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0. Introduction

Let W(s,t), 0 _< s, T < «, be a two-parameter Wiener process. Stoch

astic integrals of four types:

4 dW
z z

* tdW dW .
z,zf z z'

4» ,dW dz1, U .dz dW '
Z,Zf Z J Z,2 z

have been defined [3,4,5,6] and form the basis for a theory of continuous-

parameter martingales in the plane and for their associated stochastic cal

culus. Our earlier efforts in deriving a differentiation formula for this

stochastic calculus were only partially successful in that the resulting

generalization of the Ito lemma is too complicated to be truly useful.

[9]

In part, the complexity of the differentiation formula reflects an

inherently complex situation, but an important additional factor is

that in [9] the differentiation formula is treated as a transfor

mation rule for stochastic integrals (as is in the case of the Ito lemma)

rather than a transformation rule for martingales. In this paper we shall

derive an intrinsic form for the transformation of weak semi-martingales

in the plane which is free of their stochastic-integral representation.

The result provides not only a simpler formula, but also a greater eluci

dation of the underlying calculus.
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1. Preliminaries and Notation

The definitions and notation of this paper will follow those of [ ]

2
and can be summarized as follows: Let R= [0,«0 * [O,00) denote the pos

itive quadrant of the plane. For two points z = (s,t) and z* = (s',tT) in

(a) z > z' will denote the condition s >_ s' and t _> t*, and z Yf- zf

the condition s > s1 and t > tf,

(b) z a. z' will denote the condition s <_ s* and t _> t' and z £ z1 the

condition s < sf and t > t*,

(c) the function h(z,z') will denote the indicator function on

2 2
R x R of the condition z A z',

(d) z x zf will denote the point (Sjt1) and z V z' the point (maxCs.s1),

max(t,tf)).

(e) if z •& z\ (z,zf] will denote the rectangle (s.s'] x (t,t'].

(f) 0 will denote the origin and R the rectangle {0 •< r, •< z}.

Let (Sl^fQ) be aprobability space and let (x¥ ,z eR+} be afamily

of a-subfields satisfying the following conditions:

(Fx) z-C zf implies <=£ C <=£,,

(F ) ,Jk contains all the null sets of

(F ) for every z ^T = H ^ ,
J • zx z'»z z

(F.) for every z yf and ^^ are conditionally independent given

Cyz,where^Icys>„aL^ =̂ t.
2

For a stochastic process {X , z e R }, X(z,zf] will denote X f , + X -
Z T S,tS,u

X ,- X , . A process X is said to be ^T-adapted if for each z X is
s, t s ,t z z

^-measurable. In the definitions that follow the process X is assumed

to be Of -adapted and for each z X is integrable.

-2-



Definitions

(M1) Xz is a martingale if z' > z implies E(X ,jCJf ) = X a.s.

(MJ X is an adapted 1-martingale (2-martingale) if {X ,Qf } is a
^ Z S,t *-/S,t

martingale in s for each fixed t (in t for each fixed s). '

(M3) Xz is a weak martingale if z' » z implies E{X(z,zf ]\Cf }= 0

^V Xz is a strong martingale if X vanishes at the axes and E{X(z,z']|

Cyl V ^T2 >=0whenever z'» z.
w z v z

(M,.) X is a Wiener process if X is a Gausian process satisfying EX = 0
J Z 2

for all z and EX(z,z'] X(c,C'] = Area ((z,z'] O (CC1]).

A strong martingale is also a martingale which in turn is both an

adapted 1-martingale and an adapted 2-martingale, either of which is also

a weka martingale. A Wiener process is a strong martingale. If we assume

that yT} is generated by aWiener process W, i.e., ^f =a ({W ,?-<z}),

thenT4"martin8ales are representable as stochastic integrals in terms of

W. A more general representation result will be stated below. Henceforth,

we shall assume that ^ is generated by a Wiener process W.

Definition X^ is said to be square-integrable semimartingale if X = M +
z z

Mlz + M2z + Bz where M is a square-integrable martingale, M (M ) is a

sample-continuous square-integrable process which is an adapted 1-martingale

(2-martingale) and mean-square differentiable in the 2-direction (1-direction),

and Bz = J b^ dC where bis an ^-predictable process with J Eb2 d?< «.

It follows from the results of [4,5] that every square-integrable

semimartingale has a unique representation of the form

(1.1) xz = Ĵ dW? + J i/j dW^ dwc, + o , dC dW +
XR ^»^ ^K r; *k rz ""2 z Rz iVz

6r .dW„ dCf + fb dC
z z

z
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where 0 and b are yf-predictable and square-integrable (d^-P dz measure)

processes, ty ,a and $ are CT i-predictable and square-integrable
zvz

(d~P dz dzf measure) processes.

Now, suppose that a process X is of the form (1.1) where the integrands

satisfy the same predictability conditions as before, but instead of being

drP dz or err dz dz1 square-integrable are now merely almost surely dz or

dz dzf square-integrable. We shall call such a process a locally square-

integrable semimartingle or a local semimartingale for short.

Remark In the one parameter case, local martingales and semimartingales

are defined by a stopping argument. In the two parameter case the situa

tion is different since stopped versions of processes can be defined only

via integration ([5], see also [3]). It is still true in the two parameter

case that if M(c) is a local semimartingale then there exists a sequence

of square integrable semimartingales M (C) such that M (C) -!—^M(C) para

meter stopping (this will follow directly from the results of the next

section and the stopping line constructed in [7]).

2. A Calculus of Semimartingales

Let X be a local semimartingale and let ty be a predictable process

such that

(2.1) Prob /'sup |,j, |<«A =i

Then the stochastic integral

(2.2) (i|)o X) = f * dXrz RJ C C
z

is defined by

(2.3) (i() o X) = h(i 8 dW + [ ty „ . $ , dW dW ,

+ ifi, ,a , dC dW , +
J R„5VC ^ C Ri

z z

* w . B . dW dcf
LZ xvz ivz - «.z

J *c \ *
Z
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Hence, for each t/>, \\> o X defines a mapping of local semimartingales into

local semimartingales.

A local semimartingale is a one-parameter local semimartingale in

each direction and a rerepresentation of (1.1) makes this clear. Let

Xj„ and X be defined as follows:

(2.4) Xwl(z,cf) =6C, + JhCC.C'W ,dW? +a ,dC]
Rz

(2.5) Xvil(z,cl) =bc, +|hCc.OS ,dW?
Rz

Then, (1.1) can be written as

(2.6) Xz =JX^Cz.C) dWc, +|Xyl(z,c') dC
Rz Rz

Because X^Az,^) and X.(zjC1) are both^,^ measurable (2.6) is alocal

1-semimartingale representation for X. It is convenient to denote the

Lebesgue measure by u and write (2.6) in a compact form as

(2.7) X = Xyl o W + X o u

Similarly, we can define X^_ and X « by

(2.4f) x (z,c) -e + fh(c,i;,)[* .dw +e .-de']

(2.5') Xy2(z,C)=b? + Jh(ce') a^, dc
and rewrite (1.1) to yield a local 2-semimartingale representation

(2.6') Xz = jX^U.O dW^ +
Rz Rz

xp2(z,0 dC

which will be expressed in a more compact form as

(2.7') X =W o Xw2 + yo Xy2

Equations (2.7) and (2.71) can be thought of as partial differential

formulas: 3JC = X^± 3W + X 3.y so that the function X^ and X can be

thought of as partial derivatives.[2] Intuitively, we can construct a local

semimartingale Z from two existing ones X and Y by identifying 3-,3?Z =

-5-



32Y \X* We s^a-^^ ca^1 tne operation composition and denote it by Y * X.

The precise definition for Y * X is given by
f

(2.8) (Y * X) =
Z R xR W2 "Wl C Cf

z "z

+ J Yy2(cvc',o xwl(cvc»,c') dC dwc,
R x R
z z

I Y (CVC'.C) X _(CVc',c') dWr dC*
J x R wz yj. £

+

R
z z

+ Y (cvc'.c) x .(eve1,;1) dC dC'
R xR MZ *,x
z z

In an abbreviated but more suggestive form, (2.8) can be expressed as

(2.9) Y*X = WoYw2XwloW + yoYy2XwloW
+ WoYTT_X. oy + yoYnX., oy

W2 yl H M y2 yl

The representation (2.8) shows that Y * X is again a local semimar

tingale provided that the integrands are locally square-integrable. If

X and Y are such that the integrands in the representation (1.1) are locally

fourth-power integrable, then the integrands in (2.8) are indeed locally

square-integrable. However, this seems to be an artificial and undesirable

condition. Local semimartingales should be defined so that closure under

composition comes naturally and without additional restrictions.

For one-parameter processes, if M is a sample-continuous local mar

tingale, then there exists a sample-continuous increasing process <M,M>

2
such that M -<M,M> is a local martingale. If M is generated by a Wiener

process W then M is necessarily of the form

Mt oMQ +J'
and <M,M> is given by

4> dW
s s

b

[,M> - f
C J0

<M,M>fc = | ty ds
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The increasing process <M,M> has the interpretation of being the quadratic

variation of M. Hence, if X = M + B where B is both sample continuous and

of bounded variation then the quadratic variation of X is just that of M,

and it is consistent to define

<X,X> = <M,M>

Let M be a two-parameter square-integrable martingale generated by a

Wiener process W. Then, M is necessarily of the form

(2.10) M =M_ + I6 dW + [ * ,dW dW .
2 ° Rz « ? RzxRz 5.C C C

If we define the increasing process [M,M] by

(2.11) [M,M] = f 0 2 dC + f h(c,Cf) *r r» d^ d^
z Rj ? RJxR ?,C

z z z

then M2-[M,M] is weak martingale. The process [M,M] has the quadratic

variation interpretation associated with <M,M> in one dimension.

For a two-parameter square-integrable semimartingale X as given by

(1.1), the quadratic variation is equal to that of the martingale term.

Hence, it is consistent to define

(2.12) [X,X] = 62dC +
RJ_ 4 #

h(CC') 1>r r, dC dV
xR ^^

z z z

and to extend the same definition to local semimartingales.

Since a two-parameter local semimartingale X is a one-parameter local

semimartingale in each direction, the quadratic variation process <X,X>± is

well defined for each direction i and is given by

(2.13) <X,X>. =
xz

From their definition (2.4 or 2.4') it can be seen that for each i direction

X . is a one-parameter local semimartingale in the other direction. Hence,

the one-dimensional formula yields

-7-
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X^ (z,Cf) =e2, +2Jh(CS') ^(CVCOt^^.dW^ +a^, d?]
R'

z

r 2
h(C,C') *_ rt dC+

R'
z

which together with (2.13) yield

(2.14) <X,X> = [X,X] + 2
lz 2 R, XR V^'^)[*c,c'dwcdc*

z z

+ ar , dS dC']

Similarly, <X,X>2 can be written as

(2.14') <X,X> =[X,X] +2 f X.T9(CVC',0[*r r, dC dW ,
ZZ Z RJ xR WZ ^>^ S

z z

+ 3r r% dC dC']

Each of the processes [X,X] and <X,X> is a local semimartingale,

albeit rather special ones, so that stochastic integration with respect

to each is well defined. Further, being a quadratic variation process in

one form or another, each is also intrinsic to X and its existence is inde

pendent of the semimartingale representation (1.1).

For two local semimartingales X and Y, X + Y is again a local semi

martingale. Hence,

[X,Y] =| {[X+Y, X+Y] -[X,X] -[Y,Y]}
<X,Y>± =j {<X+Y, X+Y>± - <X,X>± - <Y,Y>±}

are well-defined bilinear operators on (X,Y). Together with Y * X, these

comprise a set of binary operators on local semimartingales. The algebra

of these operators may be interesting and has not yet been explored.

3. Differentiation Formula

In [9] a differentiation formula was derived which makes explicit use

of the weak semimartingale representation (1.1). In the notation of this

paper, that differentiation formula can be expressed as follows:
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Let
F:

R
—
>
-
R
b
e
a
function

with
bounded

continuous
derivation

through

t
h
e
f
o
u
r
t
h

order,
a
n
d
l
e
t
X
b
e
a
p
r
o
c
e
s
s
o
f
t
h
e
f
o
r
m
(1.1).

T
h
e
n
,

(3.1)
F(X

)
=

F(Xn)
+

R
r

+

V9?
dwc+\

™
+\

,R

f0
e2

dc
2
C

+/I/
[F1°+F2(X„2*Wl+*V

+IF3\\W
dCdV

[RZ
[F16+W

p
l+*V

+IF3*W2\\ldWC"'
[/

[F2(XM2Xul+aXWl+3^2+I*2)
R

J
x
R

Z
f

z

+
F3

(XW2
"Wl
*
+
I
*£

XM1
+

1
\l

*£>
k

+iF4XW2X«2l]d5d?'
3

where
F

(x)
=

t~
F(x),

F
have

argument
X

Wjp1
or

X
,

i/;,
a
and

3
have

arguments

(C,C*),
X^1

and
X

have
arguments

(CV£',C')
and

X^
and

X
2
have

arguments

(CVCf,C).
All

integrals
on

Rz
x
R

are
restricted

to
the

set
C
A

£'.

T
h
e
same

d
i
f
f
e
r
e
n
t
i
a
t
i
o
n

formula
can

b
e
e
x
p
r
e
s
s
e
d
i
n
a
n
intrinsic

and

r
e
p
r
e
s
e
n
t
a
t
i
o
n
-
f
r
e
e

f
o
r
m

a
s

f
o
l
l
o
w
s
:

(3.2)
F(X)

=
F(XQ)

+
F1(X)

o
X
+

F2(X)
o

(X
*

X)

+
2

F2(X)
o

(<X,X>
+

<X,X>2
-

[X,X])

+
-|F3(X)

o
(X*

<X,X>1
+

<X,X>2
*
X
-
2

[X,X
*

X])
+

-|F4(X)
o

<X,X>2
*

<X,X>1
A
v
e
r
i
f
i
c
a
t
i
o
n
o
f

(3.2)
is

easily
o
b
t
a
i
n
e
d
b
y
evaluating

the
terms

X
*

X,
<X,X>i,

[X,X],
<X,X

*
X>±t

[X,X
*

X]
and

[X
*

X,
X
*

X]
according

to
the

formulas
given

in
section

2.
The

details
are

too
straightforward

t
o
b
e
r
e
p
r
o
d
u
c
e
d

i
n
f
u
l
l
,

b
u
t
a
t
e
r
m
b
y
t
e
r
m
i
d
e
n
t
i
f
i
c
a
t
i
o
n
b
e
t
w
e
e
n

(3.1)
and

(3.2)
is

useful
and

appears
as

follows:

F1(X)
o
X
=
J
F1(6?dW

+
b

dC)
R

'+
F

(ipdW
dW

,
+

otd^dW
+

6
d

W
d

£
')

p
«

'
x
R

-
L

£
S

S
C

R
;
x
R

z
z

-
9

-



F2(X) • (X*X) =
R. xR

z z

F2(XW2dWC +Xy2d°(XWldWC'+XpldC,)

\ F (X) o (<X,X>1 +<X,X>2 - [X,X])
F2[xw2 dc(*dWc,+ 3dV) + (*dWc +adc) X^ dc'

+i / dC dc']
R JxR

z z

^ F (X) • (X * <XtX>1 + <X,X>2 *X +2[X,X * X])

z z

+K22 d? (\i dv+ v,+x df) +f^at *c']

i F(X) • <X,X>2 * <X,X>1 =\ F4(X) • [X *X, X* X]
2 _ 2

z z

F4 ^2 \l d? dC'

4. A Characterization of Positive Martingales

A problem related to the characterization of likelihood ratios [8]

is the following. Let X be a local weak semimartingale such that XQ = 0.

What conditions must Xsatisfy in order for eX to be alocal martingale?

A simple application of (3.2) gives us the answer.

Let X be written as

(4.1)

where m is a local martingale, m. a proper local i-martingale and b a process

of bounded variation. Let M± =m+m±. Since eX is an i-martingale for
i= 1,2, characterization of one-parameter continuous positive local mar

tingales yields

(4.2) X=Mx -\ <X,X>1
-M2 -\ <X,X>2

X = m + m1+m2 + b

-10-



Hence,

(4.3) X*X=M2 *Mx -\ M2 *<X,X>1 -\ <X,X>2 *^
+| <x,x>2 *<x,x>1

=M2 *Ml " 2X * <X,X>1 ~ 2 <X,X>2 * X
--| <x,x>2 *<x,x>:L

Letting F(X) = eX in (3.2) and making use of (4.3), we get

(4.4) eX =1+eX o(X + <X,X>1 +<X,X>2 -[X,X]
+2[X,X *X]) +eX oM2 *Mx

Since M_ * M.. is a local martingale, e is a local martingale if and only

if

(4.5) X+j {<X,X>1 +<X,X>2 - [X,X] + 2[X,X *X]} =m

is a local martingale. This is essentially the likelihood ratio formula

of [8] in intrinsic form.

We recall that in one dimension the condition equivalent to (4.5)

is: X +— <X,X> = m. Since in that case <m,m> = <X,X> , we can write

a one parameter positive local martingale as
1

X m - "o <3n,m>
e = e /-

Although each of the terms <X,X>i, [X,X] and [X,X * X] appears to be

uniquely determined by m, we have yet to find a way of expressing them

explicitly in terms of m.
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