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Abstract

We present an algorithm for the approximate solution of the nonsymmetric

n-city traveling-salesman problem. An instance of this problem is specified

by a n*n distance matrix D = (d..). The algorithm first solves the assign-

ment problem for the matrix D, and then patches the cycles of the optimum

assignment together to form a tour. The execution time of the algorithm is

comparable to the time required to solve anxn assignment problem.

If the distances d.. are drawn independently from a uniform distribu-
•j

tion then, with probability tending to 1, the ratio of the cost of the tour

produced by the algorithm to the cost of an optimum tour is < 1+e(n), where

e(n) goes to zero as n + °°. Hence the method tends to give nearly optimal

solutions when the number of cities is extremely large.
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approximation algorithms, probabilistic analysis of algorithms.
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1. Introduction

Let E denote the set of all permutations of {l,2,...,n} and let

Z* denote the set of all cyclic permutations of {1,2,... ,n}.., For any nxn

matrix D = (d..) of nonnegative real numbers and any permutation tt g En,
1J n

define c(tt,D) = J di,7r(i)*
The (nonsymmetric) traveling-salesman problem is stated as follows: given

D, find a cyclic permutation ir*(D) (or simply tt*, when D is under

stood) such that c(tt*,D) = min c(tt,D). This problem typically arises in
ttGZ*

machine scheduling applications,"where d^ represents the set-up cost for
job j upon the completion of job i, and an optimum sequence of job execu

tion is desired. Since the directed traveling-salesman problem is NP-hard

[4], it is not reasonable to expect to find a polynomial-time algorithm for

its exact solution. Well-designed branch-and-bound methods are capable of

efficiently solving problem instances of size up to about n=100 [6].

By an approximation algorithm for the traveling-salesman problem we

mean an algorithm A that, given any matrix D, produces a cyclic permuta

tion tt(D). The relative error associated with the execution of A on D

is

eW c(Tr*(D),D)

Sahni and Gonzales have shown that, given any e > 0, it is NP-hard to

solve the traveling-salesman problem with relative error < e. Thus, we

cannot expect to find a polynomial-time approximation algorithm with uniformly

bounded relative error.

In this paper we present a polynomial-time approximation algorithm which

tends to gives solutions with small relative error. The algorithm starts

by solving the nxn assignment problem, which is stated as follows: given D,



find a permutation tt(D) (or simply tt) such that

c(tt,D) = min c(tt,D).

There are algorithms which solve the assignment problem in time 0(n ) ([1],

[7]). Our approximation algorithm produces a cyclic permutation tt by patch

ing together the cycles of the optimal assignment permutation tt(D). The

running time of the algorithm is 0(n3). The algorithm also yields an upper
bound on the relative error e(D). Our main theorem states that, if the d^

are drawn independently from the uniform distribution in [0,1] , then with

probability tending to 1 as n -> «>, this upper bound is very small.

A companion paper to the present one [5] gives similar results for the

traveling-salesman problem in the plane.

It is interesting that a patching algorithm similar to ours has been

proven to give strictly optimum solutions for an important special class of

traveling-salesman problems [3].

2. The Patching Algorithm

We begin by stating the mxn assignment problem. Let m and n be

positive integers with m < n. Let S „ denote the set of single-valued
— m,n

one-one functions from {1,2,...,m} into {1,2,...,n}. In particular, when

m = n, S = Z , the set of permutations of {l,2,...,n}. Given a mxn
m ,n n

matrix A = (a..) of real numbers, the assignment problem asks for a function

we Sm such that
m,n

m

m,n
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There are algorithms to solve the mxn assignment problem in 0(m n) steps

([1].[7]).

Given a nxn matrix D, the patching algorithm begins by finding an

optimum assignment tt. If, fortuitously, i is a cyclic permutation, then

the traveling-salesman problem is solved. Otherwise, ir will have two or

more cycles. The algorithm patches these cycles together into a single

cycle, thereby obtaining a cyclic permutation.

We next describe how the patching is done. Let p.. GE be the per

mutation that interchanges elements i and j, leaving all other elements

fixed. The transformation

Rij: Zn ""* En •

defined by R..(tt) = irop.., is called the i,j patching operation. Also,

define

\j(,T'D) •d1.w(j)+dj.*(ird1,w(1)-dj.ir(j) •

The following lemma is immediate.

Lemma 1. For all i, j,

c(TTop.j,D) =c(TT,D)+Aij(TT,D) .

Also, if i and j are in different cycles of tt, then the elements in

these two cycles lie in a single cycle of Top.., and the other cycles of

tt remain unchanged.

Figure 1 indicates the effect of the i,j patching operation.

We next describe a patching process which, given a permutation a with

k cycles, attempts to transform a to a cyclic permutation by applying a



sequence of k-1 patching operations. This sequence is selected as follows.

First, some cycle C of maximum length in a is selected. Let the remain

ing cycles be C1,C2,...,Ck_r Ambiguously, we let the name of acycle also
stand for the set of elements of the cycle. If |C| < k-1, then the algo

rithm reports failure and halts. (We shall see that this event has negli

gible probability.) Otherwise, a (k-l)x |c| assignment problem is set up

whose solution gives an optimum way to patch all the cycles C-j ,Cr,,... »C|c_-j

into C at distinct places. The matrix A defining this problem has k-1

rows and a column for each j e C. The i-j entry is

(*) a.. = min Aa_.(a,D) .
1J &ec J

Thus, a., is the least cost of a patching operation involving element
'j

j G C, and any element in C.. Let the minimizing £ in (*) be denoted

&(i,j). Let the solution to this assignment problem be a 1-1 function

6: {1,2,...,k-1} •»• C. Then, for i = 1,2,...,k-1, the patching process

performs the patching operation Rw. q/a\\ q/i\- These operations commute,

and may thus be performed in any order.

Figure 2 indicates how a permutation a with four cycles might be
k-1

converted into a tour. Let 6(a,D,C) = J min A0 Am(a,D). Then the
i=l £€Ci *,0V1'

cyclic permutation obtained by applying the patching process to a has cost

C(a,D)+6(a,D,C). The time required for the patching process is

0((k-l)2|C|) =0(n3).

The over-all patching algorithm is now easily stated:

i) find an optimal assignment tt for the matrix D;

ii) if tt has k cycles and no cycle is of length 2l k, then halt

and report failure;
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iii) otherwise, apply the patching process to obtain a cyclic permuta

tion tt(D) of cost c(tt,D) + 6(tt,D,C);

iv) print out the permutation tt and the error bound

c>±W-
3

The execution time of the patching algorithm is 0(n ).

Section 3 analyzes the distribution of e(D). Section 4 gives a

heuristic error analysis for a variant of the patching algorithm.

3. Relative Error of the Patching Algorithm

Recall that, for any matrix D, tt(D) denotes the cyclic permutation

produced by the patching algorithm, and tt*(D) denotes an optimal solution

to the traveling-salesman problem for D. Thus the relative error of the

patching algorithm is given by

e(D) =̂ %t;^

Let U be the uniform distribution over the set of nxn matrices
nxn

whose elements lie in [0,1].

Theorem 1. Let D be drawn from U . Then with probability tending
——————— nxn

to 1 as n •* «,

(1) e(D) <9>/& +2/7(ln n)2-n"1/2 .

The present section is devoted to the proof of Theorem 1. We begin with

some preliminary remarks and propositions needed for the proof.



Drawing a matrix D from U vri is equivalent to drawing each element
nxn

independently from the uniform distribution on [0,1]. With probability 1,

a D drawn from U has the property that no two sets of its elements have
nxn

the same sum. We assume that all distance matrices considered have this

property. Thus, in particular, we assume that every matrix D presented to

the algorithm has a unique optimum assignment.

The first proposition concerns the tails of the binomial distribution.

It is a direct consequence of the Chernoff bound [2].

Proposition 1. For 0 < p < 1 and N a positive integer

a) for all 3 e [0,1]

[0-3)Np] N k m k 82Nn

k=0 K c

b) for all 3 e [0,~),

(3) I (Nk)pk(l-p)N-k <exp(-^) .
k=(l+3)Np K *

The second proposition concerns random permutations. Ambiguously, let

£ denote both,the set of all permutations of {l,2,...,n}, and the uni

form distribution over this set. The symbol m(a) denotes the maximum

length of any cycle of the permutation a.

Proposition 2. Let a be drawn from E . Then, with probability

tending to 1 as n •> °°,

a) a has at most 3Inn cycles

b> rnnrim^ i"-"2/3
and c) a has exactly one cycle of length m(a).



Proof. Let a be a permutation in Z . By the cycle structure of tt

is meant that partition of n in which an integer I appears as many times

as tt has cycles of length JL The uniform distribution over Z induces

a probability distribution P over all the possible cycle structures.

Consider the following method of selecting a random partition of n.

PROCEDURE PARTITION(n)

begin;

i «- n;

while i > 0 do begin;

1. select a random integer k from the uniform distribution

over {1,2,...,i};

i «- i-k

end

end

The multiset of integers k selected during the process forms the desired

partition.

We claim that executing PARTITION(n) is equivalent to sampling from the

distribution P . This follows from two observations. First, for each k
n

between 1and n, the number of permutations in Zn such that some fixed

element x lies in a cycle of length k is (n-1)!. Therefore, the length

of the cycle containing x is uniformly distributed over {l,2,...,n}.

Secondly, given that x lies in a cycle of length k, all permutations of

the remaining n-k elements are equally likely.

We prove (a) by considering the execution of PARTITION(n). Call an

execution of step 1asuccess if p^1'! > P°92(i-lOl- At eacn steP tne
probability of success is _> ^- Also, the process terminates no later than
the flog2n]-th success. Hence, the probability that a has more than 3Inn

cycles is less than or equal to the probability that 3Inn flips of a fair



coin will result in fewer than p092nl heads; and, by Proposition 1, this

probability is o(l).

To prove (b), note that

Pr{m(a) <ttL—> < Pr(a has at least 3 Inn cycles} = o(l)
x 3 In n

and

Pr{m(a) >n-n2/3} <PKelement 1lies in acycle of length <n ' or >n-n ' }

=Oftf1'3)

To prove (c), note that

Pr{a contains two cycles of length k}

£~--(Pr{a contains two cycles of length k, and element x is in one
of them})

.JL 1 _L 1
- 2k "n'n-k " 2k(n-k) '

Hence,

PKfor some k>0 I* „, a contains two cycles of length k}
— 3 inn

< "(2 1 , 1 f I+J_ -0/lnjh
- in 2k(n-k)-2F in k+n-k "0( n » •

k=—2— u -—H—
K Inn K Inn

The third proposition concerns properties of permutations, given an

upper bound on the lengths of their cycles.

Proposition 3. Let m and n be integers. Let Z'n denote {a|aGZn

and m(a)_<m}. Let a£ denote the expected number of elements occurring in

cycles of length k in a permutation drawn at random from Z . Then
m

a) I AP = n and
k=l K

b) A? <A!) < ••• <Aj\
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Proof. Part (a) is immediate, since every element is in exactly one

cycle. To prove (b) let Fn = |zJJ|. Then

min(m,n)
(4) F. = I (A-l)U-2)---(A-k+l)F. k .

£ k=l *"K

This follows from the observation that (fc-l)U-2)---U-k+1)FA_k gives the

number of permutations in Z1? such that a fixed element x lies in a cycle

of length k. From (4) it follows by induction on I that

(5) for all I, F^ < IFZ_} .

Also,

(6) A" p ^ .
K rn

since A^ is n times the probability that element x lies in a cycle of

length k. Hence

Ak ("-^1)Fw_k n

Ak-1 Fn"k+1

The fourth proposition concerns matrices drawn from Unxn-

Proposition 4. Let D be drawn from Unxn- Let tt be the optimal

assignment for D. Then, with probability tending to 1as n+ «, 3<c(tt,D) <3

Proof. To prove the lower bound on c(tt,D), note that

Pr{c(^r,D)>l} >Pr{^mind..>l} >Pr{|{i|min d.^—}! >^} .
i J J

But, for any fixed i,
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Pr«nd..>£}Ml-£)n —e-2'3

1 -2/3 1Applying Proposition la (with N=n, -^ <p<e" , (1-3) = j^» ^

follows that Pr{|{i|min d.. >^-}| >§•} tends to 1.
The upper bound on c(tt,D) is an unpublished result due to David Walkup

[8]. D

Now we embark on the proof of Theorem 1. Let D = (d..) be drawn from

U . Call D exceptional if any of the following are violated:

i) tt(D) has at most 31nn cycles;

11) 3TnT^mWD))^n-n2/3;
iii) tt(D) has a unique longest cycle;

iv) y < c(tt,D) < 3.

By the above propositions, the probability that D is exceptional tends to

0 as n+ ». For any ae Z , define the matrix Da by (Da).. = d. m.
n iJ i »o vj /

Thus D is obtained by permuting the columns of D. Let [D] denote the

set {Da|aGZ }. The following lemma is the basis of our proof.

Lemma 2. For any permutation a, c(a,D) = c(a a,Da). Hence, ir is

an optimal assignment for D if and only if cf tt is an optimal assignment

for Da. Also, A..(a,D) =A. .(a^a.D0).

Given any set Tc {l,2,...,n}, let l^ denote the set of all permu

tations a in Z„ such that
n

a) T is the set of elements in a cycle of a

and b) the cycle containing these elements is a longest cycle of a;

i.e., m(a) = |T|.

Let S={TC{l,2,...,n}|jyn-n-< |T| <n-n2/3}. For any T<= S let
[D,T] denote the set of matrices in [D] whose optimum assignment is in Z .
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Note that, unless Da is exceptional, it lies in exactly one set [D,T].

In the next four lemmas, let S be a fixed set in S. For any permu

tation a, we construct a patching matrix Aa(D,S) of dimension

(n-|S|) x |s|. The rows of this matrix correspond to the elements of

{l,2,...,n} not in S, and the columns, to the elements of S. The i,j

entry gives the patching cost A..(a,D), which, by Lemma 2, is equal to
'j

A.^o^ccD0). .
Abad element of Aa(D,S) is one which is >yS+2^J 1nn. An element

which is not bad is a good element. A bad row of A (D,S) is one that

contains fewer than 3Inn good elements. The matrix Aa(D,S) is a bad

matrix if it contains more than /3nln4 +l bad rows; otherwise Aa(D,S)

is a good matrix.

Lemma 3. If D is drawn at random from u* and a is drawn at
————— nAn

random from Zn, then Pr{Aa(D,S) is bad} <4"n.

Proof. Define a matrix fta(D,S) (or, briefly, aa) with the same rows

and columns as Aa(D,S), such that (tf*)^ =di,a(j)+dj,a(i)' Then ^
is element-by-element greater than or equal to A (D,S), and it remains

only to prove that Pr{fla is bad} <4"n. The elements of d* are independent,

and each is the sum of two independent samples from the uniform distribution

on [0,1]. Thus, independently for each pair i,j, pr{ft?. is good} >

(4+/y)M^niI. Thus, applying (2) with N=m, p=(4+^Mn-m) and
3 = , we obtain:

4+/7

PKrow i has <3Inn good elements} <exp(- '-*• —«—^)ln(n-rri)
(4+/7T

^-ln(n-m) _ 1
~ e — .
c n-m
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Thus each row has probability <̂ of being bad. Then, the probability
that there are more than 1+v^TiTiT bad rows is bounded above by substitut

ing N=n-m, p=-^, 3=/3n~T7P? in (3). The resulting upper bound
-n

is 4
D

Lemma 4. Let D be drawn from UnXn, let Da be drawn at random
from [D,S], and let tt =i(Da). Then Pr{Da is not exceptional and

3xnA^D^S) is bad} =0((f)").

Proof. PHD0 is not exceptional and A^D^S) is bad}

< Pr{c(TT,Da) <3 and A^D^S) is bad}

< Pr{3a|c(ct,Da) <3 and Aa(Da,S) is bad}

<E |{a|c(a,Da) <3 and Aa(Da,S) is bad}|

(*) = n!Pr{c(a,Da)<3 and Aa(Da,S) is bad} ,

where a is a random element of Zn- But (*) is equal to

n!Pr{A3(D,S) is bad and c(3,D)<3}

where 3= a_1a is a random permutation. The two events "c(3,D) <3" and

"Ae(D,S) is bad" are independent, since the first depends only on matrix

entries d.. such that j i 3(i), and the second depends only on ^dis3(i)^

By Lemma 3the first event has probability < 4"n. The probability of the

second event is

<>n

dxTdx0* **dxM < —r .
1 Z n — n!

x1+---+xn<3
x1»---»xn>0
X-j ,•••,X <_ I

Thus (*) <n!4"n^= 0((|)n). D
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Lemma 5. If A (D,S) is a good matrix and DCT is drawn at random
8 -1 S 1

from {D e[D]|6 aE0 then, Pr{9 a has a cycle, all of whose elements

correspond to bad rows of Aa} = 0(lnnn ' ).

-1 S
Proof. The permutation 6a is a random element of Z . Thus,

restricting e" a to the domain {1,2,...,n} -S gives a random permutation

<J> from z"J . where m = |S|. If the number of bad rows in Aa(D,S) is
T n-m * '

t, then the expected number of cycles of 4> with all rows bad is

min(m,t) n n_m (Jin^,t} 1An-m_ik
k-1 k k ("-"')

where rA£~m gives the expected number of cycles of length k in arandom

permutation from zJJ , and the ratio (^/("j^1) 1s the probability that
all the rows of a cycle of length k are bad. Using the facts that

a) —-— is a decreasing function of k;
(7)

b) AJ*~m is an increasing function of k (cf. Proposition 3); and

c) lA"-m =n-m,
k=lk

we conclude that

m.

'Hm,t) 1 An-m JkL min(vm,t) 1II -i*L
k=i k k rkm)£ k=i km(n-m)

<IL y (l)(_L)k-m ^/kMn-m;

itr n-m/J

Using the inequalities

n . _ „ .2/3< m < n-n£/° and t < /3nln4 + l ,
Inn- —
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pr{<|> has a cycle with all rows bad}

iffiTfHT+l^ = nMn -1/6. _ D<lnn(-ln(l-^n,2n/^1)) -0(ln n-n "") .

Lemma 6. If e^o € ZS has at most 31nn +l cycles, and has no

cycle whose elements all correspond to bad rows of A (D,S), then

6(6"1a,De,S) <3/&+2^7(In n)2-n"1/2 .

Proof. Under the stated assumptions it is possible to carry out the

patching process so that each patch has cost <y 'n"• Hence

6(6"1a>De) <31nnV(8+2>m7)ln "• Using the inequality m>̂ j-^, them . 3 ™ ...^—..-„ _ |£)g

result follows. n

Lemma 7. Let D be drawn from U. Let tt be the optimal assign-
• nxn

ment for D. Let 6(tt,D) denote the cost of applying the patching algorithm to

D. Then ? —- 9 _i/?
Pr{6(^,D)> 3/(8+2/7) (In n)ri l/c} = o(l) .

Proof. All elements of [D] are equally likely to be drawn. Hence,

the desired probability is equal to

^(|{DaG[D]|6(a_1Ti,Da)>3»^+2v7(ln n)2n"1/2} .

In order that 6(0" TT,Da) be greater than this bound one of three events

must occur:

a) Da is exceptional;

b) Da is not exceptional and, for some T e S, Da e [D,T] and

A1T([)a)(D,T) is bad;
c) Da is not exceptional and, for some TeS, Da e [D,T], A1^0 '(D,T)

is good, and 6(ir(Da),Da,T) >3v£ +2/7(ln n)2-n"1/2.
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The expected number of matrices for which the first event is true is o(n!).

The expected number of matrices for which the second event is true .is

I |[D,T]|0(|)n. Here, 0(f)n is an upper bound on the probability that

A^D.T) is bad (cf. Lemma 4). By Lemmas 5 and 6 the expected number of

matrices for which the third event is true is I |[D,T]|0(ln n-n" ' ).

Finally, recalling that I |[D,T] | < 3Inn-nl, since no matrix D can
les

occur in more than 3 Inn of the classes [D,T], the result follows. D

Proof of Theorem 1. The inequality (1) can fail only if c(tt(D),D) <j

or 6(tt(D),D) > 3*^8 +2/7"(ln n) n ' . By Proposition 4 and Lemma 7, the

probability of each of these events tends to zero. E

Results analogous to Theorem 1 hold whenever the d.. are drawn from a

distribution over [0,~] having a bounded density function continuous at 0
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4. Heuristic Analysis of a Modified Patching Algorithm

Theorem 1-shows that, when the number of cities is sufficiently large,

the patching algorithm tends to give nearly optimal solutions to random

nonsymmetric traveling-salesman problems. The result is not entirely satis

fying, however, because the upper bound on e(D) given in the theorem tends

to zero very slowly, and is acceptably small only when n is astronomically

large.

In this section we present a modified patching algorithm and offer a

heuristic argument indicating that its expected patching cost is less than

an"1/2.

In the modified patching algorithm, all entries d^ are set to *».

This ensures that the optimal assignment permutation will have no fixed

points; i.e., no cycles of length 1. All permutations without fixed points

remain equally likely to occur as the optimum assignment.
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Having constructed the optimal assignment tt, the algorithm converts

it to a tour as follows:

MODIFIED PATCHING PROCESS

a «- tt

while a has more than one cycle do;

begin;

let C be a shortest cycle of a;

let Rj. be a minimum-cost patching operation such that ie C, j^ C,
and neither i nor j has been involved in a previous patching operation;

o- R1d(o)
end.

Thus, we no longer restrict attention to patching operations that join the

short cycles of tt directly into the longest cycle of tt. Figure 3 indicates

how the modified patching process converts a permutation to a tour.

Next we study the behavior of the modified patching algorithm on a

special class of matrices, and argue heuristically that the algorithm should

have similar behavior when applied to matrices from U
nxn

We denote the special class of matrices by M. A matrix D is in the

class M if the row minima in D lie in distinct columns, and hence deter

mine the optimal assignment for D. Formally, D GM if there is a permu

tation tt such that, for all i and j, d. -,.v < d...
J' i,tt(i) - ij

The following theorem states that, when a matrix is drawn at random

from M, the patching costs A., tend to be at least as small as they

would be if the A., were independent, and each were distributed as the

sum of two independent samples from the uniform distribution over [0,1].

To frame the theorem precisely, we introduce the concept of stochastic

dominance. Let X= (x,,x2»...,x ) and Y = (y,,y2»-••>yn) be two random

variables over Rm, where R denotes the reals. We say X \ Y (X is
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stochastically smaller than Y) if, for every A= (a],a2,...,aj e R,
PKX<A} > PKY<A}. Here X<A if, for all i, xi<ar

Let tt be a fixed permutation of {l,2,...,n} without fixed points.

Let X= {x..|l <i <j<n, j^Tr(i) and 1?rr(j)} be the random variable over
*j

R2 determined by the following experiment: draw a matrix D from the

set of matrices in M having tt as their optimal assignment; then let

x.. = A..(tt,D). Let Y = {y..|l <i<j<n, j^i(i) and i^(j)} be the

random variable over R determined as follows: the y^ are indepen

dent, and each is the sum of two independent samples from the uniform

distribution over [0,1].

Theorem 2. X «j Y

Proof. We condition on arbitrary fixed values for the entries d^-^.j.

Then the d.., j t Tr(i), are independent, with d.. distributed according
lj 'j

to auniform distribution over [d^/^*!]- Hence the differences

d..-d. -/.% are independent, and each such difference is drawn from a
ij i,tt(i) k

uniform distribution over [0,l-di -z^]- Hence the A^. are independent

of one another, and each particular patching cost A... = (d-jj~di ,n(i)'+
(d..-d. -,.\) is the sum of two independent random variables; one drawn
v Ji 3,*(3)
from the uniform distribution over [0,1-d.. -/.j\L and the other from the

uniform distribution over [0,1-d. -/_•>]• The result now follows, since a
J »TTV J /

random variable uniformly distributed over [0,1-d^ -u\~\ stochastically

dominates a random variable uniformly distributed over [0,1]. •

We conjecture that an analogous property holds when matrices drawn from

U , rather than M, are considered. More precisely, let tt be a fixed
nxn'

permutation without fixed points. Let Z={zi. |1 <i<j<n, j^Tr(i), i^-rr(j)}
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(g)-n
be a random variable over R determined by the following experiment:

draw a matrix D from the set of matrices in U w having tt as their
nxn

optimal assignment; then let z.. = A..(tt,D).

Conjecture. Z { Y

As a heuristic argument in support of the conjecture, we define a map

ping t: U •* M as follows. Let D e U have ir as its optimal

assignment. Then

W»))i,S(i)--Jndij

for k f ir(i)

(dik if dik * m^n d-H(t(D)).. = lk lk J 1J
<d,' im if d-!U = m1'n d^ 'i,tt(i) ik j ij

Thus, t(D) is obtained by interchanging the minimum element in each row

with the element of that row which occurs in the optimum assignment. The

following facts are immediate.

a) The matrices D and t(D) have the same optimal assignment tt;

b) For all i and j, A. .(tt,D) < A. .(tt,t(D)).
'vl 'si

Theorem 2, coupled with condition (b), which asserts that the patching costs

aasociated with t(D) are at least as great as those associated with D,

tends to support the conjecture. To prove the conjecture, it would be neces

sary to show that, when D is uniformly distributed over UMV . its image

t(D) is approximately uniformly distributed over M.

In view of Theorem 2 and Conjecture 1, it is of interest to elucidate

the behavior of the modified patching algorithm when tt is a random permu

tation without fixed points, the A.. are independent, and each is the sum
*«j

of two independent random variables uniformly distributed over [0,1]. We
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do so briefly, omitting details. Let the random variable Yn denote the

cost of the modified patching process under these assumptions.

Theorem 3. lim n1/2E(yn) <2
n-*»

The underlying ideas of the proof are as follows:

a) the expected number of cycles of length k in a random permuta

tion without fixed, points is -^(l+0(n" ));

b) given acycle C of length k, E(min{Aij.[i <=C, j^C}) <ykfa-k) '
These facts suggest that the expected patching cost is bounded above by

I ^frOCn'Wp./ ./y, 2n"^2. The proof becomes more complicated than
this sketch because of the possibility that the short cycles of tt may

become joined as the patching process takes place. We omit further details.

A Monte Carlo simulation was conducted to further determine the beha

vior of the random variable y. • The simulation was equivalent to deter

mining y at each of 100 random choices of tt and {A..}, for each of
3 'n ij

the values n = 100, n = 1000, and n = 10,000. The simulation avoided

explicit generation of random permutations and random patching costs; instead,

it conducted a probabilistically equivalent experiment using theoretical

properties of the cycle structure of a random permutation, and of the distribu

tion of the minimum of a given number of independent patching costs. The

results were as follows.
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n 100 1000 10,000

sample size 100 100 100

sample mean .18 .067 .018

sample mean x fi[ 1.8 2.1 1.8

sample median xyfi" 1.6 2.0 1.7

sample maximum x /n 5.4 4.9 4.0

Table 1 - Simulated Behavior of the Random Variable y„
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Figure 1: Effect of the i,j Patching Operation



Figure 2: Application of the Patching Process



Figure 3: Application of the Modified Patching Process
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