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ABSTRACT

A general structure is established that allows the comparison

of various conditions that are sufficient for convergence of algorithms

that can be modeled as the recursive application of a point-to-set

map. This structure is used to compare several earlier sufficient

conditions as well as three new sets of sufficient conditions. One

of the new sets of conditions is shown to be the most general in that

all other sets of conditions imply this new set. This new set of

conditions is also extended to the case where the point-to-set map

can change from iteration to iteration.

^On leave from Bell Labs., Holmdel, New Jersey 07733.
Research sponsored by the National Science Foundation Grant ENG73-08214A01,
and the National Science Foundation (RANN) Grant ENV76-05264.

-1-



1. Introduction

In recent years, the study of optimization algorithms has included

a substantial effort to identify properties of algorithms that will

guarantee their convergence (in some sense) e.g. [l]-[29]. A number

of these results have used an abstract algorithm model that consists

of the recursive application of a point-to-set map. It is this type

of result with which we are concerned in this paper and, in particular

with the results presented in [13], [16], [21], [24] and [29].

We have two purposes. First, we wish to introduce three new general

convergence results. Second, we wish to identify the relationships

among the general convergence results including both our new results and

previously published results.

In order to compare results, it is necessary to have a common

framework. Unfortunately, different authors have used slightly different

abstract algorithm models and have arrived at slightly different

conclusions partly because they have used somewhat different concepts

of convergence. Thus, before a comparison can be made, it is necessary

to establish a common framework and then to translate the various

theories into this framework. Our approach to this task is as follows.

In Section 2, we define an abstract algorithm model and formally define

a concept of convergence for this model. Our new convergence results

establish that certain conditions are sufficient for the algorithm model

to be convergent in the sense of our concept of convergence. The

earlier results use a similar approach, but occasionally differ from

each other by the algorithm model and concept of convergence used. We

take the essential features of these earlier sufficient conditions and
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use these to create analogous conditions that are sufficient in our present

framework. We then establish relationships between the various sufficient

conditions by showing which conditions imply other conditions.

In view of our approach to the interpretation of earlier work, we

make no claim that, and the reader should not infer that, the contents

of this paper fully describe the various earlier results. When we associate

an author's name with a set of sufficient conditions, we mean that the

original conditions from which we derived the conditions in question, were

first proposed by that author. The interested reader can find all of the new

results stated in this paper in [26]. [26] also shows how the sufficient

conditions used in this paper are derived from the original sufficient

conditions.

Section 3 contains the main results of this paper. These results

are summarized by Fig. 1. Each box represents a set of conditions and

an arrow indicates that the conditions at the tail of the arrow imply

the comditions at the head. We have included in Section 3 results that

show that under special conditions, some sets of sufficient conditions

are equivalent. The most important of these special cases is when the

cost (or surrogate cost) function, c, is continuous. The special cases

are noted in Fig. 1.

In Section 4 we illustrate how the sufficient conditions presented

in Section 3 can be modified to apply to an algorithm model which may

use a different point-to-set map at each iteration. We. do this by

extending the most general sufficient conditions of Section 3,

Finally, in the Appendix we present some counterexamples to show

that there are meaningful differences between the sets of sufficient

conditions.
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2. Framework for Comparison, and PrellTninaries

In this section, we present an abstract algorithm model and define

a concept of convergence. In addition, we present some results and

notation that will be extensively used in the sequel.

(2.1) Definition; is a Hausdorff topological space that satisfies

the first axiom of constability. A C is called the set of desirable

points.
n

(2.2) Remark: The set A consists of points that we will accept as

"solutions" to the problem being solved by the algorithm. For example,

it may consist of all points satisfying a necessary condition of

optimality. is usually taken as the set of feasible points for a

problem. Thus, may be a subset of a larger topological space. .If

such is the case, the relative topology on fi is used. ^

(2.3) Algorithm Model; Let A;J2->-2^~(|) where 2^ denotes all subsets of J2.

Step 0; Set i=0. Choose any ^

Step 1; Choose any ^ ^(^i)•

Step 2; Set i=i+l and go to Step 1.

(2.4) Remark; Algorithm Model (2.3) has no provision for stopping and •

thus always generates an infinite sequence. However, many algorithms

have stopping tests and stop only when S A. This can be accounted

for in (2.3) by defining A(z^) = {z^} whenever z^ satisfies the stopping

condition. Thus our analyses are shortened because we do not have to

consider the trivial finite sequence case.

We now state our concept of convergence.
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(2.5) DefinitionI We say the Algorithm Model (2.3) is convergent

if the accumulation points of any sequence constructed by (2.3) are

in A. „
n

(2.6) Remark; We make no assumption that will have accumulation

points. Thus, it is possible for (2.3) to be convergent and for

{z^} to have no accumulation points. For example, for an optimization

problem with no solution, defining A as the set of solutions means

that A = <() and the applications of a convergent algorithm results in

a sequence (z^} that cannot have accumulation points. jj

The definitions (2.1), (2.3) and (2.5) constitute the common

structure within which we shall carry out our analysis.

To conclude this section, we establish some notation and state

some results that will be useful later. All of the sufficient conditions

in Section 3 assume the existence of a function c:iH]R^ and imply that

c(z*) <_ c(z) Vz* G A(z), z G fi. In most applications, c is the cost

function in the optimization problem. Since c is used frequently, we

establish the following notational convention and state a lemma whose

proof is straightforward and therefore omitted.

(2.7) Notation: The sjnnbol c always represents a function crfl^IR^.

(2.8) Lemma: Suppose {z^} C is such that c(z^^^) _< c(z.) i = 0,1,...

Then {c(z^)} converges if and only if some subsequence of {c(z^)}

converges. ^

The following properties of first countable Hausdorff topological spaces

are well known (see [31]) and are stated here for reference.

When we say that a sequence {y^} converges, we still mean it in the
usual sense, i.e., for some f, y^ ->• y as i ->• «>.
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(2.9) Facts:

(i) If z is an accumulation point of {z^} C q, then there exists

a subsequence of converging to z.

(ii) For each z ^ Q, there exists a sequence of neighborhoods

of z, {U^}, such that C i = 0,1,... and ^ i = 0,1,...

implies that z^->z.

(iii) For any sequence {z^} C s C with S compact, there exists

a subsequence converging to a point in S.

3. Comparison of Sufficient Conditions

In this section we present a number of sets of sufficient conditions

for Algorithm Model (2.3) to be convergent in the sense of (2.5). Three

of these sets, (3.3), (3.18) and (3.38) are new while the remaining sets

have been extracted from previous results. We start by proving (3.3) is

sufficient. Then we establish the relationships among the various sets

of conditions as indicated in Fig. 1. As can be seen from this Figure,

all conditions ultimately imply (3.3). Thus, all conditions presented

are indeed sufficient.

(3.1) Definition: c(*) is said to be locally bounded from below at z

if there exist a neighborhood Uof z and b ^ ]R^(possibly depending on z)

such that

(3.2) c(z») > b ¥z' G U.
— n

(3.3) Conditions:

(i) c(») is locally bounded from below on - A.

(ii) c(z') ^ c(z) Vz' G A(z), z G A.

(iii) For each z G A, if {x.} G is such that x.->z and
1 1

c(x^)-*t:*, then there exists an integer N such that
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(3.4) c(y) < c* Vy^ACXj^). ^

(3.5) Theorem: If Conditions (3.3) hold, then Algorithm Model (2.3)

is convergent.

Proof: First we note that (3.3) (iii) implies that c(z*)< c(z)

Vz* ^ A(z), z G A and hence, together with (3.3) (ii), that

(3.6) c(z*) ^ c(z) Vz* G A(z), z ^ fi.

Let be any infinite sequence constructed by the Algorithm

Model (2.3) and suppose that z* ^ - A is an accumulation point of

{Zjj^}. We shall establish a contradiction. Let KC {0,1,...} index

a subsequence such that z^ g z*. Because of (3.3) (i) and (3.6), there

exists a c* such that c(z.) ^ c*. Lemma (2.8) then implies that
X IC

c(z^) ^ c* and it follows that

(3.7) c(z^) ^ c* for i = 0,1,... .

On the other hand, using for {x^} in (3.3) (iii) yields the

existence of N such that < c* which contradicts (3.7). Thus,

we have shown that any accumulation point of {z^^} must be in A. The

proof is now complete. ^

(3.8) Conditions (R. Meyer [16]):

(i) c(*) is locally bounded from below on ~ A.

(ii) c(z') ^ c(z) Vz* G A(z), z^ A.

(iii) For each z ^ - A, if {x^}, {y^} C are such that

x^-^z, y^ GA(x^), c(x^)->c* and c(y^)->c, then c < c*.
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(3.9) Theorem; Conditions (3.8) imply Conditions (3.3).

Proof: Suppose that conditions (3.8) hold. Then conditions (3.3)(i)

and (3.3)(ii) hold since these are identical to (3.8)(i) and (3.8)(ii).

Conditions (3.8)(ii) and (3.8)(iii) imply that

c(z*) £ c(z) Vz* G A(z), z S

Now let z ^ ~ A and let {x.} C Q be such that x.-»-z and c(x.)-h:*.
i i 1

We now assume that (3.3)(iii) does not hold and establish a contradiction.

If (3.3)(iii) does not hold, there exist y^ ^ A(x^) i = 0,1,... such

that c(y^) ^ c* i = 0,1,... . Thus, we have

c(x^) ^ c(y^) ^ c* i = 0,1,...

which implies that lim c(y^) = c* and this contradicts (3.8)(iii).

The proof is now complete. ^

(3.10) Definition: The pair (c,A) is locally uniformly monotonic

at z if there exists 6(z) > 0 (possibly depending on z) and a neighborhood

U(z) of z such that

(3.11) c(z") - c(z') -6(z) Vz" S A(z*), z* U(z),
a

(3.12) Remark: Polak [21] was the first to use local uniform

monotonicity. G. Meyer [13] later generalized the Polak conditions by

using local boundedness from below of c(«) instead of boundedness from

below. g

(3.13) Conditions (G. Meyer [13]):

(i) c(«) is locally bounded from below on - A.

(ii) c(z*) c(z) Vz* ^ A(z), z ^ A.

(iii) The pair (c,A) is locally uniformly monotonic on - A.
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(3.14) Theorem:

a) Conditions (3.13) imply Conditions (3.8)

b) Conditions (3.8) with the additional assumption that c(»)

is locally bounded imply Conditions (3.13).

Proof:

a) Suppose that Conditions (3.13) hold. Then Conditions (3.8)(i) and

(3.8)(ii) hold since these are identical to Conditions (3.13)(i) and

(3.13)(ii). Consider z ^ "• A and let 6(z) and U(z) be as in

Definition (3.10). Let {x^}, {y^}, c* and c be as given by (3.8)(iii).

Then (3.13)(iii) implies that there exists an integer N such that

c(y^) ^ c(x^) - 6(z) for all i ^ N. Hence, c = lim c(y^) £ lim c(x^)

- 6(z) < c* and (3.8)(iii) is established.

b) As pointed out above, (3.13)(i) and (3.13)(ii) are identical to

(3.8)(i) and (3.8)(ii). To complete the proof, we assume (3.8) and local

boundedness of c(*) hold, but that (3.13)(iii) does not hold and establish

a contradiction.

Suppose z ^ -* A. By (2.9)(ii), there exists a sequence of

neighborhoods of z such that ^^i ^i ^ ^i that z^->-z.

If (3.13)(iii) does not hold, there exist {6^}, {x^} and {y^} such that

6. > 0, 6. ->• 0, X. € U., y, ^ A(x.) and
1 i 1 i -^i 1

(3.15) c(x^) ^ c(y^) > c(x^) - 6^ i = 0,1,... .

Since c is locally bounded, there exists b ^ 0 such that

(3.16) |c(x^)| ^b i = 0,1,... .

Thus, there exist a subsequence ®such that

c(x^) j c*. (3.15) then implies that
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(3.17) lim c(y.) = lim c(x.) = c*.
K ^ K ^

Since ^ U^, x^ z and ^ A(x^), (3.8)(ill) requires that

lim c(y ) < c* which contradicts (3.17). Thus (3.13)(iii) must hold.
K

The proof is now complete.
n

(3.18) Conditions: There exists 6:R -> with the following properties

(i) c(*) is locally bounded from below on ~ A.

(ii) c(z') - c(z) £ -6(z) £ 0 Vz* G A(z), z ^ fi.

(iii) For each z ^ ~ A, if {x.} C q is such that x.^z, then
00

£ 6(xi) = n
i=0

+ ^
(3.19) Lemma: Suppose z ^ and 6:0 ^ IR is such that 52 ^(x.) ~

i=0 ^
for all sequences {x^} that converge to z. Then there exist V(z) a

neighborhood of z, and £ > 0 such that 6(z*) ££ for all z* ^ V(z).

Proof: Suppose the lemma is false. Then we can find with z^->-z

and 6(z^) ->• 0. Define the map n as

(3.20) n(i) =min{j|j £ i+1, 6(z.) £ ("1)^}.
J z

n is well defined since 6(z^) ->• 0. Let the sequence be defined

as X ~ z . x^ " z X \ "" z / / \ \ f X— ""Z / f t w\ ^nd so forth.o o' 1 n(o)' 2 n(n(o))' 3 n(n(n(o)))
00 O) ^ i

Then ^ 6(x.) < 52 ~ x.->z and thus by the hypothesis,
i=0 ^ i=0

00

53 6(x.) = ". So we have a contradiction and the lemma must be true.
1=0 ^ n
(3.21) Theorem: Conditions (3.18) imply Conditions (3.13) and vice

versa (i.e. (3.18) ^ (3.13)).

Proof: (=^) Clearly, (3.18) (i) implies (3.13) (i) and (3.18) (ii) implies

(3.13)(ii). Let z^fi ~ A. Conditions (3.18)(ii), (3.18)(iii) and

Lemma (3.19) imply that there eixst V(z) a neighborhood of z and £ > 0

such that
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c(z") - c(z') £ -6(z*) £ -§_ Vz" € A(z'), z* ^ V(z).

Consequently, (c,A) is locally uniformly monotonic at z. Condition

(3.13)(iii) is therefore established.

(^) Condition (3.13)(i) is identical to (3.18)(i). For each

z € - A, let 6(z) > 0 .and U(2) be as given in Definition (3.10).

Define ]R^ by

(3.22) 6(z) A inf{c(z)-c(z')Iz* ^ A(z)}.

Conditions (3.13) (ii) and (3.13) (iii) imply that 6(z) ^0 for all

z G and thus (3.18)(ii) holds. Now, for z^fi - A, 6(z*) ^ 6(z) > 0
00

for all z* GU(z). Therefore, whenever x.-^z, J]) 6(x.) = « and
i=0 ^

(3.18) (iii) holds. The proof is now complete. jj

(3.23) Conditions (Polak [21]):

(i) c(*) is either lower semicontinuous on - A or bounded

from below on fi.

(ii) c(z*) _< c(z) Vz* G A(z), z ^ A

(iii) (c,A) is locally uniformly monotonic on ~ A.
n

(3.24) Theorem:

a) Conditions (3.23) imply Conditions (3.13).

b) Conditions (3.13) with the additional assumption that c(»)

is lower semicontinuous imply Conditions (3.23).

Proof:

a) Clearly, (3.23)(i) implies that c(*) is locally bounded from below,

Thus a) is true because (3.23)(ii) and (3.23)(iii) are identical to

(3.13)(ii) and (3.13)(iii).
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(b) When c(0 is lower semicontinuous, (3.23)(i) is satisfied and

therefore Conditions (3.13) imply Conditions (3.23). Thus, b) is true.

(3.25) Conditions (R. Meyer [16]): 6:n ^ ]R^ is such that

(i) c(*) is either lower semicontinuous on - A or bounded from

below on £2.

(ii) c(z*) £ c(z) - 6(z) Vz* ^ A(z), z ^ Q

(iii) For each z ^ if z^-»-z and 6(z^) ->• 0, then 6(z) = 0.

(iv) {z* ^ q|6(z*) = 0} c: a.
n

(3.26) Theorem:

a) Conditions (3.25) imply Conditions (3.23).

b) Conditions (3.23) imply Conditions (3.25) when A is closed.

Proof:

a) Conditions (3.25)(i) and (3.23)(i) are identical. Since 6 has only

nonnegative values, (3.25)(ii) implies (3.23)(ii). Now suppose

z ^ ~ A. By (3.25)(iv),

(3.27) 6(z) >0.

Let be a sequence of nei^borhoods of z satisfying (2.9) (ii).

Assume that (3.25) holds, but (3.23)(iii) does not hold at z. Then

there exist {z.}, {y.} and {6.} such that z. ^ U. (and hence z.->z),
1 -^1 1 11 1

y. ^ A(z.), 6.4-0 and
•'i l l

c(y^) > c(z^) - 6^ i = 0,1,... .

Combining this inequality with (3,25)(ii) yields

c(zp - 6(z^) ^ c(y^) > c(z^) - 6^ i = 0,1,...
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Rearranging, we have that 0 ^ 6(z^) 1 = 0,1,... which means

that 6(z^) ->• 0. But since z^->z, (3.25) (iii) requires 6(z) = 0 which

contradicts (3.27) and the proof of a) is complete, b) As before,

~ -f*
(3.23)(i) and (3.25)(i) are identical. Now define Sifi ]R by

(0 if z€A
inf{c(z)-c(z*) |z* € A(z) } if z ^ - A.

Then (3.23)(iii) implies that 6(z) ^ 0 for all z ^ and (3.23)(ii)

along with (3.28) imply (3.25)(ii). Now consider z ^ ~ A. Because

A is closed and because of (3.23)(iii), there exists a neighborhood

U of z and 6 > 0 such that U C - A and 6(z') ^6 > 0 for all

z* G u. Thus if we have z^ z* ^ and 6(z^) 0, we must have

that z* ^ A which implies that 6(z*) = 0. Consequently, (3.25)(iii)

holds. Also, A = {z* ^ fi|6(z*) = 0} and therefore (3.25)(iv) holds.

The proof is now complete.
n

(3.29) Remark; If Conditions (3.23) hold, they will also hold if

A is replaced by any A* such that A ^ A'. Because of this latitude

in selecting A in (3.23), Conditions (3.23) and (3.25) are not

equivalent. However, if one chooses A to be as small as possible so

that Conditions (3.23) hold for a given c(0 and A(*), then Corollary

(3.30) shows that Conditions (3.23) are equivalent to Conditions (3.25)

(3.30) Corollary: Suppose that Conditions (3.23) are satisfied.

In addition, suppose that A = ~ A where A A {z|(c,A) is locally

uniformly monotonic at z}. (Conditions (3.23) only imply that

- A C A.) Then Conditions (3.25) are satisfied.

-13-



Proof; In view of Theorem (3,26), it will suffice to show that

A is closed. We assume that A is not closed and establish a contradiction.

If A is not closed, there exists z*, an accumulation point of A, such

that z* ^ A (i.e. z* G A). Thus there exist a neighborhood N of z*

and a 6 > 0 such that

c(z") - c(z') < "6 Vz" e A(z'), z' e N.

Since N H a ^ <J), we can choose a z ^ N H a. But N is also a neighborhood

of z and the above inequality implies that (c,A) is locally uniformly

monotonic at z. That is, z ^ A and we have z ^ A H A = (j) which is a

contradiction. Therefore, A is closed and the proof is complete.
n

(3.31) Conditions (G. Meyer [13]):

(i) c(*) is lower semicontinuous on - A.

(ii) c(z')<c(z) Vz' e A(z), z e A.

(iii) For each z ^ Q " A, there exists a neighborhood U of z

such that

c(z") < c(z) Vz' G A(z'), z' G U.
n

(3.32) Theorem:

a) Conditions (3.31) imply Conditions (3.3)

b) Conditions (3.3) with the additional assumption that c(0 is

continuous imply Conditions (3.31).

Proof:

a) Assume that Conditions (3.31) hold. Then (3.3)(i) holds since lower

semicontinuity implies local boundedness from below. Next, (3.3)(ii) is

identical to (3.31)(ii). Let z ^ Q~ Aand let {x^} C be such that
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x^->z and c(x^)^*. The lower semicontinuity of c(') implies that

(3.33) c(z) c* = lim c(x^)

There must exist an integer N such that x^^ ^ Uwhere Uis

given by (3.31)(iii). Hence

(3.34) c(y) < c(z) Vy ^

Combining (3.33) and (3.34) shows that (3.3)(iii) holds.

b) Assume that Conditions (3.3) hold, and that c is continuous.

Since we are assuming that c(«) is continuous. Condition (3.31)(i)

holds. Condition (3.31)(ii) holds since it is identical to (3.3)(ii). Let

z G - A and let be a sequence of neighborhoods of z that

satisfies (2.9)(ii). If (3.31)(iii) does not hold, we can find x^ ^

and y^^ ^ A(x^) such that

(3.35) c(y^) ^ c(z) i = 0,1,... .

By the construction of {U^}, x^-^z, and therefore the continuity of

c(') implies that lim c(x^) = c(z). But then (3.35) contradicts

(3.3)(iii) so we must have that (3.31)(iii) holds. The proof is now

complete. ^

(3.36) 'Definition; The composit map c(A(»)) is super upper semlcontinuous

at z if for each e > 0, there exist z ^ A(z) and a neighborhood U of

z such that

(3.37) c(z") < c(z) + e Vz" € A(z*), z* ^U,
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(3.38) Conditions;

(i) c(») is lower semicontinuous on — A.

(ii) c(z*) ^ c(z) Vz* ^ A(z), z ^ A.

(iii) For each z ^ - A, there exists y(z) > 0 (possibly

depending on z) such that

c(z*) £ c(z) - y(z) Vz* G A(z).

(iv) c(A(*)) is super uppersemicontinuous on £2 - A.
n

(3.39) Theorem:

a) Conditions (3.38) imply Conditions (3.31).

b) Conditions (3.38) imply Conditions (3.23).

Proof: Suppose Conditions (3.38) hold.

a) Then Conditions (3.31)(i) and (3.31)(ii) hold because they

are identical to (3.31) (i) and (3.38) (ii). Let z ^ " A

and let y(z) > Obe as given in (3.38)(iii). Set e =

in Definition (3.36) and denote the required neighborhood by U.

Then, with z ^ A(z), as in (3.36),

(3.40) c(z") £ c(z) + £ c(z) - y(z) + < c(z)

¥z" G A(z*), z* ^ U

and consequently, (3.31)(iii) holds.

b) Condition (3.38)(i) clearly implies (3.23)(i) and (3.38)(ii)

is identical to (3.23)(ii). Let z G - A and let y(z) > 0

be as given by (3.38)(iii). Let z G A(z) and U be as given by

by Definition (3.36) with e = Then we have

-16-



(3.41) c(z") <c(i) +^ <c(z) - Y(z) +^ =c(z) -

Vz" G A(z*), z* G U

Since c(») is lower semicontinuous, there exists a neighborhood

of z with C u such that

(3.42) c(z) - < c(z') Vz' e U

Combining (3.41) and (3.42) yields

(3.43) c(z") £ c(z') - Vz" 6 A(z'), z' € U

Thus, (c,A) is locally uniformly monotonic on ~ A, i.e., (3.23)(iii)

holds. The proof is now complete.
n

(3.44) Conditions (Polyak [24]):

(i) c(*) is lower semicontinuous on ~ A.

(ii) A(*) is single valued (denoted by a(*)) Vz ^ fl.

(iii) c(a(z)) £ c(z) Vz ^ A.

(iv) c(a(z)) < c(z) Vz G fi ~ A.

(v) c(a(«)) is upper semicontinuous on - A.
•

(3.45) Theorem:

a) Conditions (3.44) imply Conditions (3.38)

b) Conditions (3.38) imply Conditions (3.44) when A(-) is a

single valued map.

Proof: First we note that when A(*) (=a(-)) is single valued.

Definition (3.36) implies that c(a(«)) is upper semicontinuous. Thus

for A(*) = a(»), (3.44)(i) and (3.38)(i) are equivalent, (3.44)(iii)
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and (3.38)(ii) are equivalent, and (3.44)(v) and (3.38)(iv) are

equivalent. Furthermore, when A(*) = a(«), it is easy to see that

(3.44)(iv) is equivalent to (3.38)(iii). Thus both a) and b) follow

immediately. The proof is now complete. n

(3.46) Definition: A(») is said to be closed at z if z^-^z,

V. ^ A(z.) and y.^ imply that y € A(z).
•^1 1 1 n

(3.47) Conditions (Zangwill [29]):

(i) c(*) is continuous on fi.

(ii) c(z') <. c(z) ¥z' G A(z), z ^ A.

(iii) c(z*) < c(z) Vz* ^ A(z), z S S2 ~ A.

(iv) A is closed on ~ A.

(v) For each z ^ ~ A, if x^->-z and y^ ^ A(x^), then {y^}

is compact.
H

(3.48) Theorem: Conditions (3.47) imply Conditions (3.38).

Proof: Suppose Conditions (3.47) hold. Condition (3.47)(i) clearly

implies (3.38)(i). Condition (3.47)(ii) is identical to (3.38)(ii)

and hence (3.38)(i), (ii) hold. Let z ^ ~ A and let C a(z)

be such that c(?^) ^ sup{c(COU* ^ A(z)}. Condition (3.47)(v) implies

that is compact and hence there exist a subsequence

F* such that C*. Condition (3.47)(iv) implies that ^ A(z)
^ X

and thus, because c(0 is continuous ((3.47)(i)),

(3.49) cU*) = max{c(^') ^k(z)}.

Now (3.49) and (3.47)(iii) yield

(3.50) c(z') <.c(^*) < c(z) Vz* € A(z)
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and so we have

(3.51) c(z*) £ c(z) - (c(z)-c(C*)) A c(z) - y(z) Vz* ^ A(z)

with y(z) > 0 which establishes (3.38)(iii). To show that (3.38)(iv)

holds, we assume the contrary and establish a contradiction. Let

z ^ "• A and let ^ A(z) be as above. Let be a sequence of

neighborhoods of z satisfying (2.9)(ii). If (3.38)(iv) does not hold,

we can find e > 0, zl ^U. and zV ^ A(z!) such that
1 1 1 1

(3.52) c(z'̂ ) > c(C*) + e i = 0,1,... .

By construction, zj^^-z. Condition (3.47) (v) then implies that {z'̂ }

is compact. Hence, there exist a subsequence such that

zV z" and of course zl ^ z. From (3.52) we conclude that
1 K2 * 1 1^2

(3.53) c(zp > c(C*) + £

Since A(*) is closed ((3.47) (iv)), z'̂ ^ A(z) and (3.50) combines with

(3.53) to yield

(3.54) c(zp ^ c(^*) + G^ + e > c(zJJ)

and we have a contradiction. Consequently, (3.38)(iv) must hold and

the proof is complete.
n

4. Extension to the Time Varying Case

In this section, we modify Conditions (3.3) to apply to the case

where the point-to-set map depends upon the iteration number, i. The

other sufficient conditions can be extended in a similar fashion.

These extensions are relatively straightforward. Therefore, we

extend only Conditions (3.3) (the most general conditions) as an

example of what can be done.
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Time Varying Algorithm Model! Let 2^ for i = 0,1,,.. .

Step Or Set i = 0. Choose any ^ fi.

Step 1: Choose any ^ A^(z^).

Step 2: Set i = i+1 and go to step 1.
a

(4.2) Conditions:

(i) c(«) is locally bounded from below on Q ~ A.

(ii) There exists an integer ^ 0 such that c(z') £ c(z)

Vz' ^ A^(z), z ^ i ^ N^.

(iii) For each z^fl - A, if {x^}CQis such that x^->z and

c(x^) c*, then there exists an integer N2 ^ such that

c(y) < c* Vy e A (v ).
2 2 H

(4.3) Theorem; If Conditions (4.2) hold, then Algorithm Model (4.1)

is convergent (in the sense of Definition (2.5)).

Proof; Let z* be an accumulation point of {z^}, the sequence constructed

by (4.1). We assume that z* ^ - A and establish a contradiction.

There exists a subsequence {z.}.£3^ such that z. z*. Without loss of
1 i^ 1 K

generality, we can also assume that monotonically decreasing

because of (4.2)(ii). If z* ^ ft ~ A, (4.2) (i) implies that

is bounded from below and hence c(z ) > c*. Lemma (2.8) can be applied
1 K

to obtain that c(z.) -*• c* and
1

(4.4) c(zjj^) ^ c* ^

But, if z* € ft - A, (4.2)(iii) implies that

(4.5) c(Zj^ _|_^) < c*
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which contradicts (4.4), Thus, we must have z* ^ A and the proof is

complete.
H

(4.6) Remark; It is immediately obvious that Conditions (3,3) imply

Conditions (4.2) when A. = A for i = 0,1,2,... .
^ n
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Appendix A - Selected Counterexamples

The purpose of this Appendix is to show, by means of counterexamples,

that certain of the implications not proved in Section 3 cannot, in fact,

be proved. In the first set of counterexamples c is continuous, A is

closed and A is single valued. Under these restrictions, the sets of

sufficient conditions aggregate into four equivalence classes (see

Figure 1). There are:

Class I: Conditions (3.3) and (3.31).

Class II: Conditions (3.8), (3.13), (3.18), (3.23) and (3.25).

Class III: Conditions (3.38) and (3.44).

Class IV: Condition (3.47).

It is immediately evident that IV implies III, III implies II, II implies

I. We shall present counterexamples to show that the converse is false.

The first two counterexamples will be constructed from the following

optimization problem and algorithm

(A.l) Problem: min{c(z)|z ^ IR^} where c:]R^ IR^ is defined by

(A, 2) c(z) =

-z -1 for z £ -1/2

z^ - 3/4 for -1/2 < z < 1/2
z -1 for 1/2 < z .

(A.3) Remark: c is continously differentiable and

-1 for z _< -1/2

(A.4) c'(z) ={2z for -1/2 < z < 1/2
1 for 1/2 < z .
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(A. 5) Algorithm;

Data: ^ IR^ arbitrary.

Parameters: a ^ [0,1), 3 € (0,1), a > 0.

Step 0: Set i = 0.

Step 1: If c*(z.) = 0, set z.., = z.. Else, set z.._ = z. - aS ^
— i 1+1 i 1+1 1

c*(z^), where j(z^) is the smallest nonnegative integer

satisfying

jCzJ j(z.)
(A.6) c(z^-a3 c'(z^)) - c(z^) <-aa3 c*(z^)

j(z J

Step 3: Set i = i+1 and go to Step 1.
n

(A.7) Remark: When a 0, this algorithm is a version of the Armijo

gradient method [32]. Our counterexamples are constructed by taking

various values of the parameters a, 3 and a.
H

(A. 8) Definition:

n 4 ]R^

A A. {z|c'(z) = 0} = {0}

if z ^ A
A(z) 4 a(z) 4

z-a3^^^^ c*(z) if z ^ ~ A.

(A.9) Counterexample - I II: We take a = 0, 3 = 1/2 and a = 1 and

show that Conditions (3.31) hold but Condition (3.8)(iii) does not hold,

Straightforward calculations show that in this case

(A.10) a(z) = /

z + 1 for z < -1/2

0 for -1/2 _< z < 1/2

z - 1 for 1/2 < z .
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If z > 0 and |z'-z| < 1/2, (A.10) implies that -z < a(z*) < z and

hence c(a(z*)) < c(z). Similarly, if z < 0 and |z^-z| < 1/2, (A.10)

implies that z < a(z*) < -z and again c(a(z')) < c(z). Thus, Condition

(3.31)(iii) is satisfied at any z 0, for the neighborhood

(z-l/2,z+l/2). It is also clear that (3.31)(i) and (3.31)(ii) hold.

Now we show that Condition (3.8)(iii) is not satisfied at z = -j.

Let {z^} be defined as -j +-^ for i =1,2,... . Clearly z^->-z and
c(z^) c(z) = -1/2. Also, by (A.IO), y^ = a(z^) = z^ - 1 ^ [-1/2,1/2]

for i =1,2,... . Hence c(y^) = (z^-1)^ - 3/4 -»• (z-1)^ - 3/4 =-1/2 =c(z)
However, (3.8)(iii) requires that lim c(y^) < c(z) = lim c(z^).

Consequently, we have shown that Conditions (3.31) do not imply

Conditions (3.8).
n

(A.11) Counterexample - 11 f- III; We take a = 1/2, 3 = 2/3 and

a = 3/2 and show that Conditions (3.23) are satisfied but that

Condition (3.44)(v) does not hold. It is immediately evident that

(3.23)(i) and (3.23)(ii) hold. Suppose z ^ A, i.e. c*(z) 0. For

a nonnegative integer j, we have, by use of the Taylor Series expansion,

(A.12) c(z-(|)(|)Jc'(z)) - c(z) +(i)4) |̂c'(z)|̂

=-(|)(|)^c'(z)c'(z) +(|)(|) |̂c'(z)|̂ +o((|)(|)jc*(z))

rVr I .r.|2 ,= (^)-'[-|c'(z)| + ]
(l)^

where -»• 0 as x-K). Thus since c*(z) ^ 0, there exists an integer

j such that the right hand side of (A.12) is strictly less than

At

zero for j = j. Hence
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(A.13) c(z-(|)(|)^c'(2)) - c(z) <-(•|)(|)J|c*(z)|̂ .

Since c and c* are continuous, there exists an e > 0 such that

(A.14) c(z'-(|)(|)^c'(z')) - c(z') <-(|)(|)3|c'(z')|̂ <
v|z'-z| < e.

We therefore can conclude that j(z*) ^ j for all |z'-z| < e and hence

(A.15) c(a(z')) - c(z') <-(|)(|)^ '̂''̂ -(|)(|)^

A -5 < 0 v|z'-z| < e.

Thus, we have established condition (3.23)(iii).

To show that Condition (3.44)(v) does not hold, we show that

c(a(«)) is not upper seraicontinuous at z = -1. A straightforward

calculation shows that j(z) = 1, a(z) = 0 and hence c(a(z)) = -3/4.

Now let z* = z—e for some e > 0. It is easy to show that for e > 0

sufficiently small, j(z') =0, a(z*) ~\ ^ hence c(a(z*))
12 2= ("2 - g) - 3/4 = e - e - 1/2. Thus, there exists an e > 0 such

that c(a(z+e)) ^ -5/8 > -3/4 = c(a(z)) for all e ^ (0,e] and c(a(*))

is not upper semicontinuous at z = -1.
•

(A.16) Counterexample - III ^ IV: For this counterexample, we apply

Algorithm (A.5) to a new function c where

z for 1 < z

(A.17) c(z) = / z^ for -1 z ^ 1
-z for z < -1.

This c is not differentiable at 1 and -1 so at these points we take

c'(l) = lira c*(z) = 2 and c'(-l) = lim c'(z) = -2 in Algorithm (A.5).
zfl z4'-l
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3 1We also select a = a = "g and 3 to any positive number. Under these

conditions, it is easy to show that j(z) = 0 for all z and thus

x- 3/4 1 < z

(A. 18) a(z) = / -z/2 ^ 5. ^
z + 3/4 z < -1

We shall now show that Conditions (3,44) hold but that Condition (3.47)(iv)

does not hold. It is clear that (3.44)(i) - (3.44)(iy) hold. Also,

it is obvious that (3.44)(v) holds for all z, except, possibly at

z = +1, and z = -1. We show that c(a(*)) is uppersemicontinuous at

z = 1 and thus by symmetry, (3.44)(v) holds for all z. First
2

c(a(l)) = c(- -j) = (- y) = Now consider e ^ (0,3/4]. Then

a(l+e) ^ ("I"*!]* Thus, c(a(l+e)) =[a(l+e)]^ =(l+e--|-)^ = (1+e)^
3 9 11

- -r(l+e) + TZ* Oa the other hand, a(l-e) ^ (- ir, - t:] and so
z lb j Z o

e-1c(a(l-e)) = (~~2~) • Consequently,

(A. 19) lim c(a(l+e)) = < T ~ c(a(l)) = lim c(a(l-e)) .
e+O e+0

We conclude from (A.19) that c(a(*)) is upper semicontinuous at 1 and thus

everywhere. Therefore, we have shown that Conditions (3.44) hold. On

the other hand, lim a(l+e) = but a(l) = so that a(-) is not closed
e+0 ^ ^ ^

(i.e. not continuous at 1 and (3.47)(iv) does not hold. „

i*
It is interesting to note that a counterexample can be constructed using

a continuously differentiable function, c. In particular, the function

and algorithm used in Counterexample (A. 11) can be used with a =•^,
13

3 = T- and a = -;r . After a substantial amount of calculation, it can
b z

be shown that the resulting map a(») is discontinuous at z = ±1 because

j(z) is discontinuous at these points.
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In our last counterexample, we show that Conditions (3.3) do not

Imply Conditions (3.31). As can be seen from Figure 1, we shall need a

function c(*) that Is not continuous. The following lower semlcontlnuous

function will suffice.

z+1 for 1 < z

(A.20) c(z) =

z for z < 1.

(A.21) Counterexample - (3.3) (3.31); We apply Algorithm (3.5) to

c as defined by (A. 20) where we take c*(l) = 11m c'(z) = 2. We also

9 12select CT = ®"g and 3 ®"g- After some coiiq>utatlon. It can be

shown that

(A.22) j(z)=

and hence

(A. 23) a(z) =

z > 1

z < 1

z - 4 ^

z < 1.

• We now show that Conditions (3.3) hold but Condition (3.31) (111)

does not hold. Clearly (3.3)(1) and (3.3)(11) hold. For any z ft 1

and z ^ 0, c(a(0) Is continuous and c(a(z)) < f(z). Thus there exists

e > 0 such that |z*-z | < e Implies that c(a(z*)) <c(z). Since z

Is a point of continuity of c, we conclude that (3.3)(111) holds for

§11 z ^ Aejfcept possibly z ~ 1» Now consider z^ ®1 + j and
z^ = 1 - Y 1=1,... . Then

(A. 24) z^ 1, z^ + 1
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(A. 25) c(z ) = 1 + i + 1 24 c*

(A.26) c(^^) = (1 - + 1 4 c*

(A.27) c(a(z^)) =(1 +7 - ^

(A. 28) c(a(z^)) = c(0) =0.

Thu8» there exists an integer N such that

(A.29) c(a(zjj)) <2 = 0*

(A.30) c(a(Zjj)) = 0 < 1 = c*

and (3.3)(ill) also holds at z = 1.

On the other hand. Condition (3.31) (iii) does not holdS:t z = 1. ;

9 5To see this, consider any e € (0,1). Then, a(l+e) = l+ e- -^=e--^

e (- "I, -j)' Therefore,

(A.31) c(a(l+e)) =(c - |)2 = - |e +|| ||

Thus, there exists an e > 0 such that

(A.32) c(a(l+e)) > 1 = c(l) ¥e e (0,i].

Consequently, Condition (3.31)(iii) does not hold at z = 1.
tt
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