
 

 

 

 

 

 

 

 

 

Copyright © 1977, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



A THERMODYNAMIC APPROACH TO DISSIPATIVE DRIFT INSTABILITIES

Memoranduia No. UCB/ERL VLll/n

16 December, 1977

ELECTRONICS RESEARCH LABORATORY
Cottege. Eng-lyie-eA^cng

UNIVERSITY OF CALIFORNIA, BERKELEY
9^720



TABLE OF.CONTENTS 1

ABSTRACT ill

1. Introduction 1

2. Fluid Equations 5

2.1 The Number Density 7

2.2 The Momentum Density Equations 10

2.3 The Entropy Density 16

3. The Energy Density 18

4. The Macroscopic Time Scale 24

5. Thermodynamic Properties 29

6. Evolution of the Wave Amplitude 36

7. Conservation Laws 42

8. A Physical Interpretation of Dissipative

Drift Instabilities 45

8.1 The Dissipative Trapped Electron Instability 47

8.2 Pseudoclassical Transport and Dissipative

Drift Instabilities 50

8.3 The Nonlinear Dissipative Instability of

Kadomtsev and Pogutse 53

9. The Onsager Relations and the Second Law of

Thermodynamics 57

10. Conclusion 62

ACKNOWLEDGMENTS 63



APPENDIX

Contribution of the Electrons to the Wave Energy 64

REFERENCES 67

ii



ABSTRACT

The transport of electrons and energy across a plasma slab asso

ciated with various dissipative drift instabilities (e.g., the dissipa-

tive trapped electron instability) is examined. A single electro

static wave is considered. Equations describing the evolution of the

plasma number density, momentum density, energy density, and entropy

density are derived from the drift kinetic equation, while an equation

for the evolution of the wave amplitude is obtained using the local

approximation. The (possibly nonlinear) growth rate of the wave is

found to be directly related to the electron flux. This connection

between the wave growth and the electron flux is interpreted as a

consequence of momentum conservation; this allows a simple and direct

estimate of the growth rates of the various dissipative drift instabili

ties. In addition, it is shown that, when the thermodynamic forces are

properly identified, the drift wave transport coefficients derived by

previous authors do indeed satisfy the Onsager relations, and that the

resulting plasma transport produces a net increase in the plasma entropy.
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I. INTRODUCTION

The purpose of this paper is to develop a framework for the analysis

of the cross-field transport associated with dissipative drift instab

ilities, such as the dissipative trapped electron instability (Kadomtsev

and Pogutse, 1969), the dissipative trapped ion instability (JCadomtsev

and Pogutse, 1971), and the dissipative drift instability (Hendel, et al.,

1970). We find that even the collisionless drift instability (Galeev,

et al., 1963) may be understood within this framework. Although we begin

by focusing on the transport of electrons and energy, we find that a

simple expression that allows approximate calculations of the growth rates

of dissipative drift instabilities comes naturally out of this analysis. In

addition, the plasma entropy is considered. Previous authors (e.g., Horton,

1976) have been unable to demonstrate that dissipative drift instabilities

produce a net increase in the plasma entropy. We show that this problem

is resolved when the thermodynamic forces are properly identified.

We adopt as our model a plasma slab in a uniform magnetic field (see

Fig. 1). The magnetic field is taken parallel to the z-axis, while gradients

in the plasma temperature and density are parallel to the x-axis. We

consider the electron flux and energy flux driven by a single electro

static wave. The wave potential is assumed to be of the form

$(0,x,t) = $^(x,t) h(e) (1.1)

where the wave phase 0 is given by

0 = ky + kz-(ot .
y z
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^>^(x,t) is the slowly varying wave amplitude. The wave form, h(0) ,

is assumed to be periodic in 0 (with a period of 2ti ) and to be

normalized such that

2-n

h^(e) = h . (1.3)
0

The phase velocity of the wave, v =a)/k , is assumed to be much smaller
(p z

hthan the electron thermal velocity, v^ = (T /m ) . We will focus on
te e e

the interaction between the wave and the electron distribution> and assume

that kp^ and are small enough that the electron dynamics are ade

quately described by the guiding center equations of motion, p =v /ft
e te e

and J2^ =eB/m^ ai^e the electron gyroradius and gyrofrequency, respectively.

We note that this single wave picture is sufficient to understand

the transport associated with the linear development of dissipatlve drift

instabilities, as each Fourier mode is treated independently in linear

theory. In addition, certain nonlinear problems, such as the trapping of

resonant particles by the wave, may be examined within this framework

(Nevins, 1977a,b; Nevins, et al., 1977).

It is helpful to view the transport of electrons and energy driven

by a dissipatlve drift instability as resulting from a random walk in

which the ExB drift of particles in the field of the wave provides the

"step" and collisions between particles yield a finite correlation time.

The fundamental parameter for this transport process is (Ax^/L) , where

Ax^ is the characteristic step size and L is the scale length for varia

tions in the plasma temperature and density. It is convenient to define a

frequency, o)^ , such that
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0)^ is the characteristic frequency of the cross-field motion that produces

the step, Ax^ . The manner in which k^<I>^/B , the characteristic guiding
center drift velocity, is factored to yield Ax^ and o)^ depends on the

particular transport mechanism that is invoked. We will find that each

transport mechanism is associated with a different instability mechanism.

We will not consider particular transport mechanisms until after we have

developed a framework that may be employed in the analysis of any dissipa-

tive drift instability.

Following the usual procedure in transport calculations we consider

two time scales; the microscopic time scale, and the macroscopic or trans

port time scale. The division between these two time scales is made

possible by ordering in the small parameter (Ax^/L) . The assumption

of local thermal equilibrium provides us with the condition that 3/8t

cannot exceed (Ax^/L)a)^ . Within this constraint, the microscopic time

scale is defined by 3/3t= 0[ (Ax^/L)a)^] , while the transport time
scale is defined by 3/3t= (Ax^/L)^a)^]. We make this expansion
about an equilibrium that includes the electrostatic wave propagating

in the y-z plane. The phase velocity of this wave is assumed to be small.

= ^(Ax^/L) . The amplitude' of the wave is allowed to vary
slowly with both x

Ax Ax,^

and t

$ 3x
o

1 9

T IT = "t
O
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Within this ordering in (Ax^/L), we will also make use of the small

parameter (e<I>^/T) , keeping terms through second order in this para

meter. In Sects. 2 and 3 we derive equations describing the evolution,

on the macroscopic time scale, of the number density, momentum density,

energy density, and entropy density by taking the appropriate moments of

the drift kinetic equation.

In Sect. 4 we linearize the drift kinetic equation to obtain an

equation describing the evolution of the electron distribution function

on the microscopic time scale.

In Sect. 5 we investigate the thermodynamic properties of the plasma-

wave system, identify the thermodynamic forces, and derive a wave

phase averaged version of the Thermodynamic Identity.

In Sect. 6 we show that the growth rate of a low frequency drift

wave is simply related to the particle flux driven by the wave.

In Sect. 7 we demonstrate that the equations for the evolution of

the electron plasma and the low frequency drift wave derived here conserve

both energy and momentum.

In Sect. 8 we show that a consideration of momentum conservation

leads to a simple physical picture that allows "back of the envelope"

calculations of the growth rates of the dissipative drift instabilities.

Finally, in Sect. 9 we demonstrate that, when the thermodynamic

forces are properly identified, the anomalous transport coefficients

derived by Horton (1976) obey Onsager's relations, and that the resulting

macroscopic fluxes produce a net increase in the entropy, as is required

physically.
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2. FLUID EQUATIONS

In this section we derive equations describing the evolution of the

plasma number density, momentum density, and entropy density by taking

the appropriate moments of the drift kinetic equation. In deriving

these equations we assume that the electrostatic wave is described by a

potential that may be written as in Eq. (1.1), and that the electron

distribution function depends on y and z only through the wave phase,

e . The distribution function is assumed to be periodic in 0 , having

the same period as the wave. In addition, we assume that kp, p/L,

w/fi, 0)^/0 « 1 , so that the drift kinetic equation may be used to describe

the evolution of the distribution function. The subscript e has been

dropped, m and T are understood to refer to the electron mass and

temperature.

We do not make use of the small parameters (Ax,j,/L) and (e4>^/T)

in this section. Hence, these equations may be generally applied to

describe the evolution of a plasma slab in the presence of a single

traveling wave; We will focus on the evolution of the electron component.

Similar equations for the evolution of the ion component may be obtained

by replacing the electron charge, -e , and mass, m , by the ion charge

and mass where ever they appear.

We find it convenient to use the variable set (0,x,y3»cr»t); where

0 is the wave phase given by Eq. (1.2); x is the x-component of the

guiding center position; \i is the magnetic moment; E is the particle

energy in the wave frame,
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E =i5mq*^ + yB - e$ (2.1)

where q* Is the velocity slip, defined by

q» E , (2.2)

and o is the sign of q* .

In this set of variables the drift kinetic equation is given by

(1) (2) (3) (4) (5) (6)

3i_ + c (f) a 3)at at aE ae b ax ae b ae ax e^

Since a nonstandard set of variables is being employed, an effort

will be made to describe the reduction of each term in the macroscopic

equations. To this end the terms of Eq. (2.3) have been numbered for

future reference.
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2.1 THE NUMBER DENSITY

We begin by deriving an equation for the evolution of the wave

phase averaged number density. Although this equation is easily

derived using the variables set (0,x,jv,t), we will use the variables

(0,x,]j,E,a,t) in order to illustrate some useful techniques for reducing

terms when this variables set is employed.

An equation for the number density is obtained by applying the phase

space averaging operator,

/d0 f.3 »2B fd0 rdydE _ _
a

to Eq. (2.3). The phase space average of terms (1) and (2) may be combined

to obtain

(2.5)

q* depends explicitly on time only through the wave potential, $(0,x,t).

Hence, it follows from Eq. (2.1) that

Upon substituting this expression into Eq. (2.5), and integrating by

parts in E , we find that the second and third terms inside the square

brackets cancel, leaving

a) + (2)=|a (2.7)
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where the wave phase averaged number density, n(x,t) , is defined by

f .3 , _ f de f dydE . gv
^ Xf =2^-T J Ztt J ^n(x,t) =

d0

lit
m

a

Term (3) must vanish upon performing the e-integral because the

distribution function, f , is continuous along particle orbits.

Terms (4) and (5) may be combined to give

k
JL

B
^ r M \ =

2y 2 J 2tt J JqT V9x 30 - 30 3x /
a (2.9)

k
JL

B
m

a

2B fd0 fdydE I d / A 3 /3<t .Xl
J—[30

Referring to Eq. (2.1) we see that q' depends on x and 0 only through

$(0,x,t) . Hence, (2.9) may be written as

^ ^ 2B fde rr_1 /-i li _i /_lli f il(4) +(5) - B J 2tiJ [se (q' 3x / 3x (q* 36 /J • (2.10)
a

The first term within the square brackets is a perfect differential.

Hence its 0-integral must vanish. The remaining term may be written as

(4) + (5) =al (2.11)

where r is the wave phase averaged electron flux,
e
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-Jf-^

and the x component of the ^ ^ drift velocity, is given by

„ = _ (2.13)
dr B 30 •

We use the notation F [f] in Eq. (2.12) to emphasize that this
e

equation defines the particle flux as a functional of the distribution

function. The goal of a transport calculation is to obtain an algebraic

expression for F^ involving the local values of the system parameters,

n , T , B , and , and their gradients.

Finally, term (6) vanishes due to the conservation of particles

in collisions. Hence, the wave phase averaged number density obeys

the equation

|a = r . (2.14)
9t 3x e

- 9 -



2.2 THE MOMENTUM DENSITY EQUATIONS

We find it most useful to derive equations for the canonical momentum

density. The canonical momentum of a single particle is given by

2^ = mv - eA

where A is the vector potential. The vector potential is not uniquely

defined. Hence, the momentum density depends on the choice of gauge. In

the slab model employed here the vector potential may be written as

A = xBy .

With this choice of gauge, the x-component of the particle momentum

density, mv^ , is a gyrophase dependent quantity. Thus, the x-component

of the momentum density equation cannot be obtained from the drift kinetic

equation, but must instead be obtained directly from the Boltzmann

equation. We put off further discussion of this equation until Sect. 3.

An equation for the y-component of the momentum density may be

obtained directly from the equation for the evolution of the wave phase

averaged number density by applying the operator

dx* Py(x IX*) • (2.15)

p^(x 1X*) is the momentum density at the field point x due to a particle
at X* .
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One natural choice of this function is to locate all of the particle

momentum, -eBx' , at the particle position, i.e.,

Py(x IX*) = -eBx* 6(x-x') . (2.16)

We suggest an alternate expression,

Py(x IX*) = -eB [ H(x*-x) - H(-x) ] (2.17)

where H(x) is the Heavyside function (i.e., H(x) =1 if x>0 ,

while H(x) =0 if x < 0 ). This expression for the momentum density

may be visualized as a tether connecting the particle to the flux surface

on which vanishes (with our choice of gauge this occurs at x = 0 ).

This definition of Py(x |x*) may be generalized to inhomogeneous
magnetic fields (provided that ^ lies in the y-z plane) by simply replacing

B in Eq. (2.17) with B (x) , giving
z

py(x |x*) = -eB^(x) [H(x*-x) - H(-x) ] .

We note that both (2.16) and (2.17) give the correct total particle

momentum,

OO

dx Py(x IX*) = -eBx* .
—00

They differ only in how this momentum is distributed in space. Hence,

either (2.16) or (2.17) may be employed in deriving a conservation law for

the y-component of the momentum.

The application of a force, Fy , to the particle will caure the

particle guiding center to move in x . If (2.16) is chosen as the particle

- 11 -



momentum density, then this force will generate both a momentum source

(as expected) and a momentum flux. When (2.17) is employed as the part

icle momentum density, the application of a force results only in a

momentum source. Hence, the choice of (2.17) as the particle momentum

density yields a simpler equation for the evolution of the total y-compo-

nent of the canonical momentum density. For this reason we prefer (2.17)

over (2.16). We note that the nonlocal character of the particle momentum

results from the dependence of the particle y-momentum, -eBx , on posi

tion. Our choice of (2.17) as the particle momentum density merely reflects

the nonlocal character of this canonical momentum.

Applying (2.15) to (2.14), and using (2.17) as the particle momentum

density, we obtain

3p

= -eBr^ (2.18)

where

py =- I dx' eB[H(x'-x) - H(-x) ]n(x*) . (2.19)

If (2.16) had been employed as the particle momentum density in place

of (2.17), this equation would read

= _eBr - n
9t e 3x xy

where the x-y component of the stress tensor is given by

- 12 -



n = -eBxr
xy e

Finally, we consider the equation of evolution for the z-component

of the canonical momentum density. This equation is obtained by multiplying

the drift kinetic equation through by

mv = m(q' +
z ^ k

z

and then applying the phase space averaging operator, (2.4).

The reduction of terms (1) and (2) parallels the reduction of these

terms in the equation for n , and yield 3p /3t , where the z-component
z

of the canonical momentum density, p^ , is defined by

f de f .3
J^j

After a little manipulation term (3) may be written as

(3) =mk^ J Jdw dE Jllq- II . (2.21)
o

This expression is integrated by parts over 6. Refering to Eqs. (2.1)

and (2.13) it is found that

mv f . (2.20)
z

3q' _ e B 1
38 mk q' ^dr * (2.22)

y

Hence, term (3) may be expressed in terms of the particle flux as

k

(3) = — e B r . (2.23)
K e

- 13 -



Terms (^) and (5) are again treated together. We use the commutation

relations

]^d 9 1 ^ 1 e 3^
q' 9x 9x q* ^,3 m9x

and

9 ^1 ^ e ^
q* 96 98 ^ ^,3 m90

to write these terms in the form

where

mk «« /• / V

(4) + (5) = «/Sfefl5T'S)B

cr

_ fdjidE j3i\
3^\ B 2^2j2,r JTq^ « ^ 36/'

m
a

The integrand of the first term in (2.24) is again an exact differential.

Hence, this term vanishes. We identify the remaining term in (2.24) as

the divergence of the stress tensor,

(4) + (5) =1^ (2.25)

(2.24)

n =14^ fd^mv V, f . (2.26)xz J 2Tr J — z dr

Finally term (6) gives the collisional drag on the electrons

9p

9t
coll

=In m C^^(f) . (2.27)
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Hence,the z-component of the momentum balance equation is

9P_ k .

at~" ~F" Jx ^xz"*" yr
9P.

coll

(2.28)

The final term in Eq. (2.28) describes the collisional drag of the

electrons on the ions. Many important low frequency instabilities, such

as the dissipative trapped ion mode (Kadomstev and Fogutse, 1971), the

dissipative trapped electron mode (Kadomtsev and Fogutse, 1969), and the

collisionless drift mode (Galeev, et al., 1963) occur in nearly colli-

sionless plasmas where this (essentially classical) term may be neglected

when compared with the other terms on the right hand side of Eq. (2.28).

Dropping the collisional term, we obtain

9p k -
esr - n

dt k e dx xz
y

(2.29)

It is clear from Eq. (2.29) that the electrons may be expected to develope

a drift parallel to B due to the momentum source term, (-k /k )eBr
— ' z y e

In a more complete treatment of the anomalous transport driven by a .

single wave, this term would give.rise to an anomalous "bootstrap" current.

In this paper we confine our attention to the anomalous particle and energy

flux. We do not investigate the effect of the wave on the plasma current.
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2.3 THE ENTROPY DENSITY

It is convenient to use the variable set (0,x,v,t) in deriving an

equation for the wave phase averaged entropy density. Using this variable

set the drift kinetic equation may be written as

(1) (2) (3) (4) (5) (6)

ii +e + + k V ii= c (£) (2 30)at m z ae av b ae ax b ax ae z z ae e''^ •
z

Following Boltzmann (1896) the wave phase averaged entropy density is taken as

°"IIf I *^^31 f (-ew • (2.31)

Thus, an equation of evolution for the entropy density may be obtained

by multiplying the drift kinetic eqimtion, (2.30), by -(l + £n f) and

applying the phase space averaging operator; |(de/2TT)d^v •
Term (1) immediately reduces to as^/at •

Term (2) vanishes on integration over v .

Terms (3) and (4) may be combined to yield

(3) + (4) - ^ Jg

where the entropy flux, Jg , is given by

JgCf] i - ^ f<i\ Vjr ^(-^ • (2.33)

Term (5) vanishes upon integration over 9.

- 16 -



Term (6) gives rise to an entropy source.

SJf] = - ii
2tt

d\ (In f) C (f) . (2.34)
— e

Hence, the wave phase averaged entropy density satisfies the equation

3S .

® ® J_ + S
at ax S e . (2.35)

The first term on the right hand side of Eq. (2.35) describes the convection

of entropy. This term can cause as^/at to become negative. The Second

Law of Thermodynamics applies only to the entropy source, and states that

S + > 0
e i —

where is the entropy source of the ions.

In analyzing dissipative drift instabilities the ions are often

taken to be massive, fixed, scattering centers so that the Lorentz operator

may be employed to describe electron-ion collisions. We make this appro

ximation here. It is then a simple matter to show

>1 0 (2.36)

directly from Eq. (2.34). The derivation of inequality (2.36) follows closely

the proof of the Boltzmann H-theorem» This proof may be found in many text

books (e.g., DeGroot and Mazur, 1962). We will discuss the entropy source

further in Sect. 5.
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3. THE ENERGY DENSITY

The derivation of an equation describing the evolution of the elec

tron energy density has been postponed until this section because we find

it helpful to introduce the small parameters (Ax_/L) and (e4> /T) in
T o

reducing terms (1) and (2), as these small parameters allow us to separate

the wave energy from the electron thermal energy. We adopt the ordering

described in Sect. 1. The wave phase averaged energy density will evolve

on the transport time scale. Hence, we must keep terms through second

order in (Ax^/L) in the energy density equation.

Before considering the evolution of the energy density, we briefly

review the x-coiiq>onent of the momentum equation. As we mentioned previ

ously, this equation must be derived directly from the Boltzmann equation.

We do not present this derivation here, but simply point out that the

wave phase average of v^ is given by the diffusion velocity,

Az;,

"x = =®(-^)'dr •

In equilibrium both n and vary only on the transport time scale, so

the inertial term in the x-momentuon equation.

dt \ L I '̂ dr

vanishes through second order in (Ax^/L) . Hence, the leading terms in

this equation describe the equilibrium balance of forces.

- 18 -



The finite amplitude wave introduces some ponderomotive-like forces

2
that are smaller than the pressure gradient term by the factor (e4>^/T)

We ignore these terms, and obtain the usual equilibrium condition,

(P +B^/8it) = 0
oX

where the pressure is given by

P = nT .

(3.1)

(3.2)

The energy equation is obtained by multiplying the drift kinetic

equation (2.3) through by the energy of a single particle.

2 2& = ^mv -e$ = E + m\^ q* + Jg mv (3.3)

and applying the phase space averaging operator, (2.4).

Terms (1) and (2) are again treated together. Noting that

1_ P ii - 3 I
q' at " 3t I |q'

Sf

at \ |q*I

- f 9t \ lq*|

lifJ_ JL.
®at aE I |q' I + e li

at

we write terms (1) and (2) in the form

(1) . (2) =
m

2-n
dpdE

at

&f

- 19 -
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£
+ e

a<i> f

at Id'

at aE
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Integrating the second term in square brackets on the right hand

side of Eq. (3.4) by parts, we find that it exactly cancels the fourth

term in the brackets, leaving

(e)(1) + (2) = w-qjl; (3.5)

where w is the wave phase average of the total electron energy density,

w5I^ I d^v (hmv^ -e$) f (3.6)
^ * (®)

and Qjlj is defined by

. (e)

The reduction of terms (3) thru (5) follows closely the reduction

of the corresponding terms in the z-momentum equation. Hence, term (3)

becomes

(3) = eBF^ (3.8)

while terms (4) and (5) combine to yield

(4) + (5) =^ Q- (3-9)

where
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Qjf] =
e

ii
2tt

d^;v m, mv^ - e$) f . (3.10)

Term (6) describes the collisional transfer of energy between the

electrons and the ions. This energy transfer rate is small in (m^/m^)

Hence, the leading terms in the energy density equation are

— • (e)

ll-^ —iQe-feBFe. (-3.11)
y

To proceed further in the reduction of this equation, we assume

that the wave amplitude varies only on the transport time scale,

f if -< (-r) -T •
When (3.12) is satisfied the perturbation in the electron distribution

function [which is of order (Ax^/L)] may be ignored in evaluating

Hence,

. (e)

^ =- (HI "^^2: eIf + ©(Ax^/L)
where f is a local Boltzmann distribution,

o

=n(m/2TrT) '̂'̂ exp^- y) * (3.13)

A further expansion in (e$^/T) yields

• (e)
01/ =- (k^$^/16ii) . (3.14)
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We show in Appendix A that (3.14) may be interpreted as the local time

rate of change in the contribution of the electrons to the wave energy.

Hence, the left hand side of Eq. (3.11) is the time rate of change in the

thermal energy of the electrons,

W = w (3.15)

where

_ 1 9 9

. (3.16)

Hence, Eq. (3.11) may be written as

I7 =- ^ Q - A eBF . (3.17)
9t dx e k e

y

This equation is remarkable in that the energy source, eBf (w/k ) , is
e y

simply related to the particle flux. We show in Sect. 7 that this term

describes the heating (or cooling) of the electron distribution by the

wave.

The evolution of the plasma energy is often described by providing

an equation for the temperature. It follows from Eqs. (3.6), (3.15),

and (3.16) that the electron

temperature is related to the electron thermal energy by

w="I nT . (3.18)
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Equations (2.14), (3.1), (3.17), and (3.18) may be combined to obtain

an equation for the evolution of the plasma temperature.

3d |_- =_p|-u + u It (B^/Sir) - ^ eBr (3.19)
2 dt 3x ^e ax X x Bx Ky e

where 4r" is the convective derivative,
dt

d 9 j. , ^s + n
dt at X dx

and is the heat flux (Braginskii, 1965),

Q = Q - ^ T r . (3.20)
e e 2 e

We may interpret the terms on the right hand side of Eq» (3.19) as the

work done on a fluid element by compression, the work done by the magnetic

field, and the heating of the plasma by the wave.
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4. THE MICROSCOPIC TIME SCALE

In this section we consider the evolution of the electron distri

bution on the microscopic time scale. We assume that the plasma-wave

system is in a "steady state" in which the temporal variation on the

microscopic time scale comes only through the dependence of the distri

bution function and the wave amplitude on 6 . This assumption is con

sistent with the linear analysis of dissipative drift instabilities.

For nonlinear problems, such as the trapping of particles by the wave,

this assumption must be considered on a case by case basis.

In this steady state the drift kinetic equation may be written, through

first order in (Ax^/L) as

where

Ax_ 3$

q+h(6) — -jf
O

h'W =f.

If - h'(e) Ax |̂|= c^(f)/»T

we have introduced the normalized velocity-slip.

V -V.
_ z <i>q = ^

V
T

and a characteristic velocity.

*T " k
z
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We wish to expand Eq. (4.1) in powers of (Ax^/L) about an equili

brium that includes the low frequency drift wave. Low frequency drift

waves arise from perturbations in the ion density caused by the self-

consistent ExB convection of ions across the zero order density gra

dient. The role of the electron distribution is to provide Debye shielding

of these ion perturbations (Mikhailovskii, 1974; Kadomtsev, 1965). The

effect of the Debye shielding may be included at zero order in (Ax^/L)

by expanding the electron distribution function about a local Boltzman

distribution:

f© =n(x) ^2TrT™x) ^ f ~
where n and T are functions of x only. This choice of the zero

order distribution function is consistent with the electron distribution

function obtained in the linear analysis of low frequency drift waves.

Written in terms of our adopted set of variables, (0,x,p,E,a),

the Boltzman distribution becomes

3/2 , , 2
exp^-Y (E+mqv^v^ + ismvp). (4.5){-T

The electron distribution function may be written as

f = f (1 + f) (4.6)
o

where f = 0(Ax^/L) . This expansion of the electron distribution func
tion is put into the kinetic equation (4.1) and terms in like powers of

(Ax^/L) are equated. The terms involving 9f©/8e require special
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attention. From Eq. (4.5) we see that depends on 0 only through

q . Evaluating this factor we find

where

ag =jfl <0 . (4.8)
y

Low frequency drift Instabilities have frequencies of order

k T

"ne "- )(i") (H) •
Hence, a^= ©(1/L) ; and 9f^/30 Is first order In (Ax^/L) . The
steady state kinetic equation Is then satisfied at zero order In (Ax^/L)

as

C (f ) = 0 .
e o

At first order In (Ax„/L) we obtain(Ax^/L)

(5- -Vo ) <«> =
In Eq. (4.9) we require an expression for f^ valid only to zero order In

(Ax^/L) . To this order f^ Is given by

/
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so 3f /3x may be written as
o

^=-(a^ +A2E)i (4.11)

where we have defined

a E- A A = _ liE+ 3 1 3T ^2)
1 3x T n 3x 2 T 8x

^ ^^ i (4.13)

and M , the chemical potential of the electrons, is given by:

M=T [n(2nh^/BT)^^^] . (4.14)
/

These three quantities, a^ , a^ , and A2 are all of order

(1/L) . a^ is a measure of the departure of the system from thermal

equilibrium because of the variations in the wave potential with time,

a^^ and measure the departure from thermal equilibrium due to vari

ations in the density and temperature with x . In Sect. 5 we find that

the quantities

= Sq + aj^ (4.15)

and are the thermodynamic forces acting on the plasma (DeGroot and

Mazur, 1962).

Using the definitions (4.13) and (4.15) we may write the kinetic

equation to first order in (Ax^/L) as
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jAx^(A^+A2E)h'(e) +qll] =Cg(f)/a)^ . (4.16)

Equation (4.16) describes the evolution of the electron distribu

tion function on the microscopic time scale. It may be used to determine

f • This distribution function, together with Eqs. (2.12) and (3.10)

then determine and . Hence, the solution of equation (4.16)

Is the basic problem In determining the flux of particles and energy

driven by a low frequency drift wave. We do not attempt to solve for f

here, but only note that when Ax^ Is proportional to the wave amplitude,

Eq. (4.16) Is equivalent to the linear (In wave amplitude) kinetic

equation considered by many authors (e.g., Horton, 1976; Liu, et al., 1976).
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5. THERMDDYNAMIC PROPERTIES

We now proceed to investigate the evolution of the entropy density

for plasma-wave systems that are "near thermal equilibrium". Opera

tionally, what we mean by "near thermal equilibrium" is that

•~«1. (5.1)

When inequality (5.1) is satisfied, the entropy source, , and

the entropy flux, J , may be expressed in terms of the particle and

energy flux.

We begin by considering the entropy source.

®e =- ff 1 ^
the distribution function is written as it was in Eq. (4.6),

f = f^(l + f)

where f =©(Ax^/L). The local Boltmann distribution, f^ , may be
written in the variable set (0,x,v,t) as

3/2

/ \ r m 1 f Hmv^ +e$ \[2irT(x)J I" T(x) J*

The contribution of ts/i to S vanishes due to the conservation
o e

of particles and energy* in collisions. Hence, through second order in

*The collision operator, , includes both electron-electron and
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(Ax^/L) , may be written as

S = -
e

|^Jd\fC^(f). (5.3)

At this point it is helpful to change to the variable set (0,iJ,E,a)

In this set of variables may be written as

Se =-E ^
o m v_ * ' '

The first order in (Ax^/L) part of the drift kinetic equation, [i.e., Eq.

(4.16)] may now be used to replace the collision operator with an expres-

sion involving f^ and f ,

C^(f) = |Ax(Aj^ +A2E)h'(e) +q|f .

electron-ion collisions. In electron-ion collisions the electron energy

is only conserved at zero order in the mass ratio, (m^/m^) . We

neglect the higher order terms in (m^/m^) which describe the energy

transfer between electrons and ions; i.e., we take the ions to be infinitely

massive, fixed, scattering centers. This approximation is consistent with

the use of the Lorentz collision operator to describe the action of electron-

ion collisions on the electron distribution function.
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This replacement does not yield a trivial identity (e.g..

S =iS j. ,
e 3t 3x s '

because Eq. (4.16) differs from the full drift kinetic equation in that

only the first order terms have been included, and we have assumed that

the system is in a steady state.

Inserting this expression into Eq. (5.4) we obtain

• _ ^2^ f d0 dp dE ^ ^ ^y^o ,Se =- L— 2x|q| (A^ +A^E) -^h'(e)
0 m v„ •' 1^1

+Do-^k f
^ 2 z 1 IT o
am-'

de (f)^ (5.5)

where we have used the fact that, to lowest order in (Ax^/L),

f^ may be written as

0(f) .

The e-integral in the second term of Eq. (5.5) must vanish because f^

is a single-valued function of 6 , with the same periodicity as the wave.

Hence, may written as

K = +Ve ' (5.6)

where the particle and energy fluxes are given by
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y> 2B f de du dE ^ J
r mV i 2ir|q| 'o' 'dr (5.7)

These fluxes can be put Into a more recognizable form by returning

to the variable set (e,v) and noting that, to lowest order In (Ax^/L) ,
2

E may again be replaced by (% mv - e$) . This procedure yields

(5.8)

Equation (5.6) plays a central role In the thermodynamics of our

plasma slab, as It allows us to Identify the thermodynamlc forces acting

on the plasma-wave system. It Is well known In the study of non-equlll-

brlum thermodynamics that the entropy source may be written as a sum of

products between the macroscopic fluxes and the thermodynamlc forces conju

gate to those fluxes (DeGroot and Mazur, 1962). Hence, Is the thermo

dynamlc force conjugate to the particle flux while A2 Is the thermody

namlc force conjugate to the energy flux. We note that m^y be

written In the form

where

Aia + llil
n 9x 2 T 9x

A = (1-
0)

0)
) .

ne
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This thermodynamic force differs from the expression

employed by previous workers by the factor A multiplying (l/n)(9n/3x)

In Sect. 9 we will show that, when this factor is included, the transport

coefficients associated with the various dissipative drift instabilities

that have been derived by Horton (1976) and others (e.g., Liu, et al.,

1976; Manheimer, 1977; Krall and McBride, 1977) satisfy the Onsager

reciprocity relations (Onsager, 1931; Casimir, 1945) and that the resul

tant particle and energy flux cause an increase in the entropy of the

plasma.

In systems near thermal equilibrium one expects that the fluxes may

be written as a sum of products between the thermodynamic forces and the

transport coefficients (DeGroot and Mazur, 1962). Hence, a further impli

cation of our identification of as the thermodynamic force conjugate

to the particle flux is that (l/n)(9n/9x) must always appear multiplied

by A in expressions for the particle or energy flux associated with the

low frequency drift wave. This is indeed the case in every calculation

that we are aware of (e.g., Horton, 1976; Liu, et al., 1976; Manheimer,

1977).

We now turn our attention to the entropy flux, Jg . Expanding

the wave phase averaged entropy flux in powers of (Ax^/L),

we find at zero order that

f̂l I 'drJd\ V,

f j3 f d0 9$ _ « _ /c -11N
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The right-hand side of Eq. (5.11) must vanish because the zero-order dis

tribution function, f^ , depends on the wave phase only through the wave

potential, $ . Thus, the entropy flux vanishes at zero order in

(Ax^/L) . Through first order in (Ax^/L), the wave phase averaged

entropy flux is given by

^ 2

•^S =-1f 1 i ^ ^o> V ^(-?) • (5.12)
Using Eqs. (2.12), (3.10), and (3.13) the entropy flux may be written as

j

S T e T

where H is the chemical potential.

M « T £n
I 2Trh^

mT

3/2

The chemical potential enters this calculation in the form

Zn l-te)"! •

(5.13)

(5.14)

The argument of this log function is not dimensionless, but rather has

the dimensions of 1/(unit phase space volume), There is no solution to

this dilemma in classical physics, and, as a result, the chemical potential

can only be defined in classical physics to within a constant.

We know from quantum mechanics that the natural unit of phase space

volume is Planck's constant, h . Hence, the appropriate dimensionless
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argument for the log function is

3/2

V mTtn
M

T *

This logarithm will be large compared to one provided that the quantum

states are sparsely occupied, i,e., when the electron plasma may be treated

with Boltzmann statistics, rather than Fermi-Dirac statistics.

Equation (5.13) may be used together withEqs. (2.14) and (3.17) to

rewrite the equation of evolution for the entropy density, (2.35), as

3S
e _ _i ^ M rs

3t T at ~ T 9t ' U.13;

We recognize Eq. (5.15) as a fluid version of the Thermodynamic Identity

(Landau and Lifshitz, 1958),

dS - - I dN . (5.16)

Equation (5.15) is important for two reasons. First, the similarity

between Eqs. (5.15) and (5.16) confirms our identification of w as the

thermal energy of the electrons. In addition, Eq. (5.15) provides a

starting point for thermodynamic discussions of dissipative drift instab

ilities. Other authors (e.g., Liu, et al., 1976) have employed such thermo

dynamic arguments in an effort to set upper bounds on the amplitude of

various dissipative drift instabilities.
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6. EVOLUTION OF THE WAVE AMPLITUDE

In this section we derive an equation describing the time evolution

of the electrostatic wave. The wave amplitude has been assumed to be a

slowly varying function of x . Hence, we may use the local dispersion

relation to determine the evolution of the wave amplitude (Krall and

Rosenbluth, 1965; Mikhailovskii, 1967). This dispersion relation is

obtained by suppressing the x dependence of ^ • "Hie

wave potential may then be written as

$(y,z,t) = h(0) (6.1)

where

'J>Q(t) = $^(t«0) exp I y(t) dt (6.2)

and we commit ourselves to the waveform

h(0) = cos 0 . (6.3)

(e)
Our immediate goal is to calculate the electron susceptibility, X ,

which is defined by

Re ^ Sn(e) . (6.4)
k

where <{) is the complex potential.
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1 ^A = $ e
^ o

= $^cos 0 + i$^sin 0 , (6.5)

and 6n is the perturbation in the electron density due to the wave.

When coupling between Fourier modes is ignored, 6n may be written as

6n(0) = a cos 0 + b sin 0 (6.6)

where

a=I n(0) cos 0 (6.7)

b=I—n(0) sin 0 (6.8)
and the local (in 0 ) electron density is given by

n(0) =I d\ f(0,v) . (6.9)

Using Eqs, (6.3) through (6.9) we find

Re fHI
k 4»

o

Im fH f • <6-11)
k 4> •' •'

o

At zero order in (Ax^/L) and (e$^/T) , the real part of the

electron susceptibility is easily evaluated, yielding

Re (6.12)
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where

2 TA = —^ . (6.13)
^ Airne'̂

This linear susceptibility describes the adiabatic response of the

electrons to the wave. It evolves slowly due to the evolution of the

electron tempertature and density. The real part of the electron suscep

tibility together with the ion susceptibility determines the real part

of the wave frequency. In many experiments, the ion temperature is small

compared to the electron te]iq>erature. In this limit the ion suscep

tibility is given by (Mikhailovskii, 1974)

2 2

^ + (6 14)^2 nd.%2 ^2

where 0)^^ is the ion plasma frequency, and is the ion gyro fre

quency.

The real part of the dielectric function is then

2 1, 2.2(0 . k - , 0) . k

e (k
r —

,oi) = 1 + + . (6.15)
"i" k^ " k^

d 1

Solving = 0 for co , we find

where

(0
ne

0) = —

1 j.v2 2l + k p
y o

(6.16)

p = (m.T /eB)^ . (6.17)
o i e
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This expression for the real part of the frequency is shared by

several drift instabilities, including the dissipative trapped

electron instability, the "collisionless" drift instability, and

the collisional drift instability (Horton, 1976), as well as the

nonlinear dissipative instabilities of Kadomtsev and Pogutse (1970),

and Nevins (1977b). These dissipative drift instabilities are different

instability mechanisms that effect the same branch of the dispersion

relation. We will refer to this branch of the dispersion relation as

the "low frequency drift wave". This branch goes over into the ion

acoustic wave when k /k ^ p /L (Mikhailovskii, 1974). Hence, it has
z y o

been called the "fast ion acoustic wave?'by some authors.

The real part of the low frequency drift wave dispersion rela

tion has been investigated by many authors (e.g., Horton, 1976; Liu,

et al,, 1976). These authors have considered the effects of finite

ion temperature, ion temperature gradients, and the trapping of elec

trons in local magnetic wells, on the real part of the wave frequency.

We now turn our attention to the imaginary part of the dispersion

(e)relation. In evaluating Im X it is helpful to express h*(0) .in

terms of v, ,
dr

(e) =- f f Vd^ (6-18)
O y

where v^^ , the x-component of the Exg drift velocity, is given by
(e)Eq. (2.13). Im X may then be written as

-r (e) Stt eB
= - ;X2 r,

k $ y •'
o •'

\ I27]
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or, using Eq, (2.12),

f'"e • <®-20)

The growth rate of the wave is then given by

Y(t) = 3^ . (6.21)
r

du)

In a dielectric medium the energy density of a wave is given by

2^2
/ \

'^=("Ol )• (6-22)

Hence, we may use Eqs. (6.2), (6.21), and (6.22) to write an equation

describing the evolution of the wave energy density,

=-^ eBr . (6.23)at ky e

This relation between the time rate of change in the wave energy and

the particle flux does not depend on the form of . Hence,

Eq. (6.23) may be applied to determine the time evolution of the wave

even when is not adequately approximated by Eq. (6.15). The

wave amplitude may then be determined from the wave energy together

with Eq. (6.22) and an appropriate expression for the real part of the

dielectric function.

When Eq. (6.15) does adequately approximate the real part of the

wave amplitude, the wave amplitude and wave energy are related by
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!!o j =4 • (6-2^)

We note that Eq. (6.23) may be written as

4r-(i)'(-;ll'.) • «•"'
The low frequency drift wave has positive energy [ i.e., -^(we ) > 0 ]

aG3 r

and propagates in the electron diamagnetic drift direction (i.e.,

w/w > 0) , Hence, a low frequency drift wave which drives the elec-
n©

tron flux down the density gradient (giving - nIx ^e^^ ) will be
unstable, while a wave which drives the electron flux up the gradient

will be damped. We will show in the next section that this behavior

may be understood by considering the conservation of canonical momentum.
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7. CONSERVATION LAWS

In this section we examine the equations describing the evolu

tion of the plasma-wave system, and show that the total energy and

momentum are conserved.

We first consider the total energy,

W= w +QjL/ . (7.1)

Taking the time derivative of Eq. (7.1) and using the electron energy

equation, (3.17), along with the wave energy equation, (6.23), we

find that the energy source terms caincel, leaving

- — Q . (7.2)
at 3x

Equation (7.2) describes a system in which the total energy is conserved,

Hence, the energy source terms in Eqs. (3.17) and (6.23) describe the

transfer of energy between the wave and the electron distribution.

Similarly, the total momentum density of the system is given by

P=£+ 5 (7.3)

where the wave momentum density is

It follows from Eqs. (6.2), (6.20), (6.21), and (7.4) that

aCp
y = eBF (7.5)

at e
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and

9^ k
-9r = ir (7.6)

y

taking the time derivative of Eq. (7.3), and using the electron momentum

equations, (2.18) and (2.19), together with the wave momentum equations,

(7.5) and (7.6) we find that the source terms again cancel, giving

9P

^=0 (7.7)

^^2 3- - — n _ . (7.8)
dt 9x xz

It is clear from Eqs. (7.7) and (7.8) that the total canonical momentum

of the plasma-wave system is conserved. Hence, the source term in

the electron momentum equations, (2.18) and (2.19), and the wave momentum

equations. (7.5) and (7.6), describe the transfer of momentum between

the wave and the electron distribution.

In Sect. 2 we noted that the y-component of an electron's canon

ical momentum is proportional to its x guiding center position. Hence,

the transport of particles across the magnetic field implies a change

in the canonical momentum of the species being transported. As the total

canonical momentum of the system must be conserved, the particle flux

is determined by the rate at which momentum is transferred from one element

of the system to another.
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It is evident from Eqs. (2.18), (7.5), and (7.7) that the momentum

is being transferred between the electron distribution and the low

frequency drift wave. This momentum transfer occurs because the guiding

center motion of the electrons in the electric field of the wave combine

with Coulomb collisions to produce an electron flux, i.e., a change in

the electron momentum. We consider this process in more detail in Sect.

8, and show that the concept of momentum conservation may be employed

together with random walk estimates of the electron flux in approx

imate calculations that yield the correct growth rates for the

various dissipative instabilities of the low frequency drift wave.
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8. A PHYSICAL INTERPRETATION OF DISSIPATIVE DRIFT INSTABILITIES

Conservation laws are useful in gaining a qualitative under

standing of instability mechanisms. An example of this is the use of

energy conservation in analyzing the Landau resonance. It has been

shown that the wave damping or growth associated with a Landau reson

ance may be understood as resulting from the transfer of energy between

the wave and the resonant particles (Jackson, 1960). We find that a

simple and coherent picture emerges when momentum conservation is

applied to the analysis of dissipative drift instabilities. Specifi

cally, we consider the y-component of the canonical momentum. We

have shown above [c.f., Eqs. (2.18) and (7.5)] that this momentum is

transfered between the electron distribution and the wave at a rate

p = eBr*^y e

In this section we adopt the view that dissipative drift instab

ilities result from this momentum transfer. Our approach is then to

use a random walk model to estimate the particle diffusion coefficient,

D , and hence, the particle flux,

r^==rLA^D . (8.1)

In the absence of a temperature gradient, the particle flux may be written as

r « - D(1 - -^) . (8.2)
e 0) 3x

ne

The factor (l-m/o)^^) enters Eq, (8.2) as part of the thermodynamic

force (c.f.. Sect. 5).
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Combining Eq. (8.2) with Eqs. (7.4) and (7.5), we may estimate the

wave growth that results from this transport by

(8-3)2 k (8e^/3(D)(k''*^/16ir) ne *

The real part of the dielectric function is often adequately approx

imated by Eq. (6.15). Using this approximation we obtain

-2

(s).Y=21 J D(1 - ^ . (8.4)
ne

A good test of any qualitative model is the ability to employ it

in making direct, accurate estimates of physically interesting quan

tities. We show below that Eq. (8.4) together with estimates of D

for various transport processes in which the "step" is provided by the

coherent motion of particles in the electric field of the wave and

the correlation time is provided by Coulomb collisions, yields accurate

estimates of the growth rates of many dissipative drift instabilities.

For the model system considered in this papei; we consider the conser

vation of the y-component of the canonical momentum because this compo

nent of a particle momentum labels the particle magnetic flux

surface. However, we wish to emphasize that similar results may be

obtained for axisymmetric systems with a non-zero poloidal field

(e.g., tokamaks and stellerators) by invoking the conservation of the

toroidal component of the canonical momentum, and using the small para-
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meter p^/L , where is the "poloidal" gyro radius. The toroidal

momentum may then be taken as labeling the particle flux surface, and

dissipative drift instabilities may be viewed as a result of the transfer

of toroidal momentum between the electron distribution and a low fre

quency drift wave.

We also note that the y-component of the electron momentum equation

was a consequence of the continuity equation,

Jn a_
9t 9x e *

Clearly, such an equation may be derived when the magnetic field is non-

uniform. Similarly, the derivation of the wave momentum equation, (7.5),

did not require a uniform magnetic field. Hence, the y-component of

the momentum balance equation may be employed in the analysis of the

dissipative trapped electron instability (for which the magnetic field

inhomogeneities are important).

8.1 THE DISSIPATIVE TRAPPED ELECTRON INSTABILITY

With each dissipative drift instability mechanism there is an asso

ciated transport process. The transport process associated with the

dissipative trapped electron instability involves the E x B drift of

magnetically trapped electrons in the field of the wave. We consider

the limit

"eff ^ % (8-5)
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where co, is the bounce frequency of the magnetically trapped electrons,
b

V„ = ^ (8.6)
eff 6

is the effective collision frequency for scattering electrons out of the

local magnetic wells, and 6 is a measure of the magnetic field inhomo-

geneity. In tokamaks, 6 is given by the inverse aspect ratio.

The magnetically trapped particles oscillate coherently across the

magnetic field due to the Exfi drift in the wave electric field.

A characteristic width of this oscillation is

^*DTE " mB '

The passing particles see the wave at the Doppler shifted frequency,

and consequently have orbits with a width of order

"""p =Wf) • (8.8)
z te \ te/

Figure 2 illustrates the result of a collision between a trapped electron

and another particle in which the electron is scattered into the loss

cone of the local magnetic well. This collision results in a displacement

of the mean particle position (i.e., the oscillation center position)

by an amount A* • We note that the coherent oscillations of the part

icles about their mean position are properly included as part of the

wave momentum (Dewar, 1973). Hence, the collision has also resulted

in a net transfer of momentum between the electron and the wave in the
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FIGURE 2. An. illustration of the transport process responsible for the

dissipative trapped electron instability. At the

trapped electron suffers a collision and scatters into a pass

ing orbit. This results in a "step". Ax , and a momentum

transfer between the electron distribution and the wave in

the amount Ap = eBAx .
y
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amount Ap^=eBAx . Note that it does not matter whether the target

particle is an electron or an ion — in either case the transfer of y-mo-

nientum occurs between the electron scattering from trapped to passing

and the wave. Hence, both electron-ion and electron-electron collisions

contribute to the anomalous particle flux associated with the dissi-

pative instabilities of the low frequency drift wave.

Viewing the cross field motion as a random walk, the diffusion

coefficient may be estimated as

D .:f_jDTE (8.9)
DTE T

where f , the fraction of electrons participating in this process at

any given time, may be estimated as

f = 6*^ (8.1)

and the correlation time, t , is the reciprocal of • Hence,

(8.11)
DTE \ oiB / eff

Note that (8.11) differs from the "quasilinear" diffusion coefficient

associated with the dissipative trapped electron instability derived

by other authors (e.g., Norton, 1976; Liu, et al., 1976; Manheimer,

1977) only by a factor of order unity.

Combining Eqs. (8.4) and (8.11) we find

^DTE= 2 (8.12)
ne
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Liu, et al. (1976), have calculated the growth rate of the disslpatlve

trapped electron instability in the absence of a temperature gradient.

In the limit v < w < w, and T.«T their result reduces to
eff D X e

^DTE ^ " (1) ^ ^e
ne

tn (0)6/v )
e_

l-v(26) ^
(8.13)

Comparing Eqs. (8.12) and (8.13) we see that our qualitative argument

has yielded a very good estimate of the growth rate of the dissipative

trapped electron instability. A similar argument yields the correct

growth rate in the opposite limit, ^^ ^eff *

8.2 PSEUDOCLASSICAL TRANSPORT AND DISSIPATIVE DRIFT INSTABILITIES

In a uniform magnetic field the guiding center drifts of electrons

in the electric field of a low frequency drift wave gives rise to a

sequence of related transport mechanisms. We use the name "pseudo-

classical transport" to describe these transport mechanisms, both for

historical reasons, and because of the close analogy between pseudo-

classical transport and neoclassical transport. We consider these

pseudoclassical transport mechanisms elsewhere (Nevins, 1977a; Nevins,

et al., 1977) and find that pseudoclassical transport has three regimes,

determined by the parameter •

In the strongly collisional limit, > 1 , a random walk model

yields (Nevins, et al., 1977)

''CDI
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Combining this transport coefficient with Eq. (8.4), we find that the

growth rate of the associated instability is

^CDI ~(0 ^(.2^2 )^e • (8.15)

This growth rate should be compared to the growth rate of the collisional

drift instability (Hendel, et al., 1970),

^CDI "(0 ^(,2 2)\ • (8.16)
VVte

At lower collision frequencies, such that (e$_/T)^^^<<1 ,
o

a random walk model, in which the correlation time is determined by

Coulomb collisions, yields (Nevins, et al., 1977)

'k <S>
^ . (8.17)CLDI \k / \ B

\ z te

We note that this diffusion coefficient differs from the "quasilinear"

diffusion coefficient associated with the "collisionless" drift mode

(Sagdeev and Galeev, 1969; Horton, 1976) only by the factor (tt/8)^ .

Using Eq. (8.4) together with Eq. (8.17) we find that the growth rate

of the associated dissipative drift instability is

W = )(k^)- (8.18)
\ ne / \ z te /
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This result should be compared with the growth rate of the "colli-

sionless" drift mode (Sagdeev and Galeev, 1969),

h / 2

z te' ne

Eq. (8.19) differs from Eq. (8.18) by this same factor, ^"§'j
Hence, the so-called "collisionless" drift instability may be under

stood as a dissipative instability! The role of the collisions is to

prevent particle trapping and maintain the Maxwellian character of the

distribution function in the resonant region.

Finally, we consider the low collision frequency limit,

3/2< (e$^/T) . This inequality may be viewed as a condition on the

wave amplitude,

(e*^/T) >

In this limit the random walk model yields (Kevins, 1977a)*

-3/2

®NLDI

Hence, the growth rate associated with this transport mechanism is

-3/2

^NLDI =(k^) (i^) (^) • <8-z te ' ne \ z te / \ /
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We have Investigated this nonlinear dissipative instability in detail

elsewhere (Nevins, 1977b), and found that it is associated with the

nonlinear development of a finite amplitude traveling wave that has

trapped the resonant electrons.

8.3 THE NONLINEAR DISSIPATIVE INSTABILITY OF KADOMTSEV AND POGUTSE

It is evident from Eq. (8.22) that the qualitative picture outlined

here may be used in the analysis of nonlinear as well as linear drift

wave instabilities. In addition to the nonlinear dissipative instab

ility of a traveling wave discussed above, Kadomtsev and Pogutse

(1970) have found a nonlinear dissipative instability of a finite

amplitude standing wave. This instability has been studied more

recently by Ott and Manheimer (1976). We show here that this nonlinear

dissipative instability may be understood by the method of momentum

conservation outlined above.

Kadomtsev and Pogutse assume a wave of the form

$ = $ (t) cos(k y-mt) cos k z (8.23)
O y z

and consider the Itoit oj« . where "bOONCE °

is the bounce frequency of a particle trapped by the wave.

In the traveling wave considered in Sect. 8.2, E^ and E^ were in

phase. Hence, in traveling waves the electric fields felt by a trapped

particle oscillate together at the bounce frequency. In contrast, the

standing wave considered by Kadomtsev and Pogutse has E^ and 90°
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out of phase. The trapped particles, which oscillate about a zero of

remain near an extrema of ®*y * Hence, the characteristic frequency

of the cross-field motion is not '̂ bqunCE * rather the (much smaller)

wave frequency, oi . The width in x of these trapped particle orbits

may be estimated as

The effective collision frequency for scattering particles out of the

local potential wells is

e$

• ".#)Vf ° (8.25)

while the fraction of electrons trapped by the wave may be estimated as

f = (-j^) . (8.26)

Hence, the diffusion coefficient may be estimated as

/e$\ ^ /k$ \ ^
{^) (-ir) \ • (8-")

It then follows from Eqs. (8.27) and (8.4) that

-is

^K-P (^) i" tJ '• •
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We compare this estimate with the growth rate for this nonlinear instab

ility calculated by Ott and Manheimer (1976),

Vp = ^

Again, we find good agreement between the estimate from our qualitative

model and a kinetic calculation of the growth rate.

We conclude this section by pointing out that the method of analyzing

dissipative drift instabilities presented in this section is approx

imate only through the random walk estimates of the electron flux. If

this electron fliix is obtained from kinetic theory, then Eqs. (6.20)

and (6.21) (which are exact relations) may be employed to find the

growth (or damping) rate of the wave driving the electron flux. In general,

the calculation of the electron flux from kinetic theory is quite similar

to the calculation of the imaginary part of the electron suscepti

bility, as both quantities involve the same moment of the electron distri

bution function. Hence, this method does not result in any mathematical

simplification.

On the other hand, many powerful techniques have been developed

for calculating transport coefficients using realistic collision oper

ators. These techniques are at our disposal when calculating the

electron flux driven by the wave. In another paper (Nevins, 1977a)

we treat the nonlinear dissipative instability described in Section 8.2,

Using a variational method due to Rosenbluth, et al. (1973), we are able

to calculate the electron flux, and hence, the nonlinear growth rate
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using the full Fokker-Planck collision operator. This accurate treatment

of the collisions is in contrast to other work on dissipative drift

instabilities^ in which Krook models are often employed (e.g., Kadomtsev

and Pogutse, 1969,1970,1971; Ott and Manheimer, 1976; Liu, et al.,

1976; Chen, et al., 1977), or more recent work in which a Lorentz

model is used to accurately describe electron-ion collisions, while

electron-electron collisions are evidently ignored (Hinton and Ross, 1976;

Horton, 1976).
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9. THE ONSAGER RELATIONS AND THE SECOND LAW OF THERMODYNAMICS

Previous workers (e.g., Horton, 1976; Manheimer, 1977) who have

examined the anomalous transport associated with low frequency drift

wave instabilities have been unable to demonstrate that the anomalous

transport coefficients which they have derived satisfy the Onsager rela

tions (Onsager, 1931) or that the resulting plasma transport results

in a net increase in the entropy of the plasma. This is troubling, as

the Onsager relations are a consequence of microscopic reversibility

(which is certainly satisfied), while the Second Law of Thermodynamics

follows from Boltzmann's H-theorem, which may be proven for the system

in question. Hence, if the anomalous transport coefficients do not

satisfy the Onsager relations and the Second Law of Thermodynamics, then

these transport coefficients are open to question. In this section we show

that the anomalous transport coefficients derived by Horton (1976) do

indeed satisfy the Onsager relations, and that the resulting fluxes do

produce an increase in the entropy of the plasma.

We begin by considering the transport due to a single wave. Horton

writes the particle and energy fluxes as sums over the wave spectrum.

We identify each term in these sums as the flux due to an individual

wave. We are guided in this identification by the fact that Horton's

derivation of the particle and energy flux does not require the presence

of many waves, and by the results of the previous section, where we showed

that the transport due to the various dissipative instability mechanisms

considered by Horton may be understood as the result of a random walk in
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which the "step" is due to the coherent motion in the electric field of

a single wave, combined with a coherence time that is determined by

Coulomb collisions.

Horton choses to describe the transport in terms of the particle

flux, , and a "thermal" flux, , given by

- I . (9.1)

We note that Horton's thermal flux is distinct from both our energy

flux, , and the conventional heat flux (Braginskii, 1965),

Q =Q-|- TF .
^e e 2 e

Rewriting the entropy source, Eq. (5.6), using Horton's fluxes, we

find

S^= (A^+flA^) r^ +A^K^ . (9.2)

Hence, the thermodynamic forces, and A2' » conjugate to these

fluxes are

Al' =Ai+|tA2 =-fH (9.3)

<9-4)

Using Eqs. (9.3) and (9.4) together with the transport coefficients

derived by Horton, the particle flux and thermal flux due to a single

wave may be written as
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3 3= Im G° JAj '̂ +a^ 2 Im G^l Aj' (9.5)r =
e

K
e

3 3

="(i^ I® '̂ i)^i' "^"(^^1 ^ ®i) '̂

where

«=is nI"nel (~T^)
and the functions g" are given in Horton's paper. We note that these

m

functions satisfy

G® , >0 m= 1,2,3 (9.8)
m IQ — ' '

as well as

(g -«:) (J: " «i) 1(J: " •=;) • »•'>
It is apparent from Eqs. (9.5) and (9.6) that the Onsager relations

are indeed satisfied.

Using Eqs. (9.8) and (9.9) the entropy source may be written as

S = a
e

I-G°) +2A,'V(S ^'i)

Multiplying and dividing by (^Im G ), and using Eq. (9.9) we find
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S = -r
e 3

iti •»

(J: I" G°) +V(E I" 'i)J • (5.11)

Each term on the right hand side of (9.11) is non-negative. Hence,

the electron entropy source is non-decreasing.

The entropy source may also be written in terms of the plasma

gradients,

1 3n , 1 ax
~ T" and — —
n ax T ax

We find it instructive to do so:

^ = (9.12)
T y

We recognize (- — eBl ) as the source term in the equation for the
Ky e

electron thermal energy (3.17). Hence, we may interpret the third term

on the right hand side of Eq. (9.12) as the rate of entropy increase

due to heating (or cooling) of the electron distribution by the wave.

The neglect of this term by previous workers has prevented them from

demonstrating that the anomalous transport associated with various dissi-

pative drift instabilities produces a net increase in the plasma entropy,

When many waves are present, it is convenient to write the particle

flux and the thermal flux as products between the gradients of n and

T , and transport coefficients that involve sums over the wave spectrum.

In such a formulation one cannot expect these transport coefficients

1 9ii X 9T
to satisfy Onsager*s relations because — and it- are not

n ax
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the themodynamic forces conjugate to the particle and thermal flux.

If interactions between waves are ignored, the total particle flux,

total thermal flux, and total entropy source may be obtained by simply

summing the contributions from each wave in the spectrum . The total

entropy source is then non-negative because it is a sum of non-negative

terms. We note that interactions between waves (e.g., induced scat

tering) may affect the particle flux, thermal flux, and anomalous heating

rate. Hence, when wave-wave interactions are invoked to obtain the satur

ated wave spectrum, the effect of these wave-wave interactions on the

anomalous transport should also be considered.
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10. CONCLUSION

We presented a framework for the analysis of the various dissi-

pative instability mechanisms of the low frequency drift waves. This

framework differs from previous approaches to these instabilities in

that it focuses directly on the transport of particles and energy asso

ciated with these instability mechanisms. The transfer of momentum and

energy which accompanies this transport has been analyzed, and we have

found that momentum and energy conservation is achieved by balancing

the change in the momentum (or energy) of the electron distribution with

a corresponding change in the momentum (or energy) of the low frequency

drift wave. One consequence of these conservation laws is a simple

relation between the electron flux and the growth rate of the low

frequency drift wave, given by Eqs. (6.20) and (6.21). This relation

may be employed in approximate calculations of the growth

rates of the dissipative drift instabilities.

In addition, we have considered the thermodynamic properties of

these dissipative drift instabilities. The thermodynamic forces conjugate

to the particle and energy flux have been identified. We have shown that

the anomalous transport coefficients derived by Norton (1976) obey

Onsager*s relations, and that the resulting transport must provide a net

increase in the plasma entropy.

In another paper (Nevins, 1977 b) we employ this framework in an

investigation of the nonlinear behavior of the "collisionless" drift

instability.
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Appendix - CONTRIBUTION OF THE ELECTRONS TO THE WAVE ENERGY

The energy density of an electrostatic wave may be written as

(i^)- (A.l)

Decomposing the dielectric function into a sum over the susceptibilities

of each species, Eq. (A.l) becomes

(w) +2^^ (i^) •
We assume that

Then the first term on the right hand side of Eq. (A. 2) may be recognized

as the potential energy.

w = fHp*•

Hence, we are led to interpret the remaining terms as the kinetic energy

associated with the coherent motion of particles in the electric field

of the wave.

The electrons contribute to the wave energy through both the potential

energy term, (A. 3), and the kinetic energy term.
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3

dU)
ja)X^®\o),k) I l^TT / ^2^2 \ 16tt

where we have used the fact that

.Ax,

te.
L /

In evaluating X .

The electron charge density is given by

(e) e$/T
P = ^e n e

(A. 4)

(A. 5)

Hence, the contribution of the electrons to the potential energy density

is

-en
de . e$/T O / k2 1 o

,2,2 V IbTTk Xj,
(A. 6)

coiobining Eqs. (A. 4) and (A. 6), the contribution of the electrons to the

wave energy, , may be written as

<e)

khl \
(A. 7)

= - is nT
•

(A. 8)
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Our purpose In this paper is to show that dissipative drift

instabilities may be understood as the result of a transfer of energy

(and momentum) between the plasma and the wave. Hence, we must

assume

the time derivative of (A. 8) and recalling that

that and (nT) are of the same order. Taking
ot

we find

f = ©
at

aOiU
(e)

at
= - nT at

'e$
— I o

3t
(nT) +

(A. 9)

®(fy

Keeping only the leading terms in (Ax^/L) and (e$^/T) yields

(e)
AV

at
- h ni j.fey

at \ T y

2 2
k

at

1,2^2
k $

o

Ibir

(A. 10)

(A. 11)

This expression, (A. 11), represents the rate of change in the energy

(both kinetic and potential) associated with the coherent motion of

the electrons in the field of the wave. Hence, this term must be

subtracted from the rate of change in the total electron energy density,

aw/at , to obtain the time rate of change in the electron thermal

energy, aw/at .
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