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ABSTRACT

The transport of particles and energy that accompanies the

trapping of electrons by a finite amplitude drift wave is calculated.

Starting from the drift kinetic equation, it is shown that, in the limit

of small collision frequency, the electron entropy source is stationary

with respect to variations in the electron distribution function. This

variational principal is employed, together with the full Fokker-Planck

collision operators, to evaluate the electron transport coefficients

and, hence, the flux of particles and energy across the magnetic field.

Explicit expressions for the particle and energy flux are obtained in

terms of the parameters of the plasma-wave system. These expressions

should be used ^ place of the usual "quasilinear" expressions for the

particle and energy flux when the autocorrelation time of the wave spec

trum is sufficient to permit the trapping of electrons by individual waves

These "pseudoclassical" transport rates are found to be smaller than the

quasilinear expressions that they replace. The particle flux obtained

here is used in a companion paper to develop a self-consistent theory

of the evolution of a finite amplitude drift wave.
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1. INTRODUCTION

Low frequency drift wave instabilities such as the collisionless

drift instability (Galeev et al., 1963) and the dissipative trapped

electron instability (Kadomtsev and Pogutse, 1969) are of considerable

current interest. These instabilities may be responsible for the

anomalous transport observed in tokamaks (Dean et al,, 1974).

Because the phase velocity of the low frequency drift wave is

small compared to the electron thermal velocity, there are many elec

trons with parallel velocities near the phase velocity of this wave.

These resonant electrons contribute to the linear (i.e., small amplitude)

growth rate of the low frequency drift wave (Horton, 1976). After the

drift wave has grown to a finite amplitude, it is possible for the

resonant electrons to become trapped in the electric field of the wave.

It has been suggested that this trapping is important in determining

the anomalous electron transport. Pogutse (1972) has shown that the

trapping of resonant electrons by a finite amplitude wave leads to

"pseudoclassical" heat transport with rates which are substantially greater

than the classical and neoclassical transport rates (see also Cell et

al., 1975). In addition, general considerations on the nature of

dissipative drift instabilities (Nevins, 1977a) lead us to expect that

a new dissipative drift instability will accompany this pseudoclassical

transport.

In previous work on pseudoclassical transport (Pogutse, 1972;

Gell et al., 1975; Gell and Nevins, 1975) the wave responsible for the

trapping of the resonant electrons was not treated self-consistently;

that is, the wave amplitude was fixed. Hence, this new dissipative drift
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instability was not found. This inconsistency has also obscured the

relation between pseudoclassical transport theory and other work on

the anomalous transport associated with low frequency drift waves (e.g.,

Horton, 1976} Liu et al., 1976), a relation we will try to make clear.

We have extended previous work by developing a self-consistent

theory of the evolution of a plasma slab in which a finite amplitude

drift wave has trapped the resonant electrons. This theory is presented

in two papers. In the first paper, we derive the pseudoclassical fluxes

of particles and energy across the magnetic field. In a companion paper

(Nevins, 1977b), hereafter refered to as II, a complete set of equations

the evolution of both the finite amplitude wave and the background

plasma is developed; and the relation between pseudoclassical transport and

other work on the anomalous transport associated with low frequency

drift waves is clarified.

A re-derivation of the pseudoclassical fluxes is necessary to the

development of this self-consistent pseudoclassical transport theory

because previous work (Pogutse, 1972; Cell and Nevins, 1975) has ignored

the pseudoclassical transport of particles, focusing only on the trans

port of energy across the magnetic field. This is an important omission,

as we show in II that this pseudoclassical particle flux governs the

evolution the finite amplitude wave. In addition, previous

calculations either employed a model collision operator to approximate

the effects of electron-electron collisions, while ignoring electron-ion

collisions (Pogutse, 1972); or, they modeled the drift wave with a

stationary potential, which is equivalent to setting the wave frequency

equal to zero (Gell and Nevins, 1975).
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We include both electron-electron and electron-ion collisions,

employing the full Fokker-Planck collision operators (Rosenbluth

et al., 1972). We evaluate both the particle flux and the energy flux.

Armed with both of these fluxes, we will obtain a complete set of

equations describing the evolution of both the wave and the background

plasma in II. We allow the drift wave to have a non-zero frequency,

and we find that the wave frequency is important in determining the flux

of particle and energy across the magnetic field.

In Section 2 a qualitative discussion of the pseudoclassical

transport mechanism is presented, and a proceedure for evaluating the

pseudoclassical transport coefficients is outlined.

In Sections 3-5 this proceedure is carried out, and the pseudo-

classical transport coefficients are expressed as functions of the

wave parameters o), and (s^q/T) . Both the dependence of the pseudo-

classical diffusion coefficient on these parameters, and the numerical

value calculated here have been verified in numerical simulation of the

pseudoclassical diffusion process (Nevins et. al., 1977c).

In Section 6 more insight into this pseudoclassical transport

mechanism is gained by examining the motion of individual particles

in the field of the finite amplitude wave.

In Section 7 the electron distribution function is examined.

It is found that the dominant effect of particle trapping on this

distribution function is the formation of a plateau along the orbits

of the trapped electrons.
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2. THE MODEL

We consider a model system consisting of a plasma slab in a

uniform majgnetic field. A right handed coordinate system is adopted

with the magnetic field parallel to the z-axis, and with the temperature

and density gradients of the plasma parallel to the x-axis. The plasma

slab supports a single finite amplitude electrostatic wave with a wave

vector, k, lying in the y-z plane (see Fig. 1). This wave is assumed

to have a parallel phase velocity, v. = w/k , in the range v . < v < v
r z ti (I) te

Ik l<where v^^ = (T^/m^) and v^^ = (T^/m^) are the electron and ion thermal

velocities respectively.

Following previous authors (Yoshikawa and Christofilos, 1972;

Pogutse, 1972) we use the name "pseudoclassical" transport to describe

the transport process brought about by a combination of the motion of

particles in the electric field of the finite amplitude wave and Coulomb

collisions. The guiding center drift in the wave electric field

affects the electron transport rates in much the same way that the

guiding center drifts in an inhomogeneous magnetic field give rise to

"neoclassical" transport. The parameter which determines the collision

frequency regime of pseudoclassical transport is (v /k v ). The
e z te

pseudoclassical transport theory developed by Yoshikawa and Christofilos

(1972) applies in the highly collisional regime where (v /k v ) > 1.
e z te

This regime of pseudoclassical transport theory is closely analogous

to the Pfirsch-Schluter regime of neoclassical transport theory (Pfirsch

and Schluter, 1962).
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FIGURE I

The Directions of the Fields and Gradients in the System.
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At the tenipeira.tur6S d.tt3.1.ii0d in many current tokamak experiments

the parameter is small. The pseudoclassical transport

theory considered by Pogutse (1972) applies in this low collision

frequency regime (see also Cell et al., 1975; Cell and Nevins, 1975).

This regime of pseudoclassical transport is associated with the trapping

of particles by the finite amplitude wave, and bears a close analogy to

the "bananna" regime of neoclassical theory (Galeev and Sagdeev, 1966).

A qualitative understanding of pseudoclassical transport in the

low collision frequency regime may be gained by considering the motion

of electrons trapped by the finite amplitude drift wave (Pogutse, 1972;

Cell et al., 1975). Electrons with parallel velocities satisfying

I'z - '$1 ^^ W (2.1)

may become trapped by the finite amplitude wave, v is given by

e$ \'^

^TRAP \e^ T^ (2.2)
$o is the amplitude of the wave, T is the electron temperature, and e

is the electronic charge. In the wave frame these trapped electrons

oscillate along the magnetic field lines at the bounce frequency

^BOUNCE " ^z^TRAP * (2.3)

Since E and ^ lie in the y-z plane, the ^ x ^ drift velocity is

in the x direction. The electric field felt by the trapped particles

oscillates at the bounce frequency, so the ^ x ^ drift will cause the
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trapped particles orbits to have a width in x of order

_ k $

Ax = -i
'̂ 'bounce

k /e$

=i^(-r-p
(2.4)

where p is a characteristic electron gyro radius, p = (m T) /eB. In
e

the limit that the effective collision frequency for scattering

particles out of resonance with the wave, is small compared to '̂ 'goUNCE'

a random walk model with Ax as the step size may be used to estimate

the transport coefficients. One obtains

D == f(Ax)^ (2.5)

where f is the fraction of the accessible phase space occupied by

trapped particles. For those waves with parallel phase velocities

small compared to the electron thermal velocity, and with amplitudes

satisfying (e^^/T) « 1, this fraction may be estimated by

f ~ ^TRAP
^te

f -
e$o

(2.6)
is

The effective collision frequency, is greater than v^, the

frequency at which many small angle collisions will accimiulate to produce

a 90** scattering angle, because trapped electrons need only be scattered
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through an angle A6 become passing particles. Since

small angle scattering is the dominant collisional process in fully

ionized plasmas, the effective collision frequency is related to the

90° collision frequency by

1
V s- V

(A 8) 2 ®

( Tj

(2.7)

'e$_\-l

\
e

The plasma - wave system will be in the low collision frequency

regime of pseudoclassical theory when the bounce frequency of the particles

trapped by the wave is greater than this effective collision frequency.

This condition may be written as

/e-D \ 3/2
^ (2.8)

In this regime we expect the pseudoclassical transport coefficients

to be of order

Although (e$-/T) is generally small, the ratio (k /k ) can be
o y z

quite large. Estimates of the magnitude of D (Pogutse, 1972; Cell et al.,

1975) have shown that experimentally observed energy containment times

can be explained with reasonable choices of the parameters (e$^/T) and

(k /k ).
y z
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in our calculation of the pseudoclassical transport coefficients

we use the drift kinetic equation to describe the evolution of the

electron distribution function. Both electron-electron and electron-ion

collisions are included using the full Fokker—Planck collision operators

(Rosenbluth et al., 1972). We adopt a mathematical formalism similar

to that used by Cell and Nevins (1975). This formalism makes use of the

close analogy between pseudoclassical transport and neoclassical trans

port by adapting the variational principle of Rosenbluth et al. (1972)

to the present problem.

Following the usual proceedure in transport calculations we

consider two time scales: the microscopic time scale, and the macroscopic

or transport time scale. The division between these two time scales is

made possible by ordering in the small parameter (Ax/L), where L is

the scale length for variations in the plasma temperature and density.

The assumption of local thermal equilibrium provides us with the condi

tion that 9/at cannot exceed (Ax/L)v . Within this constraint, the
e

microscopic time scale is defined by ^ =0[(Ax/L)v^], while the trans
port time scale is defined by ~ «0[(Ax/L)^v^]. In the present cal-
culation we make this expansion in (Ax/L) about a state that includes a

finite amplitude wave propagating in the y-z plane. The phase velocity

of this wave is assumed to be small, (v7v )^ = ()(Ax/L). The amplitude
4) te'

of the wave is allowed to vary slowly with both x (1/^) ], and
. rl 9$ , s2

In Sect. 3 we consider the drift kinetic equation on the microscopic

time scale. Particle trapping is explicitly considered in deriving

several constraints on the electron distribution function. In Sect. 4
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we use these constraints to show that the electron entropy source, S ,

is stationary with respect to variations in the electron distribu

tion function. In Sect. 5 this variational principle is used together

with the small parameter (e$^/T) to evaluate the flux of particles and

energy across the magnetic field. We obtain explicit expressions for

these fluxes in terms of the wave parameters to, (k » and (e$^/T).
2 2The transport coefficients are found to scale as (k /k ) (e$ /T) p v

y z o e

as we expect from the argument preceeding Eq. (2.9).
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3. SOME CONSTRAINTS ON THE DISTRIBUTION FUNCTION

In this section we derive several constraints that the steady

state electron distribution function must satisfy in the presence of

a finite amplitude, low frequency electrostatic wave. We consider a

plasma situated in a uniform magnetic field ^ = B z. The plasma is

assumed to have density and temperature profiles that depend on x. A

finite amplitude electrostatic wave described by

$(x,y,z,t) = $^(x,t) h(0) (3.1)

is present. The wave phase, 0, is given by

0 = k y + k z - cDt (3.2)
y z

The function h(0) describes the waveform. h(0) has a magnitude of

order one, and is assxmied to be periodic in 0 with a period of I'n, The

wave amplitude, varies slowly with both x and t. The scale length

for variations of the wave amplitude with x is taken to be of order L,

the scale length for variations of the temperature and the number density

of the plasma with x. The wave amplitude varies with time on the trans-
1 ^o 2

port time scale, i.e. (—
o

In the drift approximation the kinetic equation for the electron

distribution function is given by (Hinton and Hazeltine, 1976)

(£) (3.3)
St z 3z -L m dz dv e

B z

where C^(f) represents the electron collision operator.
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2
The electron distribution fxjnction f has a slow [0(Ax/L) v ] variation in

e

time due to the transport of particles and energy. In this section we

are concerned only with the evolution of the electron distribution on

the microscopic time scale. Hence we ignore this slow variation, keep

ing terms through first order in (Ax/L).

We assume that the plasma-wave system has reached a steady state

in which the temporal variation on the microscopic time scale comes

only through the dependence of the distribution function and the wave

amplitude on 0. This assumption rules out oscillations in the wave

amplitude and the electron distribution function at the bounce frequency

of the electrostatically trapped particles. Such oscillations in the

wave amplitude are attenuated both by phase mixing among the trapped

particle orbits (0*Neil, 1965); and by collisions, which smooth out

the fine structure in the electron distribution function associated

with these oscillations in a time of order (Zakharov and Karpman,

196 3). The dependence of the electron distribution function on y and

z is assumed to be due to the response of the electrons to the wave.

Hence, the s"eady state electron distribution function depends on y and

z only through the wave phase, 0. In this steady state the kinetic

equation may be written as

^

'̂̂ BOUNCE ^ B ax^ 90 " B 30 9x m z 30 9v ^
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where the normalized "velocity-slip", q, is proportional to the parallel

velocity in the reference frame of the electrostatic wave,

1 - <'z "

The particle energy in the reference frame of the wave,

E = + yB - e4> (3.6)

is a constant of the particle motion, as is y, the magnetic moment.

We make use of these constants of motion by passing from the variables

(0, X, V , y) to the set (8, x, E, y, a), where a is the sign of q,
z

this set of variables we may write the kinetic equation

in the form

[q + h(e) j- -^] — - h' (8) Ax -^ = )/'̂ goUNCE

where

h'O) =

We wish to expand Eq. (3.7) in powers of (Ax/L) about an equilibrium

that includes a finite amplitude low frequency drift wave. Low frequency

drift waves arise from perturbations in the ion density caused by the

self consistent ^ x convection of ions across the zero order density

gradient. The role of the electron distribution is to provide Debye

shielding of these ion perturbations (Mikhailovskii, 1974; Kadomtsev, 1965)
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The effect of the Debye shielding is included at zero order in (Ax/L)

by expanding the electron distribution function about a local Boltzmann

distribution,

3/2

° [a^Twr] (3-8)

where n and T are functions of x only. This choice of the zero order

distribution function is consistent with the electron distribution

function obtained in the linear (in the wave amplitude) analysis of

low frequency drift waves.

Written in terms of our adopted set of variables (6, x, y, E, cd,

the Boltzmann distribution becomes:

="[2^] w +

where q = q(6, x, y, E, a) .

The electron distribution function may be written as

f = fo (1 + f) (3.10)

A

where f = 0 (Ax/L). This expansion of the electron distribution function

is put into the kinetic equation, (3.7), and terms in like powers of
af

(Ax/L) are equated. The terms involving require special attention.

From Eq. (3.9) we see that f^ depends on 0 only through q. Evaluating

this factor we find

"36" ° (3.11)
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where

eB

c '
y

0 = k T ~ (3.12)

Low frequency drift instabilities have frequencies of order w
8f

-(k T/eB)—Hence a^= 0(1/L), and is first order in (Ax/L).
y n dx 0 do

The steady state kinetic equation is then satisfied at zero order in

(Ax/L) as

C (f ) = 0 .
e o

To first order in (Ax/L) we obtain

le - & -v.. h'<e) = <3.13)

In Eq. (3.13) we require an expression for f^ valid only to zero order

in (Ax/L). To this order f^ is given by

(3.14)

3£

SO may be written as
OX

8f

° = - (a, + A.E)f^ (3.15)
8x ^"1 "2^'o

where we have defined

3 /m\ ^18n^31dT
^1 " " 8x \T/ n ax 2 T ax (3.16)

^2 3^ (t) (3.17)
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and M, the chemical potential of the electrons, is given by:

M = T (3.18)

These three quantities, a^, a^, and are all of order (1/L).

a^ is a measure of the departure of the system from thermal equilibrium

because of the variations in the wave potential with time, a^ and

measure the departure from thermal equilibrium due to variations in

the density and temperature with x. In Sect. 4 we find that the quanti

ties

^1 ^ ®0 "*• ®1 (3.19)

and A2 are the thermodjmamic forces acting on the plasma (De Groot and

Mazur, 1962),

Using the definitions (3.17) and (3.19) we may write the kinetic

equation to first order in (Ax/L) as

f<,(Ax(A^ + A^E) h- (9) + q ^] = C^(f)/"BOUNCE <3.20)

We wish to consider the enhanced collisional transport by electrons

due to the trapping of particles in the electrostatic wave. In the

random walk picture, this enhancement is due to the enlarged fundamental

step that the diffusing particle is taking, or equivently, that the orbit

of the trapped particle is much larger than the Larmor orbit. This

enlarged orbit results from the superposition of the x-directed drift

velocity upon the motion of the trapped particles along the magnetic

field lines. If the trapped particles are to complete this enlarged
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orbit, then the collision frequency for scattering particles out of

the trapped region of velocity space should be small compared with the

bounce frequency of the particles trapped in the electrostatic wave.

Consequently we consider the limit

^eff'''̂ BOUNCE ^

An examination of Eq. (3.4) indicates that in the limit ^ 0,

the steady state kinetic equation is satisfied by f = f^. Hence f de

scribes the perturbation in the electron distribution function due to

the presence of the finite amplitude drift wave. In a linear theory

this perturbation diverges as velocity-slip, q, goes to zero. The

divergence is avoided in this calculation by allowing the wave to trap

the resonant particles. We might expect the resulting perturbation in

the electron distribution function to be localized about the trapped

region of phase space, where q ^ 1. In fact, we will find that only

the velocity derivatives of this perturbation are localized about the trapped

-.region. This localization allows us to make the estimate

% 1 5

^TRAP

The Eokker-Planck collision operator contains a term of the form
2

V — . This term dominates the collision operator because of the rapid
e m ^ 2

3v

variation of f in the trapped region. Hence,we may estimate the magnitude

of the collision operator in Eq. (3.20) by

C (f f) V f f
e o eff o

A.

We make use of the small parameter /'̂ goUNCE^ expanding f

in the form

A aQ '^1
f = f + f + . . .
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where f = ^(^eff/'̂ goUNCE^ * leading term in this expansion, f

is examined in Sect. 7, where the assumption that the velocity derive-

tives of f are localized about the trapped region of phase space is

verified.

To zero order in find

"0
9fq "5^ = - Ax(A^ + A2E) h'(e) , (3.21)

while to first order in (v we have
err J3UUjnl>i!i

1^6 i- =<=e(^o^°) • (3.22)

The 0-derivatives in Eqs. (3.21) and (3.22) are to be taken at constant

E and p. These variables, E and y, label the orbits of particles in phase

space, while 6 (and for trapped particles a) determines the position of a

particle on a particular orbit. Hence, integrating Eqs. (3.21) and (3.22)

over 0 corresponds to the usual procedure for determing the perturbed dis

tribution function of integrating the perturbation along particle orbits.

We first consider Eq, (3.22). This equation allows us to express the

-1
change in f as an integral of the collision operator along a particle

orbit. We use this equation to obtain two constraints that must be satis-

'^1fied by f if there is to be a properly behaved solution, f , to this equation.

Passing particle orbits extend over many periods of the finite ampli-
A,

tude wave. In our steady state f is required to have the same periodicity

•^1
as the wave potential. Hence, the net change in f over one wave period

^0
must vanish. This is only possible when f satisfies the constraint
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2ir C (f f°)
de ^ 0 . (3.23)

0

in the untrapped region of (E,y),

In the trapped region of (E,ii) space the steady state electron

distribution function must be continuous at the turning points. Thus

we require

f(0 ® 2* ~ ~ ^1 2* ^~ (3.24)

where e^(E,y) and 02(E,y) are the turning points of electrons trapped in

the electrostatic wave.

Hence, the change in f between these turning points along the upper

(i.e., a=+l) branch of the trapped orbit must be identical to the change
A1 ^0

in f along the lower (a = -l) branch. This condition can be met only if f

satisfies the constraint

I
a

2 C (f f")
d 0 (3.25)0^ nI

in the trapped region of (E,y) space.
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From relation (3.6), recalling that E and 0 are independent

variables, we have

h'(6) =q-|a

Inserting this expression into Eq. (3.21) and integrating with respect

"0
to 0 we find that f may be written in the form

f^ =- Ax(A^ +A^E) q+g(y, E, a) (3.26)

where the function g is independent of 0. The velocity-slip vanishes

at the turning points; hence, q(0^) = q(02) = 0* Together with Eq.

(3.24) and (3.26) this implies that in the trapped region of (E,y) space

g(y, E, a = +1) = g(y, E, a = -1) (3.27)

In deriving Eqs. (3.26) and (3.2?) we have dropped the collision

term. This term enters our calculation at first order in (v ).
^ eff BOUNCE

Hence, we may view f as the perturbation in the electron distribution

caused by a finite amplitude drift wave in a collisionless plasma. A

similar problem, that of a finite amplitude Langmuir wave, has been
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studied extensively (O'Neil, 1965; Zakharov and Karpman, 1963;

Bernstein et al., 1957). This problem is generally approached in a

reference frame in which the Langmuir wave is stationary. In this

reference frame, it is found that a steady state, in the sense described

above, is attained when the distribution function is constant along

the orbits traced out by particles as they move in the electric field

of the finite amplitude wave.

We may interpret Eq. (3.26) in a similar manner. The first term

on the right hand side, -Ax(A^ + A2E)q, provides the perturbation in

the electron distribution function that is required to balance the

variations in f^ along particle orbits. The second term, g(p, E, c),

is an arbitrary function of the constants of motion E, y, and (for

untrapped particles) a. Hence, Eq. (3.26) is the most general pertur

bation satisfying the condition that the over-all electron distribution

A

function, f = 1^(1+1), be constant along particle orbits in the

finite amplitude wave.

In much of the work on particle trapping in finite amplitude

Langmuir waves, the collision frequency vanished identically. The

function g was determined either from the waveform, together with the

dispersion relation (Bernstein et al., 1957), or from the initial

conditions (0*Neil, 1965). In the present calculation we are consider

ing a weakly collisional plasma. Hence the collisions will determine

the form of g (Zakharov and Karpman, 1963). In the present work, g is

determined by using Eqs. (3.23) through (3.27) to show that the local
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entropy source, S^, is.an extremum with respect to variations in g.

This variational principle will be used to evaluate the perturbed

electron distribution function, as well as the flux of particles and

energy across the magnetic field.
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4. THE ENTROPY SOURCE AND A VARIATIONAL PRINCIPLE

Several authors have shown that the steady states of various

systems near thermal equilibrium are characterized by an extremum In

the rate of change of a thermodjmamlc potential (DeGroot and Mazur,

1962; Onsager, 1931; Raylelgh, 1873). In particular, Rosenbluth et al.

(1972) have shown that the rate of entropy production Is minimized In

the steady state of an axlsynmetrlc, toroidal plasma confinement system.

Rosenbluth et al. (1972) used this varlatlonal principle In evaluating

the neoclassical transport coefficients.

This leads us to consider the rate of entropy production In our

system. We first motivate our discussion of the rate of entropy produc

tion by using thermodynamlc principles to relate the entropy source to the

transport coefficients and the thermodynamlc forces, as this relation Illus

trates the central role that the entropy source plays In non-equlllbrlum

thermodynamics. We then proceed to show that the entropy source of the plasma-

wave system considered here Is stationary with respect to variations In the

electron distribution function that satisfy the constraints derived In Section 3.

In Nevlns (1977a) we used the Boltzmann definition of the entropy and the

drift kinetic equation, together with the small parameter (Ax/L) to show that

the wave phase averaged entropy density, S^, satisfies the equation

Tff®. =is _M(4.1)^ 3t 3t 3t

w Is the wave phase averaged electron energy density, n Is the wave phase

averaged number density, and M Is the chemical potential. Due to the aver

aging over the wave phase, the potential energy of the electrons Is Included •

In the electron energy density, w.
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We recognize Eq. (4.1) as a fluid version of the Thermodynamic Identity

(Landau and Lifshitz, 1958),

T dS = dw - M dn

Hence, we expect that, given suitable definitions of the entropy density,

the number density, and the energy density, an equation similar to Eq. (4.1)

can be derived for any system near thermal equilibrium.

To proceed in our discussion of the evolution of the entropy density,

we require equations for the evolution of n and w. These equations are

derived in Nevins (1977a) by taking the appropriate moments of the drift

kinetic equation.
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oh _ 8 T, // o\
at - - "iT

f =-^<5, +Ta„r^ (A.3)

where the 0-averaged fluxes, and are given by

r
e

d0 -3 £ // /\
^ d Vv^r ^ (4.4)

de j3 .1 2^ .. - (4.5)^ d vC^smv +e$)v^^f

and is the x-directed drift velocity

'dr = "f" %

An interesting feature of Eq. (4.3) is the energy source term,

T a« r . We show in II that this term describes the energy transfer
0 e

between the wave and the particles.

Combining Eqs. (4.1) through (4.3), we find that the entropy density

satisfies the equation
as .

= - ^ j + s. (4.6)
3t dx s e

where the entropy flux, J^, is given by

(4.7)
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and the entropy source, S^, is given by

(4-8)e 2^e

= Ai Fe + (4.9)

We may interpret the terms on the right hand side of Eq. (4.8) by

noting that the first term , results from heating of the plasma by

the wave, the second term is the contribution to the entropy source from

particle diffusion, and the third term is the contribution to the entropy

source from the transport of energy across the magnetic field.

The coefficients of the fluxes in the expressions for the entropy

source are the thermodynamic forces (DeGroot and Mazur, 1962). Hence,

Eq. (4.9) shows that the thermod3niamic forces acting on our plasma-wave

system are and A^. The force conjugate to the particle flux, A^, differs

from the thermodynamic force that one obtains in the absence of a wave, a^,
by the term a^, which arises from the heating of the plasma by the wave.

For a system near thermal equilibrium, the particle flux and energy

flux may be written as products of the thermodynamic forces and the

transport coefficients:

"^n ^ ^nm^m (4.10)
m

where the J's represent the fluxes and the L's represent the transport

coefficients. Combining Eqs. (4.9) and (4.10), we find that the entropy

source may be written as

S ^TalA f4ll^
e ^ n nm m

n.m



- 25 -

Equation (4.11) illustrates the importance of the entropy source

in non-equilibrium thermodjmamics. In Eq. (4.11) the entropy source

has been written as a bilinear form in the thermodynamic forces. The

coefficients of this bilinear form are the transport coefficients. Hence,

the transport coefficients may be obtained by evaluating the entropy

source in terms of the thermodynamic forces. The expression for the

entropy source may then be compared with Eq. (4.11), and the transport
the transport coefficients,

coefficients read off. We will use this strategy in Section 5 to evaluate^

We now proceed to show that the entropy source is stationary with

respect to variations in the electron distribution function. In order to

make the optimum use of the small parameters (Ax/L) and /'"^gouNCE '̂

we estimate the magnitude of the entropy source. The thermodynamic forces

of Eqs. (3.17) and (3.19) are of order (1/L). We expect the transport coefficients
2

to be proportional to Ax Hence, we must evaluate the entropy source
2

through order (Ax/L)

Multiplying the drift kinetic equation through by (l+^Kl f) and
' d 0 ' 3

applying the phase space averaging operator, d v, one immediately
J <

obtains an equation for the evolution of the entropy density in the form of

Eq. (4.6). The source term in this equation is

S = -
e 2it

d\ C (f) In f. (4.12)
— e

The distribution function is decomposed as in Eq. (3.10),

f = f (1 + f)
o

and the conservation of particles and energy in collisions is used to elimin

ate the terms involving

Through second order in (Ax/L), the remaining terms in may be

written in the form
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s =
e

dS ^ ^

2? (4.13)

where the local (in 6) entropy source, K^Cf.f) is given by the bi-linear

form

K (f,g) = -
e

d\ f C^Cf^g) (4.14)

From Eqs. (4.13) and (4.14), it is clear that an expression for f valid

to zero order in (^eff '̂̂ BOUNCE^ will be

sufficient to obtain to the desired order. Thus,we may use f^ of

Eq. (3.26) in evaluating the local entropy source.

To proceed in the derivation of a variational principle on the

rate of entropy production, it is necessary to show that the local

entropy source, K^, is self—adjoint. The local entropy source may be

written as

Kg(f>g) = (f,g) + K^^(f,g) (4.15)

The entropy source due to electron-electron collisions, K , is given

by

K,,(f.8) = -

K,i(f.g) = -

"IvfC (f|), (4.16)
ee ^ o

\i' entropy source from electron-ion collisions, is given by

3 A A
V f C^lCfoS). (4.17)

Cge(^) is the linearized electron-electron collision operator and C Is
ei

the electron-ion collision operator. Taking C to be of the Boltzmann
06

form, and using a Lorentz model for the electron-ion collisions it may be

shown that and are separately self-adjoint (see Appendix A). We

make use of this fact in Appendix D, where the contribution of electron-

ion collision to the particle diffusion coefficient is calculated.
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We now consider the effect of variations in the electron distri

bution function on the entropy source, S^. As we pointed out above, it

is sufficient to use f to describe the electron distribution function

"0
in the calculation of S . f has not yet been evaluated, but it is

e

known that f must satisfy the constraints derived in Sect. 3. In

^0particular the 0 dependence of f is determined by Eq. (3.26),

^0f = - Ax(A^+A2E)q + g(y, E, a)

^ 0
Hence, variations in f are equivalent to variations in the as yet unknown

function gCy, E, a). Varying the rate of entropy production as given

by Eq. (4.13) with respect to g, and using the self-adjointness of K ,
e

we find that variations in satisfy

58 = -2
e 277

3 "0
d V 6g C (f f )

— ° e o (4.18)

Upon changing integration variables from (0,v) to (0, y, E) and using

the fact that variations in g(y, E, a) must be independent of 0, Eq.

(4.18) becomes

68 7y
e 2

m V,

4B

TRAP

I E, o) d0

c (f f")
e o

(4.19)

58^ will vanish for all allowable 5g if, in the untrapped region of
^0

(E, y), f satisfies the condition

C (f f°)
d0 = 0

0
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In the trapped region of (E, y) space the function g, and hence gg, must

be independent of a [c.f., Eq. (3.24)]. Hence, in the trapped region.
^0
f must satisfy

®2 C (f f®)
d0 ^ = 0.

'^0
In Section 3 we showed that f indeed satisfies these conditions [c.f.,

Eqs. (3.23) and (3.25)]. Hence, we conclude that

(4.20)

for all allowable variations in the electron distribution function.

6S = 0
e
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5. EVALUATION OF THE ENTROPY SOURCE

In this section we evaluate the entropy source, S^, to lowest order

in the small parameter (e$^/T) . The particle flux and the energy flux

are then obtained by comparing the resulting expression for the entropy

source with Eq. (4.11).

The entropy source is evaluated in three stages. In the first stage

we commit ourselves to the Fokker-Planck form of the linearized collision

operator. Equations (4.13) and (4.14) are then used to write the entropy

source as a functional of the perturbed electron distribution function, f .

hThis functional is examined, and only the leading terms in (e$ /T)
o

retained. This procedure yields the much simplified functional approxi

mation to given in Eq. (5.13).

In the second stage the variational principle derived in Section 4

is employed together with Eq. (5.13) to evaluate the velocity derivative of

the perturbed distribution function, -r— . We note that requiring this

^ -0
approximation to to be stationary with respect to variations in f does

not simply reproduce the constraints derived in Section 3 because Eq. (5.13)

h.contains additional information, namely that (e$ /T) is small.

9f
In the final stage our expression for is substituted into the

z

simplified functional form for S^. After evaluating certain integrals we

obtain, in Eq. (5.25), an algebraic expression for S^. This expression is

bilinear in the thermodjmamic forces. Hence, it may be compared with Eq.

(4.11) to obtain algebraic expressions for both the particle flux and the

energy flux.
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In the first stage we require expressions for the local entropy sources,

K (f,g,) and K .(f,g). Rosenbluth et. al. (1972) use a Fokker-Planck
ee ei

expansion of the collision operator to show that these may be written as

and

K (f,g) =^ inA
m

K^i(f,g) =
m

'af af.
d\ d\ f (v ) f (v )

-a -b o a o b a3\ava3 avb^yiava^ avb

af

d^v d^v, f (v )f . (v ) V- .
-a b o a oi b a3 av' 1.- <^-2)

V - (v^-v^)

where a and 3 label the Cartesian components of vectors (summation over

repeated Greek subscripts is implied),

(5.3)

Afa A is the usual Coulomb logarithm and, in the limit of large mass

ratio, we may take the ion distribution function to be

foiCv) = n5 (v) (5.4)

Note that these expressions for K and K . are self-adjoint as required.

and that K (f,f) and K .(f,f) are positive definite. Thus>the entropy
ee ei

source, S^, is positive as one expects.

The expression for may be further simplified by recalling

that the derivatives of the perturbation in the electron distribution

function, f , have been assumed to be localized about the trapped region

(5.1)
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of phase space. Because of this localization, each integral of
-0

af

3v

over velocities in Eq. (5.1) reduces by the fraction of velocity

space occupied by trapped particles. In Section 2 we estimated this

fraction as \~Y~j I hence, to lowest order in is given by
ee

K
ee

Zire

m

mh
3 3 ^^a

d V d V, f (v ) f (v, ) V
-a -b o a o b a3 Svq Bv-.

Sa sg
(5.5)

The component of the velocity parallel to B, v^, together with the

wave phase, 6, determine the trapped region. The localization about

the trapped region leads us to expect that

at^ a!^
3v av

z x,y

(5.6)

We verify these assumptions about the derivatives of the perturbed

distribution function in Sect. 7. Using Eq. (5.6), we approximate the

entropy source as

' 2Tre -.
S = TT-

e 2
m

de

2ir

.3 . /af
d V f

- o\ av / s
z/ s

I d V f V
-s OS zz

where s labels the two species (electrons and ions), and

a = 1
e

= h

At this point it is helpful to introduce some new variables,

condition that a particle is trapped is

E - pB < e$

(5.7)

The

(5.8)
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where is the wave amplitude. This suggests that we define

X = (E - yB)/T

The trapped region of phase space is then determined by

X < e^^/T

(5.9)

(5.10)

We can exploit the fact that g in Eq. (3.26) is not a function of 6

by changing our variables of integration in Eq. (5.7) from (0,y) to

(0,X,E). The volume elements are related by

de ^^ (-^
^ m tel T

/e$

where a is the sign of the velocity-slip, q.

From Eq. (3.26) we see that

d0dXdE

-0
af

Sv V,

e$

G(E) + (-r^) q
âx

TRAP

where

G(E) =- Ax(A^ + A^E)

The rate of entropy production is then given by

(5.11)

(5.12)

/ 2 4A Air e
S = V

e
m

/e$ \-h

3 -te i
dSdXdE I F^(E) (5.13)

where

F (E) = a
s s

2t[ Iq

d V f V
- OS zz

av
z/ s

(5.14)

and we have used the fact that to lowest order in (Ax/L) and (e$^/T) ,

(E/T) W /T.
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We now evaluate by varying the entropy source with respect to

g(X,E, o). This variation together x-Tith Eq. (4.20) gives

'e$

latrapped
region

£6
2Tr

aG(E) +|ql(Af^)f] =0

The sum on o is to be taken only in the trapped region, where X <

3s
Solving for in the untrapped region, we obtain

t=-Rr <t>
Where we have Introduced the notation

<a(e)> E f|a(9)

We showed in Sect. 3 that g must be Independent of a in the
e$

o 9g
trapped region of phase space. Thus, for X < —;r- , is given by

T oA

and
av

-^ = 0
ax "

may be written as

a^^ ^ G(E)
^TRAP }- J

(5.15)

e$

(5.16)

(5.17)

(5.18)

(5.19)

where the term (l/(q))^ contributes only in the untrapped region.

Combining Eqs. (5.13) and (5.19) we find that the entropy source

is given by

(5.20)
•3 3/2^

S
e 2 eff

n m

dE fo(E) G (E) I F (E)
s

s
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eff
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and following Braginskii (1965) we take

_ 4(Zirj^e4

=^3J;1/2 (5.21)

I is defined by

'e$ \-^
IE • ° f I"! [\ - (<t>)J (5-22)

The integral I is a measure of the fraction of the available phase

space that contributes to the entropy source. The value of this inte

gral depends somewhat on the choice of the waveform, h(0). We have

evaluated this integral numerically using the waveform h(0) = cos 0

(see Appendix B). We find that, to lowest order in (e$ /T)'̂ , I is
o

given by

I =2^^^^ (0.69) (e$^/T)^ (5.23)

We now define the family of integrals

.k

n m
-̂T ^ j ^o(E) I
n th ^ ' o

k = 0, 1, 2 .

With these definitions, the entropy source may be written as:

, 2 r 2 2 2~

Sg =1.30 n j Ax +TI^A^ | (5.25)

(5.24)
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Equation (5.25) is the explicit evaluation of the entropy source that

we require. Comparing Eq. (5.25) with Eq. (4.11), and using the Onsager

reciprocity relations (Onsager, 1931) we may read off the particle and

energy fluxes:

Fe =-1-30 ° 3 <1 - ^) f +1.30 D(| Iq - I^) f f (5.26)
0 ne

Q =-1.30 D1,(1 -—) T.^+ 1.30 D(| I, - I„) n ^ (5.27)
Iwdx 212ax

ne

where D is a characteristic magnitude of the trapped particle transport

coefficients,
/e$ «

D=[-^) Ax (5.28)

and 0) is the electron diamagnetic drift frequency:
ne

0) (5.29)
ne eB n 9x

The energy integrals, I^, may be evaluated analytically (see Appen

dix C). We find

Iq = 1.73

I = 1.14

l2 = 1.89

Hence, the pseudoclassical fluxes are given by

r = -2.25 D (1- —) + 1.89 Df (5.30)
e (ji aX. 1 oX

ne

Q = -1.48 D (1- —) T - 0.23 D n ~ (5.31)
(ij dX dX

ne
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The heat flux, Q^, is simply related to the energy flux, Q^. Using
the conventional definition (Braginskii, 1965),

Qg =Qg- fire, (5.32)

we find

Q^ =4.15D(l- ;^)T|£-4.96Dnf (5.33)

The characteristic value of the pseudoclassical transport coeffi

cients, D , may be written as

® ^QL^^ff '̂̂ BOUNCE^ (5.34)

where

(5.35)
Z

is characteristic of the magnitude of the "quasilinear" transport coeffi

cients (Horton, 1976). Hence, the pseudoclassical fluxes derived here

are smaller than the corresponding quasilinear transport rates by the

factor (Vgff/"bounce^ "

This analytic calculation of the pseudoclassical transport coeffi

cients has been verified in numerical simulations of this transport mech

anism (Nevins et. al., 1977c). These numerical simulations include only

electron-ion collisions. The contribution of electron-ion collisions

to the pseudoclassical diffusion coefficient, , is obtained in

Appendix D, where we find

= 1.30 D (5.36)
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The diffusion observed in these computer simulations was correctly

described by Eq. (5.36) when inequality (2.8) was well satisfied

(i.e., /.JOUNCE and .



- 37 -

6. A MICROSCOPIC INTERPRETATION OF THE PARTICLE FLUX

A rather unusual feature of the expression for the particle flux

derived in Sect. 5 is that the particle flux can be directed towards

regions of higher density and temperature. One usually expects the

particle flux to be directed away from these regions. This behavior

is a collisional analogue of the phenomenea of plasma "pump-in" described

by Stix (1967) using quasilinear theory.

We can obtain a qualitative understanding of the es^ression for

the particle flux, Eq. (5.30), by considering the motion of a particle

in X and v^. In the absence of both collisions and the wave, v and x
z

are constants of motion. The collisions cause particles to perform a

random walk in velocity space. One might also expect collisions to

affect the guiding center position, x. In our model, collisions leave

X unchanged. This is because the drift kinetic equation is an equation

for the evolution of the gyro-phase averaged distribution function

(Hinton and Hazeltine, 1976; Hazeltine, 1973). Through first order in

(Ax/L), the collision operator in this equation is the usual Fokker-Planck

collision operator. This operator leaves the particle position unchanged.

Hence, the collision term in Eq. (3.3) does not affect the guiding center

position. As a consequence, our model does not include classical trans

port, which arises from the effect of collisions on the gyro phase de

pendent part of the distribution function (Hazeltine, 1973; Rosenbluth

and Kaufman, 1938).
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In our model the guiding center position is only affected by the

guiding center drift in the electric field of the finite amplitude

electrostatic wave. In calculating the particle flux (5.30) and the

energy flux (5.31), we have kept only the first order terms in the small

-"Y"*) . For non-resonant particles the change in the guiding
center position due to interaction with the wave is proportional to $ ,

and thus contributes to the transport at higher order than (—;r~) •
/e$ vSi ^ ^ '

Hence, the ordering in corresponds to neglecting the effect of

the wave on the non-resonant particles and considering only the interac

tion between the wave and the trapped or nearly trapped particles. These

*

particles move along orbits described by

? = v^ - Jbc = constant (6.1)
^ y

shows
Figure 2 /ythe trajectory of a typical particle in (x, v ) including

z

both collisions and the effect of the wave on resonant particles. The

particle performs a random walk in parallel velocities until it reaches

the resonant region. In the resonant region the particle oscillates

along a line of constant ? until it is scattered out of the resonant

region by the collisions. Then the random walk in parallel velocities

resumes.

Thus,particles that enter the resonant region near A will on the

average be transported to the right, while particles that enter the re

sonate region near A' will be transported to the left. The net transport

C is easily seen to be constant of the guiding center equaitions of
motion, including the effect of the wave. Recall that

® ® 1 A u f /V = ——k <J>h*(e)
z m3z mzo

. 1 9i^ ^y . , .
^ =- B-^=- Bso ^
i =Vz - IT °

y
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C = constant

Resonont

Region

FIGURE 2

This figure shows the motion of a typical particle in the
(x,v^) plane. While the particle is in the resonant region
it oscillates along a line of constant When the particle
leaves the resonant region, its guiding center position remains
essentially constant, while the parallel velocity changes due
to collisions with other particles.
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will be determined by the difference between the rates at which particles

are scattering into the resonant region at A and A*. These rates are

proportional to the value of the distribution function in the region

of A and A*.

For the purpose of gaining a qualitative understanding of the

pseudoclassical particle flux we may approximate the distribution func

tion by a local Maxwellian. In Fig. 3 we show a contour plot of this

distribution in the (x,v ) plane.
z

We have isolated the dependence of the particle flux on the density

gradient by choosing the number density to be decreasing with x while

the temperature is chosen independent of x. If the particle orbit in

the wave is oriented like the segment (A, A*) in Fig. 3, then there will be

more particles at A than A' and the net particle flux will be down the

density gradient. On the other hand, if the resonant particle orbits

are oriented like (B, B*) there will be more particles at B' than at B

and the net particle flux will be up the density gradient.

Evidently the direction of the particle flux due to a gradient in

the number density is determined by the relationship between the slope

phase space density, f,
of the lines of constant A the resonant region of (x,v ) and

z

slope of the particle orbits in the wave. When the contours of con

stant f in the resonant region have a steeper slope than the particle

orbits, the flux is directed down the density gradient.

The lines of constant phase space density are defined by

-mv ^/2T
n(x) e = constant. (6.2)

Differentiating we obtain

1 j niv

(6.3)
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FIGURE 3

A contour plot of a local Maxwellian distribution function
-x/L

in the (x,v ) plane. The density falls off like e . Hence
z

the distribution function takes on its maximum value in the lower

left hand corner and falls off toward the upper right hand
corner. The line segments (A,A'), and (C,C*) illustrate
three possible orientations of the resonant particle orbits
relative to the contours of constant density.



- 42 -

Solving for the slope in the resonant region (where v == v ) , we find
z (j>

that

2
dv

z = ^ 1 iE . /fi ANconstant w n dx *
density

dx

The resonant particles satisfy Eq. (6.1). Hence, the slope of

the particle orbits is given by

dv
z

dx

k

= -ir"- (6.5)particle k
orbit y

Comparing Eqs. (6.4) and (6.5),we find that the particle flux will be

directed down the density gradient when the wave frequency satisfied

the condition

< 1 (6.6)
0)

ne

The particle flux is directed up the density gradient when this condi

tion, (6.6), is not satisfied.

This conclusion about the effect of the wave frequency on the

direction of the particle flux does not depend on the relative signs

dnchosen for k^, k^, o), or —. In plotting Figures 2 and 3, we have
dntaken k and k to be positive. — was chosen to be negative so that

y z cix

the electron diamagnetic drift frequency, would be positive [cf.

dnEq. (5.29)]. The sign of the coefficient of ^ in our expression for the par

ticle flux, Eq. (5.30), is only in doubt when the wave frequency has the same

sign as the drift frequency. Thus^ we have chosen oj positive in order to

gain a qualitative understanding of a process that leads to the transport of



- 43 -

particles up the density gradient. A different choice of the sign of

ky or k^ would result in similar conclusions, although one might have

to look at a different quadrant of the (x, v^) plane. If the wave

parameters are chosen such that is negative, then we obtain an orbit
ne

like the segment (C,C*), shown in Figure 3. Since there are more

particles at C than C*,the net particle flux will be directed down the

density gardient in agreement with condition (6.6).

Referring back to our expression for the particle flux, we see

that the expected dependence of the direction of the particle flux on

the magnitude of. the wave frequency is contained in Eq. (5.30) through

the factor of (1 —) multiplying ^ .
ne

The effect of a temperature gradient on the particle flux may be

isolated by considering a distribution with a temperature gradient, but

no density gradient. Since the electron diamagnetic drift frequency,

goes to zero with the density gradient^ it is convenient to include

the dependence of the particle flux on the wave frequency by writing

the particle flux in the form:

= +2.25 Df (0.84+^) f (6.7)
Te

where

_ 1 ar

'^Te" eB T 3x

In Figs. 4 and 5 we have plotted distribtuions in which the

tenqperature, T, decreases with x, while the number density, n, remains

constant. The shape of the contours in these figures is affected by

the choice of the perpendicular energy. Figure 4 shows the distribution

2
in X and v at a relatively low perpendicular energy, ^smv = There

Z jL

are fewer low energy particles in the region of higher temperature than
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FIGURE 4.

A contour plot of a local Maxwellian distribution function
in the (x,v ) plane. The temperature gradient is directed

z

to the left, while the density gradient has been set equal
2

to zero. We have taken JsmVj^ = JsT in making this plot. The

maximum density contour is in the lower right hand corner of
this figure.

V
*

0.25
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FIGURE 5.

Contour plot of a local Maxwellian distribution function in
the (x,v ) plane. The temperature gradient is directed to
the left. The density gradient has been set equal to zero.
We have taken ismv^ =2T. The maximum density contour is now
in the lower left hand corner.



- 46 -

in the region of lower temperature. The segment (A,A') in Fig. 4

shows the orbit of a resonant particle in a wave with frequency u

satisfying ("^) > 0, There are more particles at A' than at A, so the

flux of low energy particles will be directed up the temperature gradient.

2In Figure 5 we have chosen a relatively high perpendicular energy igmv^^

= 2T . There are more high energy particles in the region of high

temperatures than in the low temperature region. For resonant particle

orbits oriented like (A,A*), the flux of high energy particles is directed

down the temperature gradient. If the resonant particle orbits are

oriented like then the flux of particles with this perpendicular

energy will be directed up the temperature gradient. We again determine

the direction of the particle flux by comparing the slope of the contours

of constant density to the slope of the resonant particle orbits. The

density contours are defined by

T exp|- mv^ + h mv^ ) = constant
L T 1 z J

Thus, the slope of the contours of constant density in the resonant

region is given by

2 /, 2
dv

z

dx

3)1 ar
constant m \ T 2 / T 9x
density

Comparing Eq. (6.9) with Eq. (6.5) we see that the particle flux will

be directed down the temperature gradient provided

2
, mv o

(6.10)
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To determine the direciton of the net particle flux we must replace

the perpendicular velocity in Eq. (6.10) by some sort of average over

the distribution of perpendicular velocities. In this average the

slower particles should be given a larger weight than the faster parti

cles because the collision frequency is a decreasing function of velocity.

Thus it is not surprising that the replacement for h mv in Eq. (6.10)

2by -j T reproduces the dependence of the direction of the particle flux

on the wave frequency given by Eq. (6.7).

We have shown that collisional plasma "pump-in" can be understood

by examining the orbits of resonant particles in the (x,v^) plane. In

II we will show that a particle flux directed up the density gradient

(pump in) is accompanied by a transfer of energy from the finite ampli

tude wave to the electron distribution, while a particle flux directed

down the density gradient (pump out) is accompanied by a transfer of

energy from the electron distribution to the wave. Low frequency

drift waves have positive energy. Hence,collisional plasma "pump-in" can

only be sustained if the wave is driven by something other than the

resonant .electrons; e.g., an external signal, another linear instability

mechanism, or a nonlinear decay process.
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7. THE PERTURBED DISTRIBUTION FTJNCTION

In this section we will find the steady state electron distribu

tion function that minimizes the entropy source. This distribution

function describes the response of the electrons to the finite ampli

tude drift wave, and includes the effect on the distribution function

of trapping of the resonant electrons by the wave. We have three

objectives in this examination. The first is to show that the assump-

tions made in Sect.5 about the velocity derivatives of f are in fact

satisfied. The second objective is to obtain a qualitative picture of

the distortion in the electron distribution function caused by the

trapping of the resonant electrons. Finally we calculate the electron

(e) (e)
susceptibility, x » find that Im x vanishes through zero order

in (^eff/^BoUNCE^ * implications of this to the stability of the

wave will be investigated in II.

We begin this examination by considering the expression for ^
oV

^0

Z

that was obtained by minimizing the entorpy source. In Sect. 5 the

entropy source was evaluated to first order in the small parameter

h. h.(e$ /T) . To first order in (e$ /T) , the entropy source is unaffected
o o

by the addition of a term of the form d(0) to af / 9v , provided that
z

d(e) < (e$ /T)'® (Ax/L) (7.1)
te

Hence, 3l^/3v has only been determined to within a term satisfying
z

(7.1).
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Referring to Eq. (5.19), we write 9f /dv as
z

^TRAP _ [l _/ 1 \ 1 .
Gihmv^h^ '̂z V'̂ Vu. V, (7.2)

where we have used the fact that, to lowest order in (Ax/L) and (e$ /T)
o '

2E may be replaced by h mv^ as the argument of G. The term (1 /<q))^
-0,contributes to SE /9v^ only in the untrapped region of phase space. The

wave phase average of q may be expressed on terms of elliptic integrals

(see Appendix B) . Using the definition

/.

r =

.q^ + 4 sin^(e/2)_
0

we may write in the form

TRAP 9f

Gih mv.^)
= 1 -

Z E(r)

(7.3)

mi. (7.4)

where the untrapped region of velocity space is that region in which

r <1. E(r) is a complete elliptic integral of the second kind (Gradshteyn

and Ryzhik, 1965).

S'F
In evaluating the entropy source, -r— was assumed to be localized

3f°about the trapped region of velocity space. In Fig. 6 t— is displayed
oV

z

as a function of the velocity-slip, q = '̂ ^TRAP* several values

of the wave phase, 0. We see that 9f" is indeed localized about the
9v

trapped region, q < 1.
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(c)
FIGURE 6. 9f°/8v is displayed as a function of the dimensionless velocity-

z ^

slip, q. The discontinuity in 9f°/9v^ occurs along the separatrix
between trapped and passing particle orbits. The dashed line shows

the approximation obtained by using linear theory.
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The perturbed electron distribution function, may be obtained

by integrating Eq. (7.4) with appropriate boundary conditions, is

the perturbation in the electron distribution function due to the finite

amplitude wave. The orbits of electrons with parallel velocities far

from the trapped region (i.e..with q » 1) are only slightly perturbed

by this wave. Hence, the linear procedure of integrating along un

perturbed orbits will yield the correct perturbed distribution function

in the limit of large q, q » 1. This approximation, . , is
\^ /linear'

* /af \ ^shown in Fig. 6 as a dashed line. We see that f-r^L indeed
\9v^/linear

converges to Eq. (7.4) in the limit of large q.

^0The dependence of f on v^ may be determined by integrating

Eq. (7.4) numerically. The dependence of f on v^, v , and 6 is de

termined by requiring as our boundary condition, in this numerical in-

tegration, that f match smoothly on to the perturbed distribution

function of linear wave theory in the limit of large q. The resulting

perturbation in the electron distribution is shown in Fig. 7 together

with the corresponding linear perturbation.

it

Linear theory gives

\ Gih mv ^) ^
^ ^ ± cos 0(#I/linear ^2

This result may be obtained by integrating Eq. (3.13) over 0,
while ignoring the 0-variation of q.
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FIGURE 7. f is displayed as a function of the dimensionless parallel

velocity, q. The asymptotic dependence of f obtained from linear

theory is indicated by the dashed line. The linear procedure of

integrating along unperturbed orbits determines the distribution
function to within a constant. We have chosen this constant as

al.38 G(%nVj^), where a=q/iq This 0 dependence is necessary

because a direct numerical integration of Eq. (7.4) shows

f®(q =+oo) _ f^(q =-oo) =2.76 G(%nv^).
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'^0In matching f with the perturbed distribution function from

linear theory, we find that depends on v and v only through the
2 ^factor G(h mv ). Hence the derivatives of f® with respect to v and

X

Vy are given by

''0
af 7.0 1^ = f r~"9v G(Jg mv )

x,y G(%mv ) x,y

Figure 7shows that f®/G(Jg mv^^) < 2. Using Eq. (5.12) we may
estimate the magnitude of these velocity derivatives as

af „ Ax 1 .
9v L V.

x,y te

^0
From Eq. (7.4) we may estimate the magnitude of as

dv
Z

gJO G(is mv^^)
9v V

z TRAP

(7.5)

(7.6)

^0
Comparing Eqs. (7.5) and (7.6) we see that is smaller than

9f^ ^by a factor of (e^^/T) . Hence, the assumptions made about the

velocity derivatives of f in Sect. 5 are all satisfied provided that

(e$Q/T)^ « 1.
We may reconstruct the electron distribution function through

first order in (Ax/L) and zero in (^^ff/^goUNCE^ using f^ together
with Eq. (3.10). The form of the resulting electron distribution function
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A.

depends on the three parameters (v^/v^^), (e$^/T), and »
where following Kadomtsev and Pogutse (1970), we have defined

k T
"a - y 1 1 3T"] -v

Figure 8 shows the electron distribution function averaged over both

the perpendicular velocities and the wave phase. We have chosen the

parameters (v./v ), and (aj*/k v ) such that the linear instability
(p tl6 Z t0

A

condition of the collisionless drift mode (Kadomtsev, 1965), (o < w,

is satisfied.

This figure shows that the trapping of the resonant particles

by the drift wave causes the distribution function to become steeper

near the phase velocity of the drift wave. This qualitative feature of

the distribution function is a signature of particle trapping by an

unstable drift wave. Steepening of the electron distribution function

near the phase velocities of unstable drift waves has been observed in

computer simulations of the nonlinear saturation of the collisionless

drift mode (Lee and Okuda, 1976; Cheng and Okuda, 1977). The distribu

tion function observed at saturation in these computer simulations is

similar to the distribution function shown in Fig. 8.

Quasilinear diffusion may also cause the distribution function to

become steeper in the resonant region of velocity space (Sagdeev and

Galeev, 1969). It is possible to determine which of these mechanisms

is responsible for the steepening of the electron distribution function



- 54 -

f(x,v,)

4>

-4.0 -3.0 -2.0
3.0 4.0

te

FIGURE 8. The electron distribution function at constant x. It has been
averaged over v and 9. In this figure (v./v^ ) , (d)*/k v ). and

(e({»^/T) have been chosen as 0.25, 1.0, and 0.1 respectively.
The distribution function is distorted due to the trapping of
the resonant electrons by the wave. This results in a steepening

of the distribution function near the phase velocity of the drift

wave. The unperturbed Maxwellian distribution is shown by the

dashed line.
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by examining the fluctuation spectrum of the drift waves. The evolution

of the distribution function is determined by quasilinear theory when

the auto-correlation time^is shorter that the bounce period of particles

trapped in the waves, i.e., when 1* Particle trapping

occurs in the opposite limit, » 1. Hence, the auto-correla-

tion time of the drift wave fluctuation spectrum will determine which

mechanism is responsible for the distortion in the electron distribu

tion function.

The steepening of the electron distribution function in the resonant

region is in conflict with the intuitive notion that both particle

trapping and quasi-linear diffusion should cause the formation of a

plateau in the velocity distribution function. This conflict may be

resolved by considering the orbits of resonant particles. Both particle

trapping and quasi-linear diffusion (Sagdeev and Galeev, 1969) affect

the distribution function by displacing particles along these resonant

orbits. In Section 6 we showed that these orbits are described by

k
2

r = V - •;— = constant
^ z k

y

Hence, the flattening of the distribution function due to particle

trapping may be observed by plotting the distribution function versus

V at constant rather than at constant x.
z

Figure 9 shows the velocity distribution at constant The

/V A

center of the distribution is displaced in velocity by an amount v* = a)*/k .
z

This displacement results from taking the particle distribution to be

a function of (v , ?) rather than (v , x). The phase velocities of waves
z z

A

satisfying the linear instability condition, o) < (o* now fall to the left
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-1.0 0.0

^te

1.0 2.0 3.0

FIGJRE 9. The electron distribution function at constant C, averaged over
h

V and 0. The parameters (v,/v^^), ((jii*/k v^ ) and (e$ /T) have
1 9 te z te o

again been chosen as 0.25, 1.0, and 0.1 respectively. The trap
ping of resonant electrons results in the formation of a plateau
in the distribution function about the phase velocity of the drift
wave. The corresponding Maxwellian distribution is shown by the
dashed line. It is interesting to note that the linear growth
rate of the drift wave is proportional to the derivative of this
Maxwellian distribution, taken at constant C-

4.0
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ot the central maximum in the velocity distribution function. Figure

9 clearly shows that the dominant effect of particle trapping on the

distribution functibn is the formation of a plateau along trapped

particle orbits.

We have shown above (cf. Fig. 7) that linear theory yields a good

approximation to the perturbed electron distribution function everywhere

except in a narrow band about the trapped region of velocity space.

Since this region is small, we expect that the real part of the electron

(e)susceptibility. Re x will be reasonably approximated by linear wave

(.&)theory. We have investigated the dependence of Rex on the wave

amplitude by numerically integrating the perturbed distribution function

over both v^ and 6. We find that the percentage error introduced by

using linear wave theory to approximate the real part of the electron

2susceptibility is of order (e$^/T) .

These numerical investigations of the electron susceptibility

also show that the imaginary part of the electron susceptibility, Imx^®^,

vanishes through zero order in f/^goUNCE^* result may be ob-

tained analytically be noting that the 0 dependence of f is given by

Eq. (3.26). When the waveform is chosen as h(0) = cos 0, f will be

an even function of 0. Hence,at zero order in (^eff/^goDNCE^ electron

charge density.

Pg = -e
3d V f (1 + f")

- o

(e)is also even in 0. Imx is proportional to the coefficient of sin 0

in the Fourier expansion of the electron charge density. Since sin 0 is

an odd function of 0, this Fourier coefficient must vanish identically.
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We now summarize this investigation of the electron response to

^ amplitude drift wave* Note that the dominant effect of parti~

cle trapping on the electron susceptibility is the vanishing oflmx^^^

at zero order in (^eff'̂ ^BOUNCE^ * linear theory (Kadomtsev, 1965)
(e)

Im X results from the Landau resonance between the drift wave and

the electrons. The physical mechanism for the wave growth that results

from this Landau resonance is the transfer of energy between the

resonant electrons and the wave (Jackson, 1960). We have seen that the

trapping of particles by the wave causes the distribution function to

flatten along resonant particle orbits. The energy transfer between

the electrons and the wave ceases when this flattening occurs. Hence,

it is not surprising that the imaginary part of the electron susceptibili

ty vanishes through first order in (^gff'̂ ^BOUNCE^ resonant

electrons become trapped by the finite amplitude drift wave. In II we

will show that when collisionaT effects are Included these trapped

(e)electrons give rise to a nonlinear Imx ' proportional to the electron

collision frequency. This nonlinear Imxreplaces the Landau resonance

of linear theory when the resonant electrons become trapped and the wave

reaches a steady state.
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8. CONCLUSION

This concludes the derivation of the enhanced fluxes of particles

and energy due to the trapping of resonant electrons by a finite ampli

tude drift wave. Our main results are Eqs. (5.30) and (5.31), which

give expressions for these pseudoclassical fluxes in terms of the wave

parameters w, k, and (e$^/T). These expressions for the pseudoclassical

particle and energy flux are analogous to the "quasilinear" expressions

for the particle and energy flux (Stix, 1967) in that they provide a

prescription for relating the drift wave spectrum to the transport

rates.

Previous authors (Pogutse, 1972; Cell and Nevins, 1975) have

used expressions similar to our Eq. (5.31) together with order of magni

tude estimates of (k^/k^) and (e^^/T) in order to compare the energy

transport rates given by this theoretical model to the energy loss

rates observed in tokamak plasmas. While these estimates demonstrate

that the transport mechanism described above may be important in deter

mining the energy containment time, they do not provide useful transport

coefficients because the estimates of (k^/k^) and (e^^/T) are very uncer
tain. These estimates do not even provide reliable scaling laws because

it is not at all obvious how the drift wave spectrum, which determines

(ky/k^) and (s^q/T), will be affected by changes in the magnetic field

strength, the number density, the temperature, or other plasma parameters.

Rather than estimating (k^/k^) and (e$o/T), a complete treatment

of pseudoclassical transport must provide a means of calculating these

quantities. Such a treatment of pseudoclassical transport requires
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knowledge of the drift wave fluctuation spectrum. The calculation of

this fluctuation spectrum is the central problem in determining the

anomalous transport associated with low frequency drift waves. Hence,

it is important to understand the relation between the pseudoclassical

transport theory considered here, and other work on the anomalous

transport associated with low frequency drift waves (e.g., Horton,

1976; Liu et al., 1976).

In the companion paper, II, we extend the previous work on

pseudoclassical transport by deriving a complete set of equations

describing the evolution of both the wave and the background plasma.

We find that the pseudoclassical transport theory considered here is

associated with the nonlinear development of the "collisionless" drift

instability (Galeev et al., 1963), and we clarify the relation between

pseudoclassical transport theory and other work on low frequency drift

tvaveb.
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Appendix A - SELF-ADJOINTNESS OF THE LOCAl ENTROPY SOURCE (Sect. 4)

In deriving our variational principle on the rate of entropy pro-

A.

duction,we have used the fact that the local entropy sources, K^^(f,g)

and K (f,g) are self-adjoint. In K this property follows directly
ei 6®

from the nature of two body collisions, while the local entropy source

/N /V

due to electron-ion collisions, K^^(f,g), is self adjoint in the limit

of small mass ratio, when the ions may be approximated by massive, fixed

scattering centers.

The effect of two body collisions on the velocity distribution func

tion is described by the Boltzman collision operator:

'̂ "a''ab^"a>l^-^l ^®aV8a"8b">
The subscripts a and b label the colliding particles, v and v. are the

—a D

particle velocities before the collision. and 2^" are the particle

velocities after the collision, describes the angle between the initial
a

and final velocities of particle a. ^ab^^a^ scattering cross

section, g and g, are the velocity distribution functions evaluated at
"a b

the initial velocities, while g " and g " are the distribution functions
Si D

evaluated at the final velocities. We assume that these velocity dis

tribution functions are nearly M^xwellian, and write them in the form

g = g^Cl + g) (A.2)

where g is a Maxwellian distribution,
o

Linearizing the Boltzmann collision operator in g yields

^ab^Sa) = + (a.3)

®oa8ob<®a+®b^ " Soa"Sob"^V"^®b"^]

In Eqs.(A.l) and (A.3) the collisions are described by the initial
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velocities, (v jv. ), and the scattering angle, . The final velocities,
a D a

(v are to be viewed as functions of (v ,v, ). The relations
a D —a —o a

between (v ,v, ) and (v ",v, ") are determined by the kinematics of
d D S D

elastic, two body collisions. It follows from these kinematic consider

ations that

IVVI °

The collisions may also be described by the final velocities,

(v ",v, ") and ", the angle between the final and the initial velocities
—a —D a

of particle a. It can be shown that the Jacobian of the transformation

between the variable set (v^,y, ) and the set (v ",v, ") is equal to
—a —D a —a a

one. We also use the relation

wbirh follows from the principle of detailed balance.

Using Eqs. (4.16), (A.3) and (A.5) the entropy source due to electron-

electron collisions may be written in the form

K (f,g) = - / d\ df^ cj (SI ) |v -y, | f (v )f (v, )f g
ee J —a a ee a '—a -b' oe a oe b a a

- d^y^ dS2 o (n ) |v -y^ | f (v )f (v, )f g,
J —a -H) a ee a '—a —b' oe a oe b a^/' o o (^•7)

dvdy^dfi o (fi) v -v | f (v )f (v, )f g "
—a "Hj a ee a "~a oe a oe b a a

+fd\ d^y. dS2 0 (S2 ) |v -v | f (v )f (v, )f g, "
J —a -H) a ee a '—a —b' oe a oe b a b

where f is the Maxwellian distribution function that relates the argu-
oe °

ments of the functional K^^(f,g) to both f and g. i.e..

and

f = f (1 + f)
oe

8 = + 8)
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We make the following changes in the integration variables:

1^^ term no change

2""^ term

term (2a':^b''V

term (V'V. ) * (v ")
—a —b a —a b

where describes the angle between 2^^ and while describes the

angle between and Vj^. We use the fact that for like particle collis

ions

and

a(fi ) = a(fi )
a b

dfi = dJ^,
a b

together with Eqs. (A.4) thru (A.6) to obtain

K (f,g) =- /d\ d^v.dJ2 a (fi ) |v -v, | f (v )f (v, )g f
ee J -a-baee-a. '-a —b' oe a oe b^a a

- fd^\^d^v dfi a ) |v -v, | f (v, )f (v )g, f
J —h —a h ee b '—a -H>' oe b oe a b a

+/d\ "d\"d!2 " o (a ") |v "-v^"| f (v ")f (v,")g "f
J —a. -b a ee a '-a —b ' oe a oe b ®a

+fd\"d\"da" a (!2 ") |v "I f (v^")f (v ")£ "f
y -b —a b ee b ' '-a —b ' oe b oe a ^b a

Comparing (i^.8) term by term with (A.7) we find

. ^ A* . - /N ^ ^

Kge(f.g) = K^g(g,f). (A.9)

In calculating the entropy source due to electron-ion collisions

we take the ions to be fixed scattering centers. Then the ion distri

bution function is given by

f^(v) = n^ 6(v) (A.10)

and relations (A.4) and (A.5) become

lv^"| = |v |̂ (A.4')

%n V"^ = igm V^ (A.5')
a a a a
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Using Eq. (4.17) together with (A.10) and (A.5') the local entropy source

due to electron-ion collisions may be written as

KAf.e) =-n. fd\ dfi o .(Q ) |v 1f (v )f gei ±J —a a ei a '—a' oe a a®a

+n. /d^v dfi a (fi ) |v I f (v )l g "
±J —a a ei a '-a' oe a a^'a

(A. 11)

Changing variables in the second term from to the set

and using (A.4'), (A.5') and (A.6), we find

K^^Cf.g) = a^^(£2^) 1^1
(A. 12)

a

Comparing Eqs. (A.12) and (A.11) we see that K^^(f,g) is indeed

self adjoint.
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Appendix B - EVALUATION OF THE INTEGRAL I (Section 5)

I is defined as

, E/T .271 r, , ,2

e$where 6= o (B.2)

and the term in only contributes in the untrapped region. We

take the wave form to be

h(0) = COS0 (B.3)

It then follows from Eqs. (2.2), (3.6) and (5.9) that q may be

written as

i<
q = a 2 u (B.4)

where

u =̂ ^ +COS0 j (B.5)
We first calculate the contribution to I from the trapped particles

|i|. (B.6)

Using Eqs.(B.4) and (B.5), I^ may be written as,

•'0 -COS0 (X+COS0) ^

Performing the integral over x we have,

i.9 f d0 /II Q= 2 6 ^ — (1 + cos 0 ) .

Using Gradshteyn and Ryzhik (1965) Eq.(2.576.1) we find.

It = (B.7)
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The contribution to I from the untrapped particles is given by

1. fE/T
1=6

u
dX <i> - i

" e <">0

Thus, we must calculate <—) and <u ) .
U « Q

Using Gradshteyn and Ryzhik .(2.576.1) we write ^u). as
0

<u>. = 2^^^ -Ip/ ->
0 r E (r)

(B.8)

(B.9)

where E(r) is a complete elliptic integral of the second kind and r is

given by:

' 2 6
r =

X+6

Similarly we have

i> J fUg Jq
(s +

Using Gradshetyn and Ryzhik V Eq. (2.571. 4) this becomes
(1965)

1 2^<-> = -rK(r)

0

(B.IO)

(B.U)

(B.12)

where K(r) is a complete elliptic integral of the first kind. Combining Eqs.(B,8),

(B.9) and (B.12) we write the contribution of the untrapped particles to

I as

I =

" "6

Changing our integration variable from X to r we find

r"[7 r K(r) - 2

u 2"'® 7 .2
J r

I =23/25% f d£
0 '

I K(r) - 2^
J E(r)J
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where

A = 2
1

= o3/2.^
2

0 r
f K(r) - B.15)

I E(r) J
TT

and

- r 25^ [(E/T) +5J • (B.16)

Over most of the occupied region of phase space (E/T) ~ 1, so that

he = 0(5) . Hence, we may estimate the magnitude of Aby replacing the

elliptic integrals K(r) and E(r) by their small argument expansions.

The lowest order nbnvanishing contribution to A is then found to be

e

0

7 °)'

The contribution of A to I is fourth order in our expansion parameter

hS . Hence, this term may be neglected.

The remaining term in (B.14) may be integrated numerically.

We find

'i/2 i<
= 2^'^ 6^ (0.05276...) (B.17)

Finally we combine Eqs. (B.7) and (B.17) to obtain

1= 2 '̂'̂ (e$^/T)^ (0.69) (B.18)

It is interesting to note that the contribution of the trapped par

ticles to I is an order of magnitude larger than the contribution of the

untrapped particles. Hence,the trapped particles provide the dominant

contribution to the entropy source.
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Appendix C- EVALUATION OF THE INTEGRALS 1^^ (Section 5)

We wish to evaluate integrals of the form:

T _ Stt T
k T? nT? JdE(|)So(E) 2^3 ® (C.l)

k = 0,1,2

et. al. (1972)
It is shown by Rosenbluth A that the functions Fg may be written as:

Fc(E) = h nT /e \-3/2/e\
ms

If Erf If ^(2^ I. 1) Erf i^^f
W T/ \me T/ \ nig T / V^e T/

where a_ is^ given by:

% = 1.

ai = Js .

Thus Fg(E) may be written as:

Fp(E)

where

T-3
X

••(ff

X Erf*(x) + (2x2 - 1) Erf(x)

and Erf(x) is the probability integral defined by

-t2
Erf(x)

To lowest order in

_ A
TT^ Jq

/®e\^n I—j , Fj^(E) may be written as:

Fi(E) = 2'̂ n

(C.2)

(C.3)

(C.4)

(C.5)

(C.6)

We find it useful to treat the electrons and ion terms separately. Thus

we write

T _ T 1 X y -,v

k \ \ (C.7)
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where

^B (if (G.8)
and

/dE (!]'' f„(E) Fi(E) (C.9)
^ involves only the electron-electron collision operator, while

involves only the electron-ion collision operator. In evaluting these

integrals it is helpful to express fQ(E) in terms of the probability

integral Erf(x) as:

n /me\3/2 »

° "ait?

'•(tf-'
e—e

A. Evaluation of

Using Eqs.(C.4), (G.8), and (C. 10), 1^^ may be written as:
00 /(x)|x Erf (x) +(2x^ -1) Erf(x)|

k = 0,1,2.

In evaluating (C.ll) we need integrals of the form

211-1 ^ '2, .
J X Erf (x) (C.12)
'0

I = 1,2

21 „=y dx X̂ Erf(x) Erf(x) (C.13)
Z = 0,1,2

00 ^

L=y dx X̂ Erf (x) |x Erf (x) - Erf(x)j (C.14)

The definition of the probability integral, (C.5), may be used to express

the integrals as

_ 4 , 2£-l -2x^
h ® (C.15)
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1 r i-1 -u
= / du u e

2 ^TT -A)

(C.16)
2 IT 2 IT

A = 1,2

(Gradshteyn and Ryzhik, 1965)
where the definition of the gamma function rfH) has been used in obtaining

(C.16).

In evaluating the integrals the definition of the probability

f II

integral is used to express Erf (x) in terms of Erf (x)^

Erf'(x) =- ^ Erf"(x). (C.17)
Thus (C.12) may be written as:

00

1 C 1 "
=--^/dxx -^ Erf(x) Erf (x). (C.18)

% 2^0

may be integrated by parts. The boundary terms vanish, leaving

oo

J y dxErf'(x)|̂ (C.19)

Performing the differentiation and comparing the resulting terms with

Eqs.(C.12) and (C.13), we find that the integrals obey the recursion

relation:

% = I

It remains to evaluate and L. From Eq. (C.13) we find
00

K- =^ dx Erf (x) Erf(x). (C.21)
•'o

This integral is easily performed giving

Kg =I (C.22)
The integral L may be evaluted by re-writing (C.I4) in the form:

Erf(x) 1L=/* dx Erf (x) jp
•'0
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integrating by parts we obtain

L.[Erf(x)^Erf'(x)| "_r Erf(x) Erf (x) ^ ^^ ^4)
0 ^

Using (C.17) we may write (C,24) as

I- =[o -f) + [Erf^(x)j
giving

L = -0.273 (C.25)

Using Eqs.(C.ll) through (C.14) we may write the integrals as
iC

= L + 2Kq (C. 26a)

= J], + - Kq (C.26b)

I2®'® = ^^2 ^*^2 " *^1 (C.26c)

The value of the Integrals J , K , and L given byEqs. (C.16), (C.25),

(C.22), and the recursion relation (C.20) are summarized in Table C-1,

e—0while values for 1^^ are given in Table C-2.

e—i
B. Evaluation of I,

k

Using Eqs. (C,6), (C.9) and (C.IQ) we write I, ^ ^ as
k

00

I,® ^ =f dx Erf (x) . (C.27)

Thus we must evaluate the family of integrals

'0

/2i '
dx X Erf (x) . (C.28)

Using (C.17) this can be written as
00

1 C 2l-lM^ =--y dx X Erf (x) . (C.29)

Integrating by parts and using (0.28) we find the recursion relation:

oo_i

\ = — «i-l • (^-30)
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Mq may be evaluated directly from (C,28). We find

% = 1 (C.31)

The values of the integrals are given in Table C-1, while the

values of are given in Table ^-2,
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0 1 2

X 0.318 0.159

0.5 0.409 0.693

1.0 0.5 0.75

L = -0.273

Table C-1.

Values of various integrals needed in
evaluating the energy integral 1^.

0 1 2

e—e

0.73 0.64 1.14•H
1

0)

M

1.0 0.5 0.75

1.73 1.14 1.89

Table C-2.

Values of the energy integrals,
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Appendix D - ISOLATING THE TRANSPORT DUE TO ELECTRON-ION COLLISIONS
(Section 5)

In con^aring the transport coefficients predicted by this theory

with the results of numerical experiments (Nevins and Harte, 1977), it is

necessary to include only the contribution of electron-ion collisions to

the transport coefficients. We showed in Appendix A that the local entropy

sources, and are separately self-adjoint. Hence, the derivation of

the pseudoclassical flux presented in Section 3-5 goes through as before

when only the electron-ion collision term is retained.

In the algebraic expression for the entropy source, Eq. (5.25), only

the contribution of the electron-ion collision operator should be included

in calculating the energy integrals, I^. The contribution of electron-ion
0"icollisions to these energy integrals, I^ , is calculated in Appendix C,

By comparing Eq, (5.25) with Eq. (4.11) we find that the coefficient

of particle diffusion, P, is given by

V= 1.30 D I^ p.l)

Hence the contribution of electron-ion collisions to this diffusion coeffi-

e—i
cient, V , is given by

P®"^ = 1.30D, (p.2)

where we have used the result from Appendix C that 1^ =1.0, and we recall

from Section 5 that

Hence,

D = 1-^1 fix .

= 1.30 (p.3)
z
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