation, (a), and its linearized
feedback system (b) . The transfer matrix G is an mxil matrix.

The CrXT" matrix J in (b) denotes the Jacobian matrix of the nonlinear

map f : IR™ ^ ]R ^ in (a) .
Fig. 4. Graphical interpretation of the frequency-domain Hopf bifurcation theorem.

The vector from the point —1 + iO in the direction c(a)) is shown

calibrated in units of 0^U(w_)|; namely, the distance between the
R

^ A.

points -1 + iO and P (w=a)) .

Fig. 5. An illustration of the application of the time and frequency-domain
Hopf bifurcation theorem for analyzing an almost sinusoidal tunnel diode

oscillator (Example 1). A locally stable limit cycle

appears for all Pq ^ P ^

Fig. 6. An illustration of the application of the frequency-domain Hopf
bifurcation theorem for analyzing the almost sinusoidal Wien bridge

oscillator (Example 2). Observe that neither G(s) nor J(y) is a square

matrix in this example.

Fig. 7. An illustration of the application of the frequency-domain Hopf bifurcation

theorem for analyzing a biological oscillator (Example 3).

Even though the dimension "n" of the state space can be quite large,

the nonlinear map f is only 2-dimensional.
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