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ABSTRACT

The cross field transport due to the trapping of electrons in a

finite amplitude wave (pseudoclassical transport) is investigated. Both

finite wave frequencies and magnetic shear are included. The single

particle orbit equations are solved to obtain the trapping criterion

as well as the trapped particle orbit width and bounce frequency. Using

a random walk model, the scaling of the pseudoclassical transport coeffi

cients with the parameters of the plasma and wave are deduced. This

scaling is employed to extend a previous calculation of the transport

coefficients to include magnetic shear. Magnetic shear is found to

reduce these transport coefficients. Computer simulations of this

transport process are presented. The measured transport rates are in

very good agreement with the previous kinetic calculation in the absence

of magnetic shear, and with this extension of pseudoclassical transport

theory which includes magnetic shear.

(ii)



I. INTRODUCTION

Low frequency waves, which are universally present in inhomogen-

eous plasmas, are thought to be responsible for the anomalous transport

observed in tokamaks (Dean, et al., 1974). In this paper we investigate

the transport associated with a coherent electrostatic wave propagating

in a nearly collisionless, magnetized plasma. In previous work, the

transport coefficients associated with the trapping of electrons by a

finite amplitude drift wave in a uniform magnetic field have been calcu

lated (Pogutse, 1972; Cell and Nevins, 1975; Nevins, 1977a). Other workers

have considered the effect of shear, but in a time independent electric

field (Brimbilla and Lichtenberg, 1973). Here, this work is extended to

include both finite wave frequencies and shear in the

magnetic field. Preliminary results were reported earlier (Cell, et

al., 1975). Magnetic shear is found to reduce the transport coeffi

cients, and hence, to reduce the nonlinear growth rate of the finite

amplitude wave (Nevins, 1977b; Nevins, 1977c).

Investigation of the anomalous transport associated with a single

wave is useful as a basis for understanding the anomalous transport

associated with a spectrum of waves. It is particularly relevant to

systems in which the wave spectrum is sharply peaked. Such coherent

drift wave spectra have recently been observed in toroidal plasmas with

strong magnetic shear (Okabayashi and Arunasalem, 1977; Vojtsenya, et

al., 1977), while recent work (Koch and Tang, 1977) suggests that the

drift wave spectrum observed in tokamak plasmas (Mazzucato, 1976; Surko

and Slusher, 1976) is more coherent than previously reported.
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We consider waves with phase velocities, v^ =u)/k[| , in the range

v^. «v.«v^^ (1.1)
ti (p te

h h.
where v . = (T./m.) and v^ = (T /m ) are the electron and ion

ti i i te e e

thermal velocities, k[| is the component of the wave vector parallel

to the magnetic field, and o) is the wave frequency. Low frequency

drift waves satisfying inequality (1.1) have been both predicted

theoretically (see, e.g., Galeev, et al., 1963; Kadomtsev and Pogutse,

1969), and observed experimentally in Q-machines (see, e.g., Politzer,

1971; Prager, et al., 1974) and tokamaks (e.g., Mazzucato, 1976; Surko

and Slusher, 1976). In addition, we restrict our attention to the

electron transport rates, as the anomalous losses observed in tokamaks

are attributed to an enhancement of the electron transport coeffi

cients over the neoclassical values (Dean, et al., 1974).

A mechanism for the transport of particles and/or energy across

the magnetic field requires motion of the particles relative to the

magnetic lines of force and a finite correlation time. From this view

point, classical transport (Rosenbluth and Kaufman, 1958) results from

the gyration of particles about the magnetic field lines combined with

a correlation time determined by binary collisions.

In neoclassical transport theory the gyration of particles about the

magnetic field lines is ignored. The particle motion relative to the

magnetic field lines is provided, instead, by the drifts of the particle

guiding centers in the inhomogeneous magnetic field (see, e.g., Galeev and

Sagdeev, 1968; Rosenbluth, et. al., 1972; Hazeltine and Hinton, 1976), while

the correlation time is still determined by binary collisions.

- 2 -



This paper considers pseudoclassical transport. The name "pseudo-

classical" has been adopted by several authors (Pogutse, 1972; Yoshikawa

and Christofolis, 1972; Cell, et. al., 1975) to describe a sequence of

related transported mechanisms in which the particle motion relative to

the magnetic field is provided by the guiding center drifts in the

electric field of a low frequency electrostatic wave rather than the VB

drifts of neoclassical theory. The correlation time is again determined

by binary collisions.

Pseudoclassical transport theory bears a close analogy to neoclas

sical transport theory in that

1) it is only necessary to follow the motion of particle

guiding centers,

2) between collisions particles are subject to guiding

center drifts that vary periodically in time, and

3) at sufficiently low collision frequencies particle

trapping occurs.

We find that, like neoclassical theory, pseudoclassical transport theory

has three collision frequency regimes: a low collision frequency regime

in which the transport coefficients are proportional to the collision

frequency, an intermediate collision frequency regime in which the

transport is properly described by the "quasilinear" transport coeffi

cients (see, e.g., Horton, 1976), and, hence, is independent of the colli

sion frequency, and finally a high collision frequency regime inves

tigated by Yoshikawa and Christofolis (1971).
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In both neoclassical and pseudoclassical transport theory the

collision frequency regime is determined by the dimensionless parameter

90 collxsion frequency
V. = 7 TT—7 . (1*2)

* transit frequency

In pseudoclassical theory v. is given by

V
e

=

*

(1.3)

where, following Braginskii (1965), we take

V .

3m'̂ (1.4)

When is small, the transport is dominated by resonant particles

which ExB drift across the magnetic field in a slowly varying electric

field.

To emphasize the analogy between pseudoclassical transport and

neoclassical transport we shall refer to the low collision frequency

regime of pseudoclassical transport as the "pineapple" regime, and the

orbits of particles trapped by the electrostatic wave will be referred

to as "pineapple orbits". The reader may notice a resemblance between

the trapped particle orbit shown in Fig. 2 and a pineapple.

This paper is primarily concerned with the "pineapple" regime of

pseudoclassical transport theory in which the transport is dominated by

those electrons which have become trapped in the electric field of the
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low frequency wave. This regime of pseudoclassical transport was origi

nally investigated by Pogutse (1972). The calculation of the pseudo-

classical transport coefficients from kinetic theory was refined by later

authors (Cell and Nevins, 1975; Nevins, 1977a). The effect of magnetic

shear on the orbits of the electrostatically trapped particles was ignored

in these calculations.

The pseudoclassical transport coefficients obtained by these

authors depend upon k|j . In a sheared magnetic field ky is a function

of X . When this spatial dependence is included, the pseudoclassical

transport coefficients diverge at the mode rational surface, where kjj

vanishes.

Brambilla and Lichtenberg (1973) have shown that this divergence is

avoided when the effect of magnetic shear on the trapped particle orbits

is considered. However, the formalism of Brambilla and Lichtenberg

describes only the orbits of particles trapped near the mode rational

surface in a time independent potential. Hence, it is not clear how the

pineapple orbits of Brambilla and Lichtenberg are related to those of

Pogutse.

In this paper we present a unified treatment of the pineapple orbits

that allows both magnetic shear and a finite wave frequency. Our expres

sion for the pineapple orbit width reduces to that obtained by Pogutse or

Brambilla and Lichtenberg in the appropriate limit. This analysis of the

pineapple orbits has been reported previously, together with

some preliminary estimates of the pseudoclassical transport coefficients

(Cell et al., 1975). The analysis is extended here with more detailed

calculations of the transport coefficients.
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In Section 2 we describe our model and introduce two constants of

the particle motion.

In Section 3 an equation which describes the orbits of particles

moving under the influence of both a sheared magnetic field and a low

frequency electrostatic wave is derived.

In Section 4, restricting our attention to particle orbits that

do not cross the mode rational surface (where ky vanishes), we

obtain expressions for both the pineapple orbit width, the fraction

of particles that will be trapped in a given wave, and the bounce frequency

of these electrostatically trapped particles. These quantities are

necessary to predict the scaling of the pseudoclassical transport coeffi

cients with the parameters of the system.

In Section 5 a random walk model is employed to determine the scaling

of the pseudoclassical transport coefficients with the plasma parameters

V , B , and L ; as well as the wave parameters w , k , and ( e<I> /T ).
© S o

These scaling laws allow us to generalize the expressions for the pseudo-

classical transport coefficients, obtained previously from kinetic theory

(Nevins, 1977) in the limit of vanishing magnetic shear, to the case

of a sheared magnetic field.

In Section 6 the results of computer simulations (using non-inter

acting particles) of pseudoclassical transport are presented. The values

of the pseudoclassical diffusion coefficient as measured in the simula

tions are found to be in very good agreement with the theoretical values

of Section 5.

Finally, in Section 7 we conclude by examining the spatial dependence

of the pseudoclassical transport coefficients and estimating the pseudo-

classical energy containment time.
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2. THE GUIDING CENTER EQUATIONS AND SOME CONSTANTS OF THE MOTION

The model used to study pseudoclassical transport is a slab in

which the magnetic field lies in the y-z plane. Magnetic shear in included

by allowing the direction of the magnetic field to vary with x . The

scale length for variations in the direction of the magnetic field is

(see Fig, 1). A finite amplitude traveling wave is propagating in

the y-z plane. This wave is assumed to be electrostatic. It may be

described by the potential

$ = h ( 0 ) (2.1)
o

where the wave phase, 0 , is given by

0 = k*r - (ut . (2.2)

is the wave amplitude, while h(0) is a function that describes the

wave form. This function is assumed to have a maximum value of one.

The coordinate system is chosen such that

k=ky (2.3)

and our analysis is restricted to the case in which

kp , p /L , £o/J2 « 1 (2.4)
e e s e

where fi^=(eB/m) is the electron gyrofrequency, and ~

the electron gyroradius. In this limit the particle motion is well appro-

simated by the motion of its guiding center.
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FIGURE 1. T^e Configuration of our Model,
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Using the variable set (x, 0, vy), where V|| is the component of

the particle's velocity parallel to the magnetic field, the guiding center

equations of motion are

where

and

(2.5)

df =•'irr

dV|i

17 = - m o (2-7)

h'(e)=|| (2.8)

-1X-, gk.(x) = — k (2.9)

B (x)
kt|(x) = ——— k . (2.10)

These guiding center equations of motion are accurate through zero

order in • This level of approximation is sufficient for our

purposes, as we are interested in effects of order ( Ax /L ); where Ax
p s p

the pineapple orbit width, is assumed to be large compared to .

Figure 2 illustrates the approximation made here by comparing the orbit
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of a trapped particle as described by these guiding center equations

with the orbit obtained by numerically integrating the equations of

motion using the full Lorentz force.

Particles may be labeled by their phase coordinates at a parti

cular time, t = t :

X = X ( t=t )
o o

e = e (t=t ) (2.11)
o o

'llo ° '='0 ^ •

At some later time t the particle phase coordinates may be expressed

in terms of the change from their values at t^ ,

5x(t) =• X(t) - x^

S0(t) = e(t) - e (2.12)
O

6v||(t) = v„(t) - V||̂ .

The change in wave potential at the particle is given by

64)(t) = <I>[e(t)] - $(G^) . (2.13)

The guiding center equations of motion contain much more information

than is required. These equations can be reduced to a system of two orbit

equations by combining Eqs. (2.5) and (2.7) to obtain

dvit =—B7-^ dx (2.14)
II m

- 9 -



-2.0

-4.0-

FIGURE 2. Projection of a trapped particle orbit into the x-0

plane ( kp and were chosen as 0.28 and 1/30 so that the
e BuUNGE

particle's gyromotion could be clearly seen in (a)):

(a) integrating the equations of motion using the

Lorentz force;
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e
(b)

FIGUEE 2 (cont.):

(b) the motion of the guiding center.
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while Eqs. (2.5) and (2.6) may be combined to yield

(kjjV||-a)) dx = - d$ • (2.15)

Equations (2.1A) and (2.15) will be integrated in Section 3 to

obtain relations between 6x , 6v[| , and 6$ . Neither the wave phase

0 nor the time t enter these relations. This reduction in the

number of variables is possible due to the existence of two constants of

the particle motion, namely a canonical momentum,

P = mv - e
z z

and an energy constant.

•X

B (x') dx' , (2.16)

1/ ^ y \ ^ ^ ^E = S5ni(v||- -^) + et - e B (x') dx' + pB (2.17)
z

where P is the magnetic moment. This energy constant is discussed

further in Appendix A.

The equivalence between these constants of the motion and the two

differential relations, Eqs. (2.14) and (2.15) may be demonstrated

by taking the total differential of Eqs. (2.16) and (2.17). In our

model

Vz = V[|COs (2.18)

where <J)(x) is the angle between the magnetic field vector and the z

axis (see Fig.1). Hence, dv^ may be expressed in terms of dvy and

dx as
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dv^ = cos <j) dv|| - sin ({> V[| dx . (2.19)

Taking the total differential of Eq. (2.16), and requiring that the

z component of the momentum be conserved, we find

dp^ = 0 = mcos (p dv|| -msin (p V[| dx ~ e dx , (2.20)

from which it follows that

=S®kj" •*"lf to ^ • <2.21)
The second term in parenthesis, (v[j/fi) (d(|>/dx) , is of order p /L^ .

In writing Eqs. (2.3) - (2.5) terms of this order were ignored. Hence,

we may neglect this term in Eq. (2.21), recovering Eq. (2.14).

Similarly, we may take the total differential of Eq. (2.17), and

demand that the energy constant E be conserved. Using Eq. (2.14),

and ignoring terms in ( ) and ( P^/L ) then yields

dE =0=^ ^^11^1) - w) dx +ed$ (2.22)

from which we immediately recover Eq. (2.15).
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3. ORBIT EQUATIONS

In this Section an expression for the trapped particle orbit width

that allows for traveling waves, finite values of k| and shear in the

magnetic field is devloped. The orbit widths obtained by Pogutse (1972),

and by Brambilla and Lichtenberg (1973) are recovered by taking the

appropriate limit of our more general expression.

The magnetic field configuration enters Eqs. (2.14) and (2.15)

through the dependence of the coefficients B(kjj/k^) and k^/B on x .

The third x~dependent coefficient, kp , is simply the product of the

first two. Waves with wave vectors nearly perpendicular to B are of

greatest interest as they will yield pineapple orbit widths that are sub

stantially greater than the gyroradius at modest values of the wave ampli

tude . Inhomogeneous plasmas support several waves that meet these

requirements. Perhaps the most important example is the low frequency

drift wave (see, e.g., Kadomtsev, 1965; Mikhailovskii, 1974; Horton, 1976),

which has been observed in many experimental plasmas (see, e.g., Politzer,

1971; Prager, et al., 1974; Mazzucato, 1976; Surko and Slusher, 1976;

Okabayashi and Arunsasalem, 1977).

Without loss of generality, the coordinate system may be chosen such

that kj| vanishes at x = 0 . A simple way of modeling shear in the magnetic

field is to choose the x-dependence of the coefficients in Eqs. (2.14)

and (2.15) to be

XB(x) B— (3.1)
k (x) s
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and

k (x) ^
=». (3.2)

B(x) ®

from which it follows that

ky(x) = , (3.3)
s

In these equations B is the magnitude of the magnetic field and L

is the shear length. Equations (3.1) - (3.3) may be viewed as the leading

terms in a power series expansion in ( x/L ) about x = 0 . In general
s

one could include higher order terms in this expansion. The leading terms,

as given by Eqs. (3.1) - (3.3) are sufficient to understand the rather

complicated particle orbits that are obtained by numerical integration

of the guiding center equations of motion and to estimate the enhanced

transport associated with these waves.

Combining Eqs. (2.14) and (3.1) we find, after one integration, that

the change in the parallel velocity and the change in the guiding center

position along particle orbits are related by

where

6x 2 (3 ^,)
X X

u o o

X ^
u =-B-^ . (3.5)

m L
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Equation (3.A) together with Eqs. (2.12) allows us to express the

parallel velocity of a particle as a function of its guiding center

position.

IL =I!!°+ +. (3.6)
U U X X

o o

By inserting this expression into Eq. (2.15) and integrating once

again,a relation between 6x and 6$ is obtained, namely

where

_ 0)

4,0 - k||^

and

k||o Ek||(x^) . (3.8)

For each value of 0 there is a unique value of 6$ determined by Eq.

(2.13). Hence Eqs. (2.13) and (3.7) together determine the particle

orbits in the 0-x plane.

The particle orbits obtained from these equations are already quite

complicated, despite the rather simple model that was chosen to describe

the sheared magnetic field. For each value of 0 there may be as many

as four distinct values of x . Hence, in the 0—x plane these particle

- 14 -



orbits can have four branches. Whether these branches are connected

to form "trapped" orbits, or disjoint, giving several "passing" orbits,

is determined by the initial phase variables » *o * ^Ho *

wave amplitude, . Hence, our model is sufficient to describe the

dumbbell-shaped orbits that we have observed in our numerical integrations

of the equations of motion (see Fig. 3).
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FIGURE 3. Projection of a trapped particle orbit onto the x--0

plane. The "dumbbell" shape results from the change in

sign of k|| at X = 0 .
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4. TRAPPED PARTICLE ORBITS

Dumbbell shaped orbits like that shown in Fig. 3 occur when trapped

particles cross the x =0 plane (where ky changes sign). In what

follows we shall restrict our attention to those particles that remain

on one side of this plane. These particles satisfy

^ < 1 . (4.1)
X

o

Hence, the cubic and quartic terms in Eq. (3.7) may be neglected in anal

yzing the orbits of these particles, reducing Eq. (3.7) to the quadratic

equation

6x _ ^^Ho %o^ —̂
^o""

o o i^mu

Solving this equation for 6x in terms of 6$ we obtain

H

The discriminant, d , is given by

2)

(4.3)

9 "^11 - o
d = (v„ -v^ y - 2(1+—) - 6$ . . (4.4)

11 o (po u m

Holding the wave amplitude constant there is a maximum pos

sible value of 6$ , namely

6$ = $ - 4>(t ) . (4.5)
max o o
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Trapped particles oscillate about a minimum of the potential; they do

not reach the maximum potential. The turning points of the trapped

particle orbits in 9 correspond to those values of 0 where the two

branches of the particle orbit as given by Eq. (4.3) coalesce. This

occurs when d vanishes. A criterion for determining if a particle is

trapped is obtained by examining this discriminant. For trapped part

icles the discriminant must vanish for some allowable value of 6$ ,

Hence, d must be negative when evaluated at 6$ = ^^max * trapped

particles must satisfy the condition

[vn -V I<(l+ —J (z-Sil y . (4.6)
' llo o' V u / \ m max/

It follows from Eq. (4.6) that the characteristic width of the

trapped region in velocity space, > is given by

v^jU^p =(l+2)'̂ (eym)'2 (4.7)

where the parameter Q is defined by

O = \ 2 I
u ~ v^_ ^ k„o ^ L

2 e^ ® (4.8)

In Sect. 6 an estimate of f^ , the fraction of the particles from

a given distribution that are trapped by the finite amplitude wave, is

required to calculate the pseudoclassical transport coefficients.

Assuming that this distribution is nearly Maxwellian, and that both

V. and are small compared to the thermal velocity v^ we may
<(> o TRAP te
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estimate this fraction as

In Eq. (4.9) the parameter 2 measures the importance of magnetic

shear on the trapped particle orbits. If Q is small Eq. (4.9) reduces

to the usual estimate (Pogutse, 1972),

f 21 • (A.10)•p - y T /

In the oppposite limit, 2 1 >

.(it I'J! /

This dependence of f^ on parameters other than ( ) has not

appeared previously in the literature. The physical mechanism by which

magnetic shear affects particle trapping is described at the end of

this section.

Computer simulations were used to check the trapping criterion,

Eq. (4.6). The orbits of hundreds of particles were followed in a

sheared magnetic field and an electrostatic wave, using the wave form

h(0) = cos 0 . (4.12)

It was found that, to within the accuracy of our algorithm for numerical

integration, particles initialized with phase variables satisfying
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inequality (4.6) execute closed (i.e., trapped) orbits in the 6-x

plane, while particles whose initial phase variables do not satisfy

inequality (4.6) have open (i.e., passing) orbits. The dependence of

fp on ^(Iq predicted by Eq. (4.9) was then verified.

A random number generator was employed to select the initial phase

variables of hundreds of particles. The parallel velocities were chosen

from a Maxwellian distribution, while the initial phase, 0^ , was

chosen to be uniformly distributed on (0,2tt) . Inequality (4.6) was

tised to determine which particles were trapped. The fraction of particles

trapped by the wave was computed and compared with our estimate. Fig. 4

shows plots of the computed values off vs. the parameter ^. The
P

solid line in this figure corresponds to

fp =0.37(1+ g (4.13)

where the numerical constant, 0.37 , was chosen to give the best fit.

As f^ approaches one the agreement is poor because the assumption

that v„„._ «v breaks down. For small values of f the statistics
TRAP te p

are bad. In the intermediate region the agreement between our estimate

and the computed value of f^ is excellent. Hence, we conclude that

vdien there is shear in the magnetic field the fraction of particles

trapped by a wave can be substantially greater than the usual estimate,

(e$^/T) , employed by previous workers (Brambilla and Lichtenberg, 1973;

Cell et al., 1975).

- 19 -



p -

10"' -

r2
10 I ' ' ' ' I -y r T—1 11 T r III'

10 10'

FIGURE 4. This figure illustrates the results of Monte-Carlo calcula

tions of the fraction of particles trapped by the wave, f^ , In these

calculations e$ /T = .001 and v./v^^=1.414 . For the open square
o 9 te

k„/k and kp are held constant at .001 and 2.4 x10 ^ , while kL
II e s

is varied. For the solid squares, fixed at 4.5 x

10"3 and 7.1 xlO"^ . The open triangles illustrate calculations in

which kp and kL are held constant at 2.4>«10"^ and 100. while
e s

kj|/k is varied. For the solid triangles kp and kLs are given by

7.1 ><10"^ and 100 . Finally, the circles show the results of calcula

tions in which kjj/k and kL^ are fixed at .001 and 100. while

kp^ is varied. The prediction of Eq. (4.13) is shown by the solid line.
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Next, we consider the trapped particle orbit widths. Again

using the fact that, for trapped particles, t^ may be chosen such

that V,. =v. , and estimating 6$ by $ , the characteristic
io ^ max o '

orbit width, Ax^ is given by

e$
o1 k A ^ r' IM

In the limit S < 1 this result is identical to that of Pogutse (1972),

while when § is large it goes over to the orbit width of Brambilla and

Lichtenberg (1973), namely

''e • (^-16)p glj k|i y T / e

Hence, shear in the magnetic field limits the width of the trapped

particle orbits when 2 >1 .

We have estimated the value of 2 » using values of oi/fi ,

_k , and corresponding to the low frequency drift wave spectrum

observed in tokamak plasmas. Both large and small values of 2

accessible with reasonable choices of these parameters.

In general, one finds a region about the mode rational surface with

a width

- 20 -



1/3

0)

(4.17)

1/3
m

- P.
"i "A

in which 2 is greater than one. Outside of this region 2 is
less than one, and the effect of magnetic shear on the trapped particle

orbits may be neglected. In writing the second of Eqs. (4.17) we have

estimated o) by the electron diamagnetic drift frequency. is the

density gradient scale length. Using parameters characteristic of the drift

wave spectra observed in a tokamak plasma we find that is of the

same order of magnitude as the ion gyro—radius, . Since the radial

mode structure of the low frequency drift wave is a subject of current

research (see, e.g., Renwoldt et al., 1977; Ross et al., 1977; Smith

and Whitson, 1977; Miner and Ross, 1977), it is not yet clear whether

the normal modes are localized in the region in which 2^1 » extend

into the region in which 2^1 • Hence, it is necessary to consider

both large and small values of 2 determining the enhanced trans

port associated with the trapping of particles by the drift wave spectrum.

Xn the preceding analysis of the orbits of particles trapped by an

electrostatic wave in a sheared magnetic field time was eliminated as

an independent variable. We must now return to the equations of motion

Ito determine the time scale associated with these trapped particle oscil

lations. This time scale is determined by bounce frequency

of a deeply trapped particle.

- 21 -



It is convenient to assume that the waveform, h(0) , is given by

h(0) = - cos 0 (4.18)

and examine the orbits of particles trapped about 0=0. By line

arizing Eq. (2.6), one obtains

4^ = kti 6v + V|| 6k (4.19)
dt II o iio

where 6k|| = k(6x/Lg) . Equation (3.4) is used to eliminate 6v[

from Eq. (4.19), leaving

=^(1 + Q) 6x (4.20)
dt L

s

where t is chosen such that vn = v. . Taking the time derivative
o Ho (po

of Eq. (4.20), and using Eq. (2.5) to express d6x/dt in terms of 0 ,

it is found that

^=-kfo(l+S) f
dt

For deeply trapped particles 0 is small, so h*(0) may be expanded

to ob tain

^ =- 0)^ 0 (4.22)
BOUNCE

dt

where

1

(1) = k„ V ( 1 S I • (^*23)
BOUNCE o te M T /
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Hence, the bounce frequency of the trapped particles depends on the

shear in the magnetic field only through the parameter 2 , and magne

tic shear tends to increase the bounce frequency of the electro

statically trapped particles.

It is interesting to note that if only the first term on the

right hand side of Eq. (4.19), k||̂ 6V|j ., is retained, then one recovers

the shearless result, '*'boUNCE ~^IIo remaining term, *

gives rise to the dependence of ^goUNCE ^ limit of large
5 this second term dominates Eq. (4.19). Hence, we see that shear

affects the particle orbits through the variation in k[| . This vari

ation is caused by the ExB drift of the particle across the sheared

magentic field. An observer moving with the particle would see the

wave slowing down as he moved in the direction of increasing k[| ;

while the phase velocity of the wave would increase as he moved in the

direction of decreasing k[| . Hence, when this second term dominates

Eq. (4.19), the oscillation of the particle between the maxima of the

wave potential occurs due to the variation in the local phase velocity

of the wave, (ij/k|j (x) . This is in sharp contrast to the trapping mech

anism in a magnetic field with no shear (i.e., 2=0), where it is

the velocity of the trapped particle that varies, rather than the phase

velocity of the wave.
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5. THE TRANSPORT COEFFICIENTS

In the preceding sections the orbits of particles trapped by an

electrostatic wave in a sheared magnetic field (pineapple orbits) were

examined. Estimates of the pineapple orbit width, Ax^ , the width of

the trapped region in velocity space, ^XRAP ' fraction of part

icles from a thermal distribution that are trapped by a given wave, f^ ,

and the bounce frequency of a deeply trapped particle, '̂ 'goUNCE *

obtained. In this section these estimates will be employed together

with a random walk model to determine the scaling of the anomalous

transport driven by an electrostatic wave with to , k , and ( e<^^/T ),

given ® •

When a random walk model is used to estimate transport coefficents

it is often helpful to divide velocity space into two regions such

that particles in the different regions have qualitatively different

orbits. Collisions will cause particles to "jump" from one region of

velocity space to the other. The accompanying change in the character

of the particle orbit produces a "step" across the magnetic field. This

division of velocity space has been used in estimates of the neoclas

sical transport coefficients (e.g.. Dean et al., 1974; Stringer, 1970)

and in previous treatments of pseudoclassical transport theory (e.g.,

Pogutse, 1972; Brambilla and Lichtenberg, 1973; Cell et al., 1975).

In the limit of small collision frequency, velocity space may be

divided into a region in which particles are trapped in the electric

field of the wave and a region of passing orbits. In these two regions

the particle orbits are qualitatively different. The trapped particles
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see a slowly varying electric field, and consequently their orbits are

extended in the x-direction. These are the "pineapple" orbits analy.ed

in Section 4.

A typical passing particle experiences a rapidly varying electric

field, and consequently "jitters" about its mean position with an

amplitude*

\diich is small compared to the pineapple orbit width, Ax^ .

Collisions cause particles to be scattered in and out of the

trapped region of phase space. Each time this occurs the mean particle

position is displaced in x . The characteristic size of this displace

ment is the pineapple orbit width, Ax^ , given by Eq. (4.14). Viewing

this process as a random walk, we obtain a diffusion coefficient,

Cn= af Ax^ V (5.2)^ P P eff

where f is the fraction of velocity space occupied by trapped part-
P

ides, V is the effective collision frequency for scattering in or
' eff

out of the trapped region, and a is a numerical coefficient of order

unity.

The effective collision frequency is greater than , the fre

quency at which many small angle collisions accumulate to produce a

90" scattering angle, because trapped electrons become untrapped when

scattered through an angle A0 - (^fRAP^^te^ * Since small angle scattering

*This result follows directly from Eq. (4.2) when Vj|̂ -v^ is esimated by v^^
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is the dominate collisional process in fully ionized plasmas, the

effective collision frequency is related to the 90 collision frequency by

1 ''e
V . (5.3)

(Ae)^ ® (1 + 2) (e'l'/T)

The plasma-wave system is in the "pineapple" regime when the colli

sion frequency is small enough that trapped particles typically complete

a bounce orbit in the wave potential before being scattered out of

the trapped region. This is the case when

« 1 . (5.4)
^BOUNCE

or equivalently,

In this, limit Eq. (5.2) predicts that the transport coefficients

will be proportional to

Hence, the particle diffusion coefficient, q) , may be written in

the form

q)=aD (5.7)
- P

while the heat conductivity

X = 3D . • (5.8)
P
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Similar expressions apply for the off-diagonal transport coefficients.

While we expect that the constants of proportionality, a and 3 ,

are of order unity, the numerical values of these constants must be

obtained from kinetic theory.

A kinetic calculation of the pseudoclassical transport coeffici

ents was performed in the limit 2 =0 (Nevins, 1977a). This calcula

tion may be extended to sheared magnetic fields by requiring that the

dependence of the transport coefficients on 2 be given by Eq. (5.6),

and that the known values of the transport coefficients are recovered

in the limit 2 • Hence, in a sheared magnetic field the pseudo-

classical particle and energy fluxes are given by the results of Nevins

together with our more general D ,
P

r = -2.25 D (1 ^)-^+1.89D (5.9)e p ^ %e p T 8x ^

Q =-1.48 D (1- )t|^+ 0.23 D n . (5.10)
e p to dx p 8x

ne

(0^^ is the electron diamagnetic drift frequency.

_ ^ 1 dn /r Tix
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The wave frequency appears explicitly in Eqs. (5.9)—(5.10) because

the thermodyhainic forces on the wave—plasma system are

A =n SiJ-) lilL _ (5.12)
H ^ ^ n dK 2 t: dx

ne

A = - . (5.13)
^2 T ax

Hence, the factor (l-m/o) ) is not part of the transport coefficient,
ne

but is instead part of the thermodjrriamic force (Nevins, 1977a,c).
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In the computer simulations of pseudoclassical transport pre

sented in Sect. 7 only the electron-ion collisions are retained.

Nevins (1977a) showed that the contribution of electron-ion collisions

to the pseudoclassical electron diffusion coefficient, , is

= 1.30 D . (5.14)

This result is found to be in good agreement with the computer simulations

Next, in the intermediate regime of collision frequencies.

[(^)a +S)J «V^«1. (5.15)

particles are no longer trapped by the wave. The particles are detrapped

by collisions before they can complete a full "pineapple" orbit. The

pseudoclassical transport coefficients in this regime are estimated by

adapting Stringer's (1970) explanation of the neoclassical plateau regime,

At intermediate values of the collision frequency the particle velocity

space may still be divided into two regions, a "resonant" region and a

"non-resonant" region. The "resonant" region of velocity space is

defined to be that region in which the Doppler shifted wave frequency,

(D-kyV[| , is less than the effective collision frequency for scattering

particles out of the resonant region of velocity space, v . Between
IT

collisions resonant particles drift across the magnetic field with a

velocity of order Vg =k$^/B . The remainder of velocity space is the

non-resonant region. Between collisions non-resonant particles

jitter back and forth across the magnetic field. Hence, the orbits of

resonant and non-resonant are qualitatively different.
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The width of the resonant region in velocity space, v , is
ir0S

given by equating the Doppler shifted wave frequency on the boundary of

the resonant region to » i.e.,

kiiv =Vi—(5.16)
11 res e \ V /

\ res/

or

V /v = . (5.17)
res te *

Hence,

-2/3
V = V V . .
res e *

(5.18)

Just as before, the diffusion coefficient is given by

D = f Ax^ V . (5.19)
res res res res

For waves with phase velocities, v^ = aj/ky , small compared to the

electron thermal velocity, the fraction of the electrons resonant with

the wave is

f = (5.20)
\e

while the step size of the resonant particles is given by

k$ ^
Ax . (5.21)

res B V
res

Hence, we may estimate the diffusion coefficient by
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1,2*2, k *
D = :r • (5.22)

This estimate of the particle diffusion coefficient, D ,
jTwS

differs from the self-consistent diffusion coefficient (see, e.g.,

Sagdeev and Galeev, 1969; Horton, 1976; Krall and McBride, 1977),

k2^2

^sc = d—r'^Irte B

only by the numerical factor, (tt/8) The relation between the colli-

sional transport process described here, and the self-consistent

transport investigated by other authors has been considered elsewhere

(Nevins, 1977b) with the conclusion that the transport will be properly

described by the self-consistent theory when inequality (5.15) is

satisfied. This result is confirmed by the computer simulations pre

sented in the next section.

The "self-consistent" transport coefficients are called "quasilinear"

transport coefficients by some authors (e.g., Sagdeev and Galeev, 1969;

Krall and McBride, 1977). The name "self-consistent" is used here to

emphasize the fact that it is not necessary to make any assumptions

about the auto-correlation time of the wave spectrum in deriving these

transport coefficients (see, e.g., the derivations of Horton, 1976;

Liu, et al., 1976; Manheimer, 1977). The self-consistent transport

coefficients simply describe the transport of particles and energy implied

by the linear perturbation in the electron distribution function. Hence,
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it is not unreasonable to apply these transport coefficients in calcu

lating the transport due to a single, coherent wave.

Finally, the collisional limit,

> 1 , (5.24)

of pseudoclassical transport theory is investigated. This regime was

treated previously by Yoskikawa and Christofolis (1971) using fluid

theory. Here we present an alternate derivation of the same diffusion

coefficient. In the collisional limit particles are no longer free to

stream along the magnetic field lines. Instead, the parallel motion

must be viewed as a random walk, with a characteristic step size

Az = — . (5.25)
V

e

Hence, a typical particle will be displaced by a distance of order

l/k[| along the magnetic field in a time

t,|=^. (5.26)

In the limit

ojtji «1 , (5.27)

the electric field seen by the particles changes primarily due to the

diffusion of particles parallel to the magnetic field.
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Viewing the motion of the particle across the magnetic field as a

random walk, we take the step size to be

k $

AXc=-^ til (5.28)

and the correlation time to be t|| . Hence, the diffusion coefficient

that describes the motion of particles across the magnetic field in the

colllsional limit is given by

1 2^2V k $
e 1 o

\'7rr-T- • (5.29)
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6. RESULTS OF COMPUTER SIMULATIONS

In this section we present the results of computer simulations of

the pseudoclassical transport process. The computer code constructed

for these simulations is described in Appendix B. The plan of attack

will be to first compare the particle transport rates that we observe in

these computer simulations with the predictions of the kinetic theory of

pseudoclassical transport (Nevins, 1977a) in the limit of no magnetic

shear, ^ =0 . Next, we shall investigate the dependence of the

transport coefficients on the amount of shear in the magnetic field,

and, finally, compare the observed transport rates with the predictions

of Section 6 in the limit of strong magnetic shear, ^ 1 •

The computer simulation code measures D , the enhancement in the

over its classical value
electron diffusion coefficient^due to the presence of the finite ampli

tude wave. These measurements of D* are consistent with the results

of kinetic theory in the limit of vanishing magnetic shear. Figure 5

shows D* versus the collision frequency. At small collision frequen

cies, when (v < .1 , the measured diffusion rates, D* ,
eff BOUNCE - '

are in very good agreement with the pseudoclassical diffusion coefficient

calculated by Nevins (1977a) (indicated by the solid line). This close

agreement between the computer simulations and kinetic theory is parti

cularly significant in light of the fact that there are ^ free parameters

in this theory. As (v approaches one the measured dif-
Glir BUUJNChi

fusion coefficient departs from the theoretical prediction. The discrep

ancy, which is of order (v 'D , is expected as terms of
eff BOUNCE P

this order were ignored in the kinetic calculation.
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FIGURE 5. Measured values of the enhancement in the diffusion coeffi

cient versus the collision frequency. The prediction of Eq. (5.14) is

shown by the solid line. The dotted line corresponds to D* =2.4v^^^g ,
where the constant factor, 2.4, has been chosen to fit the data. The

dashed line shows the self-consistent diffusion rate given by Eq. (5.23).

(e$ /T) , kn/k , v^/v^ , and kp were held constant at .08, 0.2,
o 11 9 te e

0.0, and 4.3x10"^ , respectively. The vertical error bars here represent

fluctuations in D* .
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When the collision frequency is in the intermediate range,

the computer simulations show a transition regime in which the enhanced

transport scales as the square root of the collision frequency, i.e.,

CCf-^ » 2.A . (6.2)

We are unaware of any calculation of the pseudoclassical transport

coefficients from kinetic theory that is valid in this regime. However,

the close analogy between the neoclassical and pseudoclassical transport

mechanisms suggests that the behavior of the pseudocalssical transport

coefficients should be similar to that of the neoclassical transport

coefficients. The values of the neoclassical transport coefficients

over the analogous transition from the neoclassical "banana" regime to

the neoclassical "plateau" regime have been worked out in detail (see,

e.g., Hinton and Hazeltine, 1976). This kinetic calculation predicts

a broad transition regime in which the transport coefficients are propor-

X'
tional to . Hence, this analogy leads one to expect exactly the

V. scaling observed in Fig. 5.
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At higher values of the collision frequency the transition regime

is followed by a plateau in which the enhanced diffusion rates are

nearly independent of the collision frequency. Figure 5 shows that the

measurements of D* on the plateau are well approximated by the "self-

consistent" diffusion coefficient discussed in Sect. 5, Eq. (5.23).

Hence, these simulations provide strong support for our identification

of the plateau regime of pseudoclassical transport with the self-consis

tent transport considered by many other authors (e.g., Stix, 1967; Sagdeev

and Galeev, 1969; Horton, 1976).

Finally, when v^'v.l , the transition to the "collisional" regime

of pseudoclassical transport begins to appear (Yoshikawa and Christo-

folis, 1971). We did not proceed to larger collision frequencies in this

sequence of computer simulations because, for the particular choice of

parameters made in these simulations the enhancement in the particle

diffusion in the collisional regime over the classical rate (Rosenbluth

and Kaufman, 1958),

°cl ° "e ' (6.3)

is too small to be measured. Of course, this is not always the case;

in fact at values of k[|/k smaller than those used in Fig. 5, the pseu

doclassical transport rates in the collisional regime can be substan

tially larger than the classical transport rates. We conclude this

discussion of Fig. 5 by noting that, in the limit of vanishing magnetic

shear, pseudoclassical transport theory describes the observed enhance

ment in the electron transport rate over a wide range of collision frequencies
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We now restrict our attention to the low collision frequency, or

"pineapple" regime. Fig. 6 illustrates the results of computer simu

lations which verify the scaling of D* in the pineapple regime with

k||/k predicted by Eq. (5.5). The solid line is the prediction of the

kinetic theory, as given by Eq. (5.14). The observed values of D* are

in excellent agreement with the kinetic theory. The scaling of D* with

the magnetic field strength, B , has been verified elsewhere (Gell, et

al., 1975).

In Fig. 7 the measured enhancement in the diffusion coefficient is

plotted against (e$^/T) . These results are in good agreement with

the kinetic theory of pseudoclassical transport for (e$^/T) <0.25 .

It is somewhat surprising that the kinetic theory properly describes the

pseudoclassical transport at such large values of the wave amplitude,

h
as terms of order (e$ /T) D were ignored in the kinetic theory.

o p

We conclude our examination of pseudoclassical transport in the

limit of vanishing magnetic shear by investigating the dependence of

D* on the phase velocity of the finite amplitude wave. In both the kinetic

theory of Nevins (1977) and the estimates of the pseudoclassical trans-

2
port rates presented above, terms involving were ignored.

We expect that the pseudoclassical transport coefficients will drop off

as (v./v ) is increased, for two reasons. First, there will be^ (J) te '

fewer particles trapped by the wave because the distribution function

decreases with increasing velocity. In addition, the average speed of

the resonant particles.
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FIGURE 6. Measured values of the diffusion coefficient versus k||/k >

with D* normalized to the classical diffusion rate. The prediction

of Eq. (5.14) is shown by the solid line. (e$ /T) , kp , v /v ,
o e (|) te

and (^eff'̂ ^BOUNCE^ constant at .01, 4.3x10-3 , 0.0, and

0.5, respectively.
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FIGURE 7. Measured enhancement in the diffusion coefficient versus

(e$^/T) . The prediction of Eq. (5.14) is shown by the solid line.

k[|/k , and held fixed at 0.2 and 0.0, respectively,

while (v --/a)„5.0 X10"^ . The dependence on B is scaled
eff BOUNCE

out because D* is normalized to D
cl *
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Increases with . Since the electron—ion collision frequency varies
3

as 1/v , the effective collision frequency of the resonant particles

will decrease as v, is increased. Hence, we might expect that

2/0 2-v/lv
9 te

^ [l+(v/v^e) J^ ^

Figure 8 shows the measured diffusion coefficient, D* , versus (v / v ) .
<J) te

Iflien (v^ qualitative agreement with the Eq. (6.4),

shown by the solid line. At larger values of (v / v ) , D* is
<j) te

consistently larger than this estimate.

We now present our measurements of the pseudoclassical diffusion

in a sheared magnetic field. We noted previously (c.f.. Sect. 4) that

shear in the magnetic field is important in limiting the widths of part

icle orbits near the mode rational surface. In this region the pseudo-

classical diffusion coefficient is strongly dependent on position (see

Fig. 12). This spatial dependence of the diffusion coefficient causes

some difficulty because our computer code in fact averages over a region

with a width several times greater than the pineapple orbit width. Ax ,
P

in its measurement of D* . Thus, compromises in our choice of simulation

parameters were necessary to insure sufficient spatial resolution. We

have examined the constraints on our choice of simulation parameters
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FIGURE 8. D* versus the phase velocity. The solid line corresponds

to Eq. (6.4). (e4^/T) , k,|/k , kp^ . and f/"bquNCE

constant at .01, .03, 4.3x10""^, and .05, respectively.
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elsewhere (Harte and Nevins, 1976) and concluded that it is necessary

to choose the wave frequency such that the local value of the phase velo

city is of the same order as the thermal velocity. Hence, we are unable

to directly verify the theoretical prediction of Eq. (5.14), as this

theory assumes that . We have verified the scaling of D*

with k[| , , and B predicted by Eq. (5.6),

Figure 9 illustrates the transition between the regimes of small

and large magnetic shear. The parameter § is varied between 0.1 and

10,0 by changing the magnetic shear length, L . A continuous transi-
s

tion is observed between the limit of small and large shear in which

the diffusion coefficient scales as (l +2)~^^^ , which is predicted
by Eq. (5.6). The solid line is the theoretical prediction of Eq. (5.14)

together with Eq. (5.6), corrected by the factor 0.6 to allow for the

rather large value of ^^^o^^te^ employed in these computer simula

tions, ^^^o^^te^ =0.5 . The magnitude of this correction factor is

made plausible by both Eq. (6.4) and Fig. 8.

Figure 10 illustrates the dependence of D* on the collision fre

quency in the strongly sheared limit. The dependnece is linear at small

values of ^^eff '̂̂ BOUNCE^ ' theory predicts. This linear depen

dence breaks down at somewhat lower values of (v .„^„) than we
eff BOUNCE

would have expected.

Finally, Figure 11 illustrates a series of computer simulations in

which , and k[|/^ were varied independently. The solid

line shows the prediction of Eq. (5.14). For values of 2 up to forty

the measured diffusion rates fall below the prediction of Eq. (5.14)
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FIGURE 9. D* normalized to versus 2 > showing the transition

between the regimes of small and large shear. (e$^/T) , k[j/k , >

and kp are held constant at .01, .03, 0.5, and 4.3 10""^, respect-
e

ively, while kL is varied. The solid line is 0.6* qf- of Eq.
s

(5.14). The horizontal error bars reflect the finite spatial resolu

tion of the measured diffusion coefficient, D* .
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^BOUNCE

FIGURE 10. D* versus the collision frequency. (e4>^/T) , k[|/k ,

V, /v , and kp are held constant at .001, .001, 1.414, and 2.4
(J)o te e > » >

10""3^ respectively, while the collision frequency is varied. The

prediction of Eq. (5.14) is shown by the solid line.
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FIGURE 11. D* versus fi . (e$ /T) and /v^ were held constant
o (po te

at .001 and 1.414, respectively, while (^eff '̂̂ BOUNCE^ — ^

The squares mark runs in which ^||/^ were held constant at

.001 and 2.4x10""^ while kL was varied. The triangles mark runs in
s

which kp^ and kL^ were held constant at 2.4x10"^ and .01 while ky/k

was varied. The circles mark runs in which ky/k and kL^ were

held constant at .001, and .01 while kp was varied. The horizontal

bars reflect the spatial resolution of the measurements. The prediction

of Eq. (5.14) is shown by the solid line.
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by about a factor of 0.4. This factor presumably reflects the rather

large phase velocity employed in these runs, (v. /v ) =1.414. At larger
90 te °

values of ^ , the measured values of the diffusion coefficient are

somewhat larger than one might expect. This is due to insufficient

spatial resolution in our measurement of D* at large values of ^ .

The computer simulations summarized in Figs. 9-11 confirm the

scaling of the pseudoclassical transport coefficients predicted by

Eq. (5.6). This confirmation, together with the smooth transition

between the regimes of strong and weak magnetic shear observed in Fig. 9

provide strong support for the extension of pseudoclassical transport

theory to sheared magnetic fields given by Eqs. (5.9) - (5.10).
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7. CONCLUSION

We have extended previous work (Pogutse, 1972; Brambilla and Lichten-

berg, 1973; Cell, et al., 1975; Nevins, 1977a) on the-enhanced transport

associated with the trapping of electrons in a finite amplitude electro

static wave (pseudoclassical transport) to include simultaneously the

effects of shear in the magnetic field and finite wave frequencies. As

stated previously, the magnetic shear prevents the divergence of the

pseudoclassical transport coefficients at the mode rational surface.

The spatial dependence of the pseudoclassical transport coeffi

cients may be obtained by using Eqs. (3.1) and (4.8) to rewrite Eq. (5.6)

in the form

where

^1-3/2 2
Dp(x) = jl +(x^/x) j (x^/x) (7.1)

D = {-^kL (-^) p; (7-2)pc jo) s \T/ee

and x^ is given by Eq. (4.17). This spatial dependence is illus
trated in Fig. 12. Eq. (7.1) is shown by the solid line, while the

spatial dependence obtained by previous workers (Pogutse, 1972; Cell

and Nevins, 1975; Nevins, 1977a),

D(x) =(x^/ x)^ (7.3)
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FIGURE 12. The spatial dependence of the pseudoclasical transport

coefficient given by Eq. (7.1) is shown by the solid line. The spatial

dependence without shear obtained by previous authors (dashed line)

is included for comparison.

- 40a -



Is shown by the dashed line. The correction to the previous work

due to the shear in the magnetic field is significant for x/x^<2%

and the divergence at the mode rational surface is entirely avoided.

In addition, we have tested both the kinetic calculation of the

pseudoclassical diffusion coefficient of Nevins (1977a) and our extension

of this result to sheared magnetic fields through the use of computer

simulations. Very good agreement was found between the theory and the

computer experiments.

It is evident from Fig. 12 that provides a characteristic

value of the pseudoclassical transport coefficient that may be used

to estimate a lower limit on the pseudoclassical energy confinement time,

PC
T , Normalizing the parameters to values characteristic of current

tokamak experiments, we find:

[T /I KeV]^ [B/10 gauss] ^ [L /lO cm] ^
> 2.8 msec — j :— , (7.4)

[n/10"cm"^] [(e* /D/lO'^f [L /lOO cmr'^
o s

Since 2.8 msec is of the order of the energy confinement time observed

in tokamak experiments, we conclude that the pseudoclassical transport

process described here may be important in determining the energy confine

ment time in present and future tokamak experiments.

We present this estimate of the pseudoclassical energy confinement

time only to establish the possible importance of this transport mech

anism. Because of the approximate nature of the estimate, as well as '

the uncertainties in the dependence of the wave parameters m , k ,

and (e$^/T) on the parameters of the plasma, we caution against
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interpreting Eq. (7.4) as a description of the scaling of the pseudo-

energy confinement time with the plasma parameters L
n *

J-g » » B , and n .

Instead of merely estimating the values of w , k , and (e<J> /T)
o

a complete treatment of pseudoclassical transport must provide a means

of calculating these quantities. Such a treatment of pseudoclassical

transport requires knowledge of the drift wave fluctuation spectrum.

The calculation of this fluctuation spectrum is the central problem in

determining the anomalous transport associated with low frequency drift

waves. It has been shown elsewhere (Nevins, 1977b) that the pseudo-

classical particle flux can be important in determining the nonlinear

evolution of this wave spectrum. Hence, the calculations of the fluc

tuation spectrum and the anomalous transport must be performed self-con-

sis tently.

In performing this self-consistent calculation it is important to

understand the connection between the pseudoclassical transport theory

considered here and other work on the anomalous transport associated

.with low frequency drift waves (e.g., Horton, 1976; Liu, et al., 1976;

Krall and McBride, 1977). One of us has considered this problem elsewhere

(Nevins, 1977b) and found that this pseudoclassical theory is a nonlinear

theory of the interaction between the wave and the resonant electrons.

This theory replaces the "quasilinear" treatment of this interaction

at large wave amplitudes, such that inequality (5.5) is satisfied,

provided that the drift wave fluctuation spectrum is sufficiently

coherent.
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Appendix A - THE ENERGY CONSTANT (Sect. 2)

In this appendix the energy constant E used in our inter

pretation of Eq. (2.15) is derived.

The energy of a particle in the "lab" frame is not conserved

because the wave potential is a function of time. Hence, one must go

to the "wave" frame to find an energy constant. In a uniform magnetic

field this is usually accomplished by transforming to a reference frame

that is moving with the velocity

w = ^ B (A.l)
— kn

relative to the lab frame. The great advantage of this choice of refer

ence frames in a uniform magnetic field is that the induced electric

field in the new frame of reference.

I

e = w X B (A. 2)
—o — —

vanishes identically.

In a sheared magnetic field B becomes a function of x . Hence,

w can satisfy Eq. (A.l) at only one particular value of x ; and

any change of reference frame in a sheared magnetic field must produce

a time independent electric field, , in the new reference frame.

Finding no advantage in transforming to a reference frame moving

along the magnetic field, we instead choose to transform to a frame

moving parallel to the wave vactor, k . Hence, choose
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w = k y

(recall that k = ky ). In this reference frame there is an electric

field given by

e* = 7^ B (x) k (A.4)
-o k z

= - VF (A. 5)
o

where this time independent potential,. , is given by

rx

o k
B (x') dx' » (A.6)

z

The magnetic field is unaffected by this transformation provided w

is small compared to the speed of light. The phase variables of a part

icle transform as

V[i* = V[| - w«B(x) (A. 7)

y* = y (A. 8)

x* = X (A.9)

y* = y - wt ^ (A. 10)

In this new reference frame the wave phase.

0 = ky y' , (A.ll)
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is independent of time. Hence, the total energy in this reference frame.

.2E = igmvii* + e$ + e¥^ + pB (A.12)

is conserved. Using Eqs. (A.6) thru (A.9) the energy constant may be

written in terms of the phase variables in the lab frame as

E=J2m|vn-|--^j +e$-e|-
X

B^(x') dx* + pB (A.13)
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Appendix B - THE DIFFUSION CODE (Sect. 6)

To verify the diffusion coefficients predicted by the theory pres

ented here and elsewhere (Nevins, 1977a), a computer simulation code

was developed. This code also proved invaluable as an independent

check of our predictions of the pineapple orbit widths and of the

fraction of particles trapped by the wave. The configuration of the

code is exactly the same as that described in Sect. 2 (see Fig. 1). Tlie

code follows the motion of hundreds (typically 500 to 1000) of non-

interacting test particles subject to externally applied electric and

magnetic fields and a Monte Carlo collision operator. No self-fields

are calculated. Each particle is described by the full three dimensional

velocity vector. However, the particle's motion in space is projected

into the x-y plane, yielding a 2D3V code. The system is periodic in the

y—direction, and unbounded in the x—direction (the direction of diffusion)

The simulation code consists of three main parts. First, the part

icles are advanced along their cycloidal orbits, using the method of

Buneman (1967), extended to allow for shear in the magnetic field (Harte

and Nevins, 1976) as in Fig. 1. Because this algorithm sends the part

icles along their cycloidal orbits, assuming constant E and B , there

is no reason to choose the time step to be small in comparison to the

gyro period. In fact, nAt^lOOO was successfully used. The time step

must be choosen such that it is small compared with the time scale for

changes in ^ and ^ .
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Second, the particles are scattered in velocity space, using the

collision operator of Shanny, et al. (1967). This collision operator

models the small angle, three dimensional velocity space scattering of

-3
electrons off stationary ions, and includes the (velocity) dependence

of the collision frequency. The statistical properties of this colli

sion operator have been examined by Horton, et al. (1977). These authors

conclude that, over many discrete time steps, this collision operator

accurately models the Fokker-Planck collision operator.

Third and finally, the code calculates the mean squared displace

ment of the particles in x . The asyinptotic value of the mean squared

displacement divided by twice the time is taken to be the diffusion

coefficient. Examples of this diagnostic are shown by Nevins and Harte

(1976).

For each calculation the test particles are initialized with a

Maxwellian velocity distribution and are loaded uniformally in the y

coordinate, i.e., they are placed uniformly in the phase of the electro

static wave. For computational simplicity, all particles are placed at

x = 0 initially.. The code then integrates the particle orbits forward

in time subject to the fields and collisions; and calculates and plots

^Ax )/2t . The asymptotic value of this quantity is D* , ^lile the

fluctuations in this quantity provide the vertical error bars shown in

Figs. 5-11.

Orbit plots can also be generated by this code. Figs. 2 and 3

show some of these orbits. In generating these orbits the collision

frequency was set to zero.
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Appendix C - THE INFLUENCE OF THE POLARIZATION DRIFT ON THE TRAPPED

PARTICLE ORBITS (Sect. 2)

It has been suggested on several occasions that we should consider

the effect of the polarization drift on pseudoclassical transport in the

"pineapple" regime. In this regime pseudoclassical transport results

from the trapping of electrons by the finite amplitude electrostatic

wave. Hence, we consider the influence of the polarization drift on the

orbits of electrostatically trapped electrons.

The polarization drift velocity, , is given by

1
V = — — (C.l)

^ e

where is the time derivative of the component of the electric

field perpendicular to ^ , taken along the particle orbit. For trapped

particles we may estimate E^ as

E - 0) E . (C.2)
-1 BOUNCE -1

Hence, the ratio of the polarization drift velocity to the ExB

drift velocity is given in order of magnitude by

!V I , [k||/.l cm"^] [(e$ /T)/10"^]^ [T/I
7.5x10-5 -i . (C.4)I^rI - /.J xu [B/IO'* gauss]

Although the polarization drift is insignificant in comparison to

the ExB drift, it still may be important in determining the period
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of the trapped particle orbits because has a component parallel

to k . Hence, the polarization drift gives an additional term in the

equation for the evolution of the wave phase, 0 [i.e., Eq. (5.2)].

The importance of this term may be estimated by considering AS , the
P

change in wave phase over one bounce period due to this term. We find

AB^ kV^

^BOUNCE

2 2

Low frequency drift waves generally attain their largest growth

rates when kp^'vl . Hence, the right hand side of Eq. (C.5) may be

estimated by

A0 m

== — (e$ /T)
2ir m. o

1

- 5x10 6 [m^/m^] 1 [(e<t)^/T)/10 (C.6)

where m^ is the mass of a proton. We feel quite justified in neglecting

this term.
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