

Copyright © 1977, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

CREATING AND MAINTAINING

A DATABASE USING INGRES

by

Robert Epstein

Memorandum No. UCB/ERL M77/71

16 December 1977

Mnmnfl4iry tOAN OtMkKTMIgWf
'̂ PHOTOBUPLICATION SECTION J

OENBRAL LIBRARY

UNIVERSITY OF CALIFORNIA
^RKELEY, CALIFORNIA 94728^

CREATING AND MAINTAINING A DATABASE USING INGRES

by

Robert Epstein

Memorandum No. UCB/ERL M77/71

16 December 1977

ELECTRONICS RESEARCH LABORATORY

* College of Engineering
• University of California, Berkeley

94720

Research sponsored by the National Science Foundation Grant
MCS75-03839-A01, U.S. Army Research Office Grant
DAAG29-76-G-02M5, the Naval Electronic Systems Command Contract
N00039-78-G-0013, and the Joint Services Electronics Program Con
tract Fil4620-76-C-0100.

DATA BASE INGRES Page 1

CREATING AND MAINTAINING A DATABASE USING INGRES

1. INTRODUCTION

In this paper we describe how to create, structure and maintain
relations in INGRES. It is assumed that the reader is familiar
with INGRES and understands QUEL, the INGRES query language. It
is strongly suggested that the document "A Tutorial on INGRES"
(ERL M77/25) be read first.

This paper is divided into six sections

1 . Introduction

2. Creating a Relation

3. Using Copy

4. Storage Structures

5. Secondary Indices

6. Recovery and Data Update

To create a new data base you must be a valid INGRES user and
have "create data base" permission. These permissions are grant
ed by the "ingres" superuser. If you pass those two requirements
you can create a data base using the command to the Unix shell:

% creatdb mydata

where "mydata" is the name of the data base. You become the "da
ta base administrator" (DBA) for mydata. As the DBA you have
certain special powers.

1. Any relation created by you can be accessed by anyone else
using "mydata". If any other user creates a relation it is
strictly private and cannot be accessed by the DBA or any
other user.

2. You can use the "-u" flag in ingres and printr. This enables
you to use ingres on "mydata" with someone else's id. Refer
to the INGRES reference manual under sections ingres(unix)
and users(files) for details.

3. You can run sysmod, restore and purge on "mydata".

4. The data base by default is created to allow for multiple
concurrent users. If only one user will ever use the data
base at a time, the data base administrator can turn off the
concurrency control. Refer to creatdb(unix) in the INGRES
reference manual.

DATA BASE INGRES Page 2

Once a data base has been created you should immediately run

% sysmod mydata

This program will convert the system relations to their "best"
structure for use in INGRES. Sysmod will be explained further in
section 4. .

As a DBA or as a user you can create and structure new relations
in any data base to which you have access. The remainder of this
paper describes how this is done.

DATA BASE INGRES Page 3

2. CREATING NEW RELATIONS IN INGRES

There are two ways to create new relations in INGRES,

create

retrieve into

"Retrieve into" is used to form a new relation from one or more
existing relations. "Create" is used to create a new relation
with no tuples in it.

example 1:

range of p is parts
range of s is supply
retrieve into newsupply(

number = s.snum,
p.pname,

s.shipdate)
where s.pnum = p.pnum

example 2:

create newsupply(
number = i2,
pname = c20,
shipdate = c8)

In example 1 INGRES creates a new relation called "newsupply",
computing what the format of each domain should be. The query is
then run and newsupply is modified to "cheapsort". (This will be
covered in more detail in section 4.)

In example 2 "newsupply" is created and the name and format for
each domain is given. The format types which are allowed are:

11 1 byte integer
12 2 " "

4 tt II

f4 4 byte floating point number
f8 8 " " " "
c1,c2,..,c255 1,2,..,255 byte character

In example 2, the width of an individual tuple is 30 bytes (2 +
20 +8), and the relation has three domains. Beware that INGRES
has limits. A relation cannot have more than 49 domains and the
tuple width cannot exceed 498 bytes.

UNIX allocates space on a disk in units of 512 byte pages.
INGRES gets a performance advantage by doing 1/0 in one block un
its. Therefore relations are divided into 512 byte pages.
INGRES never splits a tuple between two pages. Thus some space
can be wasted. There is an overhead of 12 bytes per page plus 2
bytes for every tuple on the page. The formulas are:

DATA BASE INGRES Page H

number tuples per page = 500/(tuple width + 2)

wasted space = 500 - number of tuples per page
*(tuple width +2)

For our example there are

22 = 500/(20 + 2)

16 = 500 - 22 * (20 + 2)

22 tuples per page and 16 bytes wasted per page. These computa
tions are valid only for uncompressed relations. We will return
to this subject in section 4 when we discuss compression.

If you forget a domain name or format, use the "help" command.
For example if you gave the INGRES command:

help newsupply

the following would be printed:

Relation: newsupply
Owner: bob
Tuple width: 30
Saved until: Thu Nov 10 16:17:06 1977
Number of tuples: 0
Storage structure: paged heap
Relation type: user relation

attribute name type length keyno.

number i 2
pname c 20
shipdate c 8

Notice that every relation has an expiration date. This is set
to be one week from the time when it was created. The "save"
command can be used to save the relation longer. See
"save(quel)" and "purge(unix)" in the INGRES reference manual.

DATA BASE INGRES Page 5

3. COPYING DATA TO AND FROM INGRES

Once a relation is created, there are two mechanisms for insert
ing new data:

append command
copy command

Append is used to insert tuples one at a time, or for filling one
relation from other relations.

Copy is used for copying data from a UNIX file into a relation.
It is used for copying data from another program, or for copying
data from another system. It is also the most convenient way to
copy any data larger than a few tuples.

Let's begin by creating a simple relation and loading data into
it.

Example:

create donation (name = clO, amount = f4, ext = i2)

Now suppose we have two people to enter. The simplest procedure
is probably to run the two queries in INGRES using the append
command.

append to donation (name="frank",amount = 5,ext = 204)

append to donation (name="harry",ext = 209,amount = 4.50)

Note that the order in which the domains are given does not
matter. INGRES matches by recognizing attribute names and does
not care in what order attributes are listed. Here is what the
relation "donation" looks like now:

donation relation

name 1amount 1ext

frank 15.000 1204
harry 14.500 1209

We now have two people entered into the donation relation. Sup
pose we had fifty more to enter. Using the append command is far
too tedious since so much typing is involved for each tuple. The
copy command will better suit our purposes.

Copy can take data from a regular Unix file in a variety of for
mats and append it to a relation. To use the copy command first
create a Unix file (typically using "ed") containing the data.

For example, let's put five new names in a file using the editor.

DATA BASE INGRES Page 6

% ed
a

bill,3.50,302
sam,10.00 , 410
susan,,100
sally,.5,305
george , . 00 , 302

w newdom

68

q

%

The format of the above file is a name followed by a comma, fol
lowed by the amount, then a comma, then the extension, and final
ly a newline. Null entries, for example the amount for susan,
are perfectly legal and default to zero for numerical domains and
blanks for character domains.

To use copy we enter INGRES and give the copy command.

copy donation (name = cO, amount = cO, ext = cO)
from "/mnt/bob/newdom"

Here is how the copy command works:

copy relname (list of what to copy) from "full pathname"

In the case above we wrote:

copy donation (. . .) from "/mnt/bob/newdom"

Although amount and ext are stored in the relation as f^i (float
ing point) and i2 (integer), in the Unix file they were entered
as characters. In specifying the format of the domain, copy ac
cepts:

domain = format

where domain is the domain name and the format in the UNIX file
is one of

i1, i2, i^ (true binary integer of size 1, 2, or M)
fi|| f8 (true binary float point of size 4 or 8)
cl', c2, c3,...c255 U fixed length character string)
cO (a variable length character string de

limited by a comma, tab or new line)

In the example we use

name = cO, amount = cO, extension = cO

This means that each of the domains was stored in the Unix file
as variable length character strings. Copy takes the first com
ma, tab, or new line character as the end of the string. This by

DATA BASE INGRES Page 7

far is the most common use of copy when the data is being entered
into a relation for the first time.

Copy can also be used to copy data from a relation into a Unix
file. For example:

copy donation (name = clO, amount = clO, ext = c5)
into "/mnt/bob/data"

This will cause the following to happen:

1. If the file /mnt/bob/data already exists it will be des
troyed .

2. The file is created in mode 600 (read/write by you only)

3. Name will be copied as a 10 character field, immediately fol
lowed by amount, immediately followed by ext. Amount will be
converted to a character field 10 characters wide. Ext will
be converted to a character field 5 characters wide.

The file "/mnt/bob/data" would be a stream of characters looking
like this:

frank 5.000 20Mharry 4.500 209bill
3.500 302sam 10.000 MiOsusan

0.000 lOOsally 0.500 305george
4.000 302

The output was broken into four lines to make it fit on this
page. In actuality the file is a single line. Another example:

copy (name = cO, colon = d1, ext = cO, comma = d1
amt = cO, nl = d1) into "/mnt/bob/data"

In this example "cO" is interpreted to mean "use the appropriate
character format". For character domains it is the width of the
domain. Numeric domains are converted to characters according to
the INGRES defaults (see ingres(unix)).

The statements:

colon = d1

comma = d1

nl = d1

are used to insert one colon, comma, and newline into the file.
The format "d1" is interpreted to mean one dummy character. When
copying into a Unix file, a selected set of characters can be in
serted into the file using this "dummy domain" specification.
Here is what the file "/mnt/bob/data" would look like:

frank : 204, 5.000
harry : 209? 4.500

DATA BASE INGRES Page 8

bill : 302, 3 500

sam : 410, 10 000

susan : 100, 0 .000

sally : 305, 0 .500

george : 302, 4 .000

If you wanted a file with the true binary representation of the
numbers you would use:

copy (name = clO, amount = f4, ext = i2)

This would create a file with the exact copy of each tuple, one
after the other. This is frequently desireable for temporary
backup purposes and it guarantees that floating point domains
will be exact.

TYPICAL ERRORS

There are 17 different errors that can occur in copy. We will go
through the most common ones.

Suppose you have a file with

bill,3.5,302
sam,10,410,
susan,3»100

and run the copy command

copy donation (name = cO, amount = cO, ext = cO)
from "/mnt/bob/data"

You would get the error message

5809: COPY: bad input string for domain amount. Input was "susan"
There were 2 tuples sucessfully copied from /mnt/bob/data into
donation.

What happened is that line 2 had an extra comma. The first two
tuples were copied correctly. For the next tuple, name = ""
(blank), amount = "susan", and ext = "3". Since "susan" is not a
proper floating point number, an error was generated and process
ing was stopped after two tuples.

If you tried to copy the file with a file such as

nancy,5.0,35000

you would get the error message

5809: COPY: bad input string for domain ext. Input was "35000".
There were 0 tuples successfully copied from /mnt/bob/data into
donation.

DATA BASE INGRES Page 9

Here, since ext is an i2 (integer) domain, it cannot exceed the
value 32767.

There are numerous other error messages, most of which are self-
explanatory.

In addition there are three, non-fatal warnings which may appear
on a copy "from".

If you are copying from a file into a relation which is ISAM or
hash, a count of the number of duplicate tuples will appear, (if
there were any). This will never appear on a "heap" because no
duplicate checking is performed.

INGRES does not allow control characters (such as "bell" etc.) to
be stored. If copy reads any control characters, it converts
them to blanks and reports the number of domains that had control
characters in them.

If you are copying using the cO option, copy will report if any
character strings were longer than their domains and had to be
truncated.

SPECIAL FEATURES

There are a few special functions that make copy a little
easier to use

1. Bulk copy

If you ask for:

copy relname () from "file"
or

copy relname () into "file"

copy expands the statement to mean:

copy each domain in its proper order according to its proper
format.

So, if you said

copy donation () into "/mnt/bob/donation"

it would be the same as asking for:

copy donation (name = clO, amount = f4, ext = i2)
into "/mnt/bob/donation"

This provides a convenient way to copy whole relations to and
from INGRES.

DATA BASE INGRES Page 10

2. Dummy Domains

If you are copying data from another computer or program, fre
quently there will be a portion of data that you will want to ig
nore. This can be done using the dummy domain specifications dO,
d1, d2 ... d511. For example

copy rel (domi = c5, dummy = d2, dom2 = i4,
dumb = do) from "/rant/me/data"

The first five characters are put in domi, the next two charac
ters are ignored. The next four bytes are an i4 (integer) and go
in dom2, and the remaining delimited string is ignored. The name
given to a dummy specifier is ignored.

As mentioned previously, dummy domains can be used on a copy "in
to" a Unix file for inserting special characters. The list of
recognizable names includes:

nl newline
tab tab character

sp space

nul a zero byte
null a zero byte
comma ,

dash

colon :

Iparen (
rparen)

3. Truncation

It is not uncommon to have a mistake occur and need to start
over. The simplest way to do that is to "truncate" the relation.
This is done by the command:

modify relname to truncated

This has the effect of removing all tuples in relname, releasing
all disk space, and making relname a heap again. It is the logi
cal equivalent of a destroy followed by a create (but with a lot
less typing).

Since formatting mistakes are possible with copy, it is not gen
erally a good idea to copy data into a relation that already has
valid data in it. The best procedure is to create a temporary
relation with the same domains as the existing relation. Copy
data into the temporary relation and then append it to the real
relation. For example:

create tempdom(name=c10,amount= fU,ext =i2)

copy t.empdom(name =cO ,amount =cO,ext =cO)
from "/mnt/bob/data"

DATA BASE INGRES Page 11

range of td is tempdom
append to donation(td.all)

4. Specifing Delimitors.

Sometimes it is desirable to specify what the delimiting charac
ter should be on a copy "from" a file. This can be done by
specifing:

domain = cOdelim

where "delim" is a valid delimiter taken from the list of recog
nizable names. This list was summarized on the previous page
under "dummy domains". For example:

copy donation (name = cOnl) from "/mnt/me/data"

will copy names from the file to the relation. Only a new line
will delimit the names so any commas or tabs will be passed along
as part of the name.

When copying "into" a Unix file, the "delim" is actually written
into the file, so on a copy "into" the specification:

copy donation (name = cOnl) into "/mnt/me/file"

will cause "name" to be written followed by a new line character.

DATA BASE INGRES Page 12

4. CHOOSING THE BEST STORAGE STRUCTURES

We now turn to the issue of efficiency. Once you have created a
relation and inserted your data using either copy or append,
INGRES can process any query on the relation. There are several
things you can do to improve the speed at which INGRES can pro
cess a query.

INGRES can store a relation in three different internal struc
tures. These are called "heap", "isam", and "hash". First we
will briefly describe each structure and then later expand our
discussion.

HEAP

When a relation is first created, it is created as a "heap".
There are two important properties about a heap: duplicate tuples
are not removed, and nothing is known about the location of the
tuples. If you ran the query:

range of d is donation
retrieve (d.amount) where d.name = "bill"

INGRES would have to read every tuple in the relation looking for
those with name "bill". If the relation is small this isn't a
serious matter. But if the relation is very large, this can take
minutes (or even hours!).

HASH

A relation whose structure is "hash" can give fast access to
searches on certain domains. (Those domains are usually referred
to as "keyed domains".) In addition, a "hashed" relation contains
no duplicate tuples. For example, suppose the donation relation
is stored hashed on domain "name". Then the query:

retrieve (d.amount) where d.name = "bill"

will run quickly since INGRES knows approximately where on disk
the tuple is stored. If the relation contains only a few tuples
you won't notice the difference between a "heap" and a "hash"
structure. But as the relation becomes larger, the difference in
speed becomes much more noticeable.

ISAM

An isam structure is one where the relation is sorted on one or
more domains, (also called keyed domains). Duplicates are also
removed on "isam relations". When new tuples are appended they
are placed "approximately" in their sorted position in the rela
tion. (The "approximately" will be explained a bit later.)

Suppose donation is isam on name. To process the query

DATA BASE INGRES Page 13

retrieve (d.amount) where d.name = "bill"

INGRES will determine where in the sorted order the name "bill"
would be and read only those portions of the relation.

Since the relation is approximately sorted, an isara structure is
also efficient for processing the query:

retrieve (d.amount) where d.name >= "b" and d.name < "g"

This query would retrieve all names beginning with "b" through
"f". The entire relation would not have to be searched since it
is isam on name.

SPECIFYING THE STORAGE STRUCTURE

Any user created relation can be converted to any storage struc
ture using the "modify" command. For example

or

modify donation to hash on name

modify donation to isam on name

or even

modify donation to heap

PRIMARY AND OVERFLOW PAGES

At this point it is necessary to introduce the concepts of pri
mary and overflow pages on hash and isam structures. Both hash
and isam are techniques for assigning specific tuples to specific
pages of a relation based on the tuple|s keyed domains. Thus
each page will contain only a certain specified subset of the re
lation .

When a new tuple is appended to a hash or isam relation, INGRES
first determines what page it belongs to, and then looks for room
on that page. If there is space then the tuple is placed on that
page. If not, then an "overflow" page is created and the tuple
is placed there.

The overflow page is linked to the original page. The original
page is called the "primary" page. if the overflow page became
full, then INGRES would connect an overflow page to it. We would
then have one primary page linked to an overflow page, linked to
another overflow page. Overflow pages are dynamically added as
needed.

SPECIFYING FREE SPACE

The modify command also lets you specify how much room to leave

DATA BASE INGRES Page U

for the relation to grow. As was mentiond in "create", relations
are divided into pages. A "fillfactor" can be used to specify
how full to make each primary page. This decision should be
based only on whether more tuples will be appended to the rela
tion. For example:

modify donation to isam on name where fillfactor = 100

This tells modify to make each page 1005& full if at all possible.

modify donation to isam on name where fillfactor = 25

This will leave each page 25% full or, in other words, 75% empty.
We would do this if we had roughly ^/^ of the data already loaded
and it was fairly well distributed about the alphabet.

Keep in mind that if you don't specify the fillfactor, INGRES
will typically default to a reasonable choice. Also when a page
becomes full, INGRES automatically creates an "overflow" page so
it is never the case that a relation will be unable to expand.

When modifying a relation to hash, an additional parameter "min-
pages" can be specified. Modify will guarantee that at least
"minpage" primary pages will be allocated for the relation.

Modify computes how may primary pages will be needed to store the
existing tuples at the specified fillfactor assuming that no
overflow pages will be necessary originally. If that number is
less than minpages, then minpages is used instead.

For example:

modify donation to hash on name where fillfactor = 50,
minpages = 1

modify donation to hash on name where minpages = 150

In the first case we guarantee that no more pages than are neces
sary will be used for 50% occupancy. The second case is typical
ly used for modifying an empty or near empty relation. , If the
approximate maximum size of the relation is known in advance,
minpages can be used to guarantee that the relation will have its
expected maximum size.

There is one other option available for hash called "maxpages".
Its syntax is the same as minpages. It can be used to specify
the maximum number of primary pages to use.

COMPRESSION

The three storage structures (heap, hash, isam) can optionally
have "compression" applied to them. To do this, refer to the
storage structures as cheap, chash, and cisam. Compression
reduces the amount of space needed to store each tuple internal
ly. The current compression technique is to suppress trailing

DATA BASE INGRES Page 15

blanks in character domains. Using compression will never re
quire more space and typically it can save disk space and improve
performance. Here is an example:

modify donation to cisam on name where fillfactor = 100

This will make donation a compressed isam structure and fill
every page as full as possible. With compression, each tuple can
have a different compressed length. Thus the number of tuples
that can fit on one page will depend on how successfully they can
be compressed.

Compressed relations can be more expensive to update. In partic
ular if a replace is done on one or more domains and the
compressed tuple is no longer the same length, then INGRES must
look for a new place to put the tuple.

TWO VARIATIONS ON A THEME

As mentioned, duplicates are not removed from a relation stored
as a heap. Frequently it is desirable to remove duplicates and
sort a heap relation. One way of doing this is to modify the re
lation to isam specifying the order in which to sort the rela
tion. An alternative to this is to use either "heapsort" or
"cheapsort". For example

modify donation to heapsort on name, ext

This will sort the relation by name then ext. The tuples are
further sorted on the remaining domains, in the order they were
listed in the original create statement. So in this case the re
lation will be sorted on name then ext and then amount. Dupli
cate tuples are always removed. The relation will be left as a
heap. Heapsort and cheapsort are intended for sorting a tem
porary relation before printing and destroying it. It is more
efficient than modifying to isam because with isam INGRES creates
a "directory" containing key information about each page. The
relation will NOT be kept sorted when further updates occur.

Examples:

Here are a collection of examples and comments as to the effi
ciency of each query. The queries are based on the relations:
parts(pnum, pname, color, weight, qoh)
supplyCsnum, pnum, jnum, shipdate, quan)

range of p is parts
range of s is supply

modify parts to hash on pnum
modify supply to hash on snum,jnum

retrieve (p.all) where p.pnum = 10

DATA BASE INGRES Page 16

INGRES will recognize that parts is hashed on pnum and go direct
ly to the page where parts with number 10 would be stored.

retrieve (p.all) where p.pname = "tape drive"

INGRES will read the entire relation looking for matching pnames.

retrieve (p.all) where p.pnum < 10 and p.pnum > 5

INGRES will read the entire relation because no exact value for
pnum was given.

retrieve (s.shipdate) where s.snum = 471 and s.jnum = 1008

INGRES will recognize that supply is hashed on the combination of
snum and jnum and will go directly to the correct page.

retrieve (s.shipdate) where s.snum = 471

INGRES will read the entire relation. Supply is hashed on the
combination of snum and jnum. Unless INGRES is given a unique
value for both, it cannot take advantage of the storage struc
ture .

retrieve (p.pname, s.shipdate) where
p.pnum = s.pnum and s.snum = 471 and s.jnum = 1008

INGRES will take advantage of both storage structures. It will
first find all s.pnum and s.shipdate where s.snum = 471 and
s.jnum = 1008. After that it will look for all p.pname where
p.pnum is equal to the correct value.

This example illustrates the idea that it is frequently a good
idea to hash a relation on the domains where it is "joined" with
another relation. For example, in this case it is very common to
ask for p.pnum = s.pnum

To summarize:

To take advantage of a hash structure, INGRES needs an exact
value for each key domain. An exact value is anything such as:

s.snum = 471
s.pnum = p.pnum

An exact value is not

s.snum >= 471
(s.snum = 10 or s.snum = 20)

Now let*s consider some cases using isam

modify supply to isam on snum,shipdate
retrieve (s.all) where s.snum = 471
and s.shipdate > "75-12-31"

DATA BASE INGRES Page 17

and s.shipdate < "77-01-01"

Since supply is sorted first on snum and then on shipdate, INGRES
can take full advantage of the isam structure to locate the por
tions of supply which satisfy the query.

retrieve (s.all) where s.snum = 471

Unlike hash, an isam structure can still be used if only the
first key is provided.

retrieve (s.all) where s.snum > 400 and s.snum < 500

Again INGRES will take advantage of the structure.

retrieve (s.all) where s.shipdate >= "75-12-31" and
s.shipdate <= "77-01-01"

Here INGRES will read the entire relation. This is because the
first key (snum) is not provided in the query.

To summarize:

Isam can provide improved access on either exact values or ranges
of values. It is useful as long as at least the first key is
provided.

To locate where the tuples are in an isam relation, INGRES
searches the isam directory for that relation. When a relation
is modified to isam, the tuples are first sorted and duplicates
are removed. Next, the relation is filled (according to the
fillfactor) starting at page 0, 1, 2... for as many pages as are
needed.

Now the directory is built. The key domains from the first tuple
on each page are collected and organized into a directory (stored
in the relation on disk). The directory is never changed until
the next time a modify is done.

Whenever a tuple is added to the relation, the directory is
searched to find which page the new tuple belongs on. Within
that page, the individual tuples are NOT kept sorted. This is
what is meant by "approximately" sorted.

heap v. hash v. ISAM

Let*s now compare the relative advantages and disadvantages of
each option. A relation is always created as a heap. A heap is
the most efficient structure to use to initially fill a relation
using copy or append.

Space from deleted tuples of a heap is only reused on the last
page. No duplicate checking is done on a heap relation.

DATA BASE INGRES Page 18

Hash is advantageous for locating tuples referenced in a qualifi
cation by an exact value. The primary page for tuples with a
specific value can be easily computed.

Isam is useful for both exact values and ranges of values. Since
the isam directory must be searched to locate tuples, it is never
as efficient as hash.

OVERFLOW PAGES

When a tuple is to be inserted and there is no more room on the
primary page of a relation, then an overflow page is created. As
more tuples are inserted, additional overflow pages are added as
needed. Overflow pages, while necessary, decrease the system
performance for retrieves and updates.

For example, let^s suppose that supply is hashed on snum and has
10 primary pages. Suppose the value snum = 3 falls on page 7.
To find all snum r 3 requires INGRES to search primary page 7 and
all overflow pages of page 7 (if any). As more overflow pages
are added the time needed to search for snum = 3 will increase.
Since duplicates are removed on isam and hash, this search must
be performed on appends and replaces also.

When a hash or isam relation has too many overflow pages it
should be remodified to hash or isam again. This will clear up
the relation and eliminate as many overflow pages as possible.

UNIQUE KEYS

When choosing key domains for a relation it is desirable to have
each set of key domains as unique as possible. For example, em
ployee id numbers typically have no duplicate values, while some
thing like color is likely to have only a few distinct values,
and something like sex, to the best of our knowledge, has only
two values.

If a relation is hashed on domain sex then you can expect to have
all males on one primary page and all its overflow pages and a
corresponding situation with females. With a hash relation there
is no solution to this problem. A trade-off must be made between
the most desirable key domains to use in a qualification versus
the uniqueness of the key values.

Since isam structure can be used if at least the first key is
provided, extra key domains can sometimes be added to increase
uniqueness. For example, suppose the supply relation has only 10
unique supplier numbers but thousands of tuples. Choosing an
isam structure with the keys snum and jnum will probably give
many more unique keys. However, the directory size will be
larger and consequently it will take longer to search. When pro
viding additional keys just for the sake of increasing unique
ness, try to use the smallest possible domains.

DATA BASE INGRES Page 19

SYSTEM RELATIONS

INGRES uses three relations ("relation", "attribute", and
"indexes") to maintain and organize a data base. The "relation"
relation has one tuple for each relation in the data base. The
"attribute" relation has one tuple for each attribute in each re
lation. The "indexes" relation has one tuple for each secondary
index.

INGRES accesses these relations in a very well defined manner. A
program called "sysmod" should be used to modify these relations
to hash on the appropriate domains. To use sysmod the data base
administrator types

% sysmod data-base-name

Sysmod should be run initially after the data base is created and
subsequently as relations are created and the data base grows.
It is insufficient to run sysmod only once and forget about it.
Rerunning sysmod will cause the system relations to be remodi-
fied. This will typically remove most overflow pages and improve
system response time for everything.

DATA BASE INGRES Page 20

5. SECONDARY INDICES

Using an isam or hash structure provides a fast way to find tu
ples in a relation given values for the key domains. Sometimes
this is not enough. For example, suppose we have the donation
relation

donation(name, amount, ext)

hashed on name. This will provide fast access to queries where
the qualification has an exact value for name. What if we also
will be doing queries giving exact values for ext?

Donation can be hashed either on name or ext, so we would have to
choose which is more common and hash donation on that domain.
The other domain (say ext) can have a secondary index. A secon
dary index is a relation which contains each "ext" together with
the exact location of where the tuple is in the relation dona
tion .

The command to create a secondary index is:

index on donation is donext (ext)

The general format is:

index on relation_name is secondary_index_name (domains)

Here we are asking INGRES to create a secondary index on the re
lation donation. The domain being indexed is "ext". Indices are
formed in three steps:

1. "Donext" is created as a heap.
2. For each tuple in donation, a tuple is inserted in "donext"

with the value for ext and the exact location of the
corresponding tuple in donation.

3. By default "donext" is modified to isam.

Now if you run the query

range of d is donation
retrieve(d.amount) where d.ext = 207

INGRES will automatically look first in "donext" to find ext =
207. When it finds one it then goes directly to the tuple in the
donation relation. Since "donext" is isam on ext, search for ext
= 207 can typically be done rapidly.

If you run the query

retrieve(d.amount) where d.name = "frank"

then INGRES will continue to use the hash structure of the rela
tion "donation" to locate the qualifying tuples.

DATA BASE INGRES Page 21

Since secondary indices are themselves relations, they also can
be either hash, isara, chash or cisam. It never makes sense to a
secondary index a heap.

The decision as to what structure to make them on involves the
same issues as were discussed before:

Will the domains be referenced by exact value?
Will they be referenced by ranges of value?
etc.

In this case the "ext" domain will be referenced by exact values,
and since the relation is nearly full we will do:

modify donext to hash on ext where fillfactor = 100
and minpages = 1

Secondary indices provide a way for INGRES to access tuples based
on domains that are not key domains. A relation can have any
number of secondary indices and in addition each secondary index
can be an index on up to six domains of the primary relation.

Whenever a tuple is replaced, deleted or appended to a primary
relation, all secondary indices must also be updated. Thus secon
dary indices are "not free". They increase the cost of updating
the primary relation, but can decrease the cost of finding tuples
in the primary relation.

Whether a secondary index will improve performance or not strong
ly depends on the uniqueness of the values of the domains being
indexed. The primary concern is whether searching through the
secondary index is more efficient than simply reading the entire
primary relation. In general it is if the number of tuples which
satisfy the qualification is less than the number of total pages
(both primary and overflow) in the primary relation.

For. example if we frequently want to find all people who donated
less than five dollars, consider creating

index on donation is donamount (amount)

By default donamount will be isam on amount. IF INGRES processes
the query:

retrieve(d.name) where d.amount < 5.0

it will locate d.amount < 5.0 in the secondary index and for each
tuple it finds will fetch the corresponding tuple in donation.
The tuples in donamount are sorted by amount but the tuples in
donation are not. Thus in general each tuple fetch from donation
via donamount will be on a different page. Retrieval using the
secondary index can then cause more page reads than simply read
ing all of donation sequentially! So in this example it would be
a bad idea to create the secondary index.

DATA BASE INGRES Page 22

6. RECOVERY AND DATA UPDATE

INGRES has been carefully designed to protect the integrity of a
data base against certain classes of system failures. To do this
INGRES processes changes to a relation using what we call "de
ferred update" or "batch file update". In addition there are two
INGRES programs "restore" and "purge" that can be used to check
out a data base after a system failure. We will first discuss
how deferred updates are created and processed, and second we
will discuss the use of purge and restore.

DEFERRED UPDATE (Batch update)

An append, replace or delete command is run in four steps:

1. An empty batch file is created.
2. The command is run to completion and each change to the

result relation is written into the batch file.

3. The batch file is read and the relation and its secondary in
dices (if any) are actually updated.

. The batch file is destroyed and INGRES returns back to the
user.

Deferred update defers all actual updating until the very end of
the query. There are three advantages to doing this.

1. Provides recovery from system failures

If the system "crashes" during an update, the INGRES recovery
program will decide to either run the update to completion or
else "back out" the update, leaving the relation as it looked be
fore the update was started.

2. Prevents infinite queries

If "donation" were a heap and the query

range of d is donation
append to donation(d.all)

were run without deferred update, it would terminate only when it
ran out of space on disk! This is because INGRES would start
reading the relation from the beginning and appending each tuple
at the end. It would soon start reading the tuples it had just
previously appended and continue indefinitely to "chase its
tail".

While this query is certainly not typical, it illustrates the
point. There are certain classes of queries where problems occur
if WHEN an update actually occurs is not precisely defined. With
deferred update we can guarantee consistent and logical results.

3. Speeds up processing of secondary indices

Secondary indices can be updated faster if they are done one at a

DATA BASE INGRES Page 23

time instead of all at once. It also insures protection against
the secondary index becoming inconsistent with its primary rela
tion .

TURNING DEFERRED UPDATE OFF

If you are not persuaded by any of these arguments, INGRES allows
you to turn deferred update off! Indeed there are certain cases
when it is appropriate (although certainly not essential) to per
form updates directly, that is, the relation is updated while the
query is being processed.

To use direct update, you must be given permission by the INGRES
super user. Then when invoking INGRES specify the "-b" flag
which turns off batch update.

% ingres mydate -b

INGRES will use direct update on any relation without secondary
indices. It will still silently use deferred update if a relation
has any secondary indices. By using the "-b" flag you are sac
rificing points 1 and 2 above. In most cases you SHOULD NOT use
the -b flag.

If you are using INGRES to interactively enter or change one tu
ple at a time, it is slightly more efficient to have deferred up
date turned off. If the system crashes during an update the per
son entering the data will be aware of the situation and can
check whether the tuple was updated or not.

RESTORE

INGRES is designed to recover from the common types of system
crashes which leave the Unix file system intact. It can recover
from updates, creates, destroys, modifies and index commands.

INGRES is designed to "fail safe". If any inconsistancies are
discovered or any failures are returned from Unix, INGRES will
generate a system error message (SYSERR) and exit.

Whenever Unix crashes while INGRES is running or whenever an
INGRES syserr occurs, it is generally a good idea to have the
date base administrator run the command

% restore data_base_name

The restore program performs the following functions:

1. Looks for batch update files. If any are found, it examines
each one to see if it is complete. If the system crash oc-
cured while the batch file was being read and the data base
being updated, then restore will complete the update. Other
wise the batch file was not completed and it is simply des
troyed; the effect is as though the query had never been run.

DATA BASE INGRES Page 2H

2. Checks for uncompleted modify commands. This step is cru
cial. It guarantees that you will either have the relation
as it existed before the modify, or restore will complete the
modify command. Modify works by creating a new copy of the
relation in the new structure. Then when it is ready to re
place the old relation, it stores the new information in a
"modify batch file". This enables restore to determine the
state of uncompleted modifies.

3. Checks consistency of system relations. This check is used
to complete "destory" commands, back out "create" commands,
and back out or complete "index" commands that were inter
rupted by a system crash.

4. Purges temporary relations and files. Restore executes the
"purge" program to remove temporary relations and temporary
files created by the system. Purge will be discussed in more
detail a bit later.

Restore cannot tell the user which queries have run and which
have not. It can only identify those queries which were in the
process of being run when the crash occured. When batching
queries together, it is a good idea to save the output in a file.
By having the monitor print out each query or set of queries, the
user can later identify which queries were run.

Restore has several options to increase its usability. They are
specified by "flags". The options include:

-a ask before doing anything
-f passed to purge, used to remove temporary files
_p passed to purge, used to destory expired rela

tions.

no database restores all data bases for which you are the
dba.

Of these options the "-a" is the most important. It can happen
that a Unix crash can cause a page of the system catalogues to be
incorrect. This might cause restore to destory a relation. In
fact, you might want to "patch" the system relations to correct
the problem. No restore program can account for all possibili
ties. It is therefore no replacement (fortunately) for a human.

If "-a" is specified, restore will state what it wants to do and
then ask for permission. It reads standard input and accepts "y"
to mean go ahead and anything else to mean no. For example, to
have restore ask you before doing anything

restore -a mydatabase

To have it take "no" for all its questions

restore -a mydatabase </dev/null

Using the -a flag, restore might ask for permission to perform

DATA BASE INGRES Page 25

some cleanup; for example, if it finds an attribute for which
there is no corresponding relation, or if it finds a secondary
index for which there is no primary relation, etc.

To date, we have never had a system crash which INGRES could not
recover from. This does not mean that it will never happen, but
rather that it shouldn't be too great a concern for you. It
should be mentioned that restore is not a substitution for doing
periodic backing up, nor does it ever perform such a function.

PURGE

Purge can be used to report expired relations, destroy temporary
system relations, remove extraneous files, and destory expired
relations. To use purge you must be the DBA for the data base.

% purge mydatabase

Purge has several options which are specified by flags which are
worth noting:

-f (default is off) remove all extraneous files.
Each file is reported and then removed. If "-f"
is not specified then the file is only reported.

-p (default is off) destroy all expired relations.
Each expired relation is reported and if "-p"
was specified the relation is destroyed.

Purge always destroys relations and files which are known to be
INGRES system temporaries. When processing multi-variable
queries and queries with aggregate functions, INGRES will usually
create temporary relations with intermediate results. These re
lations always begin with the characters "_SYS". Other INGRES
commands create temporary files which also begin with "_SYS".
Under normal processing they are always destroyed. If a system
crash occurs, they might be left. Purge will always clean up the
temporary system files. It cleans up the user relations only
when specifically asked to.

	Copyright notice 1977
	ERL-77-71

