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I. Introduction

Recently, Polak and Mayne [1] presented an algorithm for solving

problems of the form

min{f°(z)|gj(z) <0, j= l,2,...,p; fj(z) <0, j= 1,2,...,m}
(1)

where f°:!Rn -»• 3R and gJ:lRn -> 3R , j = l,2,,..,p are continuously

differentiable functions and fJ:lR + TR , j = 1,2,... ,m, are

functional constraints of the form

fJ(z) = max 4>J(z,u>) (2)
w € Q

•i r» i
where ({> :3R x ]R -*• 1R . It is assumed that 4> (•»*) is continuous and

that V <{>J(«,0 is continuous for each j = l,2,...,m. The set ft is a
z

compact interval of the real line, As noted in [1,2,3,4], an important

class of engineering design problems can be formulated in the form of (1).

The method in [1] is a phase I-phase II type feasible directions

method (see [5]), Since the value of f (z) cannot be computed exactly,

the algorithm in [1] uses approximations to f (z) given by max (j) (z,u>),
w G fi

q

where ft is a suitably constructed discrete subset of ft. Also, in [1],

in order to make the linear program, which computes the search direction,

finite, the sets ftJ(z) A (w ^ ftU3 (z,a)) - ty (z) > e}, where
e — o —

ty (z) Amax{gJ(z), j = l,2,...,p; fJ(z), j = l,2,...,m}, are also

approximated discretely. Unfortunately, the particular choice of the

discrete approximation to the sets ft (z), used in [1], forces the

insertion of a very costly test into the algorithm. This test involves

the computation of many inner products which increases both computer time

and storage.
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In this paper, we present an algorithm which uses a different discrete

approximation to the sets ft** (z), which has the great advantage over the

one in [1] that the costly test in [1] need no longer be used. As a

result, the new algorithm is much faster. The new algorithm also avoids

a number of smaller shortcomings present in the algorithm in [1]. It

uses a more satisfactory discretization rule for the approximations of the

fJ(z) as well as a better optimality function for the calculation of

search directions. Both of these changes further contribute to its

superiority over the algorithm in [1]. Although, from a theoretical point

of view, the present algorithm does not appear to be all that different

from the one in [1], the collective effect of all the changes results in

very substantial practical differences, as can be seen from the experimental

results in Appendix B, and hence should be of considerable interest to

engineers in the area of computer aided design.

II. Definitions and Assumptions

We formalize our remarks about problem (1) by assuming the following

hypothesis is true.

Assumption 1. f°(«) and gj(0, j= l,2,..,,p are continuously differentiable;

^(•,«) and V <|>3 (•,•), j - l,2,...,m are continuous.
z n

Because we are using feasible directions type algorithms we introduce

the concept of "e-active" constraints. Given z € 1R , we define

^:3Rn + 1 by

*(z) 4nax{gj(z), j^£; fj(z), j^ m} (3)
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where £ A (1,2,,. ♦ ,p} and m A (1»2,,., ,m}. Then we define

ty :!Rn •> 1R by

ty (z) A max{0,iKz)} W
o —

For any e > 0, we define the "e-active" constraint sets by

Jf(z) A{je m|fj(z) - ty (z) >- e} (5)
e — — o —

jf<*> 4 Ue£|gj(z) " *0(z) >- e} (6)

We identify the set of points in ft for which <|r(z,u>), j G m, is

e-active by defining

ftj(z) A (to e 01^(2,0)) -* (z) >- e> <7>

We assume the following hypotheses are true.

Assumption 2. For all zG]Rn, for all jGm, ft^(z) is afinite set.

Assumption 3. For all z G 3Rn, e > 0, and j G j (z), ftJ(z) is the

union of a finite number of disjoint intervals, I ,(z), k = 1,2, — ,k (z),

possibly of zero length, i.e.

ftj(z) - U I3 (Z) (8)
' kG<3<3(z) £>k

where^K^Cz) A(1,2,... ,k3 (z)}

Assumption 4. For all zG]Rn, {Vz<{>J (z,u>), wGft^(z), jGJQ(z);
t

VgJ(z), jG J^(z)} is a set of positive linearly independent vectors.

We say a set of vectors {n.}.=1 is positive linearly independent if the
n

zero-vector is not contained in the convex hull of (n. }._•.• This

assumption is related to the Kuhn-Tucker constraint qualification [6].
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These three assumptions are identical to those in [1].

We now define two functions which could, theoretically, be used to

generate feasible search directions. The first function defines a linear

program (LP)(cf. [1]) and the second function defines a quadratic program

(QP)(cf. [2]). For any zG ]Rn, e >_ 0, define 0 :3Rn -»• ]R and

8 :3R +1 by
e

0 (z) A min max{< Vf°(z),h) - yty (z);
e hG s °

<Vgj(z),h> ,jGJs(z); <V <J>j(z,w),h> ,uGft^(z), jGjf(z)}
(9)

92(z) A min 4tlhl!2 + max{<Vf°(z),h> -y* (z);
E = 2 O

hem"

<vgj(z),h>, jej«(z); <v *J(z,u),h>, ueQ^(z), je /(z)}

(10)

where S A {h G ]Rn|llhil < 1} and y > 1 is a constant. In [1] the

constant y was not used. We have found through our computational

experience that y >_ 2 gives best performance. Note that by increasing

y the effect of the cost function, f , is lessened whenever \\> (z) > 0.

The programs defined by (9) and (10) cannot, in general, be solved

by conventional LP and QP computer codes because ft (z), j G m, may

contain an infinite number of points. It is for this reason that we

approximate ftJ (z) to make the LP or QP tractable while at the same time

ensuring that a suitable feasible search direction is computed. In

[1], Polak and Mayne approximates ft,(z) by a discrete set of points

given by the set of midpoints of each subinterval IJ ,(z) . This approximation

provides a low dimensional LP to be solved (or QP as in [2]). But, the
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direction vector computed with this approximation is not necessarily

a satisfactory search direction and a test is necessary to ensure suitability

of the vector. This test, Step 5 of Algorithms I and II in [1], involves

the computation of inner products for all the points in ft£(z). This

causes two computational problems: (i) the set ft^(z) has to be stored

and (ii) the computation of inner products for all the points in ft£(z)

(even when ft is discretized) could be very expensive. It is desirable,

therefore, to approximate 81(z) or 0*(z) in some other manner for which the
£ e

test over all the points in ft^(z) can be eliminated.
The new algorithm to be presented here is based on a new method

of "approximating" 01(z) and 02(z). We define the "approximation" to

ft^(z) by
e

ftj(z) A(w G ft^(z)iu) is aleft local maximizer of <J>3(z,-)) .(11)
ex ' — e

where apoint uGft is aleft local maximizer of <|>j(z,.) if there exists

a u > 0 such that

<j>j(z,u>) <<|>j(z,u>) Vu) G (u-u,u>) n ft (12)

<|>j(z,w) ><|>j(z,u)) Vo) G(w,w+u) Hft <13>
1 On

We now define the functions Q^^ +* and V*3* "* m b?

^(z) A min max{< Vf°(z),h> -Y<J>Q(z);
e h G S

<Vgj(z),h>, jGjS(z); <7z^(z,u),h>, to GJp(z),

j G J£(z)}
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02(z) A min 4llhll2 +max{< Vf°(z) ,h> - yr\> (z);
£ = 2. O

hG m11

<Vgj(z),h>, jG (J8(z)); <V <|>j(z,a)),h> ,a) G 5J(z), jG jf(z)}}
e z e e

(15)

-1 ~1
In order to ensure that 0 (z) and 0 (z) define a finite LP or QP respectively

£ £

f ~1we must require that for all j G j (z), ftJ (z) is a finite set. Therefore,

we assume the following additional hypothesis to be true.

n f -\Assumption 5. For all zG ]R ,£ > 0, and jG J£(z), ft£(z) is

a finite set. n

Note that this is a slightly stronger assumption than Assumption 3. In

most practical cases, however, Assumption 5 should be satisfied.

The solutions of the programs defined by (14) and (15) will be denoted

12 ~2
by h (z) and h (z) respectively. Although 0 (z) defines a QP it may

£ £ £

be more efficient to solve its dual [7,8]

0£(z) = max {-|lly°Vf°(z) + y* VJVgj(z)
" £ ° j GJ8(Z)

J £

£ £ Mj'\<f>j(z,a>)ll2 -Yu\(z)
jG J*(Z) o> G q3(z)

jGj*(z) jG/(z) a>Gft^(z)

(16)

which also defines a QP. The solution of the program defined by (16) will

2
be denoted by u (z). This solution is related to h (z) by

£ E

h2(z) =-[u°(z)Vf°(z) + £ y^(z)Vgj(z)
j € J*(z) e

+ V V VJ,U)(z)V <t>3(z,u))) (17)
jG Jf(z) (o G Jp(z)]

£ £
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III. An Algorithm Model

The conceptual algorithm to be presented here is based on an

algorithm model which was given in [1] and later in [5]. This model

is related to the abstract problem of finding a point in a subset,

n ]RnA C ]Rn, using a search function A;]R -*• 2 . The set of points,

A, are referred to as desirable points.

Algorithm Model

Data: zQ G 3R .

Step 0: Set i = 0.

Step 1; If z. G A, stop; else, compute a z -G A(z^.

Step 2: Set i = i + 1 and go to step 1. n

In the following general convergence theorem we list the assumed

properties of the map A. It will be shown later that our conceptual

algorithm, for solving problem (1), possesses these properties.

n 3Rn
Theorem 1. [1] Suppose the map A:IR -* 2 , with associated cost

function c:lRn -*- 1R, has the following properties.
n 1 2 c

1) There exists an F C ]R such that c = c on F and c = c on F ,

where c-, c :TR •*• 3R are continuous.

2) A(F) C F.

3) For all zG 3Rn such that z £ A, there exist a p > 0 and a

u > 0 such that

a) c1(z") - c1(z') <-u Vz1 G B(z,p) HF
Vz" G A(zf) (18)

b) c2(z") - c2(z') <-y Vz' GB(z,p) n FC
Vz"GA(zt) (19)
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where B(z,p) A (z1 G ]R |llzf-zll <_ p}. If the algorithm model constructs

an infinite sequence tz.}.=n then any accumulation point z of this sequence

A _

is desirable, i.e. z G a.

The proof of this theorem is given in [1].

As discussed in [1], and to a greater extent in [5], the use of two

cost functions allows the "Phase I" process of computing a feasible

point to be combined with the "Phase II" process of computing a point

in the desirable set, A.

IV. The Conceptual Algorithm

t
We now present a new conceptual algorithm. This algorithm is not,

in general, implementable, since it may not be possible to compute

exactly, in a finite time, quantities such as max (J> (z,u)) or
w G ft

Jr(z), for j G m. This algorithm is, however, used as a prototype for

the implementable algorithm to be presented in the next section.

Algorithm I

Data: a G (0,1), 3G (0,1), 6G (0,1], y >_ 1, eq G (0,«), 0 < e± « eQ,

zQ G ]Rn, ir G {1,2}, M>0.

Step 0; Set i = 0.

Step 1: Set £ = £Q.

Step 2: Compute S**(z.).
IT "K

Step 3: Compute h (z.) and 0 (z.).

t
See 1.3 of [9] for a discussion of conceptual vs. implementable

algorithms.
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""IT tStep 4: If 0 (z.) <_ «5e (set e(z ) = e) go to step 6j else, set e = e/2

and go to step 5.

Step 5; If £ £ £, and QQ(Z±) - 0> stop; else, go to step 2.

Step 6: If ty (z.) =0 compute the largest step size a. = 3 G (0,M]
— o i x

(l± GX+)++ such that

f°(z, + a.h7r(z.)) - f°(z.) < -aa.6e (20)
i l e 1 l — l

gj(z. + o,h7r(z.)) <0 Vj G£ (21)
° i i£i— j -t

fj(Zj + a.h7r(z4)) <0 Vj G m.
i i e i — —

(22)

£.

If tp (z.) > 0 compute the largest step size o = 3 G (0,M]

(£. GTL ,) such that
i +

iKz. + a.h1T(z.)) - iJj(z.) < -aa.6£ (23)
rvi 1E1 i— 1

ttt

a

Note that the parameter tt must be selected as a data parameter. If

Step 7: Set z.^- = z. + a.hir(z.), i = i+1, and go to step 1 (2).
c— i+1 i i e i

it = 1 is selected then an LP must be solved in step 3; otherwise,

with it = 2, a QP must be solved.

We define F to be the feasible set for (1); i.e.

FA {z G ]Rn|fj(z) <_ 0, jG m; gj (z) <0, jGR} (24)

lRn
Steps 1 through 7 define a map A:1R -*• 2 and step 6 provides the

property that A(F) C f. We define c A f and c A <J» on F and F respectively,

The construction of e(z.) is for use in the proofs only.

C, , denotes the non-negative integers.
+

This algorithm will also work if "go to step 2" is used in step 7.
The proof of convergence is substantially more complicated so that we
will consider only the case when e is reset at each iteration.
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In order to show that Algorithm I satisfies the assumptions of

the convergence theorem of the previous section we require the following

three lemmas. No proof is given for Lemma 1 since the' proof requires only

a slight modification to the proof of Proposition 1 in [1] to be valid

here. The proofs for Lemmas 2 and 3 are contained in Appendix A.

Lemma 1. If z G F is optimal for (1) then 0Q(z) = ®0^ = ° for

it G {1,2}. Furthermore, for all zG FC, 0q(z) <0 for ir G {1,2}.
n

Lemma 2. For all z G ]Rn such that 0«(z) < 0, tt G {1,2}, there exist

a p > 0, and an e > 0 such that

E(zf) > e Vzf G 3(z,p) (25)

where e(z!) is the value of £ constructed by steps 2 through 5 Algorithm I,

with z. = zf.
l

Lemma 3. For all zG ]Rn such that 0Q(z) <0, it G {1,2}, there

exist a u > 0 and a p > 0 such that

f°(z") - f°(z») < - u Vz' G B(z,p) H F (26)
Vz" G A(zf)

iKz") - <J>(z') < - P Vz1 G B(z,p) H FC <27>
Vz" G A(zl)

As a consequence of Lemma 1, we define the set of desirable points,

A, as follows.

AA(z Gmn|0Q(z) =0, tt G{1,2}}+ <28>

t 1 2 1The zeros of 0Q(*) and 0Q(*) coincide; i.e., 0Q(z) = 0 if and only if
2

0fl(z) = 0. See [5] for a further discussion of other optimality functions

and their use in feasible directions algorithms.
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Because of Lemma 2 the algorithm cannot cycle between steps 2 and 4

indefinitely while halving e. Hence, the map A is well-defined.

Theorem 2. If Algorithm I constructs a sequence {z.} which is

finite then the last point constructed is desirable. If the sequence

is infinite then every accumulation point is desirable.
n

Proof: We have defined c A f and c A ty so that by Assumption 1,

1 2
c and c are continuous. As previously stated the map A satisfies

A(F) C F. Hence, assumptions 1 and 2 of Theorem 1 are satisfied.

From Lemma 3 and the definition of the set of desirable points A,

it is clear that assumption 3 of Theorem 1 is satisfied. Hence, we can

apply Theorem 1 and we obtain the desired conclusion.
n

V. The Implementable Algorithm

Since it is impossible to evaluate in finite time, max <{> (z,u>)
a) G ft

or $r(z), j G m, exactly, we have developed an implementable version of

Algorithm I in which a piecewise linear approximation of each

(J>J(z,a)), for j G m , is used. The method is similar to the one used in

[1].
a) -to

Let ft A [w »w ] and Aq A —-— for q G.1U . Then let
o c q -|-

ft A {w G fi|a) = a) + kAq, k = 0,1,2,.,.,q} (29)

The points in ft will be referred to as mesh points. Given z G ]R ,

j G in, and u> = Aw + (1-X) (w+Aq) with X G [0,1] and w G ft , define

(^(zjO)) 4A^(z,w) + (1-X)<^(z,w+Aq) (30)

and

f^(z) A max <J>j(z,w) (31)
q ~u>Gfl «

q
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For any z G m and qGl^, define \\i :3Rn -»- ]R by
+ q

* (z) Amax{gj(z), j e 2.1 f^(z), j Gm} (32)

and then define ti> ^:lRn -*• ]R by
q,°

ty (z) Amax{0,i|; (z)} (33)
q,o — q

For any z G ]R , q GX* and £ _> 0, we define

ft;* (z) A{w Gft |<J>^(z,a)) - ^ (z) >- e} (34)
q,£ — q' q q,o —

« (z) A {«»> G ftJ (z)|oj is a left local maximizer of <f> (z,»)}

(35)

jf (z) A{j Gm|fj(z) - * (z) >- e} <36>
q,E — — q q,o —

J? E(z) A{j e£|g^(z) - a (Z) >- e}

01 (z) A min max{< Vf°(z) ,h> - y* (z);
q'£ "hGS °

<Vgj(z),h>, j GjS (z);
q,t

<V ^(ZjO)),^ , a) G Q* (z),jGjf (z)} (38)
z q>£ q>£

01 (z) A min max{< Vf°(z),h> - yty (z);
q'e ~h6S °

<Vgj(z),h>, jG jS (Z); <V<j>j(z,u>),h>,
q,£ z

uG fij (z), jG Jf (z)} (39)
q,E J q,£

2 -2
Let 0 (z) and 0 (z) denote the obvious modification to (10) and

q,E q,E

(15) respectively.

In the implementable algorithm to be presented, the conceptual

algorithm will be applied to the "approximate" problem

min{f°(z)|gj(z) < 0, jG£; fj (z) < 0, jG m} (40)

-12-
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We must, therefore, ensure that the quantities in (40) satisfy the

assumptions for the conceptual algorithm, The only assumption which

may be satisfied by the original problem (1), but not for (40), is

Assumption 2. This is true since, for some j G m, fti(z) may have two

points which are adjacent mesh points in ft . If this happens, then

<{> (z,») would be constant between these two points and a "zero-active flat"

would occur. In this case, the approximate problem would not satisfy

Assumption 2, since fti(z) being finite implies that <f> (z, •) cannot have

a "zero-active flat."

While we cannot ensure that Assumption 2 is satisfied by (40) for

all q GIL, , we.have added a subloop in the implementable algorithm
+

to eliminate any "zero-active flats" for any given z. G ]R . This subloop

decreases the spacing of the points in ft until there are no two adjacent

mesh points in ft «(z).
q,0x

We can now state the implementable algorithm.

Algorithm II

Data: aG (0,1), 3G (0,1), 6 > 0, y > 1, eQ G (0,»), U;L > 0,

u2 >0, zQ G 3Rn, qQ GT<+, M>0, tt G {1,2}.

Step 0: Set i = 0, q = qQ, k « 0.

Step 1; Set e - £n»

Step 2: Compute ft3 (z.) and ft3 n(z.), j e m.
c— r q,£ i q,0 l —

Step 21: If ftJ rt(zJ, j G m, contains two adjacent mesh points, set
—* q,U i —

q = q + 1 and go to step 2; else, go to step 3.

Step 3: Compute h (z.) and 0 (z.).
E— ^ q,£ i q,£ i
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Step 4: If 0 (z.) < ~ 6e go to step 6: else, go to step 5,
*— q,e i —

u, w2
Step 5: If £ < — and to (z.) < —-, set q =» q + 1, y, = z ,
c— "~ 2 ,0 "~ 2

k = k + 1, and go to step 1; else, set e = e/2 and go to step 2.

Step 6: If to (z.) = 0, compute the largest step size
A q'° ±

a =3 G (0,M](^i GlU+) such that

f°(z4 + oV (z.)) - f°(z.) < - aa.6E (41)
v i i q,E i i — i

gj (z± +^q>e(z±)) 10 Vj G£ (42)
fj(z4 +aV (z,)) < 0 Vj Gm (43)

q i i q,E i — —

If to (z.) > 0, compute the largest step size o = 3
q,o l ^ i

(I. el,,) such that
l +

ill (z. + o.h" (z.)) - to (z.) < - okj.Se
yqv i l q,£ l rq l — i

Step 7: Set t.aa- = z. + a.h11 (z,), i = i + 1, and go to step 1 (2).
r— i+1 l 1 q,£ l

n

In addition to Assumption 2, we require the following hypothesis to

be true.

Assumption 6. There exists aq£l+ such that for all zG m ,and

for all q > q, each ft^ «(z), jG m, does not contain adjacent mesh points.

This assumption ensures that there is a uniform minimum distance between

the points of ftj(z), jGm, for all zG]Rn. We now state aresult which
is an immediate consequence of Assumption 6.

Lemma 4. Algorithm II cannot cycle indefinitely between steps 2 and V .

1 G <0,M]

(44)
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Because of Lemma 4, the only way that Algorithm II can jam up is

to cycle between steps 2 and 5, while halving e. Suppose the algorithm

jams up at a point z.. The cycling can occur if 0 (z.) = 0
ve

for all £ > 0 and to (z.) > —r, where q. is the value of q at iterationrq±,o i' 2qi» Hi
i. Since $ (z.,*)> j G m, has no "zero-active flats," we can apply

qi X
IT —

Lemma 2. If 0 n(z.) < 0 then by Lemma 2 there exists an £ > 0q±>o i
such that QV (z.) < - e. Hence, the only way in which the algorithm can

q. >e i —
i y

jam up is if 0* n(z.) = 0 and to (z.) >--—-. Because ftJ Az.) C ft^(z.),J r q,0 l q,o l q.^ q,0 l 0 l

j G m, we have, by Assumption 4, that if to (z.) > 0 then 0 _(z.) < 0
J —' ' J r ' q»° i q>o i

which is a contradiction. We conclude that Algorithm II cannot jam up

and, hence, it is well-defined.

We now state the main convergence result for Algorithm II. Note

that if Algorithm II generates a sequence {z.}._« then Step 5 sifts out

a subsequence {y, }.

Theorem 3. If Algorithm II, with tt = 1 or 2, constructs an infinite

00

sequence {z.} , then any accumulation point y* of the sequence {y, }

must be desirable; i.e. y* G f and 0n(y*) = 0.

Proof: We will first show that either {y^} is infinite or else

{*}" _ has no accumulation points (which implies that {y, } can have no
i i—0 K

accumulation points). Suppose that {y,} is finite; i.e. there exist an

Pk y2N- G X. and a q G*l_, such that e(zj > — or to (z.) > — for all
J- + + iqq,oi2q

i >_ N. where e(z ) is the value of £ constructed by steps 2 through 5

of the algorithm. Such a value of q exists because of Assumption 6.

Let z be an accumulation point of {z.}; i.e. z^ + z for some

K C IL-k Because to (•) is continuous and, by Theorem 2, (p (/.) = 0.
+ q>° u q»°

there exists an N2 >_ N1 such that to o(z±) <_ — for all i>.N2, iG k.

Because {e(z.)}.^. is a sequence bounded away from zero there exists a
i i^3£.
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subsequence {e(z )}.^,, K1 Ck, such that e(z.) -*• e > 0. Hence, there

exists an N- >_ N- such that

K *<* ^z-r> K- 6e<z<> <" 6f Vi > N., iG k1 (45)qfCCz^y i — i — 2 — 3

By arguments similar to those used in proving the convergence of the

conceptual algorithm it can be shown that there exists a o* > 0 and an

N. > N. such that
4—3

f°(zi+1) -f°(z±) ±-a Vz± GF iGK« i>N4 (46)

VZi+l} "*q(8i) -"° Vz± GF^, iGK' i1N4 (47)

where * = {z G mn|gi(z) <0, jGp; fjj(z) <0, jG m}. Now consider
q q "~

two cases: (i) zJ G Fc for all i > N.. For any two successive indices
i q — 4

i> j G K' > j > 1 L NA we nave

VV "*q(zi> =*q(zj) "*q(,J-l> +W^ "

•••+*q<Zi+1> "♦,<»!> ""° (48>

Hence, {to (z.)}. ^ vl is not Cauchy which is a contradiction since, by
q i i ^ K

K
i •*>continuity, to (z±) £ to (z). (ii) If z^ GFq for some i>_N4» then

zJ G F for all i > i. For any i, j G K1, j > i > i, we have
i q - . ~

f° (z )-f°(z±) =f°(Zj) -fiz^) +^(^-i) -

••• + f°(zi+1) -f°(z±) <-o (49)
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o K1 o *
We again have a contradiction since f (z.) -*• f (z) . Thus, if {y, } is

finite, then {z.} can have no accumulation points.

oo k
Let y* be any accumulation point of {yt}t_/> » i.e. y, -»• y* for some

K C *2_ . Let e(y, ) and q, be the corresponding values of e and q in the

algorithm when y, is constructed. We then obtain

<5v-^^
= min max{<7f (y. ),h > - y*„ AyJl

hgs fc V° K

<V^(yk),h>,jej8>e(yk)(yk);

<v/(z,a,),h >, a, eajk,e(yk)(yk), i eJj,e(y^<yk))
£min max {<7f (y.),h > - yji Ay,,);

hSs K V K

r[*0(yk) - *qk>0(yk)] +<vgj(yk),h >, jeJ&qMyyyk);
Yt*0(yk) - *qk,0(yk)] +<v/(z)(o),h >, oo e^e(yk)(yk), jeJ^^)!

m'1<jJ<*1 +*W ' \,oW+ (50)

where we have used the facts that ftJ f . (y, ) C £p (y ), j Gm, and
^k,£ k e k

$ (Yi ) < ^ (Yi )> for all k. Since to (y, ) -> 0 as k -* » andqfc,o k — o k q^,o k

k (y%) ~ ^ (Yi,) I•»• 0 as k + », k G K, it follows from (50) that
q^.>O K OK

lim 0" .(y ) = 0 (51)
kQC e^yk; K

+
We have used the expansion for tt=1 only. The corresponding result for
ir=2 should be obvious.
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It now follows from the upper semicontinuity of the function 0 (y) in

both e and y (at e=0), that

kt9e(yk)(yk)^9>*)^° (52)

From (51) and (52) we conclude that 0o(y*) = 0. From the discussion

above, it is clear that to (y*) = 0 and, hence, y* G F.

VI. Conclusions

We have presented here a new algorithm that is a substantial

improvement over the algorithm in [1] for solving problems with

functional inequality constraints. This new algorithm uses a different

method in approximating the functional constraints. The use of £-active

local maxima points in ft, for computing search directions, allows the

deletion of a test, which is costly in terms of computation time and

storage, from the algorithm in [1]. Also, a new discretization rule is

given since the one in [1] will not always be satisfactory.

We have also included a new optimality function which gives rise

to a different method of computing search directions. This optimality

function gives rise to a better scaled search direction vector and it

provides a faster speed of convergence when compared to the method used

in [1].

It is hoped that this improved algorithm will provide better

computational results when used to solve computer aided design problems.

Our computational results have thus far supported this optimism.

ACKNOWLEDGMENT

Research sponsored by the National Science Foundation (RANN) Grant ENV76-
04264 and the National Science Foundation ENG73-08214-A01.

-18-



References

1. E. Polak and D.Q. Mayne, "An Algorithm for Optimization Problems with

Functional Inequality Constraints," IEEE Trans. Auto. Contr., vol. AC-21, pp

184-193, April 1976.

2. E. Polak and R. Trahan, "An Algorithm for Computer Aided Design Problems,"

Proc. of the 1976 IEEE Conf. on Dec. and Contr., Dec. 1976, pp. 537-542.

3. E. Polak, K.S. Pister, and D. Ray, "Optimal Design of Framed Structures

Subjected to Earthquakes," Engineering Optimization, vol. 2,

1976, pp. 65-71.

4. V. Zakian and U. Al-Naib, "Design of Dynamical and Centrol Systems

by the Method of Inequalities," Proc. IEE, vol. 120, no. 11, Nov.

1973, pp. 1421-1427.

5. E. Polak, R. Trahan, and D.Q. Mayne, "Combined Phase I, Phase II

Methods of Feasible Directions," Electronics Research Laboratory

Memo No. UCB/ERL M77/39, University of California, Berkeley,

May 31, 1977.

6. M. Canon, C. Cullum, E. Polak, "Theory of Optimal Control and

Mathematical Programming," New York: McGraw-Hill, 1970.

7. O.L. Mangasarian, "Nonlinear Programming" New York: McGraw-Hill, 1969.

8. 0. Pironneau and E. Polak, "Rate of Convergence of a Class of

Methods of Feasible Directions," SIAM J. Numer. Anal. vol. 10,

March 1973, pp. 161-174.

9. E. Polak, "Computational Methods in Optimization: A Unified

Approach," Academic Press, New York, 1971.

10. J. Danskin, "The Theory of Max-Min," Springer-Verlag, Berlin, 1967.

-19-



11.. C. T. Chen, "Analysis and Synthesis of Linear Control Systems,"

Holt, Rinehart and Winston, New York, 1975.

-20-



Appendix A. Proofs for §§IV.

For the sake of conciseness it will be assumed that m=l and p-1.

The superscripts on f** and gJ, etc. will be deleted. Of course, all the

results hold for the more general case. The proofs will also be given

only for ir=l, but they require only slight modifications to hold for

TT-2.

Before we prove Lemma 2, we shall prove several preliminary results.

For notational convenience, we define

Df(z,h) = max <V <J)(z,oj) ,h > (Al)
a) G ft (z) z

where ft(z) = {w G ft|f(z) = <()(z,w)}. It was shown by Danskin [10] that

Df(z,h) is the directional derivative of f(z) in the direction h. We

also define

Df (z,h) =1 max <V <f>(z,a)),h> if f(z) - to (z) >_ - e
e L Gft£(z) Z

<» otherwise (A2)

Dg (z,h) = |<Vg(z),h > if g(z) - to (z) >.- £
£ I O

otherwise (A3)

Proposition 1. For any zG mn such that ft (z) ^4, and for any y > 0,

there exist a p > 0, and an 7 > 0, such that for all z1 G B(z,p), and

£ € [0,7],

(a) ft£(z') CNy(ftQ(z))+ (A4)

We define the neighborhood of a subset ft C fi of radius y > 0 by

N (ft) = {w G fi| |(o - u| <_ y for some w G ft}

-21-



(b) Df (zf,h) ^Df(z,h) + y, Vh G S (A5)

Proof: (a) Given z G 1. such that ft (z) f (f> and y > 0, suppose the

conclusion is not true. Then there exist sequences {z.} and {e.} such

that z. •> z and e. •*- 0 with ft (z.) <f- N (ft (z)). This implies that
i i e. iyo

there exist points, to. G Q (z.), i = l,2,-»«, such that to £ N (ft (z))

for all i = 1,2, •••• Since ft is compact, there exists an to G fl such

£
that a). •> to where K C z, . By the definition of u>., to(z. ,10.) > to (z.) - e..

i + J i' T i i — o i i

Because <}»(•,•) and to (•) are continuous, <f»(z,ai) >_ to (z) and hence oj G ft (z)

Consequently, (o G N (ft (z)) for sufficiently large i G K, which is a

contradiction. Thus, part (a) must be true, (b) By the continuity of

V *(•,•) and compactness of ft (z) and S, there exist a p > 0 and a
Z \j J-

y. > 0 such that

max <V $(z',(10,11 > -Df(z,h)<^y
co €N (ftn(z)) Z

yi vi

Vh G S, Vz1 G B(z,p1) (A6)

From part (a) there exist a p G (Ojp^ and an e > 0 such that ft (zf) C

N (ft (z)), for all e G [0,7] and for all z' G B(z,p). From (A6) we
M-i 0

obtain

max <V ^(z* ,w) ,h > <_ Df(z,h) + y
to G 5 (z») z

£ Vh G s, Vz' G B(z,p) (A7)

From the definition of Df (:•.»,h) and (A7), we obtain (A5), the desired

result. a

Proposition 2. For any z G 3R such that ftQ(z) f <J>, and for any e > 0,

y > 0, there exists a p > 0 such that for all zf G B(z,p)

-22-



(a) ftQ(z) CN^(ft£(zJ)) (A8)

(b) Df(z,h) £Df (z',h) + y, Vh G S. (A9)

Proof: (a) Let to* G ftQ(z). Since ftQ(z) is finite, there exists a.

y* G (0,y] such that to* is the unique maximizer of <j>(z,*) on the in

terval N *(to*). For all z' G mn, define
y*

and

to ^(z') = max <Kz\to) (A10>
w to GNy*(to*)

V(zf) "{o) GN*<w*>l'*<z,»u> =v(z,)} (A11)

By Proposition 1, there exist ap >0 and an e G (0,e] such that

ft^(z') CNj^ (ftQ(z)), Vz' GB(z,P;L) (A12)
2

By the continuity of to ^(*) and * ('), there exists a p2 G (0^]

such that for all z' G B(z,p2),

♦„*(«') -*„*« >-f (A13)

-toQ(z') + toQ(z) >_-§ (A14)

Since to .( z) = to (z) (because to* G ft (z)) we obtain
(0*> o u

to ^(z') - to (z') > - £, Vz' G B(z,p9) (A15)
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From (A12) and (A15) we conclude that ft .(z') C ft-(z') C N AttAz)) for
to* e y*_ 0

2

all z' G B(z,p0). But this implies that ft .(z') C n .(to*) for all
Z 10** y**

2~
z' G B(z,p«); i.e., ft ^(z') consists of unconstrained local maximizers

of <J>(z',to) over N .(to*). Consequently, the points in ft o.(z') are local
yw tow

maximizers of <f>(z',0 over ft. From (A15) we obtain

to(z',to(z')) - i/>0(z') >_- £ >.- e (A16)

where to(z') = min {to|to G ft ^(z')}, (leftmost maximizer). Thus,

to(z') Gft (z'). Also, to* G N (ft (z')) because |to(z') - to*| < y* <_ y.

The above argument can be repeated for each to* G ft (z). Let p2(to*)

be the associated radius of the ball about z for which the argument holds.

Then let p = min {p«(to*)} and we are done with part (a),
to* G ftQ(z) Z

(b) Because V(f>(*,') is continuous, and QAz) is a finite set, and S is

compact, there exist a y- > 0 and a p_ > 0 such that for any to G ftQ(z)

<V <J)(z,(o),h > - <V <J)(z',o)'),h > <_]i
z z

VhGs, v|<o-u)'| <_vv Vz' G B(z,p1) (A17)

We then obtain

Df(z,h) = max <V ^(z,u),h)
a) GftQ(z) z

<_ max^< v^<|)(z' ,to') ,h ) + y

Vh G S, Vz' G B(z,P]L) (A18)

to' G ft z

-24-



where ft is any set such that ft (z) C N (ft). By part (a), there exists
u y m

a p G (0,pj such that ft (z) C n (ft (z')) for all z' G B(z,p). There-
1 0 >*^ e

fore,

Df(z,h) < max <V to(z',a)f) ,h > +y
to' G ft (z1) Z

£

= Df£(z',h) + y

Vh G S, Vz' G B(z,p) (A19)

a

The following result is a corollary to Propositions 1 and 2.

Corollary 1. For any zG ]Rn such that ftQ(z) 1 to, and for any £> 0,

y > 0, there exists a p > 0 such that for all z', z" G B(z,p),

(a) ft(z") CN (ft (z')) (A20)
y £

(b) Df(z",h) £Df£(z',h) + y, Vh Gs (A21)

Proof: Let £ > 0 and y > 0 be arbitrary. Then by Proposition 1, there

exist a p. > 0, and an 7 G (0,e], such that for all z" G B(z,p1) and

e' € [0,7]

ft£t(z") CNy(ftQ(z)) (A22)
2

and

Df t(z",h) <_ Df(z,h) +^, Vh G S (A23)

By Proposition 2, there exists a p2 G (0,p1J such that for all z' GB(z,p2)

ftn(z) CN(ft (z')) (A24)
U JJ E
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and

Df(z,h) <^Df (z',h) +-|, Vh Gs (A25)

Since f(') and to (•) are continuous and f(z) = to (z) there exists a

P3 G (0,p2] such that f(z") - to (z") ^-7 for all z" G B(z,p3). Thus,

ft(z") C ft-(z") and we obtain part (a) by combining (A22) and (A24) .

Similarly, because ft(z") C ft-(z"), we have that Df(z",h) £Df-(z",h)

and therefore part (b) follows from (A23) and (A25). n

Lemma 2. For all z G mn such that 07r(z) < 0, tt G {1,2}, there exist a

p > 0, and an e > 0 such that

e(z') >_7 Vz' G B(z,p) (A26)

where e(z') is the value of e constructed by steps 2 through 5 of

Algorithm I with z = z'.

Proof: Let y>0be such that 6Q(z) <_ -y<0. Because ftQ(z) =ftQ(z),

it follows that

6 (z) «6 (z) = min max{<Vf°(z),h > -Y^0(z);

DgQ(z,h); DfQ(z,h)} (A27)

We now consider 3 cases.

Case 1. to(z) < 0.

By the continuity of to(0 there exists a p > 0 such that for all

The proof will be valid for it=1 only. We drop the superscript on
6 (z), etc.

£
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z» G B(z,p),

to(z') <*i£L (A28)

Let e = - *j ; then we obtain

g(z') - toQ(z') <- E

f(z') -^0(zt) <-e Vz' G B(z,p), V eG [0,e] (A29)

Consequently,

Dg£(z',h) = Df£(z',h)

Vh G s, Vz'GB(z,p), VeG[0,e]. (A30)

Case 2. to(z) >_ 0, ft (z) = to.
A 1

Because ftn(z) = to, there exists an e > 0 defined by £ = - -~

(f(z) - to (z)). By the continuity of f(«) and to (•), there exists a

f>1 > 0 such that f(z') - to (z') < - e for all z* G B(z,p1) and for all

eG [0,e], By the continuity of Vg(.)» there exists a p G (0,p^] such

that

<Vg(z'),h >< <Vg(z),h> +£

Vh G s, Vz' G B(z,p) (A31)

Consequently,

Dg£(z',h) £DgQ(z,h) +|

Df£(z',h) = DfQ(z,h)

VhGs, Vz'GB(z,p), Ve G [0,e] (A32)
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Case 3. to(z) >_ 0, ftQ(z) ^ to.

By Proposition 1, there exist a p- > 0 and £.. > 0 such that

Df£(z',h) £DfQ(z,h) +|

Vh G s, Vz' G B(z,P;L), Ve G [0,i] (A33)

where we have used the fact that Df(z,h) = DfQ(z,h). By the same

arguments as in the two previous cases, there exist a pG (0,p^] and

e G (0,£-] such that

Dg£(z',h) £DgQ(z,h) +|

Vh G S, Vz'GB(z,p), Ve G [0,£] (A34)

This completes the third case.

By the continuity of Vf°(-) and *o(0» there exists a pG (0,p],

(using the appropriate p from case 1, 2, or 3 above), such that

<Vf°(z'),h> -Y^U1) < <^°(z)»h> "YVz) +2

Vh G S, Vz' G B(z,p) (A35)

Using £ from case 1, 2, or 3, as appropriate, we obtain,

max{ <Vf°(z'),h> - Y^(z'); Dg (z',h); Df (z,h)}
Ox "«£-*" £

<^max{<Vf°(z),h >-YtoQ(z); DgQ(z,h); DfQ(z,h)} |

VhGS, Vz'GB(z,p), Ve G [09l] (A36)

Because (A36) holds for all h G s, it follows that

8£(z') <0o(z) +|<-|

Vz' G B(z,p), Ve G [0,e] (A37)
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Let j(z) G*2L be an integer such that e = e02~JW <_min{£, ^7-}. Then,

from (A37) we obtain

0-(z') <_ - 6e, Vz' G B(z,p) (A38)

-i(z')The algorithm constructs e(z') = eq2 JV where j(z') is the smallest

nonnegative integer such that 0 , in(z') <_ - <$e(z'). In view of (A38),

we conclude that j(z) >. j(z'). Hence, £(z') >_ £ for all z' G B(z,p).
n

Proposition 3. For all zG ]Rn such that 0Q(z) < 0, there exists a

p > 0 such that

(a) Df(z",h') <_- ci6e(z')+ if f(z) =toQ(z)
Vz", z' G B(z,p), Vh' G s(z') (A38)

(b) <Vg(z"),h' > <_- a6e(z») if g(z) = toQ(z)
Vz", z' G B(z,p), Vh' G S(z') (A39)

(c) <Vf°(z"0,h' > < - a6£(z') Vz' G B(z,p) n F

Vz" G B(z,p), Vh' G S(z') (A40)

where S(z') G s is the set of all direction vectors which are solutions

to the program defined by (14) with z = z' and e = e(z').

Proof: From Lemma 2 there exist a p- > 0 and an e > 0 such that

e(z') >_ £ for all z' G B(z,p ).

(a) If f(z) = to (z), then by Corollary 1, there exists a p2 G (0,p1]

such that for all z", z' G B(z,p2)

Note that a and 6 are data parameters in Algorithm I. 6 is used in the
e test in Step 4 and a is used in the step length calculation in Step 6.
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Df(z",h') £Df£(z',h') + (l-o)6e

< - «£(z') + (l-a)6e

<_ - cx6e(z') Vh' G s(z') (A41)

(b) If g(z) = to (z), there exists a p. G (0,p-] such that g(z') -

to (z') >_- £ for all z' G B(z,p„). Also, there exists a p, G (0,p,J

such that for all z", z' G B(z,p,)

<Vg(z"),h' > <_ <Vg(z'),h' > + (l-a)6£

Vh' G S(z') (A42)

Because g(z') - to (z') > - e > - e(z') for all z' G B(z,p,), we obtain
o — **

from (A42)

<Vg(z"),h' > lDge(zt)(zf>h,> + d-a)fie

<_- 6e(z') + (l-ct)6E

<_ - a6£(z') Vz", z' G B(z,p4) , Vh' G s(z')

(A43)

(c) By uniform continuity there exists a p5 G (O.p^ such that

<Vf°(z"),h> 1 <Vf°(z'),h> + (l-o)6e

Vh G S, Vz", z' G B(z,p5) (A44)

By the definition of e(z'), if ^0(z!) = 0, we obtain

<Vf°(z"),h' > 1- Se(z') + (l-a)6£

<^ - a6£(z') Vz' G B(z,p5) O F

Vz" G B(z,p5), Vh' G s(z') (A45)
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Let p = min{p9,p, ,p,.} and the proof is complete. n

Lemma 3. For all z G mn such that 0*(z) < 0, tt G {1,2}, there exist a

y > 0 and a p > 0 such that

f°(z") - f°(z') <_ - y Vz' G B(z,p) n F

Vz" G A(z') (A46)

to(z") - to(z') <_ -y Vz' G B(z,p) H FC

Vz"GA(z') (A47)

Proof: We shall consider the case, tt=1, only. By Lemma 2, there

exist a p > 0 and an £ > 0 such that e(z') >_ £ for all z* G B(z,p()).

Case 1. to(z) >_ 0.

By the definition of to(z), either f(z) = to(z) , or g(z) = f(z), or

both. Suppose,

(i) g(z) <^to(z). By continuity there exists a p^ G (0,p ] such that

g(z') < to(z') for all z' G B(z,p1) and hence to(z') = f(z') for all

z' G B(z,p-). By Proposition 3, there exists a p G (0,p..] such that

Df(z",h') <^-a6£(z') for all z", z' GB(z,p), and <Vf°(z") ,h' > < -

a6£(z') for all z* GB(z,p) H F, z" G B(z,p) and for all h' G S(z'). It

follows from the definition of the directional derivative that for any

z', heinand A > 0,

f(z' + Xh) - f(z') = I Df(z' + sh,h)ds (A48)

For any z' G B(z,p/2), and for all XG [0, -e-], it follows that
2i/n
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z' + Xh' G B(z,p), for all h' G S(z'), since flh'il <_ /n. We then obtain

from (A48)

f(z' + Xh') - f(z') <_- XotSE(z')

Vz' G B(z,p/2), Vh' G S(z'),

VX G [0,p/2/n"] (A49)

Because f(z') = to(z') for all z' G B(z,p) we obtain

to(z' + Xh1) - to(z') <_- Xa6£(z')

Vz' G B(z,p/2), Vh' G S(z'), VX G [O,-2-] (A50)
2/a.

For all z' G B(z,p/2) H F we obtain from Proposition 3

JrX
I <Vf°(z» + sh'),h» >ds
o

<_ - Xa6£(z')

Vh' G S(z'), VX G [0,-2-] (A51)
2i^n

From (A50) we have that for all z' GB(z,|) HF,

to(z' + Xh') <0 Vh' G S(z'), VX G [0,-2-] (A52)
" 2i/n

k(z)
Let M' = min{M, -&- }; then let k(z) G t be such that 3 <_

2vG"

M' <_ Bk(z)"1. In step 6of the algorithm the smallest integer k(z») GX.+
k(z'}

is chosen such that S v ' G (0,M] and

to(z'+ 3k(z,)h») -to(z') <-3k(z,) a6£(z') if z' G FC (A53)
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or

f°(z' + 3k(z?)h') -f°(z') <-Bk<z,> a5£(z')

to(z' + 3k(z'}h') £0 if z' GF (A54)

Comparing (A50), (A51), and (A52) with (A53) and (A54), we conclude that

k(z') <_k(z) for all z' GB(z,|). Hence, -3k(z'} <_ - 3k(z) and we obtain

to(z") -to(z') <_- 3k(z)a6£(z') <_- 3k(z)a6£

Vz' G B(z,p/2) H FC (A55)

f°(z") -f°(z') £- 3k(2)a6E(z') <_- 3k(z)a6£

to(z") ^0 Vz G B(z,p/2) n F (A56)

where z" = z' + 3k(z,)h'; i.e. z" € A(z').

(ii) f(z) < to(z). The argument is the same as part (i) except that

f(0 and g(«) are interchanged.

(iii) f(z) = g(z) = to(z). The argument is similar to part (i) where both

f(«) and g(*) are written using integral expansions.

Case 2. to(z) < 0.

By continuity there exists a p1 G (0,pQ] such that to(z') <0 for

all z' G B(z,p-); i.e. B(z,p ) C F. By Proposition 3 there exists a

PG (0,px] such that <Vf°(z"),h' > <_ -cx6e(z') for all h' G s(z') and

for all z", z* G B(z,p). Using the same argument as in Case 1, we

obtain

f°(z") -f°(z') <.- a3k(z)6e
to(z") < 0, Vz' G B(z,p/2) (A57)
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where z" G A(z').

Using the results of Case 1 or Case 2 as appropriate, if we let

p = j and y = 3 a6E, then we are done.
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Appendix B

We now present a design problem in which a PID controller is to be

designed for the system in Figure 1. The transfer function is

G(s) =± (Bl)
(s+3)(s + 2s + 2)

and we wish to choose the gains, z, for the PID series compensator

12 3H(z,s) = z +z/s+zs. We wish to minimize the mean square error

in the zero-state response to a step input, subject to the constraint

that the phase margin is not smaller than 45°. The cost is

:°(z) = f
Jo

2
e (z,t)dt

=z2(122 +17Z1 +6z3 - 5z2 + z1z3) +180z3 - 36zX +1224
z2(408 + 56Z1 - 50z2 + 60z3 + 10z1z3 - 2(zX)2)

(B2)

where we have used Parseval's theorem and the tables in [11]

The phase margin constraint is formulated as the inequality con

straint to^ZjuO <_ 0 for to G ft = [10~ ,30.0] where

to^z.oO = Im T(z,<o) -3.33 (Re T(z,w))2 + 1.0 (B3)

and T(z,to) = 1 + H(z, j<o) G(j(o) . This constraint, when satisfied,

defines a region in the complex plane in which the Nyquist plot will

be located. The excluded region is a parabolic region as shown in

Figure 2. We also impose conventional constraints on the PID controller

gains, 0 <_ z1 j< 100, 0.1 ^z <_ 100, and 0 <_ z <_ 100.

The parameters used in the implementable algorithm are
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-^ -3
a = 0.2, 3 = 0.3, 6 = 10 , y = 2.0, £ = 0.2, y = 10 ,

o x

y2 =10~2, qQ =128, M=15.0, tt =2.
Our results are tabulated in Table 1. The approximate CPU time

was 32 seconds on a CDC 6400 computer.
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Table 1.

f°(z.) e(z1)

0 1.000 1.000 1.000 3.131 0.20 128

10 21.964 21.952 30.646 0.186 2.0xl0"4 128

20 15.400 36.702 35.357 0.176 2.4xl0"5 128

30 17.826 40.770 34.017 0.175 6.1xl0"6 128

40 16.626 42.552 34.781 0.175 3.1xl0~6 128

50 17.746 42.152 34.108 0.175 3.1xl0~6 512

60 17.017 42.712 34.555 0.175 1.5xl0~6 512

68 16.928 1 42.974 34.617 0.175 7.6xl0"7 512
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PID

Controller Plant

output

Fig. 1. System block diagram for PID controller

design problem.

z,w),ImT(z,w))=0

Fig. 2. Nyquist plot for system of Fig. 1 with gains of

z*=16.928. z2=42.974, ;ind z3=34.617.
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