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ABSTRACT

We study the asymptotic tracking and disturbance rejection

property of a general nonlinear multi-input multi-output distributed

servomechanism which consists of input as well as output channel

nonlinearity. We also explore the robustness of this property of

such nonlinear servomechanism. Our result shows that the design

principle of the robust linear servomechanism (i.e. replicating the

dynamics of the reference and disturbance signals) works well for

a large class of nonlinear servos provided that certain stability

conditions are satisfied.
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I. INTRODUCTION

One of the most important applicationsof feedback is to achieve

servo-action, that is, to obtain a system that tracks a given class

of input signals and rejects a given class of external disturbances with

zero asymptotic error. This problem has been well understood for many

years for the single-input,single-output, linear, time-invariant, lumped

case (see e.g. Brown and Campbell 1948, James et al., 1965). In the

last decade, this understanding has been extended to the multi-input

multi-output case (see e.g. Bengtsson 1977, Davison 1976, Desoer and

Wang 1977, Ferreira 1976, Francis 1975, Johnson 1976, Staats and Person

1977, Wolfe and Meditch 1977). Furthermore, the robustness of these

properties with respect to linear perturbations of the plant has been

settled. A self-contained exposition of these facts, including some

distributed results, is to be found in Desoer and Wang (1977). For

an abstract point of view, see Wonham (1976). Of course, any

realistic model of a physical system can be linear only as a result of

some approximations: realistic modeling of pneumatic valves, relays,

servomotors, etc. require nonlinear models. So it is important to

investigate the asymptotic tracking and the disturbance rejection

properties of nonlinear servos, as well as the robustness of these

properties under not necessarily linear perturbations of the linear and

nonlinear subsystems. Note that the perturbations may originate from

physical perturbation due to say, varying loads, changing operating

conditions, ageing, etc. or they may be a conceptual tool to deal with

the uncertainty of the plant due to, for example, manufacturing

variations.

In this paper, we study the asymptotic tracking and disturbance
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rejection property of a general nonlinear multi-input multi-output

distributed servomechanism which may consist of input channel nonlinearity

(e.g. sensor nonlinearity, relay, pneumatic valve, etc.) as well as

output channel nonlinearity (e.g. servomotor, etc.). We also explore

the robustness of the asymptotic tracking and disturbance rejection of

such nonlinear servomechanism. Our nonlinear results are extensions

of the robust linear servomechanism theory: roughly speaking, our

main result shows that the design principle of the robust linear

servomechanism (i.e. replicating the dynamics of the reference and

disturbance signals) works well for a large class of nonlinear servos

provided that certain stability conditions are satisfied.

The organization of this paper is as follows. In section II, some

notation and definitions are introduced, then the problem is precisely

stated. In section III, the special case where the output channel

nonlinearity is absent is treated. In section IV, the general nonlinear

servomechanism problem for a class of reference and disturbance signals

is solved by first considering the special case where the nonlinear

servomechanism is free of input channel nonlinerity. The realism of

some assumptions used in section IV is then discussed in section V.

Finally, a simple example is given in section VI.

II. PROBLEM FORMULATION

A. NOTATION AND PRELIMINARIES

Let H ((E) denote the field of real (complex, respectively) numbers.

Let ]R denote the positive real line [0,«>) . Let 9 denote the zero
"r n

n o o
vector of H . Let <C_ (C+) denote the open left (right, respectively)

half complex plane. Let a(A) denote the spectrum of A £ IR11*11. Let
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1R [s] (1R (s)) be the set of all polynomials (rational functions,

respectively) in s with real coefficients. Let 1R [s]pxq(]R (s)pXq)

denote the set of all pxq matrices with elements in ]R [s] (K (s),

respectively). Let 8p(s) denote the degree of p(s) € It [s]. Let

3ttp(s)] denote the set of zeros of p(s) G 1R [s]. Let g(s) G H (s),

g(s) is said to be exponentially stable iff 1) g(s) is proper (i.e.

g is bounded at °°); 2) {poles of g(s)} C ff_ . Let G(s) G ]R (s)pXq,

G(s) is said to be exponentially stable iff every element of G(s) is

exponentially stable. Let N£(s) G ]R [s]pxq, D£(s) G 1R [s]pxp;

M(s) G IR [s]pXp is said to be a common left divisor of N (s) and D«(s)

iff there exist N^s) Gm [s]pxq, D-L(s) Gm[s]pxp such that N£(s)

= M(s)N1(s), and D (s) = M(s)D1(s); both N£ and D£ are said to be

right multiples of M; L(s) G K [s]pxp is said to be a greatest common

left divisor of N. and D_ iff 1) it is a common left divisor of N£ and

D?, and 2) it is a right multiple of every common left divisor of N£

and D . When a greatest common left divisor L is unimodular (i.e.
As

det L(s) = constant $ 0), then N and D are said to be left coprime.

D~ N is said to be a left coprime factorization of G(s) G ]R (s)

iff D£(s) G*[s]pXp, N£(s) G]R [s]pXq with D£, N£ are left coprime
and G(s) = D (s)~ N (s). The definitions of right coprimeness and right

coprime factorization are similar. Let (X. be the following convolution

algebra (Desoer and Vidyasagar 1975, Appendix D) : f belongs to d iff for
00

t < 0, f(t) = 0 and, for t > 0, f(t) = f (t) + £ f.6(t-t,), where
"" a i=0

00

f (•) £L [0,«); f G 3R , Vi; t. _> 0, Vi and £ lf •I < °°- A PX<1 matrix
a J. i l , rt i

1=0 A .

JO G &pxq iff every element of & belongs to (X . Let (X = X«2)

(dVXq = *£($pXq)), the Laplace transform of &\ hence fG (X iff the

Laplace transform of f (denoted by f) belongs to £?. f belongs to (X (-a)

for some a iff t -*• exp( t)f(t) G (X. Let |•' denote some vector norm.

Let 11*11 denote the standard L -norm. Let f :1, -*• (/, some normed space,
P P +
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j f(t), t <T
the truncated function fT is defined by fT(t) =] For

P G [l,00], let L (H ) (abreviated L ) denote the extended space
pe + pe *-

associated with L and be defined by L = {f :TR •* L |VT G ]R , ||f H

n. m.

< «>}. For i = 1,2, p G [l,co], let u. :St -* IR \ y. :1 , -^ I x; a map
1 + i + .

(u^u^ h- (ylfy2) is said to be (finite gain) L -stable iff

n. m

1} Ui GLd1 ^y± e Ln ; 2) 3 k > 0 such that IIy. II < k. (HuJI +IUJI ),
*- r -*• P 1 lp— llpzp

ni
Vui e Lp • °Perators mapping l" to l" are labelled by boldface symbols

tr r"- P"

(e.g. $, H). U.t.c. means "under these conditions." ":=" means "is

defined by."

B. STATEMENT OF PROBLEM

Consider a nonlinear multi-input multi-output servomechanism S

of the type shown on Fig. II.1, where

r(t), e(t), u(t), v(t), w(t), z(t), y(t) G]Rn, (II.1)

r(») is the reference signal to be tracked, w(0 is the disturbance signal

to be rejected, y(*) is the plant output to follow the reference

signal r(0, e(0 is the tracking error.

=f H(t-x)u
Jo

v(t) = (Hu)(t) =1 H(t-x)u(x)dT (II.2)
Jo

u = J e, y = $ z, (II.3)

where $ , $ are some nonlinear causal operators, and H is a linear

time-invariant convolution operator.

Note that the zero-input response of H can be included in w(*)»
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For a given class of reference signals r(«) and a given class of

disturbance signals w(»), we wish to find sufficient conditions on f , $

and H such that asymptotic tracking and disturbance rejection occurs in

the nonlinear servomechanism S, i.e. for all such r(*)'s and w(«),s,

e(t) + 6 , as t •> «.
n

III. ASYMPTOTIC TRACKING WITH INPUT CHANNEL NONLINEARITY: $° = I.

In this section, we examine a special case where $ = I, w(») = 6 •

Thus the nonlinear servomechanism S is reduced to the system S shown

on Fig. III.l.

We quickly derive a generalized version of Bergen and Iwens (1966).

Note that in S ,

e=r-H^e (III.l)

Assume that K is a linear time-invariant convolution operator, and add

HKe to both sides of (III.l), then by linearity of H, obtain

(I+HK)e =r-H($X-K)e (III.2)

If

(I+HK)~ is a well-defined causal operator (III.3)

then

e= (I+HK)"*^ -(I+HKrV^-^e (III.4)

which characterizes the feedback system S shown on Fig. III.2, where
K

vv := (I+HK) •''r, ^ := *I-K and, since H is linear, 1JL := H(I+KH)

= (I+HK)~ H. Now we can state the following theorem

(2)When$° =I, the effect of w(-) can be included in r(-) .

-6-
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Theorem III.l (Asymptotic tracking with input channel nonlinearity)

Consider the nonlinear systems S1 and SR described by (II.1) ~(II.3)

and (III.l) - (III.4). Suppose that there exists some K such that

(al) for a given class of reference signals r(*)»

rR := (I+HK)"^ Gl" and rR(t) +0n as t-> °°;

(a2) *l := j^-K : l!J -Ln;

nxn(a3) H^(0 G L? ,where \(.) is the impulse response of H^.

U.t.c. if the map rK «• e,restricted to those rR resulting from the

r's under consideration,is L„-stable, then

e(0 G Ln and e(t) + 6n as t+ ».

Proof: see Appendix

Comments a) Typical reference signals r(») and disturbances w(«) of

interest are steps, ramps, parabolas, etc. (for curve following

applications), sinusoids and linear combinations of these signals, (for

vibration isolation, and/or rf pickup isolation).

b) Let XG C with Re A> 0 and H(s), K(s) be rational; if r(s) = r/(s-X)p

then, Vr G <Cn, r (t) •> 6n as t-»• » exponentially (thus rK(.) G L2)

provided that (i) (I+HK)" is exp. stable; (ii) (I+HK)~ has a

blocking zero of order p at X (Ferreira and Bhattacharyya, 1977). Notice

that in this case, the nonlinear servo shown on Fig. III.l will perform

asymptotic tracking (i.e. e(t) -»- 0 as t + •) even when H is subject

to some (not necessarily small) linear perturbation provided that

conditions (i), (ii) stated above are maintained for the perturbed H.

For a detailed discussion of this robustness property, see Desoer and

Wang (1977).

-7-



c) Consider the system shown on Fig. III.l, but assume $ replaced by

the linear map K of Theorem III.l. Assumption (al) of the Theorem

asserts that, in the resulting linear servo, the error signal is in

Ln and tends to zero as t •*• «•. Thus Theorem III.l can be viewed as

asserting that if K is perturbed into $ = $ + K, then the tracking

property is preserved provided some stability conditions are satisfied.

So Theorem III.l asserts the robustness of the tracking property under

nonlinear perturbation of K.

d) Special case: if $„ is a time-varying memoryless nonlinearity,
—K

i.e. u^(t) =($£e)(t) =^(eOO.t) with *K: ** **+"*" 1Rn (thiS Wil1
be the case if for example, $ is a time-varying, memoryless, nonlinearity

and K G IR113"1), and if there exists some 3 > 0 such that Vx G mn, Vt >_ 0

|$*(x,t)| <_ 3|x|, then assumption (a2) is satisfied. Note that, in this

case, a sufficient condition for the restricted map rR h- e to be L2~stable

is that the map rv «• e is Lo-stable which can be established by some
K ^

well-known L^-stability criterion e.g. circle criterion (see e.g.

Desoer and Vidyasagar 1975, Vidyasagar 1978).

IV ASYMPTOTIC TRACKING AND DISTURBANCE REJECTION OF A NONLINEAR

SERVOMECHANISM

We have noted the robustness of the tracking property under nonlinear

perturbations of the input channel: K «*• K+ $R. Intuitively, one might

ascribe this robustness to the fact that, as long as e(0 G l2» for

t large, y(t) will be close to r(t), hence only the behavior of J in

the neighborhood of the origin is important. Suppose now that we have

a nonlinearity in the output (i.e. $° ^ I), the situation is drastically

different. Roughly speaking, if asymptotic tracking and disturbance
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rejection does occur in the nonlinear servomechanism S shown on

Fig. II.1 for a class of reference signals r(') and a class of disturbance

signals w(»), then for large t, y(-) must be asymptotically close to

r(-). This requires that z(-) tend to a preimage of r(») with respect

to <&°. It seems that this will be very difficult to achieve except

for the regulator case where r(*) tends to a constant R -vector and

$ is time-invariant.

In part A of this section, we present a L^-stability theorem which

forms the basis of our asymptotic tracking and disturbance rejection

theorem for the nonlinear servomechanism S. In part B, we first develop

a theorem which treats the special case that $ = I (Theorem IV.2).

Then it is seen that the general case where $ # I is no more difficult

than the special case (Theorem IV.3). Some discussion follows in

part C.

A. L -STABILITY RESULT

We state below a L -stability theorem for multi-input,multi-output,

nonlinear, time-varying,distributed systems. This theorem is a

generalization of a result known in the literature (Desoer and Vidyasagar

1975, pp. 143).

Consider the feedback system shown in Fig. IV. la,where

u±(t), e..(t), yi(t) G iRn, i=1,2

y;L(t) =(Me^t) =f M(t-T)ei(T)dT (IV.1)

y2(t) = ($e2)(t) = *(e2(t),t) (IV.2)

with $:]Rn x 1R.+ ~&n being continuous in its 1st argument and

piecewise continuous in its 2nd argument.
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Applying the well-known exponential weighting technique (see e.g. Desoer

and Vidyasagar 1975, pp. 143; Sandberg 1965, Zames 1965) to the system

shown on Fig. IV.la,we obtain its exp(at)-weighted companion system

which is shown on Fig. IV.lb,where

y- (t) = (Me )(t) =1 M (t-x)e (x)dx with M (t) := exp(at)M(t),
J 0

(IV.3)

y2a(t) = (~ae2a)(t) := exP(at) *[exp(-at)e2a(t),t] (IV.4)

and the subscript a in the symbols u. , e. , y. , i = 1,2, has the

following meaning:

fia(t) := exp(at) f±(t) (IV.5)

Theorem IV.1 (Lm-stability theorem)

Consider the feedback system described by (IV. 1,2) and its

exp(at)-weighted companion system described by (IV.3) - (IV.5). Suppose that

(i) M(.) G l^11

nxn(ii) for some a > 0, Ma(0 G L2 ;

(iii) 3 3 > 0 such that Vz G ]Rn and Vt >_ 0, |$(z,t)| <_ 3|z| .

U.t.c. if the map (u- ,u2 ) «- (e ,e2 ) is L2~stable (see Fig. IV.lb),

then the maps (u-.iu) •* (e-,e2) and ("-, ,"2) ** ky^y^) are L^-stable.

Corollary IV.1

Under the conditions of theorem IV.1, if, in addition,

3 u. > 0 and y. > 0 such that
l i —
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u±(t)| <y± exp(-Yit), Vt _> 0, i= 1,2 (IV.6)

and

nxnMo(0 6 L'^", (IV.7)

then,for i = 1,2, 3 y > 0 and u . > 0 such that Vt > 0,
ei yi

lei(t)l - pei exP("At) (IV.8)

|y±Ct)| <ny. exp(-Xt) (IV.9)

where A := min {y1»Y2» a~6> with 6 > 0 arbitrarily small.

Proof of Theorem IV.1 and Corollary IV.1: See Appendix

B. ASYMPTOTIC TRACKING AND DISTURBANCE REJECTION THEOREMS

We derive now sufficient conditions for a multi-input multi-output

nonlinear time-invariant distributed servomechanism to track asymptotically

a class of reference signals r(-) while the system is subject to a class

of external disturbances w(.). Due to the enormous flexibility

introduced by the output nonlinearity, we are obliged to make additional

assumptions:

The class of reference signals r(») and disturbance signals w(.)

satisfy

(SI) r(«), w(0 G c and for x = r,w, 3 p > 0, y > 0 such that
x x

Ix<t>| < u exp(-y t), Vt > 0
X x ——

For the class of reference and disturbance signals described in (SI),

we shall require that
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(52) H(s) =1 G(s), where G(s) G&nxn and 6(0) * 6 ;
s nxn

(53) u(t) = (JXe)(t) =$I(e(t))

y(t) = (J°z)(t) = <D°(z(t))

with $I, $° :3Rn -• ]Rn being C functions.

Finally we assume that

(54) e, u, v, z, y G Ln .
ooe

From assumptions (SI) - (S4) and Fig. II.1, it is easy to see that

the functions e, u, v, z, y are differentiable on M . Thus we can take

time derivative of the equation

e = r-y = r-$°z (IV. 10)

and obtain

e = r - (DJ°)z (IV.11)

where the linear map DJ :zh- — [($°z)(t)] is the Frechet derivative

of $° and (D$°z)(t) = D$°(z(t))z(t) (Dieudonne" 1969, pp. 155; Martin

1976, pp. 33). Since

z = w + v (IV.12)

v = G*u (by (S2)) (IV.13)

and

u = (DS^e (IV.14)

where the linear map D$ : e »• -r- [(<*> e)(t)] is the Frechet derivative
* at

of $ , eqn. (IV.11) becomes
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e(t) = r(t) - D»°(z(t)) [w(t)+(H*u)(t)] (IV.15)

Equations (IV.14) and (IV.15) characterize the linear time-varying

feedback system S shown on Fig. IV.2

Case I: $ = I.

For simplicity, we first consider the special case where $ = I

(thus D$I(e) = I, Ve G ]Rn and e= u). Therefore S shown in Fig. IV.2

is reduced to the system S shown on Fig. IV.3a. For future reference,

we shall define the K-shifted system S° of S° by applying the loop

transformation technique with K G ]R to S° (see e.g. Desoer and

Vidyasagar 1975, pp. 50). The system S° is shown on Fig. IV.3b, where

D$ (z) = D$ (z) - K. Furthermore, we define the exp(at)-weighted system

SR a of SR. The system SR is shown on Fig. IV.3c, where f (t) := exp(at)f(t)

and Hj, ^(s) = ^(s-a). (or equivalently,H^ (t) = exp(at)H^(t)).

Now we can state the result.

Theorem IV.2 (Asymptotic tracking and disturbance rejection with output

channel nonlinearity)

Consider the system S described by (II.1) - (II.3) with Q1 = I and the

systems S°, S°, S° shown on Fig. IV.3a ~ 3c. Assume that (S1)~(S4) hold.

Suppose that for some K G 3R

(al) 3 a>0 such that t•* exp(at)HK(t) G Lnxn n Lnxn;

(a2) 3 3 > 0 such that Vx,z G ]Rn,

|D»°(z) x| < 3|x|

U.t.c. if the map (rR a,wa> h- (eR ^zj is L2-stable (see Fig. IV.3c), then

(i) for x = e,z,v,y, 3 y > 0 such that
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|x(t)I < Mx exp(-Xt), Vt >0 (IV.16)

where X := min{y ,Y » a-6} with 6 > 0 arbitrarily small.

If, in addition,

(a3) G(0) is nonsingular,

then

(ii) e(t) •> 8 as t -* «>.

Comments:

(a) Theorem IV.2 gives a sufficient condition, for a nonlinear, time-

invariant, multi-input, multi-output, distributed servo to track asymptotically

any bounded reference signal r which goes to a constant exponentially

and to reject asymptotically any bounded additive disturbance

signal w which goes to a constant exponentially. Note that the con

clusions (i) and (ii) provide a lower bound on the exponential rate at

which the tracking error e(0 goes to 8n; more precisely, the tracking

error e(t) -> 6 as t -> « at an exponential rate no less than X, where
n

X = min\Y ,Y ,a-6} with 6 > 0 arbitrarily small.

(b) Stability is always a main concern for a servomechanism. Conclusion

(i) of Theorem IV.2 guarantees that for the given class of reference

and disturbance signals described by (SI), the functions e,z,v,y G L^.

(c) From a design point of view, one may be given a fixed nonlinear

plant modeled by a linear plant P(s) followed by a nonlinearity $ .

It is desired to have the plant output y track a given class of reference

signals r which go to constants at most at an exponential rate Yr and

reject a given class of disturbance signals w which go to constants

at most at an exponential rate y J furthermore, the tracking error e(-)

-14-



is required to go to zero at least at certain rate. Hence if one can

design some compensator around P(s) thus forming a G(s), then precede

it with the integrators to form H(s) such that the conditions of

Theorem IV.2 are satisfied for some a > min(Y ,Y K then the plant output
r w

y will track the reference signal r and reject the disturbance signal

w, and the tracking error e(») will go to 9 at an exponential rate no less

than min(Y ,Y }•
r w

(d) Note that in the single-input single-output lumped case, the

knowledge of the root locus method shows us that a smaller time constant

of G(s) does not necessarily guarantee the existence of a larger a such

that (al) is satisfied.

(e) A careful reader might worry that it is not explicitly assumed

that the range of the nonlinear time-invariant operator $ is the whole

]Rn; if it is not, the theorem cannot possibly be true for any bounded

reference signal which tends to any constant vector of ]R . The fact

is that the condition that the map (r„ , w ) h- (e , z ) is L0-stable
K.,a a iv,a a z

and the presence of the integrators implicitly force the range of $

to be ]Rn.

(f) The L9-stability condition of the map (v ,w ) **• (e ,z ) in
^ K., a a K,aa

.

S can be tested by some well-known L2~stability criterion,e.g. the

circle criterion.

(g) By assumption (S2), s = 0 is not a pole of G(s). Hence, for the

lumped case, assumption (a3) is equivalent to that the transfer function

G(s) has no transmission zero (Desoer and Schulman 1974, Pugh 1977,

MacFarlane and Karcanias 1976) at s = 0 as we expected from the robust

linear servomechanism theory (Davison 1976, Desoer and Wang 1977).
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Proof of Theorem IV.2

(i) With the assumptions (SI), (al) and (a2), we apply Corollary IV.1

to the system S shown on Fig. IV.3a and thus conclude that for

Xj^. = eK»z»v,yK, 3 y > 0 such that

|MO| <u exp(-Xt) Vt > 0 (IV.17)xR

where X is defined in (IV.16).

Since e = e^, - Kv and y = y^ + Kz, we also conclude that there exist

u > 0, y > 0 such that
e y

|e(t)| < ye exp(-Xt)
, Vt ^ 0

|yCt)| <_ y exp(-Xt)

(ii) From (i), z(*) G jj^11 and z(t) -> z^ G R. nat an exponential rate

X. Thus e(t) = r(t) - 4>°(z(t)) •* e^ := r^ - $°(zj at an exponential

rate X, where r := lim r(t). We now prove e = 9 by contradiction.
t-x»

Suppose e ^ 9 . Write
00 n

e(t) = e^ + eQ(t) (IV.18)

where eQ(t) G L1 H l? and eQ(t) -> 9 exponentially. Consider the nonlinear

servomechanism S (with <J = I) and calculate p(-), the output of the

integrators:

p(t) = ejt + PQ(t) (IV.19)

/•t

where VnM •= 1 e (x)dx G Ln and goes to a constant as t -*• ».
0 Jo °

Now, for t > 0,

-16-



v(t) = (H*e)(t) = (G*p)(t)

G(t-x)e xdx + (G*p )(t)

= tl G(t-x)dx e - I
3o " Jo

=tKG(T)dTe~-0
=tf G(x)dx e -f G(x)dx e -f

LJo M Jt * Jo

(t-x)G(t-x)dx e + (G*p )(t)

G(x)dx e +

(G*po)(t)i

(G*PQ)(t)
1 G(x)dx ew + 2

By assumption (S2), we have that Ve > 0, 3 t such that

00

f |G(t)|dt <£

(IV.20)

(IV.21)

Let t = 3t with 3 > 1, the second integral in (IV.20) is bounded by

ele^l, the third integral in (IV.20) is such that

f3to /^o r3to|j p~G(x)dT| <ij °|G(x)|dx +J °|G(x)|dx

^2< —-r44 + e

Note that pQ G l^, thus by assumption (S2),

G*p G Ln
ro °°

Hence asymptotically as 3 •+ °° (equivalently as t = 3t -*- °°) ,

v(t) = t[G(0)e„ + m(t)]

-17-
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where |m(t) | < 2e|e I + HdL le |/3 + Hc*p D/t.
1 ' ' 00 ' Q^ I 00 ' rQ 00

Therefore, by assumption (a3) and the assumption e i 9 , we have, for
oo n

large t > 0, the asymptotic relation

v(t) ^ t G(0)e . (IV-24)

This contradicts the conclusion of (i) that v(t) -> v^ G ]R at an

exponential rate X. Therefore, e =9 i.e. e(t) ->• 8 as t -* <».

Q.E.D.

Case II: O1 $ I

Let us now extend Theorem IV.2 to the general case where $ ^ I.

Observe that the system S shown on Fig. IV.2 can be further transformed

into the system shown on Fig. IV.4, where r(t) = D$ (e(t))f(t). Note

that if we assume that for some 3 > 0,

|D$I(e)x| < 3X|x| , Vx,eG]Rn (IV.25)

then

|r(t)| = iD^eHOOl

l3I|f(t)|

< 3Xy exp(-Yrt), Vt >0 (by (SI)) (IV.26)

Comparing Fig. IV.4 with Fig. IV.3a, we see that we are right back to

the previous case. Note that u(t) •> 9R as t •*• » implies that e(t) -»- 9r

as t -»• °° provided that

^(e) = 9 iff e = 9 (IV. 27)
N n n
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To summarize, we state the following theorem.

Theorem IV.3 (Asymptotic tracking and disturbance rejection)

Consider the nonlinear time-invariant servomechanism S described

by (II.1) ~(II.3). Assume (S1)~(S4). Suppose that for some K G ]R nxn

(al) 3 a>0such that th» exp(at) H^t) G L*Xn 0Lnxn;

(a2) 3 3 > 0 such that Vx G ]Rn,

iD^Ce) D$°(z)x - Kx| < 3|x|, V e,z G ]r n,

and

(a3) 3 31 >0 such that Vx G ln,

|D$I(e)x| <_ B^xl , Ve G ]Rn;

(a4) $X(e) =9 iff e= 9 .
n n

U.t.c. if the map (r ,w ) »• (e ,z ) is L9-stable , then
K.,cx a i\.,ct a ^

(i) for x = e, u, z, v, y, 3 y > 0 such that

|x(t)| <_ yx exp(-Xt), Vt > 0,

where X:= min{Y ,Y ,a-6} with 6 > 0 arbitrarily small,
r w

If, in addition,

(a5) G(0) is nonsingular,

then

(ii) e(t) -> 9 as t -> «>.

C. DISCUSSION

For simplicity, we shall only discuss the case where $ = I.

(i) Robustness of the nonlinear servomechanism

As expected intuitively and as seen from the proof of Theorem IV.2,

-19-



the crucial components of the nonlinear servo S are the integrators.

If some of the integrators are subject to perturbation, then the whole

argument will fail. However, there is quite noticeable margin in the

nonlinearity $ as we have seen from the assumption (a2) of Theorem IV.2.

Furthermore for sufficiently small linear perturbation on G(s), say,

from G(s) G dnxa to G(s) + 6G(s) G $nxn, assumptions (S2) ,(al) , (a3)

will remain valid. Thus if the map (rv ,w ) h- (a z ) remains
&.,a a is.,a a

L«-stable for the perturbed system, then asymptotic tracking and

disturbance rejection still holds. Note that in contrast to the robust

linear servomechanism theory (Ferreira 1976, Desoer and Wang 1977), we

have not been able to assert that small perturbations on integrators

will result in small asymptotic tracking error.
m .

(ii) Asymptotic tracking (w( •) =9)when r(t) = £ P^'Pi G m *m- 1
i=0

We have discussed above the difficulties associated with guaranteeing

robust asymptotic tracking for this case. However, under some additional

assumptions, we are able to give a bound on the tracking error e(t) as

t becomes large. For the purpose of deriving this bound,we consider the

lumped linear time-invariant servo shown on Fig. IV.5, where the closed-

loop system is exp. stable and e^(t) -*• 9r as t-*• « for any of the r's

under consideration. Now let K be subject to some nonlinear memoryless

perturbation and let it thus become $° = K+ $°,. The perturbed system

is the nonlinear servo S shown on Fig. II. 1 with $ = I. If we apply

the loop transformation with K to S, then we obtain the system shown

on Fig. IV.6.

Note that, with zT defined on Fig. IV.5, and H, K both linear
Li ~
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z=H^I+KJp^tr-^z]

= zT -HCI+KH)"1^ (IV.28)

Thus e = r - (K+$°)z

= r - Kz - $ z
~ "K.

= r-Kz_ + KHd+KH)"1^^ - $°z (by IV.28)
~ L ~ ~K ~K

= eT - [I-KHCI+KH)""1]*^

=eL -(I+KH)""1^ (IV.29)

By assumption on the linear servo, e,(t) will tend exponentially

to zero at a rate controlled by adjusting the closed-loop poles of the

linear servo. Thus if $ is memoryless with characteristic

~ ... -V TD n r,.,~l
K* AX "x +
$°:Hnx^^^]Rn such that 3 £ > 0 such that

|$°(z,t)|£C Vz G ]Rn, Vt > 0 (IV.30)

then, by (IV.29) and the closed-loop exp. stability of the linear

servo, we conclude that for large t, |e(t)| will be bounded by

H(I4KH)~ II £+ |eT(t)|, where II •il denotes the L -induced norm of (I+KH)"1.

(iii) Asymptotic tracking (w(Q = 9 )v;hen r(t) = r sin q>t

Referring to Fig. II.1 with w(«) = 9 and <f> = I, if asymptotic

tracking does occur in S, then z(t) must be, asymptotically, the

preimage of r sin wt with respect to the nonlinear operator <J>°. Hence,

in general, z(t) will consist of an infinite number of harmonics and,

possibly, subharmonics of r(-). To generate these exactly would require

H(s) to have an infinite number of poles on the jw-axis at those frequencies
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Therefore, we can not expect perfect tracking for this class of reference

signals. Of course, we could bound the tracking error by using arguments

similar to the one used in (ii).

V. APPLICABILITY OF LOOP TRANSFORMATION WITH K G IR nxn

The asymptotic tracking and disturbance rejection Theorem IV.2

does not give condition on 6(s) under which some K G ]R can be found

such that the map t •* exp(at)HR(t) ^L Hr for some a > 0. We now

investigate this question.

Assume that the system S described by (II.1) - (II.3) with assumptions

(S1)~(S4) consists of a linear time-invariant convolution operator G

such that for some v>0, G(s) G d(-v)nxn and G(0) ^9nxn- It is

obvious that such G(s) satisfies the assumption (S2). Now the following

propositions show that there exists K G ]Rnxn such that (al) and (a3)

of Theorem IV.2 are satisfied under one additional assumption on G(s).

Proposition V.l.

Let H(s) =- G(s), where G(s) G d(-v)nxn, v > 0. If, in addition,

a[G(0)] C <E then for K = el, with e > 0 sufficiently small, there

exists some a > 0 such that

^ := Htl+efir1 G <*(-«)nxn (V.l)

Corollary V.l.

Let H(s) = - G(s), where G(s) G R (s) is exponentially stable
s

with a[G(0)] C c then for K = el, with z > 0 sufficiently small, the

transfer function matrix

--1 ' — - (V.2)H^ := H[I+eH] is exp. stable .
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Proof of Proposition V.l and Corollary V.l: see Appendix

Remarks (a) Note that the condition o[G(0)] C c implies that G(0) is

nonsingular, i.e. assumption (a3) of Theorem IV.2 is satisfied,

(b) Corollary V.l concludes thatH^s) is exp. stable which implies

that for some a > 0, th. exp(at) HK(t) G Lnxn n L*xn and in particular,

th- exp(at) HK(t) G L*3"1 n j^m9 i.e. assumption (al) of Theorem IV.2
is satisfied.

The following proposition shows that G(s) G tf(-v)nxn, for some

v > 0 together with (V.l) is enough to guarantee that t *> exp(at) H„(t)
^ _nxn ~ _nxn

cLl °L2 '

Proposition V.2.

Let H(s) =\ G(s), where G(s) G tf(-v)nxn, v>0. If there exists
K G ]R such that for some a G (0,v)

Hj, := Htl+KH]"1 G d(-a)nxn
then

tH- exp(at)HK(t) GLnxn nL^xn (v.3)

Corollary V.2.

Let H(s) =| G(s), where exp(vt)G(t) GLnxn, v>0. If there exists
K G n such that for some a G (0,v)

H^s) =Hfl-HCH]"1 G d(-a)nxn
then

nxn -. Tnxnth> exp(at) HR(t) G L^n n L^xn ,in particular

th- exp(at) HR(t) G Lnxn O L*Xn
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Proof of Proposition V.2 and Corollary V.2: see Appendix

Remarks: (a) The existence of K G Hnxn such that (V.3) holds can be

guaranteed under a very mild condition (see Proposition V.l).

(b) When G(s) does not satisfy a[G(0)] C c , the existence of

K G ]R xa such that (V.3) is satisfied could still be proved by other

means, e.g. the root locus method for the case where G(s) G ]R (s).

VI. EXAMPLE

When the system S described by (II.1) - (II.3) with assumption (S1)~(S4)

is single-input single-output, some well-known graphical tests are

readily available. Note that in this case if D$ belongs to the sector

[3,3] with 3 _> -3, 3 > 0, then assumption (a2) of Theorem IV.2 is

satisfied. Now we can give the following algorithm:

Algorithm:

Data: G(s) £ ]R (s), with G(s) exp. stable, J .

Step 1: Use, say, the root locus method to find the (not necessarily

connected) set J c 3R such that Vk G j, there exists some a > 0 such that

fL (s-a) is exp. stable (If J is an empty set, then Theorem IV.2 cannot

be applied).

Step 2: Choose some k G j and choose some corresponding a to plot the

a-shifted Nyquist diagram oo h- H, (-a+jw), then choose a critical disk

D[- -, - -] subject to the condition that 3^-3, 3 > 0 (note that after
3 6

choosing k and a, there is still some freedom in choosing the critical

disk).

Step 3: If D$° belongs to the sector [3+k,3+k], then by the circle

criterion, (ir, ,w ) h» (e, ,z ) is L0-stable and the conclusions (i) and
' k,a a k,a a ^
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(ii) of the Theorem IV.2 follow. If not, go to step 2 and choose a

new k, then repeat the process.

A simple example using this algorithm to predict asymptotic tracking

is shown as follows

Consider the nonlinear servomechanism shown on Fig. VI.1

fz3 +0.5z ,|z| 1(\)0A
where $ (z) =< i n a

|(sgnz)[/[iT- (1/6)U-2 + d/6)1^] +0.5z, |z| >(±)U**

(see Fig. VI.2) (VI#1)

The root locus method shows that for any k > 0,H, (s) = H(s)[l+kH(s)]

is exp. stable (see Fig. VI.3). Let

k = 0.5 (VI.2)

we have

2
« / \ s +12s+32 A7T o\Hk(s) = —r x (VI. 3)

s +8.5s +21s+16

and

, |z| <(1/6)0'4

sgn z)[/TzT- (1/6)0-2 + (1/6)1'2], |z| > (1/6)0-4

(VI.4)

Note that D$£ belongs to the sector [-0.089, 0.833] (See Fig. VI.4).

Thus the circle criterion shows that the exp(at)-weighted system

S, is L -stable, since the a-shifted Nyquist diagram co h- H, (-a+jw)
R, a 2 ^

with a = 1 lies in the critical disk [fl n8Q , - TpoTo] • (See Fig. VI.5).

Therefore, by Theorem IV.2, the nonlinear servo shown on Fig. VI.1 will

track any bounded reference signal r(*) which go to constant at some

exp. rate. Figure VI.6 shows the tracking errors e(*) for three different

reference signals.
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VII. CONCLUSION

In our study of the robust nonlinear, multi-input, multi-output,

distributed servomechanism problem, we found that the design principle

prescribed by the robust linear servomechanism theory — i.e. replicating

the dynamics of the reference and the disturbance signals — is still

valid. Our work shows that the robustness of this design extends to (not

necessarily small) nonlinear perturbations of the plant. When the output

nonlinearity is absent, Theorem III.l shows that some suitable stability

conditions guarantee robust asymptotic tracking for a large class of

reference signals, e.g. steps, ramps, parabolas,...,sinusoids, while

the plant is subject to nonlinear time-varying input channel perturbations

When the output nonlinearity is present, robust asymptotic tracking and

disturbance rejection can be achieved for reference signals and

disturbance signals that tend to constants: for this class of reference

and disturbance signals, Theorem IV.2 and IV.3 give sufficient conditions

for achieving this. Note that in this case, although we know that

asymptotic tracking of ramps, parabolas,...and sinusoids is robust with

respect to linear perturbations of the linear plant, it may not be robust

with respect to nonlinear output channel perturbations; with some

additional assumption, we show how to bound the tracking error (sec.

IV.C). In section V, we show how some of the conditions required by

the previous theorems can be achieved.
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APPENDIX

Proof of Theorem III.l:

By assumption (al), for a given class of r(»), r%(') e L2» thus

e(«) G l!} since the map r h- e restricted to those rR resulting from

the r's under consideration is L2~stable. Furthermore, u^ = $Re G h^

since $* :L2 +l£ by (a2). Now yR= H^ =H^u^, where uR GL* and
H G l!}3"1 by (a3). Thus the Fourier transform of yK(«), say yR(jo)) ,

belongs to L^ (by Schwartz inequality). Finally, yR(t) -*• 9^ as t -*• «>

by Riemann-Lebesgue lemma. Hence e(t) = rR(t) - yR(t) -»• 9r as t ->- «

since rv(t) •> 8 as t -*• °° by assumption (al) .
Jx n

Q.E.D

Proof of Theorem IV.1

The feedback system described by (IV.1,2) is characterized by

e2
(t) =u2(t) +f M(t-T)u1(T)dT -f M(t-T)*[e2(x),T]dT (Al)

Premultiplying (Al) by exp(at) and using the notations of (IV.3) ~ (IV.5),

we obtain

e2a
(t) =u0 (t) +f M(t-x)u_ (x)dx -\M (t-x)$ [e_ (x),T]dx

2a Jn a la Jo a a 2a

(Al )
a

which characterizes the exp(at)-weighted companion system shown in

Fig. IV.lb.

By assumption, the map (u. ,u„ ) h- (e ,e2 ) is L2-stable, thus

3 u2 > 0 such that for each T G ]R

'•2..t'2 i MSa.A-Ha.A* <A2)
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where u. _ denotes the function u. truncated at time T, i = 1,2.
ia,T ia ' '

Note that VT G n i = 1,2,
+

T

W " ({0 lUia^>|2dt> 1/2

2^x1/2=(f exp(2at)|ui(t)|2dt)

< exP(aT) HuJ (A3)
~ /2a- ±m

Hence by (A2) and (A3)

u0exp(aT)

'•2..T,2i-L^-(,Ul,-+,U2,-> <*»
Further, on noting that Vt ^ 0

|$(z(t),t)| < 3|z(t)| => |$(z(t),t)| < 3U(t)| (A5)

we have, VT G ]R
T

$(e2a(t),t)Tll2 := (( |$a(e2a(t),t)|2dt)1/2

P 2 1/21 3(1 |e2 (t)| dt) ' (by assumption (iii))

= B,,e2a.T»2

3y0exp(aT)
< —— (lluJI +HuJI ) (by (A4)) (A6)

— i I CO / CO "

/2a

Now we can prove that y-, G l^ :Vt G ]R We have

yi(t) =(M*U;L)(t) -f M(t-x)$[e2(x),x]dx (A7)
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The first term (M*u_)(-) G Ln and IIm*uJI < HmIL llu, II , since M(-) G l?

(by assumption (i)) and u. G l . The second term is also in L , this
J_ 00 CO

can be seen from the following: let

y;L(t) := fM(t-x)$[e2(x),x]dx =exp(-at)f Ma(t-x)$a[e2a(x) ,x]dx (A8)

then

y (t)| < exp(-at)
1 '0

jo|Ma(t-x)||$a[e2a(x),x]|dx
=exp(-at) f|Ma(t-x)||$a[e2a(x),x]t|dx

<exp(-at)(j |Ma<T)|2dT)1/2(( l*ale2oc<T)'T]t|2dT:>2dx)1/2

(by Schwartz inequality)

=exp(-at)llMal2Oye2(x(t),t]tll2

3p?exp(at)
< exp(-at)HM 0 —£ (On II +fluj ) (by (A6))
— a 2 rr- 1«> 2 °° ^ -^ *

3y2»M II
=~~d^ (B^l.+lu^J (A9)

/2a

The right-hand side of (A9) is independent of t, thus

«y1Lipi(lluilloo+llu2l,oo> <A10>

3u2
where pn := llM II.

1 &s. °2

Return to (A7), we conclude that

HyJI < HmILIIuJI + ^(HuJI +IluJI )
"'JLco — 1 loo 1 1 00 2 «>

< P1(llu1lloo+llu2lloo) (All)

where p_ := p + HmIL
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Since e2 = y-, + u«, we have

HeJI < lly II + lluJI
2 °° — Jl «> 2 <»

<p1(llu1lloo+llu2lloo) + Hu^ (by (All))

< (p1+l)(llu1Hoo+llu2Iloo) (A12)

Now HyJI = H$[e0(t),t]H

= ess sup |$[e9(t),t]|
tGm L

<_ 3 ess sup |e9(t) |
tG]R+ L

- 3»eJ2 «>

<3(p1+l)(llu1Ha+llu2llj (by (A12)) (A13)

Finally, e- = u.. - y2, thus

lie, II < IuJ + HyJI
loo — l00 •/2°o

< Hu^ + 3(P1+l)[Uu1llo)+llu2llco] (by (A13))

< [l+3(p1+l)][llu111^+1^2^] (A14)

From (A11)~(A14), we conclude that the maps (u..,u2) b- (e,,e2) and

(ulsu2) ~ (Yl,y2) are L^-stable. QED

Proof of Corollary IV.1

By assumption (IV.6), 3 u. > 0 and a. > 0 such that

lui(t)| £ Mi exp(-Yit) Vt > 0, i= 1,2.
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Let A: = min{A, ,A2,a-S} where 6 > 0 is arbitrarily small. Premultiplying

(A2) by exp(At), we obtain

$QMx(t-T)uix(T)dT-£e2X(t) ""2X(t) +J0 "x(t-T)ulX(T)dT ")o Mx(t-x)*x[e2x(T),T]dT
(A15)

where the subscript A has the same meaning as the a defined in (IV.5).

Note that

(a) the functions t h- u.,(t) is bounded on ]R since A = min{Y-. ,y^,a-6};

(b) the map zx(t) »• *x(zx(t) ,t) satisfies |<J>x(zx(t) ,t)|£3|zx(t)|, Vt >_ 0;

(c) Mx(-) GL^Xn by assumption (IV.7);

(d) exp[(a-A)t] Mx(t) =Mo(t) e Lnxn.

Thus by the Theorem IV.1 with a being substituted by a-A, we conclude

that 3 y . > 0 and y . > 0 such that
ei yi

|e.x(t)| =exp(At)|e.(t)| <yei

|yix(t)| =exp(At)|yi(t)| <yy±

Hence the conclusion of (IV.8) and (IV.9) follow. Q.E.D.

Proof of Proposition V.l

In the following we count zeros according to their multiplicities.

We prove this proposition in three steps:

Step 1: We claim that 3 z^ > 0 such that Ve G (0,e.,], det[sI+eG(s) ]

has n zeros close to s = 0; furthermore, they belong to (E . To see this,

note that the Taylor series expansion of eG(s) at s = 0 gives

eG(s) = eG(0) + se G»(0) + ... (A16)
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Thus, 3 e1 >0 such that Ve G (0^], the zeros of det[sI+eG(s)] around
2 A

s = 0 are given by (within 0(e )) the n eigenvalues of -eG(0). By

assumption, a[G(0)]C c hence these n zeros are in <E .
+ —

Step 2: We claim that given any CG (0,v), 3 e2 > 0 such that

Ve G [-e e ]> det[sI+eG(s)] has only n zeros in Re s > -£. To see

this, let

A = (s G (c|Re s > -v} C (D

B = {s S c|Re s > -C , |s+C| < U C A

where £ is chosen such that det[sI+eG(s)] has no zeros iR the

set {s G (J|Re s >_ -£, |s+c| >. £} (this is possible since for |s|

sufficiently large, we have asymptotically det[sI+eG(s)] *> det[sl] = s ).

Note that (i) for each e G ]R f det [sI+eG(s)] is analytic in A;

(ii) B C A is compact; (iii) when e = 0, the n zeros of det[sI+0*G(s) ] = s

are at 0 G (E which is in the interior of B. Hence, by the "Continuity

of the roots of an equation as a function of parameters" (Dieudonne" 1969,

pp. 248) 3 e2 > 0 such that (a) Ve G [-e2,e2], det[sI+eG(s)] has no

zeros on the boundary of B; (b) Ve G [-e2,e2], det[sI+eG(s)] has only

n zeros in B.

Step 3: From step 1 and step 2, given any £ G (0,v), with e~ := min{e.,,e2};

we have that Ve G (0,e.J, det [sI+eG(s)] has n zeros {z_ (e) ,z2(e) ,... ,z (e) }

such that -S < Re z.(e) < 0, for i = l,2,...,n. Fix e G (0,-e3), choose

a > 0 such that max Re(z.) < -a < 0, then we have det[sI+eG(s)] f 0,

l-l1!11 s
VS G <C with Re s > -a, (note v > C > a > 0) . Consequently, since —-=- ->• 1

* StI

as Isi -»• 0°, we have
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inf IdetE^ I+ -^r G(s)]| >0 (A17)
Re s>-a

Now, since K is chosen to be el

&£ := Hd+eH)""1

= G(sI+eG)"1

ill [ifl Z+ife ^ 1 (A18)

Where iM- and [ifl *+ifl 6<S>1 G ^(-«)nxn C tf(-v)nxn.

By (Desoer & Vidyasagar 1975, p. 250, Corollary 3) and (A17),

[ifiI+ilr^-lGa(-a)nxn (A19)

Finally, by the closure of the algebra tf(-a)nxn, we conclude from (A18)

and (A19), ^ G tf(-a)nxn. Q.E>D

Proof of Corollary V.l

Let N(s) D(s) be a right coprime factorization of G(s). Then

HK(s) = N(s)[sD(s)+eN(s)] . Now p(s,e) := det[sD(s)+eN(s)] is a

polynomial in s with coefficients which are continuous functions of e.

(3)It is sufficient to show that for sufficiently small e > 0, £[p(s,e)]
o A

G <E_, then H^s) is exp. stable. Note that

p(s,e) = det D(s) x det[sI+eG(s)] (A20)

As shown in step 1 of Proposition V.l, we know that for sufficiently

(3) Actually, H^ is exp. stable <* 2C[p(s,e)] C J since N(s), sD(s) + eN(s)
are right coprime if (N(s), D(s)) is right coprime and G(0) is nonsingular.
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small e > 0 the zeros of det[sI+eG(s)] around s = 0 are (within 0(e2))

the eigenvalues of -eG(0) and are in <D_ (by assumption o[G(0)] Cj),

Now Z[p(s,0)] = ?[sndet D(s)] = 2[det D(s) ]U {0,0,...,0} and

n-tuple

8p(s,e) = n + 9[det D(s)] (because G(s) is proper) (A21)

Therefore for e > 0 sufficiently small, by continuity of the zeros of

the polynomial p(s,e) as a function of e, the n + 3[det D(s)] zeros

of p(s,e) are close to those of p(s,0). We have seen that the n zeros

o

of p(s,e) which are close to zero are in <C ; the remaining 8[det D(s)]

o

zeros are close to the zeros of det D(s) which are in (D_ by the

assumption that G(s) is exp. stable. Hence, for sufficiently small

e > 0, 2^[p(s,e)] C <E_. This implies that lL is exp. stable. Q.E.D

Proof of Proposition V.2

Note that

^ := Hd+KH)""1

= GtsI+KG]"1 (A23)

Thus,

HjJsI+KG] = G, or

s^ =G-I^KG (A24)

Since, by assumption, G G £2(-v) C CZ(-a) and H_. G 6?(-a) ,

we conclude that by the closure of the algegra &(-a) and (A24),

sl^ G tf(-a)nxn, i.e. H^ G tf(_a)nxn. Therefore ^ contains no impulse

functions and exp(at)HR(t) GL°Xn (by assumption H^ G #(-a)nxn). Now

A-8



consider the Fourier transform of exp(at)IL.(t) which is given by

H^-a+jw) =G(-a+jw)[(-a+ju))I +KG(-a+jio) l"1 (see (A23)). For |u|
large, since G(-a+ju>) is bounded, elements of H„(-a+ju)) is of 0(tjtt) •

Thus Hj^-a+jco) G l™11 and therefore exp(at)HR(t) GL2xn. Q.E.D.

Proof of Corollary V.2

Following from Proposition V.2, exp(at)H^(t) G ]. . Now from

(A24) we have

HK(t) = G(t) - (HK*KG)(t) (A25)

Since exp(vt)G(t), exp(at)H(t) G Lnxn, (v>a>0) we have

exp(at)HK(t) G Lnxn (A26)

Now for each t G 3R ,

$°°

|exp(at')HK(t»)|dtl

rt
> |l exp(at,)HK(t')dt,|

= |exp(at)HR(t) -H (0 )-al exp(at f)H (t')dt'| (integration by parts)

ft
_> |exp(at)HR(t)| - |H^(0 )| - a|l exp(at')H^(t')dt'| (triangular inequality)

>_ |exp(at)HK(t)| - |HK(0+)| -allexp(a.)HK(-) ^ (by Proposition V.2)

Thus, for some m,

|exp(at)H^(t)| <_ m <°°, Vt G ]R

which implies that exp(at)H^(t) G Lonxn
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nxn ~ VnxnTherefore exp(at)HR(t) G L^" nL^"1 which implies that exp(at)H^t)

GL^11, Vp G [!,«,]. Q.E.D.

A--10



REFERENCES

Bengtsson, G. 1977, "Output regulation and internal models - a frequency

domain approach," Automatica, vol. 13 (4), pp. 333-345.

Bergen, A. R. and Iwens, R. P. 1966, "Zero steady-state error operation

of feedback systems with a time-varying nonlinear element," IEEE Trans.

Aut. Contr. vol. AC-11 (4), pp. 746-748.

Brown, G. S. and Campbell, D. P., 1948, Principle of Servomechanisms,

John Wiley & Sons, Inc. New York.

Davison, E. J. 1976, "The robust control of a servomechanism problem for

linear time-invariant multivariable systems," IEEE Trans. Aut. Contr.

vol. AC-21 (1), pp. 25-34.

Desoer, C. A. and Schulman, J. D., 1974, "Zeros and poles of matrix

transfer functions and their dynamical interpretation," IEEE Trans.

Circuits and Systems CAS-21 (1), pp. 3-8.

Desoer, C. A. and Wang, Y. T. 1977, "Linear time-invariant robust

servomechanism problem: a self-contained exposition," U. C. Berkeley,

Electron. Res. Lab. Memo ERL 77/50; also Control and Dynamic Systems

vol. 16, ed. by C. T. Leondes, Academic Press, New York, to appear.

Desoer, C. A. and Vidyasagar, M. 1975, Feedback Systems: Input-Output

Properties, Academic Press, New York.

Dieudonne 1969, Foundations of Modern Analysis, Academic Press, New York.

Ferreira, P. G. 1976, "The servomechanism problem and the method of the

state-space in the frequency domain," Int. J. Control, vol. 23 (2),

pp. 245-255.

Ferreira, P. G. and Bhattacharyya, S. P. 1977, "On blocking zeros,"

IEEE Trans. Aut. Contr., vol. AC-22 (2), pp. 258-259.



Francis, b. A. 1975, "The foundation of linear multivariable regulation:

The internal model principle," Ph.D. Dissertation, Univ. of Toronto.

James, H. M., Nichols, N. B. and Phillips, R. S. 1965, Theory of

Servomechanisms, Dover Publications, Inc. New York.

Johnson, C. D. 1976, "Theory of disturbance-accommodating controllers,"

Control and Dynamic Systems, vol. 12 pp. 287-489, ed. by C. T. Leondes,

Academic Press, New York.

MacFarlane, A. G. J. and Karcanias, N. 1976, "Poles and zeros of linear

multivariable systems: a survey of the algebraic, geometric and

complex variable theory," Int. J. Control, vol. 24 (1), pp. 33-74.

Martin, R. H., Jr. 1976, Nonlinear Operators of Differential Equations

in Banach Spaces, John Wiley & Sons, Inc. New York.

Pugh, A. C. 1977, "Transmission and system zeros," Int. J. Control,

vol. 26 (2), pp. 315-324.

Sandberg, I. W. 1965, "Some results on the theory of physical systems

governed by nonlinear functional equations," Bell System Technical

Journal, pp. 871-898.

Staats, P. W., Jr. and Pearson, J. B. 1977, "Robust solution of the

linear servomechanism problem," Automatica, vol. 13 (2), pp. 125-138.

Vidyasagar, M. 1978, Nonlinear System Analysis, Prentice-Hall, Inc.

New Jersey.

Wolfe, C. A. and Meditch, J. S. 1977, "Theory of system type for linear

multivariable servomechanism," IEEE Trans. Aut. Contr., vol. AC-22 (1),

pp. 36-48.

Wonham, W. M. 1976, "Towards an abstract internal model principle,"

IEEE Trans. Systems, Man & Cybernetics, vol. SMC-6 (11), pp. 735-740.



Zames, G. 1965, "Nonlinear time-varying feedback systems - conditions

for L boundedness derived using conic operators on exponentially
00

weighted spaces," Proc. 3rd Allerton Conf.



* <J)TLa H

w

i +

7®-1- .$3~Lv.

Fig. II.1. Nonlinear servomechanism S under study: r(«), w(.) are

the reference and disturbance signals, respectively; e(.)

is the tracking error.
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Fig. IIH. Nonlinear servomechanism S1: aspecial case of S-the
output nonlinearity Is an identity, i.e..*° = I.
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Fig. III.2. Nonlinear feedback system S*: the loop-transformed syst
em

of S1.
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Fig. IV.la. The feedback system under the consideration for L-stability
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Fig. IV.lb. The exp(at)-weighted feedback system of the system shown

Fig. IV.la.

on

Fig. IV.2. The feedback system Swhich relates the derivatives of the
signals in S.
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Fig. IV.3a. Aspecial case of S: S° is obtained from Sby letting
♦ = I.

r„: = f-Kw e,
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I • + •
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Fig. IV.3b. The K-shifted system S° of the system S° shown on Fig. IV.3a.
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Fig. IV.3C. The exp(at)-weighted system S° of the system S° shown on

Fig. IV.3b.
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Fig. IV.4. The transformed feedback system of S which has the same

xo
structure as the system S .
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Fig. IV.5. The lumped linear time-invariant servo under consideration,
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Fig. IV.6. The K-shifted system of the nonlinear system S with * = I
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Fig. VI.1. An example of a single-input single-output nonlinear servo,
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Fig. VI.2. The characteristic of *° - the output nonlinearity in the

nonlinear servo shown on Fig. VI.1.
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Fig. VI.3. Sketch of the root loci of s + (s+k)s + (15+12k)s + 32k,



f D$K(z)

Fig. VI.4. The value of D$° evaluated at z with k = 0.5. Note that

the time-varying gain -0.089 < D$°(z) < 0.833, Vz G B .
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Fig. VI.5. The a-shifted Nyquist diagram w -• H,(-a+jw) , with k = 0.5,

a = 1, H, (s) =
s*+12s+32

s3+8.5s2+21s+16
, lies in the critical

disk Bin aoq» ~ CL833^ witn center (5.0,0) and radius 6.2.
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