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!• Introduction

A great deal of effort has been spent in the search for

optimal and computationally feasible game strategies. In some

cases (e.g. Bridge-it, Nim ) such strategies have been found,

while others have been more resistant. Recently, it has become

possible to provide compelling evidence that such strategies may

not always exist. Even and Tarjan [1] and Schaefer [2] have

shown that determining which player has a winning strategy in

certain combinatorial games is a polynomial space complete prob

lem [3]. (See also [4,5]. )

We show that GO, a popular Oriental game with a long his

tory, has a similar property. That is, given an arbitrary GO
position on an n X n board, the problem of determining the winner
is pspace-hard. To our knowledge, this is the first such result
for a board game. Board games are, by their nature, planar — a

property which frequently complicates completeness proofs. We
exploit a new technique developed in [6] to overcome this diffi

culty.

In practice, GO is played on a 19 X 19 board. As such it is

a finite game for which a large table containing a winning
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strategy could, in principle, be given. Our generalization to an

n X n board prevents such a solution while preserving the spirit
of the game. We make no further modifications to the rules.

We prove that GO is pspace-hard rather than pspace-complete
because GO is not known to be in pspace. If there were a polyno
mial bound on the length of GO games, then the completeness would

follow trivially. While it happens that actual games seem never
2

to approach 19 moves, we are unable to argue this in general.

Finally, we acknowledge that our result has no a priori relevance

to the problem of determining an optimal strategy when play
begins on an empty board.

2. Preliminaries

Definition: The Quantified Boolean Formula Problem (QBF) =

{Q1vlQ2v2,. ..,QnvnF(v1 ,v2,. ..,vn) j(^{V.EJ}, where the v. are
boolean variables, F is a boolean formula in conjunctive normal

form with at most three variables in each of m clauses (3CNF),

and the quantified formula is true}. Wlog we demand that Q-=3 ,

Qn= V, and that Q^O^-, , for 1<i<n. In addition, m± is the
number of (possibly negated) occurrences of the variable v. in F.

Definition: Q3CNF is the set of well formed formulae, as

above, but which may be true or false.

Theorem 1: QBF is logspace complete for pspace. [1]

Given a boolean formula B4Q3CNF, we use theorem 3 to reduce

it to a planar formula PB, theorems 2 and 4 to reduce PB to a

planar geography game, PGG, and finally show how PGG can be

transformed into an equivalent GO game. For the sake of motivat

ing the definition of planar formulae, however, we first outline

a simple proof of the pspace completeness of generalized geogra

phy.
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3. Generalized Geography

Definition: Generalized Geography (GG) is a game played by

two players on the nodes of a directed graph. Play begins when

the first player puts a marker on a distinguished node. In sub

sequent turns, players alternately place a marker on any unmarked

node q, such that there is a directed arc from the last node

played to q. The first player who cannot move loses.

This is a generalization of a commonly played game in which

players must name a place not yet mentioned in the game, and
whose first letter is the same as the last letter of the last

place named. The first player to be stumped loses. This
instance of geography would be modeled by a graph with as many

nodes as there are places. Directed arcs would go from a node,

u, to all those nodes whose first letters are the same as u^s

last letter.

Theorem 2: GG is logspace complete for pspace. [2]

Proof: Given a formula B < Q3CNF,
B=Q1v1,Q2v2,...,QnvnF(v1,v2,...,vn), we construct the following
graph, GG(B):

Each variable, v., is represented by a diamond structure,

\

S\. I
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and each clause, c^, is represented by a single node. In addi
tion, we have arcs (v 2,v ) for 1<i<n, (c. v. .) for v.4c .,

— ^ x i^ J-* '»u — J, 1,1 1 J '

and (c v. -) for v.4c., and (vn 9,c.) for 1<j<m. «r,. ,•* +Ac i^U«A*^

$;<\ ^

Play proceeds rather simply. One player chooses which path

to take through V-diamonds (i.e. diamonds representing univer

sally quantified variables), and the other player choses which

path to take through 3 -diamonds. After all diamonds have been

traversed, the V-piayer choses a clause, and the 3 -player then

choses a variable from that clause. 3 then wins immediately if

the chosen variable satisfies the clause; otherwise, V wins on

the next move. It follows easily that 3 wins iff B is true, and

we leave the details to the reader.
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4. Planar Formulae

Definition: Let B4Q3CNF. We call G(B) = (N,A) the graph of

B, where N={c. | 1<j<m} U {v± \ 1<i<n}

A=A1 U A2

where

A1=l {ci,Vj} <Vj4°i °r '"j40!1

and

A2= { { Vj vj+1l i 1<j<nl

B

i«3 ^

v.

V

Definition: The Planar Quantified Boolean Formula Problem
(PQBF) is QBF restricted to formulae B such that G(B) is planar.

Theorem 3: PQBF is pspace complete.
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Proof: We give a polynomial time algorithm that converts a

formula B in Q3CNF into a formula PB such that:

i) G(PB) is planar

ii) PB <==> B

The algorithm proceeds as follows: Draw G(B) on a grid. The

grid is 3m x 3m, with nodes arranged on the left and bottom bord

ers. The set of clauses {c^ is along the left border, with each
node 3 grid lines high. The set of variables {v.} is along the

bottom border, with the width of a node v. equal to m- . Grid

lines are then darkened in the obvious manner, so that each arc

in A- consists of a horizontal segment and a vertical segment.

A2 is obtained simply by joining adjacent variables with an arc.

s«fu: i - (3*y v&c j.y &y3e)(V&
[(Ot* ltc.^(at ltd )(«.t7.^e>)J & i

We now modify the formula so that non-planarity is elim

inated in A- and then further modify the formula so that A2 can
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be drawn without introducing non-planarity.

Pick a point in the graph where two arcs cross, involving,

for instance, the variables a and b.

ci °

Cjo- <s>

®
$>•*

Replace that section of the graph by the following subgraph,

G(X),

S>y £>
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where the small unlabeled nodes in the picture represent clauses

of X, which is appended to. B. X is comprised of:

(a2+D2+c< )<a2+o< )(b2+ «•< )

i.e. ^2^2 <=~> CJ><-

(a,,+o2+o1+ £ )(a,+ ^ )(i3JL+ ^

i.e. a2b, <=••=> £

(a1+b1+Y )(a1+ p(bi+ y )

i.e. a-ib-: <==>
If

(a1+b2+ T )(ax+ f )(d2+ f )

i.e. a,t>j <=-> jT"

6<+r;)^r^ -<H^
(os<. + fi ){ fi + Y )( y + ir )£* +'X

and

(ia2+j3) (b+b2) (a2+a) (a+a2) %?

i.e. a <-«> a2, b <-•=> b;
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At the same time a or a is replaced in c^ with a1 or "a1 and

b or b is replaced in c. with b^ or b-|

It is clear from the picture that the new graph has one less

crossover point, and one can easily verify that X is satisfiable

iff [a1 <==> a]and[b1 <==> b].

The algorithm repeats the above replacement at each cross

over point, starting at lower left and moving up and right, using

new auxiliary variables each time, until the graph is finally

planar.

At each stage of the algorithm, only a constant amount of
2

work is done, and there are no more than 9m stages.

Now we draw in A2 without disturbing the planarity of the
graph. Since all of the new variables are in the same exist

block, we are free to order them arbitrarily. Taking another

look at our planar crossover box, we notice that there is a sim

ple path linking all of its variables (i.e. the dashed lines in

figure 8).
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We use this fact to show how to connect all of the new variables

together, as in figure 9.

$\\ 1
Notice that we have used extra boxes to allow arcs in A2 to

2
cross A1 arcs as necessary. This can add no more than 9m new

boxes, and the algorithm is thus clearly polynomial. Q.E.D.

5. Planar Generalized Geography

Theorem 4: Generalized Geography is pspace complete even

when played only on planar graphs.

Proof: There are two problems which prevent us from merely

invoking the previous theorem to give us the proof. The first is

that arcs (c.,v.) must be drawn to one side of the diamond
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representing v., and arcs (Cj,^) must be drawn to the other
ide; in drawing the graph of a formula, we permitted ourselves
ny ordering of arcs around nodes v^ The second problem is the

et of arcs, { (vn,c,) ! 1<j<mK

The first problem can be solved simply: The diamond
representing v. is replaced by a chain of 2mi expanded diamonds,

as in figure 10.

The function of arcs *i is an XOR between successive dia
monds, ensuring that the choice of path in adjacent diamonds will
be opposite (Note that in figure 10, a^3 is on the opposite side
from a. O. Arcs from clause nodes are then directed into the

appropriate a. 3 or aij3, with no two clauses using the same i.
The function of a2m is to shift the choice of truth value of

the next variable to the other player. (We can simplify the

reduction of this problem to GO if we allow arcs x± to be

traversed only by 3 , and so an existentially quantified variable

will be as in figure 10a.)
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To solve the second problem, we make the following observa

tion: There is no need to wait until all variables have had

their truth values chosen before allowing the V-piayer to test

the truth of a clause; in fact, each clause can be tested as soon

as its last variable has had its value fixed. Moreover, it is

only necessary to allow testing of clauses not satisfied by their

last chosen variable.

The clause construction therefore becomes:

Let c.=(a+b+d), where d is the variable with the highest

index of the three (i.e. is quantified last). The corresponding

arcs in GG(B) are: (ci>ai 2)(cifb. 2),and(dk 2»ci^ if d is a V-
variable, else (d. o>C|).

Notice that if d is chosen true, there is no way for the

V-piayer to test c^ In fact, it would not be in Vxs interest
to do so.

At this point, we draw a dotted line around the chain of

diamonds representing each variable, and notice that the result

ing graph, ignoring direction of arcs, is exactly the graph of

the formula we started with, and hence planar for planar formu

lae. Q.E.D.
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6. The Rules of GO

Go is played on a board which is a grid of 19 x 19 locations

called points. There are two players, Black and White, for whom

the rules are symmetric except that Black moves first. A player

moves by placing a stone of his own color on a vacant point. The
moves alternate between players, except that any player may pass

at any time. The game terminates when both players pass.

As the game progresses, the stones form clusters called

groups. A group is a maximal, uniformly colored set of stones
which occupy a connected region of the board. A group of stones
becomes surrounded if none of them is adjacent to a vacant point.

After each black (white) move, all surrounded white (black)

groups are removed, followed by all surrounded black (white)

groups.

Scoring

At the end of the game all dead stones are removed from the

board. A stone is dead if it ultimately can be surrounded,

despite any attempts to save it. A vacant point is said to be
white territory if it is surrounded on all sides by either white

stones or the edge of the board. Black territory is similarly

designated. The final score for White is the count of all the
white territory minus the number of white stones which have been

captured (removed at any time). The black score is similarly

calculated and the highest scorer wins.

These rules are a subset of the actual rules of GO, though

they are adequate for our purposes. The major omission concerns

the situation of KO which has a special rule designed to prevent

infinite repetitions of the same position. A complete, concise

treatment is given in [8].
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Eyes

An important consequence of the GO rules is that certain

configurations of stones cannot be captured. If a configuration
surrounds two separated, vacant points, it is said to have two

eyes. It then cannot be surrounded because it is impossible for
the opponent to fill both eyes simultaneously.

An uncapturable configuration.

Frequently, in the course of actual games, a player may have
a nearly surrounded group of stones which he is desperately try

ing to connect to a group having two eyes. At the same time his
opponent is trying to cut him off. We exploit such a situation

later in our proof.

7. Construction of the GO Position

We now encode the constructed planar generalized geography

game as a GO position. We refer to the GO players as Black and
White and the geography players as the 3 -player and the V-
player. The GO position to be constructed will have the property

that Black has a winning strategy iff the 3 -player has a winning

strategy.

The overall plan behind the construction is to have a very

large white group of stones which is nearly surrounded, (fig. 13)
It is so large that the outcome of the game hinges upon its sur

vival, that is, Black will win iff he can capture it. White's
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only hope is first to escape through the small breach in the sur

rounding black stones, and then ultimately connect to a group

with two eyes. This breach, however, leads to a structure which

is patterned after the given geography graph. White and Black

are then, in effect, forced to play the geography game with each

other.

% « «

>§•§•••
OOOQOi
m

Figure 13

Each arc and vertex in the geography graph is represented by

a corresponding pipe and junction in the GO position.
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There are essentially six types of vertices which arise in

our geography graphs.

Y

Ca^> (VS (c\

& t
w

(<h
(<y\ ^•c^

a) V-player choice b) 3 -player choice

c) join d) test e) dead end f) trivial

We give the corresponding GO junction for vertices (a) thru

(d) , and leave (e) for the reader. Note that in the generalized

geography graphs which we construct, the position of a choice

vertex (i.e. a vertex with outdegree > 1) determines which player

makes the choice. This necessitates the occasional use of

trivial vertices to switch the initiative. In the GO construc

tion, the nature of the junction determines which player makes

the choice. Thus the trivia] vertices become unnecessary and are

treated as arcs.
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The desired GO position is obtained by joining the appropri

ate pipes and junctions in a way which embeds the geography

graph. The pipe entering the first choice junction (the first

diamond) is connected to the breach in Black's wall around the

large white group. White moves first.

We now argue that if the players play "correctly" then the

ensuing game will mimic a geography game, in that the course of

play will travel through a sequence of pipes corresponding to a

valid sequence of geography arcs. Furthermore, if any player

does not play correctly his opponent will be able to win within a

few moves.

Upon entering or leaving any junction it will be White's

turn. Inductively, we assume that the large white group is com

pletely surrounded except for the tip of the pipe entering the

current junction. Let us consider the case where the play is

about to enter an (a)-junction, corresponding to a choice by the

V-player. We assume wlog that he wishes to go left.

Proposition: If White's first move is not at either point 1 or

point 2 then Black can win in two moves.

Proof: Assume that White does not play at either 1 or 2.

Further assume that White does not play at 3. In that case Black

plays at 2 forcing White to respond at 1 whereby Black wins at 3.

If White had played at 3 initially then we symmetrically reverse

the argument and Black again has a win.

Proposition: If Black does not respond at point 2, then White

can win in two moves.

Proof: Suppose White played at 1 and black failed to play at 2.

Then White plays at 2, capturing three black stones. Black can

not now prevent White from connecting to the White group with two

eyes, winning for White.
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Proposition: White must now continue at point 3, or else lose

immediately.

Proof: Clear.

Proposition: Black must respond at point 4 or lose immediately.

Proof: Clear, using the white group which has two eyes and which

is directly above 4.

Thus if White chooses the left pipe and both players play

correctly the sequence of moves would be: White - 1; Black - 2;
White - 3; Black - 4. The play now continues as before, down the

left pipe. The large white group is again completely surrounded,
except for the tip of the left pipe and it is White's turn to
move, fulfilling the induction assumptions. Both the (b) and the
(c) junctions can be argued similarly. The (d) junction,
corresponding to a selection of a variable to test by Black, is
somewhat different and we analyze it here. We show that if the

play enters through the right hand pipe then Black wins iff the
play had previously passed down through the vertical pipe.

Proposition: If play first enters this junction at the top then
it will leave at the bottom and there will be a white stone

placed at point 1 and a black stone at point 2.

Proof: Clear, using the white group with two eyes to force

Black's move.

Proposition: If play subsequently enters through the right hand

pipe then Black wins.

Proof: White is forced to move at 3, followed by the winning

black move at 4.

Proposition: If play enters through the right hand pipe prior to
entering through the top pipe then White wins.
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Proof: White moves at 3, and then has a win at either 2 or 4.

8. Conclusion

The concept of planar formulae has proved usefuJ in demon

strating psapce hardness for GO and Checkers [7]. It would be

interesting to know if similar techniques could be used to obtain

pspace hardness proofs for games like Othello, Hex, and Chess

(given some "natural" n X n generalization of the last). It

would also be interesting to show that GO or Chess is in pspace,

or that either is complete for exponential time.
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