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ABSTRACT

A self-consistent theory of the evolution of a plasma slab

supporting a finite amplitude drift wave that has trapped the resonant

electrons is presented. In Part I it was shown how the trapping of reso

nant particles affects the particle and energy flux driven by the wave.

Here in Part II this previous work is extended to include the effect of

particle trapping on the evolution of the finite amplitude wave. The

connection between this theory and other work, using quasilinear theory,

on the anomalous transport associated with low frequency drift waves is

considered. It is shown that, for parameters typical of tokamak plasmas,

particle trapping may result in the nonlinear stabilization of the wave

at amplitudes, (e$^/T) =^10"^, that are of the same order as those observed

in experiments. The application of this work to experiments is discussed,

and it is found to be potentially useful in understanding the drift wave

spectrum anu transport rates observed in computer simulations, steller-

ators, and future tokamak experiments.

(ii)



1. INTRODUCTION

There has been considerable recent interest in low frequency

drift wave instabilities such as the collisionless drift instability

(Galeev et al., 1963) and the dissipative trapped electron instability

(Kadomtsev and Pogutse, 1969). These instabilities are thought to be

responsible for the anomalous transport observed in tokamaks (Dean

et al., 1974).

In many investigations of the anomalous transport Associated with

these low frequency drift wave instabilities (e.g., Liu et al., 1976;

Norton, 1976), the "quasilinear" transport coefficients have been employed

to relate the drift wave fluctuation spectrum to the anomalous transport

rates. Other authors (Pogutse; 1972, Brambilla and Lichtenberg, 1973;

Cell et al., 1975; Cell and Nevins, 1975) have focused on the phenomena

of trapping of resonant particles by a finite amplitude low frequency

drift wave, and have derived "pseudoclassical" transport coefficients.

In these previous investigations of pseudoclassical transport theory

the finite amplitude drift wave has not been treated self-consistently,

and the relation between pseudoclassical theory and other work on the

anomalous transport associated with low frequency drift wave instabilities

has not been investigated.

In this paper we unite these two methods of investigating the

anomalous transport associated with low frequency drift waves. We

begin by extending previous work on pseudoclassical transport

by presenting a self-consistent theory of the evolution of a plasma slab

in which a finite amplitude, low frequency drift wave has trapped the

resonant electrons. A complete set of equations for the evolution of both

the finite amplitude wave and the background plasma is developed. In

deriving these equations, we use both the results and the notation from a
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companion paper (Nevins, 1977a), hereafter refered to as I.

In I we derived the pseudoclassical fluxes of particles and energy

across the magnetic field, and found that these pseudoclassical fluxes

are smaller than the corresponding quasilinear fluxes by the factor

(^eff/'̂ BOUNCE^* This factor is the ratio of the effective collision
frequency for scattering electrons out of resonance with the finite

amplitude wave to the bounce frequency of electrons trapped in that

wave. The pseudoclassical theory considered here is valid in the limit

^^eff^^BOUNCE^ ^ ^ • (l-D
This condition may be written in terms of the parameters of the plasma-
wave system as

We find that the pseudoclassical transport theory considered here

is associated with the nonlinear development of the collisionless drift

instability (Galeev et al., 1963). Hence, this pseudoclassical transport

theory is a nonlinear theory of the "collisionless"drift instability. The

nonlinear effect considered is the trapping of resonant electrons by the

wave. This nonlinear theory should be used place of the usual linear

theory when particle trapping occurs to determine both the anomalous

transport coefficients and the evolution of the finite amplitude wave.

Having developed a satisfactory pseudoclassical transport theory, we

proceed to consider the relationship between this theory and other work

on drift wave instabilities and anomalous transport (e.g., Liu et. al., 1976;
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Horton, 1976). We show how the effect of particle trapping by the wave

can be combined with other effects (e.g., the trapping of electrons by

the magnetic field) to determine both the nonlinear evolution of the

finite amplitude drift wave and the anomalous transport driven by that

wave.

In Sec. 2 the time evolution of the finite amplitude wave is examined.

It is shown that, when inequality (1.2) is satisfied, the susceptibility

of the resonant electrons, a destabilizing term in the dispersion relation,

is reduced by the factor ( ^^ff/^^goUNCE

In Sect. 3 we complete our pseudoclassical theory by presenting

a closed set of equations describing the evolution of both the plasma

slab and the finite amplitude wave. These equations are shown to conserve

both energy and momentum.

In Sect. 4 the relation between this pseudoclassical transport theory

and other work on low frequency drift waves is examined. It is shown

that the trapping of resonant electrons can lead to the stabilization of

the low frequency drift wave at small, but finite amplitudes.

Finally, in Sect. 5, we conclude by examining the conditions for

the validity of the pseudoclassical transport theory presented here.

We find it potentially useful in understanding the drift wave spectrum

and anomalous tranport observed in computer simulations, stellerators,

and future tokamak experiments.
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2. THE DISPERSION RELATION AND A NONLINEAR DISSIPATIVE INSTABILITY

In this section we find the dispersion relation of the finite

aiiq)litude drift wave and obtain equations describing the evolution of

the wave amplitude, The wave amplitude evolves in time due to

a nonlinear dissipative instability similar to the one discovered by

Kadomtsev and Pogutse (1970), and later examined by Ott and Manheimer

(1976). The instability considered here differs from the one described by

these authors in that we are considering the effect of collisions on

electrons trapped by a traveling wave, while the previous work dealt with

the effect of collisions on electrons trapped between the maxima of a

standing wave. The orbits of particles trapped by a standing wave are

quite different from those of particles trapped by a traveling wave.

We show elsewhere (Nevins, 1977b) that this difference in the character

of the trapped particle orbits is responsible for the substantial dif

ferences between the nonlinear growth rates obtained here and those

obtained previously.

This dissipative instability is nonlinear because trapped particle

effects are considered and the growth rate is found to depend on the

wave amplitude. Coupling between Fourier modes is not considered. The

wave amplitude has been assumed to be a slowly varying function of x.

Hence, we may use the local dispersion relation to determine the evolution

of the wave amplitude (Krall and Rosenbluth, 1965; Mikhailovskii, 1967).

This dispersion relation is obtained by ignoring the x dependence of $ .
o

Hence, the wave potential may be written as

$(y,z,t) = $^(t) h(e) (2.1)



where

and
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6 = k y + k z -
y z

ojCt) dx

$ (t) = $ (t=0) exp[
o o

Y (t) dx]

We again choose the waveform to be

h(e) = COS0

(2.2)

(2.3)

(2.4)

as we did in evaluating the particle flux in I.

Our immediate goal is to calculate the electron susceptibility,

(e)
X > which is defined by

k

where ^ is the complex potential,

i0
5 « $ e

o

= $ COS0 + i$ sin0,
o o *

(2.5)

(2.6)

and 6n is the perturbation in the electron density due to the wave.

When coupling between Fourier modes is ignored, 5n may be written as

6n(0) = a COS0 + b sin0 (2.7)

where

a =

b =

— n COS0
TT

d0
n sin0 .

(2.8)

(2.9)
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Using Eqs. (2.4) through (2,9) we find

(e) 4ire
Rex -

k $

Imx = —Y~
k $

The electron density is given by

— n h(e)
IT

de
n h' (0)

n = d V f(6,v)

(2.10)

(2.11)

(2.12)

We have numerically integrated Eqs. (2.10) through (2.12) using

the electron distribution function described in I. We found that, through

zero order in f/<^boUNCE '̂ electron susceptibility

is well approximated by the linear result.

where

Re
k A,

d

A^ =
d . 2

4Trne

(2.13)

(2.14)

and T is the electron temperature.

This linear susceptibility describes the adiabatic response of the

electrons to the wave. It evolves slowly due to the evolution of the

electron temperature and density. The real part of the electron suscepti

bility together with the ion susceptibility determines the real part of

the wave frequency. Hence,the frequency of the finite amplitude wave

will change slowly along with the electron temperature and density.

We must introduce an ion susceptibility to obtain a dispersion

relation for our finite amplitude wave. In many experiments, the ion

temperature is small compared to the electron temperature. In this
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limit the ion susceptibility is given by (Mikhailovskii, 1974)

2 2
/j\ w.k(1) (2.15)

where o) . is the ion plasma frequency, and fi is the ion gyro frequency,
pi 1

The real part of the dielectric function is then

e (k.o)) =1+ ^ ^2 nto
k X, i k

(2.16)
2 u 2

0) . k
. pi _X_

o 2 ,2
k

Hence, the real part of the wave frequency is given by solving =0 »

0) (2.17)
k T

where

M 1 a,
a. = - (2.18)

ne eB n ax

and we have assumed that l/k^X^ , ^ •

In I, we noted that the imaginary part of the electron susceptibili

ty vanishes through zero order in (^^ff^^BoUNCE '̂ Hence, it is necessary

to evaluate Eq. (2.11) through first order in (^^ff/^^BoUNCE^ order to
(©)

obtain a nonvanishing contribution to Im x • lo evaluating this integral,

it is helpful to note that h*(0) may be written as

h-(0) =- f (2.19)
o y



-8-

where is the x component of the guiding center drift velocity.

Combining Eqs. (2.11), (2.12), and (2.19) the imaginary part of the

electron susceptibility becomes

Im X(e) _ Btt \ eB
1.2. 2 k ,
k $0 / y '

2^
d V Vj f

— dr
(2.20)

Comparing Eq. (2.20) with the definition of the particle flux, T
e

(Nevins, 1977b), we fiud that the imaginary part of the electron suscepti

bility may be written as

Im X
(e) _ Stt \eB „

1,2. 2 kk $ / y
(2.21)

(e)
This relation between Im x the electron flux holds whenever

the magnetic field is uniform and the evolution of the electron distribu

tion function is properly described by the drift kinetic equation,i.e.,

when k p « 1, and m . We use this relation here to evaluate the
ye e

nonlinear growth rate of the finite amplitude drift wave. In Sect. 3

we will use Eq. (2.21) to show that our pseudoclassical transport theory

conserves both energy and momentum.

The enhanced electron flux due to the trapping of the resonant

particles by the wave was evaluated in I. Using this result, we obtain

the contribution of these trapped electrons to the imaginary part of

the electron susceptibility.

Im = - 3.59 x„ (A - 0.84 n^)
r V

k V
z te

f)""1
(2.22)
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where

and

L = (1 - u)/a) ) (2.24)
ne

_ d(£n T) /o oc\
n = \ ' (2.25)e d (£n n)

This nonlinear susceptibility describes the response of the

resonant electrons to the wave in the limit "eff^"bounce "

the subscript "NL" to distinguish it from the linear susceptibility of

the resonant electrons (Mikhailovskii, 1974),

Im = "" Xq(^ "* 0*5 'ig) • (2.26)

The imaginary part of the electron susceptibility is small, being

of order (Ax/L), while the real part of the electron susceptibility is of

order 1. Hence the growth rate of the finite amplitude wave is given by

X NL
NL 3e

r

^ (2.27)

=3-59 (f)F;r- V .\ / z te z te

It is instructive to compare this nonlinear growth rate to the

corresponding linear growth rate (Mikhailovskii, 1974). Using Eq. (2.26)

we find

\ / z te
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We see that, apart from differences in the numerical coefficients,

differs fromy^^ in ^NL smaller by the factor

V /e$

k V \ T/ ^eff'''̂ BOUNCE (2.29)
z te

This result is quite different from that of Kadomtsev and Pogutse

(1970), and Ott and Manheimer (1976). These authors study a finite

amplitude standing wave, and find that the nonlinear growth rate is

larger than the corresponding linear growth rate. Our result, Eq. (2.27),

applies to the nonlinear regime of traveling waves. It is remarkable

that the nonlinear behavior of traveling and standing waves should be so

different. We show elsewhere (Nevins, 1977b) that this difference between

the nonlinear growth rates results from the increased width of the orbits

of particles trapped by standing waves compared as to those of particles

trapped by a traveling wave.

The dependence of Yj^^ ^^eff'̂ '̂ BOUNCE^ recalls work dealing with

the effect of collisions on the damping of Langmuir waves. The growth

of the low frequency drift waves and the damping of Langmuir waves are

quite similar problems in that they are both a consequence of the inter

action between the wave and the particles resonant with the wave. In

Vlasov theory, the wave growth (or damping) results from the Landau

prescription for choosing the integration contour when calculating the

linear susceptibility (Landau, 1946). The effect of collisions on the

Landau damping of Langmuir waves had been studied extensively. It has
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been found that when ^eff/^soUNCE ^ ^ dominant effect of collisions

is to prevent the trapping of the resonant electrons and maintain the

Maxwellian character of the distribution function (Johnston, 1971;

Auerbach, 1977). Hence, the damping of Langmuir waves is properly

described by linear theory when ^^ff '̂̂ 'bouNCE ^ Zakharov and Karpman

(1963) have studied the damping of Langmuir waves of larger amplitude,

such that ^eff/t^JgoUNCE These authors obtained a nonlinear damping

rate for finite amplitude Langmuir waves quite similar to our nonlinear

growth rate for finite amplitude drift waves. The nonlinear damping

(or growth) rate is found to be smaller than the corresponding linear

rate by the same factor, f/^BQUNCE '

We are not aware of any previous work dealing with the effect of

collisions on the interaction between a low frequency drift wave and

electrons resonant with this wave. Nevertheless, the similarity of this

problem to the work on Langmuir waves described above, both in the physical

mechanism for the growth (or damping) and in the mathematical formulation

of the problem, leads us to the conclusion that in the limit /^goUNCE

> 1 the dominant effect of collisions will be to prevent the trapping of

resonant particles by the low frequency drift wave, and to maintain the

Maxwellian character of the distribution function near the phase velocity

of this wave. Hence, in the limit v >1 , the collisionless
' eff BOUNCE '

linear theory will correctly describe the response of the electrons to

the low frequency drift wave.

We conclude that the pseudoclassical theory presented here is a

nonlinear theory of the interaction of the low frequency drift wave with
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the resonant electrons. This nonlinear theory replaces the linear theory

of this interaction when the wave amplitude satisfies

(e$^/T) > . (2.30)
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3. "Macroscopic equations and conservation laws

In this section we examine the macroscopic equations describing

the evolution of the plasma-wave system, and show that the total momentum

and energy of the system are conserved.

The equations describing the evolution of the temperature and wave

phase averaged number density are obtained in Nevins (1977b) by taking the

appropriate moments of the drift kinetic equation. It is found that

~ ~ r (3 1)8t ax e ^ ' ^

-rj^eBT (3.2)
at 3x ^e k e

y

Equations (3.1) and (3.2) together with the relation

w = 3/2 n T (3.3)

determine the evolution of the plasma temperature and density.

We find it convenient to describe the evolution of the finite

amplitude drift wave with an equation for the evolution of the wave

energy density, , where

qii;= U-jf- (k^ «//16 IT) (3.4)

Taking the time derivative of Eq. (3.4) and employing Eqs. (3.3),

(2.21), and (2.27) we find

y
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From Eqs. (2.18) and (3,5) we see that the Instability condition

for waves propagating in the electron diamagnetic drift direction (i.e.

waves satisfying —^ > 0) is
ne

t Te <0 (3.6)

In I we noted that the anomalous flux due to particles trapped in

the finite amplitude wave may be directed either up or down the density

gradient. This instability condition states that those waves which

drive an electron flux down the density gradient are unstable, while

those waves that drive an electron flux up the density gradient will be

damped. We show elsewhere that this behavior may be understood by con

sidering the conservation of canonical momentum (Nevins, 1977b).
/e$ \

Using Eqs. (2.16) and (3.4) we find that l~^) is related to the
wave energy density by

It7 (3.7)
ne

Equations (3.1), (3.2), (3,3), (3.5), and (3.7), together with the

pseudoclassical expressions for the particle and energy flux derived in

I, form a closed set of equations describing the macroscopic evolution

of the plasma slab and finite amplitude wave due to the collisional trans

port of the electrostatically trapped particles. Hence,we may use these

equations to check some basic conservation laws.

The total energy density, W, may be written as

w = w (3.8)
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Taking the derivative of Eq. (3.8) with respect to time and using

Eqs. (3.2) and (3.4) we find that the energy source terms cancel,

leaving

(3-9)at 3x ^e

Equation (3.9) describes a system in which the total energy is conserved.

Hence, the energy source terms in Eqs. (3.2) and (3.5) represent a trans

fer of. energy between the electrons and the finite amplitude wave.

We may derive similar equations describing the conservation of

canonical momentum. In Nevins (1977b) it is shown that the y and z components

of the electron momentum density satisfy the equations

ap
^ = - eB r (3.10)

at e

ap k a
—f = --^eBr --^n (3.11)

at k e ax xz
y

where n is the stress tensor. The wave momentum density is taken to be

3e (kh

The rate of change of the wave momentum, _P is found by taking the deriva

tive of Eq. (3.12) with respect to time and using Eqs. (2.3), (2.21) and

(2.27). This gives

|i=.^eBr (3.12)
at k e

y

Defining the total momentum density, as

P=£_+P (3.14)



-16-

we find

ap

3?^ = ° (3.15)

3P
_ a IT

at ax xz (3,16)

It is clear from Eqs. (3.15) and (3.16) that the total canonical

momentum is conserved. Hence,the momentum source terms in Eqs. (3.10),

(3.11) and (3.12) describe the transfer of momentum between the particles

and the wave.

InNevins (1977b) we note that the y component of the canonical momentum

of a particle is proportional to the x guiding center position. Hence,

the transport of particles across the magnetic field implies a change

in the canonical momentum of the species being transported. As the total

canonical momentum of the system is conserved, the flux of particles is

determined by the rate at which momentum is transfered from one element

of the system to another. In the pseudoclassical transport theory pre

sented here, momentum balance is achieved by transfering momentum between

the electrons and the low frequency drift wave. As a result, the pseudo-

classical particle flux is accompanied by an instability of the low

frequency drift wave.

This pseudoclassical transport is but one example of the link

between particle transport and drift wave instabilities. We consider this

link in more detail elsewhere (Nevins, 1977b) and show that the connection

between drift wave instability and particle transport is useful in under

standing many of the instability mechanisms of the low frequency drift wave.
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4. NONLINEAR STABILIZATION AND ANOMALOUS TRANSPORT

In the preceeding sections we have developed a set of equations

describing the evolution of a plasma slab in which the resonant electrons

have been trapped by a finite aii5)litude low frequency drift wave. In

this section we show how our work is related to previous work on low

frequency drift wave instabilities. We then proceed to investigate the

nonlinear saturation of the low frequency drift waves due to the trapping

of the resonant electrons, and to make estimates of the saturation ampli

tude in various parameter ranges.

The linear stability of the low frequency drift wave has been

studied extensively. It is now generally understood that several

mechanisms can be important simultaneously in determining the growth

rate of this wave [Hinton and Ross, 1976; Tang et al., 1976; Catto et al.,

1976; Horton, 1976]. Two of the most important mechanisms affecting

drift wave stability are the dissipative (magnetically) trapped electron

instability mechanism, and the Landau resonance with the (magnetically)

passing electrons.

When the local approximation is employed, the stability of the

low frequency drift wave is determined by the imaginary part of the

dielectric function. Im e determines the rate at which energy is trans-

fered between the background plasma and the wave. This energy transfer

rate is given by

W=-0) Im e ((u,k^) (k^$^^/8iT) (4.1)
ae

Low frequency drift waves have positive energy (i.e.,a) — > 0).
oO)

Hence, the instability condition is

0) Im e(io,ky) <0 (4.2)
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Following Horton (1976)* we separate Im e(a),k^) into a sum over

the mechanisms by which energy is transfered between the wave and the

background plasma.

(e) j. v' ..(e) . V T„ ..(i)Im e(a),k ) = Im x + I X ^ Im x
^ mm

= Im +l Tmx^
m

(4.3)

(©)Im x^ is the susceptibility of the resonant electrons. Im x^ represent

the susceptibilities associated with other mechanisms for the transfer

of energy between the wave and the electron distribution. Im represent

the susceptibilities associated with mechanisms for the transfer of

energy between the wave and the ion distribution. The prime on the sum

indicates that resonant electron effects are to be excluded.

The flux of particles and energy associated with the low frequency

drift wave can be written in a similar fashion. The electron flux is

given by
Ic

^/81I) (Im + I Im X^®^) (4.4)
e en o K m

m

The energy flux may be decomposed in a similar manner (see,for example,

Horton, 1976).

"fc i
Horton introduces the function G in his discussion of drift wave

m

stability. These functions are related to the susceptibilities

considered here by:

Je) 1
kh}

a

4 G° + n
m em



-19-

Eqiiation (4.4) follows directly from Eq. (2.21) above. It also

follows from the expression for the particle flux derived by Horton (1976).

This expression recalls the particle flux obtained in the quasilinear

treatment of this problem (Krall and McBride,1977). We note here that

the derivation of Eq. (2.21) did not require the presence of many waves

as in quasilinear theory. Similarly the derivations of drift wave trans

port presented by Horton (1976), and by Liu, Rosenbluth, and Tang (1976)

do not require the presence of a spectrum of waves. Hence, Eq. (4.4)

differs from the quasilinear flux in that it may be used to calculate

the flux driven by a single wave. We show elsewhere (Nevins et. al., 1977b)

that these fluxes result from a combination of the particle motion in

the field of individual waves and Coulomb collisions.

When many waves are present, Eq. (4.4) gives the contribution of

each wave to the total particle flux. There is a similar expression for

the contribution of each wave to the energy flux. The total flux is

obtained by summing the contributions from each wave.

When the magnetic field is inhomogeneous, the pseudoclassical fluxes

and the nonlinear susceptibility must be modified to account for the trapping

of particles by the magnetic field. The effect of magnetic trapping on the

resonant interaction of drift waves with the electron distribution has been

considered by many authors (see, e.g., Horton, 1976). The most important

limit to our work is

kj| is the component of the wave vector parallel to the magnetic field
and ^ is a measure of the magnetic field inhomogeniety. In tokamaks,

6 is given by

5 = (minor radius/major radius)

> 6^ (4.5)
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Inequality (4.5) is most easily satisfied near the magnetic axis (where

6 vanished) or near the mode rational surface (where k|| vanishes) .

In this limit the nonlinear susceptibility of the trapped electrons

and the pseudoclassical fluxes are largely unaffected by the presence

of the magnetic field inhomogeneity. Hence,the expressions that we

have derived in I, and in Sect. 2, may be employed.

The nonlinear susceptibilities due to effects other than particle

trapping (e.g. mode coupling or induced scattering) are smaller than

the corresponding linear susceptibilities by the factor (e^^/T).

Particle trapping occurs when the wave amplitude satisfies inequality

(1.2). In a nearly collisionless plasma [(v /k v ) « 1], this inequali-
e z te ^

ty can be satisfied while (e$^/T) is still small. Hence, in nearly

collisionless plasmas, at moderate wave amplitudes, given by

2/3

* (e$^/T) « 1 , (4.6)

particle trapping will be the dominant nonlinear effect.
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The nonlinear stabilization of the low frequency drift waves due

to the trapping of the resonant electrons may be investigated by using

the nonlinear susceptibility of Eq. (2.22) in evaluating Im e. In a

local treatment of drift wave stability, the rate at which energy is

being transferred to the wave must vanish at saturation. This occurs

when

Im e = 0 (4.7)

Im G is a function of the wave amplitude through Im X Hence Eq. (4.7)

is an equation for the wave amplitude at saturation.

We first consider the nonlinear stabilization of the low frequency

drift wave in a plasma with a moderate temperature gradient. Using Eq. (2.27)

we find that when H satisfies
e

2.0 A>Ti^> 1.2 A (4.8)

the resonant electron susceptibility can change from a destabilizing

2/3term at low wave amplitudes, (e$ /T) < (v /k v ) , into a stabilizing
O 6 Z

term at larger wave amplitudes. If the energy transfer to the wave from

the resonant electrons dominates other energy transfer mechanisms, then

(e)
this change in the character of Im x « will cause the stabilization of

K

the drift wave during the transition from the linear energy transfer rate

described by Im nonlinear energy transfer rate described
La

(e)
by Im Xmt • Hence, in the parameter range

^1j

o m -^0
(4.9)
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we may estimate the wave amplitude at saturation as

2/3

(^) k V
saturation z te

(4.10)

Normalizing the electron temperature to 1 keV, the number density to

13 3
10 /cm , and the parallel wave length to 20Tr cm, we obtain

e$

saturation

1.16xlO~^^
-3)

\ 10 cm /

/_l__f / )
\ 1 kev/ ^0.1 cm ^^

The trapping of resonant electrons can also lead to the nonlinear

stabilization of low frequency drift waves in plasmas with small or

negative temperature gradients. When q < 1,2 A
e

the resonant electrons continue to destabilize the drift wave even after

they become trapped, but the destabilizing influence of the resonant

electrons decreases with increasing wave amplitude. The nonlinear

saturation of the wave due to particle trapping will occur when the

rate at which the wave extracts energy from the resonant electrons is

balanced by the rate at which the wave loses energy to the plasma by

other mechanisms. Hence, in the parameter range

Elm X >0
m

IB

n < 1.2 A -
e

0.33 V' '
IT" 1- "m

o m

(4.11)

the amplitude of the low frequency drift wave at saturation is somewhat

larger, and is given by
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2/3 3.59 Xp (A - O.SArig)

I I" X„
m

2/3

(4.12)

The regions of parameter space in which these stabilization mechanisms

are operative are sketched in Fig. 1.

The estimates of the drift wave saturation level presented above

are low enough to warrant the neglect of nonlinear effects other than

particle trapping. These estimates are of the same order of magnitude

as the drift wave fluctuation levels observed in tokamak experiments

(Mazzucato, 1976; Surko and Slusher, 1976). Hence, we conclude that

particle trapping is a possible saturation mechanism' for low frequency

drift waves when resonant electron effects are important in determining

the linear stability of the wave.
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FIGURE I

This Figure shows a sketch of (n^, I Im space. The regions in which
m

particle trapping leads to the nonlinear stabilization of low frequency

drift waves are indicated. In region I the drift wave saturates at the

level given by Eq. (4.10). In region II particle trapping does not lead to

saturation. In region III the saturation level due to particle trapping

is given by Eq. (4.12). egion IV is stable in both the linear and non

linear regime. We have taken A= (l-w/oj^^) = hi making this sketch.
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5. APPLICATIONS

In this section we will briefly review the assumptions made in

this pseudoclassical transport theory and discuss possible applications of the

pseudoclassical transport theory presented here.

We believe that the most restrictive assumption made in this work

is the modeling of a spectrum of drift waves by a single, coherent

traveling wave. Hence, we begin by examining this assumption.

In experimental plasmas a continuous fluctuation spectrum is observed,

and the spectral density, S^, may be measured directly (Mazzucato, 1976;

Surko and Slusher, 1976). For our purposes it is convenient to consider

the projection of the spectral density into the two dimensional space

(y^ f V. ), where
*y <l>2

V, = to/k
y

V. = oj/k
<})Z z

(5.1)

We identify each peak in this spectral density as a "mode". Each

mode may be characterized by its width, 6y^; and its amplitude, We

define $ in terms of the integral of across the mode by

*"'I4
2 1^/2

(5.2)

We will also be interested in the characteristic separation between modes

in parallel phase velocity, A(a)/k^).

Particles may be trapped by a mode when the auto-correlation time

of the mode is greater than the bounce period of a trapped particle. This
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condltlon may be written as

6Cui/k^) < (5.3)

where is evaluated using the mode amplitude given by Eq. (5.2).

Inequality (5.3) is a necessary, but not a sufficient condition for the

application of our pseudoclassical transport theory. If the pseudoclassical

transport coefficients and the nonlinear susceptibility are to be well

defined, then we must require that the width of the spectral density in

perpendicular phase velocity, cj/k^, satisfies

P
6(t)«\ei^ (5.4)

> V / ny n

and that the angular distribution of wave vectors satisfies

ky and k^ are related to through Eqs. (5.1). Hence, this condition

together with Eqs. (5,3) and (5.4) may be combined to yield

(5.5)
k TRAP

z' z

A mode satisfying inequalities (5.4) and (5.5) may reasonably be approxi

mated by a coherent traveling wave.

In general the fluctuation spectrum may contain several modes. Our

pseudoclassical transport theory must be applied to each of these modes

individually, determining the time evolution of the amplitude of each mode,

as well as the transport associated with each mode. This transport theory
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Is based on the phenomena of particle trapping by a wave. Hence, the

proce^dure outlined here will be reasonable when the individual waves

are able to trap the particles resonant with them. The motion of

particles in the presence of several waves has been studied (Zaslavskii

and Chirikov, 1972), and it has been determined that when

^TRAP ^

particles can become trapped by individual waves.

Armed with inequalities (5.4) thru (5.6) we proceed to review the

experimental observations of drift waves. Low frequency drift waves

have long been identified in Q-machines (some recent references are

Politzer, 1971; Deschamps et al., 1973; Prager et al., 1975), in

tokamaks (e.g., Mazzucato, 1976; Surko and Slusher, 1976), in stellerators

(e.g., Okabayashi, Arunasalam, 1977), and in computer simulations (e.g.,

LeeandOkuda, 1976; Matsuda and Okuda, 1976; Cheng and Okuda, 1977).

In Q-machines and in computer experiments the boundary conditions are

important as they limit the number of unstable modes. Hence, in these

systens, a sharply peaked fluctuation spectrum satisfying inequalities

(5.4) thru (5.6) is observed.

Q-machine experiments have been performed over a wide range of

collision frequencies. In these experiments, the parallel wavenumbers

of the unstable modes, k , are determined by the length of the machine.
z

Hence Inequality (1.2),

\3/2

z te/ \ /

V \ /e<^

:)k / \ T
!!o\
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can only be satisfied at low collision frequencies, when the electron

mean free path Is greater than the length of the machine. In Q-machlnes

electrons are emitted and absorbed by hot plates at each end of the

machine. When the electron mean free path Is greater than the machine

length, this emission and absorption Is important In determining the form

of the electron distribution function. We have not considered this effect

in our treatment of the electron distribution function. Hence, the theory

presented here cannot as yet be said to apply to the Q-machine experiments.

Electron transport is of great interest In tokamak plasmas.

Recently measurements have been made of the drift wave fluctuation

spectrum In the ATC tokamak. The parallel wave numbers of the drift

wave fluctuation spectrum were not measured, but an experimental upper

limit on k of 0.6 cm ^ was reported (Surko and Slusher, 1976). At the
z

fluctuation levels observed in these experiments, a value of k greater
z

-2 -1
than 10 cm is required to satisfy inequalities (1.2) and (5.3). Such

values of k are consistent with the radial normal mode analysis of low

frequency drift waves (Pearlstien and Berk, 1969), and are safely below

the experimental upper limit on k . Hence, it appears likely that the
z

resonant electrons can be trapped by the drift wave spectrum observed in

these experiments.

In tokamaks, the observed fluctuation spectrum does not have a well

defined frequency. Hence, it appears that both particle trapping and

the finite width of the spectrum must be included in a satisfactory theory

relating this fluctuation spectrum to the electron transport rates. The

pseudoclassical transport theory presented above does not allow for this

finite spectral width.

However, our pseudoclassical transport theory does provide a model
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problem in which the effects of particle trapping by drift waves has

been properly dealt with. Hence, it should provide a qualitative

indication of the role particle trapping plays both in stabilizing the

drift wave fluctuation spectrum, and in determining the transport rates.

A theory of drift wave turbulence that successfully incorporates particle

trapping together with a finite spectral width should give results similar

to these presented here, in the appropriate limit.

Experiments in stellerators (Okabayashi and Arunasalam,

1977) indicate that the drift wave fluctuation spectrum becomes more

coherent as the shear in the magnetic field is increased. This increased

coherence presumably results from a reduction in the number of linearly

unstable modes as the magnetic shear is increased. This suggests that

attempts to stabilize the low frequency drift wave by a combination of

shear in the magnetic field and an inverted temperature gradient (Horton,

1976), will also yield a more coherent spectrum of low frequency drift

waves. Hence, the pseudoclassical theory presented here may prove useful

in understanding the fluctuation levels and transport rates in future

tokamak experiments.

Finally, we consider the application of this theory to the under

standing of computer simulations of low frequency drift wave instabilities

(Lee and Okuda, 1976; Matsuda and Okuda, 1976; Cheng and Okuda, 1977).

We expect that computer simulations will provide an excellent testing

ground for this theory. The drift wave spectrum observed in these

simulations often involves only a single Fourier mode. Hence, inequalities

(5.4) thru (5.6) are well satisfied. Other plasma parameters such as

(v /k V ) are easily varied, and complete information is available

about the state of the plasma wave system. Hence, our predictions on the
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form of the electron distribution function can be directly tested. In

I we remarked on the similarity between the distribution function examined

there, and the electron distribution function observed by Lee and

Okuda (1976) in a computer simulation of the nonlinear behavior of a

low frequency drift wave driven unstable by the interaction with the

resonant electrons. In addition, we expect that the pseudoclassical theory

presented here will be useful in understanding the particle and energy

transport rates observed in computer simulations, and that the nonlinear

dissipative instability discussed in Sec. 2 will be important in the energy

balance of the drift wave at saturation.



ACKNOWLEDGMENTS

We would like to acknowledge many helpful discussions with

Professor A. N. Kaufman and members of his plasma theory seminar, as well

as the encouragement and support of Professor C. K. Birdsall.

This work was supported in part by Department of Energy

Contract No. EY-76-S-03-0034-PA128.

-31-



REFERENCES

19^6 Landau, L. "On the Vibrations of the Electronic Plasma,"

Journal of Physics USSR 10, pp. 25-3^.

1963 Galeev, A. A., Oraevskii, V. N. and Sagdeev, R. Z. "'Universal'

Instability of an Inhomogeneous Plasma in a Magnetic Field,"

Sov. Phys. JETP 2Z, pp. 615-620, September. [Russian

Original in J. Exptl. Theoret. Phys. pp. 903-911, March

1963.]

Zakharov, V. E. and Karpman, V. 1. "On the Nonlinear Theory

of the Damping of Plasma Waves," Sov. Phys. JETP pp. 351-

357, February. [Russian Original in J. Exptl. Theoret. Phys.

lt3, pp. ^90-499, August 1962.]

1965 Krall, N. A. and Rosenbluth, M. N. "Universal Instability in

Complex Field Geometries," Physics of Fluids 8^, pp. 1488-

1503 August. 1965).

1967 Mikhailovskii, A. B. "Oscillations of an Inhomogeneous Plasma,"

Reviews of Plasma Physics 3^, pp. 159-226 (Consultants

Bureau, New York).

1969 Kadomtsev, B. B. and Pogutse, 0. P. "Dissipative, Trapped-Particle

Instability in a Dense Plasma," Sov. Phys. Doklady pp. 470-

272, November. [Russian Original in Doklady Akademii Nauk

186, pp. 553-556, May I969.]

1970 Kadomtsev, B. B. and Pogutse, 0. P. "Nonlinear Excitation of

Drift Waves in a Nonhomogeneous Plasma," Sov. Phys. Doklady 14,

pp. 863-866, March. [Soviet Original in Doklady AkademiI

Nauk 188, pp. 69-72, September, 1969.]

-32-



-33-

1971 Johnston, G. L. "Dominant Effects of Coulomb Collisions on

Maintenance of Landau Damping," Phys. Fluids 14, pp. 2719-

2726, December.

Politzer, P. A. "Drift Instability in Col 1isionless Alkali

Metal Plasmas," Phys. Fluids LA, pp. 2410-2425, November.

1972 Pogutse, 0. P. "A Possible Mechanism for Energy Losses in a

Tokamak Deivce," Nuclear Fusion _I2^, pp. 39-43, January.

Zaslavskii, G. M. and Chirikov, B. V. "Stochastic Instability

of Nonlinear Oscillations," Sov. Phys. Uspekhi 14, pp.

549-568, March-April. [Russian Original in Uspekhi fizi-

cheskikh Nauk 105, pp. 3-39.]

1973 Brambilla, M. and Lichtenberg, A. J. "Drift-Surface-Island

Formation and Particle Diffusion in a Toroidal Plasma,"

Nuclear Fusion \3_, pp. 517-520, August.

Deschamps, P. Gravier, R. Renaud C. and Samain A. "Observation

of Drift Instability Due to Particle Trapping in a Corrugated

Geometry," PRL 31» PP- 1^57-1460, December.

1974 Dean, S. 0. Callen, J. D., Furth, H. P., Clarke, J. F. Ohkawa,

T. and Rutherford, P. H. Status and Objectives of Tokamak

Systems for Fusion Research, U.S. Govt. Printing Office,

Washington, D. C. (WASH-1295).

Mikhailovskii, A. B. Theory of Plasma Instabilities, Vol. 2,

(Consultants Bureau, New York). See Ch. 3, Sect. 3.1.2A.

Prager, S. C., Sen, A. K. and Marshall, T. C. "Dissipative

Trapped-Electron Instability in Cylindrical Geometry," PRL

pp. 682-695, September.



-34-

1975 Gell, Y., Harte, Judith, LIchtenberg, A. J. and Nevlns, W. M.

"Charged Particle Orbits in Sheared Magnetic Field; Impli

cations to Diffusion," PRL 35., pp. 1642-1645, December.

Gell, Y. and Nevins, W. M. "A Variational Approach to Pseudo-

classical Diffusion," Nuclear Fusion pp. IO83-IO89,

December.

1976 Catto, P. J., Tsang, K. T., Callen J. D. and Tang, W. M.

"Resonant Electron Effects on Trapped Electron Instabilities,"

Phys. Fluids pp. 1596-1598, October.

Hinton, F. L. and Ross, D. W. "Stabilization of the Trapped

Electron Mode by a Col 1isionally Broadened Landau Resonance,"

Nuclear Fusion 16, pp. 329"336, April.

Norton, Wendell, "Drift Wave Stability of Inverted Gradient

Profiles in Tokamaks," Phys. Fluids J9., pp. 711-718, May.

Lee, W. W. and Okuda, H. "Anomalous Transport and Stabilization

of Col 1isionless Drift Wave Instabilities," PRL pp. 87O-

873, April.

Lui, C. S., Rosenbluth, M. N. and Tang, W. M. "Dissipative Universal

Instability Due to Trapped Electrons in Toroidal System,"

Phys. Fluids ^9, pp. 1040-1044, July.

Matsuda, Y. and Okuda, H. "Simulation of Dissipative Trapped-

Electron Instability in a Linear Geometry," PRL 3^, pp. 474-

478, March.

Mazzucato, E. "Small-Scale Density Fluctuations in the Adiabatic

Toroidal Compressor," PRL 3^, pp. 792-791*, April.



-35-

Ott, E. and Manheimer, W. M. "Electrostatic Trapping and the

Linear and Nonlinear Evolution of Dissipative Trapped

Electron Instabilities," Physics of Fluids 19, pp. 1035-

1039, July.

Surko, C. M. and Slusher, R. E. "Study of the Density Fluctu

ations in the Adiabatic Toroidal Compressor Tokamak Using

CO2 Laser Scattering," PRL pp. 17^7-1750, December.

Tang, W. M. Liu, C. S. Rosenbluth, M. N., Catto, P. J. and

Callen, J. D. "Finite-Beta and Resonant-Electron Effects

on Trapped-Electron Instabilities," Nuclear Fusion 16,

pp. 191-202, Apri1.

1977 Auerback, S. P. "Collisional Damping of Langmuir Waves in the

Col 1isionless Limit," Phys. Fluids^, pp. 1836-184^,

November.

Cheng, C. Z. and Okuda, H. "Formation of Convective Cells,

Anomalous Diffusion, and Strong Plasma Turbulence Due to

Drift Instabilities," PRL 3^, pp. 708-7II, March.

Kr_ll, N. A. and Mc Bride, J. B. "Quasi linear Model for Heat

Flow and Diffusion in a Micro-Unstable Tokamak," Nuclear

Fusion 17, pp. 713-720, August.

(a) Nevins, W. M. "A Thermodynamic Approach to Dissipative Drift

Instabilities," to be submitted for publication.

"A Physical Interpretation of Dissipative Drift

Instabilities." Presented at Annual Controlled Fusion Theory

Conference, May ^-6, 1977, San Diego, CA .



-36-

(b) Nevins, W. M. "Pseudoclassical Transport I: The Particle and

Energy Flux," to be submitted for publication.

(c) Nevins, W. M. Harte J. and Gel 1 Y. "Pseudoclassical Transport

in a Sheared Magnetic Field; Theory and Simulation" to be

submitted for publication.

Okabayashi, M. and Arunasalem, V. "Study of Drift-Wave Turbulence

by Microwave Scattering," Nuclear Fusion 17t pp. ^97"513,

June.


	Copyright notice 1977
	ERL-77-74

