
 

 

 

 

 

 

 

 

 

Copyright © 1978, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



EVALUATION OF DISTRIBUTED CRITERIA

FOR DISTRIBUTED DATA BASE SYSTEMS

by

D. Ries and R. Epstein

Memorandum No. UCB/ERL M78/22

12 May 1978



EVALUATION OF DISTRIBUTION CRITERIA

FOR DISTRIBUTED DATA BASE SYSTEMS

by

Daniel Ries

Robert Epstein

Memorandum No. UCB/ERL M78/22

May 12, 1978

Electronics Research Laboratory

College of Engineering

University of California, Berkeley

94720



EVALUATION OF DISTRIBUTION CRITERIA

FOR DISTRIBUTED DATA BASE SYSTEMS

by

Daniel Ries

Robert Epstein

(University of California at Berkeley)

Abstract

In this paper we examine three distribution criterion
and copy mechanisms within a distributed database environ
ment. The three mechanisms are: free control, user restric

tive control, and user permissive control. Each mechanism
is evaluated with respect to user convenience, performance,

concurrency control, and ease of implementation.

We show that the concepts of primary fragment and pri

mary tuple are extremely important. Moreover, we demon
strate that the user restrictive mechanism is most desirable

since it provides primary fragments and primary tuples. It
also supplies a separate copy mechanism which can be changed
independently of the distribution criterion.

The ideas expressed in this paper are being incor

porated in the distributed database version of INGRES.

Research sponsored by the U.S. Army Research Office Grant
DAAG29-76-G-0245, and the Joint Services Electronics Program

Contract F44620-76-C-0100.



Distribution Criteria

I. INTRODUCTION

This paper is concerned with the specification and
maintenance of distribution criteria for data in a distri

buted database. A mechanism must be provided which is sim

ple enough to understand and yet powerful enough to allow
considerable flexibility in the data distribution. Ideally,

the Data Base Management System should assume as much of the
burden as possible.

This paper is motivated by the fact that distributed
databases are becoming increasingly important as the volume
of data continues to grow and the cost of independent com

puting resources continues to decrease. In a distributed
database, the distribution of the data and its copies
greatly effects the performance of the system. In determin
ing the data distribution in a computer network, one should
attempt to make as many query transactions as possible run
locally. Furthermore, such locality must be properly bal
anced for efficient updates and retrievals.

In the next section a sample environment and a data

manipulation language for a distributed database are dis
cussed. In section III, three alternative mechanisms for

specifying the distribution control are presented. In sec

tion IV, these methods are analyzed with respect to perfor

mance considerations, concurrency control, ease of use both

by the database administrator and the user, and implementa
tion considerations. In the last section, several conclu

sions are summarized.

Several simplifying assumptions are made concerning

reliability and recovery. First, the maintenance of distri

buted copies for recovery or resiliency is not considered.
This issue is discussed in [STON78]. An assumption is made

that because the system is operational enough of the time,

the distribution criteria mechanisms should be optimized

towards normal transaction processing at the expense of

recovery costs.

Considerable work has been done on the optimal solu

tions to the distribution of data for a given set of tran

sactions [CHU69, CHU76]. These' studies report on the cost-
performance tradeoffs in distributed systems for directories

-1-



Distribution Criteria

or system catalogs and optimum file allocations. However,
these studies are not concerned with how a user specifies

the data distribution. They also do not consider the impli

cations of such a specification on the mapping of logical
transactions to the actual physical distribution of the

data.

-2>



Distribution Criteria

II. DATA BASE ENVIRONMENT

In this section the facets of the the distributed data

base environment that affect the use and specification of

the distribution criteria are discussed. Topics include

distributed relations and their copies, distributed query

processing, concurrency control, and aggregation. The rela
tional model of data [C0DD70] and the query language for

INGRES, QUEL [HELD75] will be used to discuss these issues.

Distributed Relations

It is assumed that relations are either local or glo

bal. Local relations are known only to their own site and

cannot be accessed outside that site. Global relations are

known to all sites and can be stored at any number of sites.

The portion of a relation at a particular site will be
referred to as the fragment of the relation at the site.
Fragments are subrelations, i.e. a subset of the tuples of a
given relation, and not projections of a relation [ROTH77].

Some sample QUEL commands are now given.

create global savings (acct = i4, name = c20,
balance = i4, branch__code = i2)

This command creates a global relation called "savings" with
four attributes: acct, name, balance, and branch_code. This
relation can be queried, for example, by asking for a list
of all accounts and balances:

range of s is savings

retrieve (s.acct, s.balance)

Notice that the user need not be concerned with the details

of whether "savings" is local or global, or if it is global

wfiere the fragments are stored.

To help the database system localize queries, a dupli
cation mechanism can also be provided. A user can specify

that a copy of one or more fragments of a particular rela
tion be created. For example:

. range of s is savings

-3-



Distribution Criteria

duplicate s from (sf, berkeley) onto headquarters
where s.balance > 50000

The interpretation of this command is to make a copy of
those accounts at sf and berkeley with balances over 50000
and place it at the site called "headquarters". The "where"
clause is optional. (In fact, the addition of the where
clause may complicate the use of copies for recovery pur
poses.) The system will automatically update the copy and
use it whenever it is advantageous to do so.

Query Processing

There are four types of queries in QUEL: retrieve,
append, replace, and delete. The update commands (append,
replace, and delete) are run as retrieve commands which dis
cover what must be done, followed by low level update pro

cessing.

In order to understand the effects of a distribution
criterion, the processing of queries is first discussed. (A
detailed explanation of distributed query processing for
INGRES can be found in [EPST78].) The way to process a sim
ple retrieve query involving only one relation is relatively
straightforward. The query is broadcasted to all relevant
processing sites and the results are gathered up and
returned to the originating site.

A query involving more than one relation (called a
multi-variable query) can be processed by a combination of
local queries and moving fragments of the relations between
the various sites. An example should serve to illustrate
how this can be done.

Suppose there are the following relations:

transact(acct, date, teller, amount, code)
savings(acct, name, balance, branch_code)

Assume that both relations are distributed among many dif
ferent sites. Now if the query:

range of s is savings

range of t is transact
retrieve (t.amount, t.code, s.branch_code)

-4-



Distribution Criteria

where t.acct = s.acct

and t.date = "78-01-01"

were given it would be potentially necessary to examine

every combination of t.acct and s.acct looking for equality.

Here is one possible way the processing would proceed.

(1) Each site is directed to run the query:

retrieve into temp(t.amount, t.code, t.acct)

where t.date = "78-01-01"

In the new relation "temp", all the tuples have the

correct date.

(2) Every site which has a fragment of "temp" sends

a copy of its fragment to every site which has a

fragment of "savings".

At the end of this step, every site which has a

fragment of "savings" will have an identical, com

plete copy of "temp".

(3) Every site which has "savings" now runs the fol

lowing query.

range of t is temp

retrieve (t.amount, t.code, s.branch_code)

where t.acct = s.acct

(4) The results are accumulated and forwarded to the

originating site.

Notice that step (2) required data movement in order to pro

cess the query. Either "temp" or "savings" could have been

moved. An attempt can be made to limit the amount of data

which must be moved by taking advantage of the distribution

criterion. How this can be done will be explained shortly.

-5-



Distribution Criteria

Concurrency Control

The concurrency control is responsible for ensuring the
consistency of the database during simultaneous updates. In
section IV, it is shown how the distribution criterion can
limit the available alternatives for concurrency control.

Two types of consistency must be considered in a dis
tributed database. First, each transaction should be
presented with an internally consistent view of the data.
This view must obey certain global consistency requirements
that may be placed on the database. For example, one such
consistency requirement may be that a department salary
budget must equal the sum of the salaries of the employees
in that department. A transaction which might not see a
consistent view would be a general report which included
some of a set of related updates without including all of
those updates. In [ESWA76], it is shown that a sufficient
condition for maintaining a consistent view is that the
effects of processing multiple concurrent transactions be
equivalent to the effects of processing the transactions in
some sequential order.

Many of the mechanisms for enforcing this type of con
sistency can be divided into two areas: primary site control
and decentralized control. Under primary site control, one
site can be responsible for granting access to the global
relations. Under decentralized control, each site grants
access to data stored at that site. Several alternatives
have been proposed for resolving or avoiding deadlocks in
the decentralized case. These include preordering transac
tions and/or sites [ROSE77], transferring requests to all
sites [ELLI77], or transferring conflict information to one
site [STON78].

A second consistency consideration is that copies of
the data should be kept mutually consistent. For example,
the same transaction run at different sites may use dif
ferent copies of the same data. The concurrency control may
be required to ensure that the same results will be produced
for the same transactions run with different copies of the
same data.

-6-



Distribution Criteria

The mutual consistency of copies can be ensured by

locking strategies similar to those that ensure internal

consistency. However, even with decentralized control,

locking for copies can involve the designation of a primary
copy to which all updates must first be sent. The relation

fragment at that site is called the "primary" fragment. The
tuples in that fragment are the "primary" tuples for all of

the duplicate copies. Another alternative with decentral
ized control is to associate timestamps with each data field

and each update. An update and the timestamp is sent to all

copies of the data. An update for a given copy is only per

formed if the timestamp for the data field is older than the

timestamp of the update. If the updates for a given field

of a given relation quiesce, all copies will eventually

obtain the same value.

Aggregation

There are, in general, two classes of aggregates. In

QUEL they are referred to as regular (count, sum, avg, min,
max), and unique (countu, sumu, avgu). Regular aggregates

use each tuple in a relation. (In the relational model,

only one occurrence of a given tuple is allowed.) Unique
aggregates are performed by first removing any duplicate

values in the set of domains being aggregated. The distri

bution mechanism affects the ability of the database system

to efficiently process aggregates.

Here are two example aggregates:

range of t is transact

retrieve (num_accts = count(t.teller) ,

num_tellers = countu(t .teller))

The first "count" aggregate would simply count the number of

tuples in transact. The second aggregate, "countu", would

count the number of unique values for t.teller, giving the

number of different tellers involved in the transactions.

-7-



Distribution Criteria

III. DISTRIBUTION CRITERION AND COPY MECHANISM

As already mentioned, one goal of distribution cri
terion and copy mechanisms is to improve the performance of
the database system. It accomplishes this by making queries
as local to their originating site as possible. In this
section three general approaches are discussed: (1) free
control, (2) user restrictive control, and (3) user permis
sive control.

Q) Free Control

With this method, the database system has complete con
trol of where tuples are physically located. New tuples are
appended wherever it is "cheapest" to place them. The user
can optionally create a duplicate of a fragment using the
"duplicate" command discussed earlier.

The implications are that the user does not care where
tuples are stored. The database system will take advantage
of duplicate copies whenever possible.

(2) User Restrictive Control

User restrictive control restricts any tuple to one,

unique site. Tuples are partitioned onto different sites
according to a user supplied criterion. The user gives an
ordered list specifying where tuples belong. The tuples are
then placed at the first qualifying site in the ordered
list. The user can create copies by using the "duplicate"
command. Here is an example distribution criterion:

range of s is savings

distribute s at

headquarters where s.balance > 50000,
berkeley where s.branch_code = 2,
albany where s.branch_code = 3»

sf where s.branch_code = 1

The meaning here is that accounts with more that 50,000 will
be physically kept only at headquarters. Otherwise the
branch_code will determine which site (or no site) a tuple
belongs to. Notice that a tuple with a branch_code of 2 and
balance of 100,000 would go to headquarters and not to

-8-



Distribution Criteria

berkeley.

(3) User Permissive Control

User permissive control maps any tuple to as many sites

as are permitted. The user provides an unordered list of

which tuples should be associated with which sites. The

database system guarantees that a tuple will be placed at

every site where it is allowed. This type of control com

bines the concepts of distribution criterion and copies into

one homogenous method. Thus the "duplicate" command is

unnecessary. Here is an example:

range of s is savings

distribute s at

berkeley where s.branch_code = 2

or s.branch_code = 3

albany where s.branch_code = 3>

headquarters where true,

sf where s.branch_code = 1

Here "savings" is allowed at four sites. Assume that berke

ley is branch code 2, albany is branch code 3» and sf is

branch code 1. This criterion specifies that sf and albany

get their own accounts, berkeley gets it's own and all of

albany's, and headquarters gets everything. A tuple with

branch_code = 3, for example, would thus reside at three

different sites.

-9-



Distribution Criteria

IV. ANALYSIS

The main differences between free control and user res

trictive control are twofold. First, it is possible that
'unknown' duplicates can exist at several sites under free
control. For example, the same tuple could be added at two
different sites. Scanning every fragment for potential
duplicates in a distributed database would be prohibitively
expensive. Under user restrictive control each tuple has a
unique assigned site. The second difference is that res
trictive control allows the system to restrict the number of
sites which need to be accessed for a given transaction.
Under free control it must be assumed that all sites are

needed for a query.

The user permissive control can also assist the system
in restricting sites for transaction processing. The main
difference between permissive control and restrictive con
trol is that the latter designates a "primary copy" for a
relation fragment. Another difference is that user restric
tive control has a separate mechanism for specifying the
distribution criterion and the duplication policy. The user
permissive control combines these specifications into one
mechanism. Both mechanisms have equal power in terms of
describing distribution and duplication criteria.

In this section, each of the distribution criterion
mechanisms are evaluated in terms of implementation,
retrieval, updating, aggregation, concurrency control, and
ease of use. A summary of our analysis is shown in table 1.

Free Control

The free control distribution criterion is the simplest
to implement and is the minimum facility needed to support
the distributed database environment described in section

II.

Under free control, the operations required to support
updates are straightforward. For a tuple originating from
or modified at a given site, the relation is updated at that
site. If copies are required at other sites, the originat
ing sites also issue the copies.

-10-



Distribution Criteria

Free

Control

Table 1

Restrictive

Control

implementation | easy hard

restricts

sites to scan

complicated

easy, same as

single site

can have

strict

locality

fair

retrieval

updating

aggregation

concurrency

user friendly

must scan

all sites

simple

not well

defined

cannot have

strict

locality

best

Restrictive

Control

hard

restricts

sites to scan

complicated

difficult

can have

some strict

locality

good

For retrievals, all sites are originally potential can

didates for required tuples. The number of sites required

for the retrieve can then be reduced only by considering

available copies. Once the candidate sites have been

selected the retrieve proceeds as described in section II.

In processing aggregates, the 'unknown' duplicate tuple
condition makes the semantics of sums, averages, and counts

unclear. For example, an identical tuple with Jone's salary
could be added to two different sites and be included twice

in the calculation of an average salary. If unique aggre

gates are requested, the domain(s) in question can all be

assembled at one site, duplicates removed and then aggre

gated .

Another problem caused by having all sites as potential

candidates for the required tuples is that remote sites must

be included in the concurrency control synchronization in

order to ensure the serializability discussed in section II.

If one primary site is designated to handle all concurrency

-11-



Distribution Criteria

control, transactions at that site may not require network
communications. Transactions at other sites must check with

the primary site. With decentralized control, the con
currency control requires that all transactions communicate
with other sites. Thus, the primary advantage of free con

trol, locality of updates, may have to be sacrificed.

Restrictive Control

Restricted control is more difficult to implement than
free control due to the movement of tuples on updates and
more complex site selection algorithms for retrievals.

Under restrictive control, updates may be more expen

sive than with free control since the placement of the new
tuples is predetermined by the distribution criterion. In
fact, a simple replace on a domain referenced in a distribu
tion criterion might require the corresponding tuple to be
moved.

For retrieval, both duplicate copies and the distribu
tion criterion can be used to eliminate sites from con
sideration. This reduction of applicable sites would
require a propositional calculus theorem prover in order to
determine from an arbitrary distribution criterion, that an
arbitrary query does not require certain sites. However, it
is frequently possible to do simple checks such as those
proposed for predicate locking [ESWA76, STON75]. One starts
using all sites and eliminates sites which do not contain
relevant data.

Similarly, only the required sites need be involved in
the concurrency control decisions if decentralized locking
is used. The responsibility for maintaining mutually con
sistent copies is given to the site with the primary frag
ment.

Some transactions can be made to run completely
locally. These transactions are the ones which use, only
primary relation fragments stored at one site. This is
extremely important since it is reasonable to expect com
pletely local transactions to run faster than transactions
which must communicate with other sites.

-12-



Distribution Criteria

The processing of aggregates is well defined under res
tricted control and rather straightforward to implement

since it is easy to ensure that only one copy of a tuple is

used.

Permissive Control

Under the permissive control distribution criterion,
updates and retrieves can be implemented in much the same
way as in restricted control. The distribution control can
be used to determine the applicable sites for a given query.

No separate duplicate mechanism for copies of portions of
the database is available (or needed) to further reduce the

applicable sites.

Note that with permissive control, one looks for the
minimum set of sites which covers the solution to the query.

There may be many different sets of sites which cover the
solution and a mechanism must be developed for determining

which set of sites to use.

The implementation of aggregates is much more diffi
cult. The number of copies of each tuple must be checked by
mapping the tuple against the distribution criterion and
making the appropriate arithmetic adjustments. One possible
algorithm would be to have each site check every tuple
against the distribution criterion. If the tuple belongs
only to that site, then use it. Otherwise, assume there
exists some global site ordering and use the tuple only at
the first site where the tuple occurs. While we are not
necessarily recommending this algorithm, we point out that
any method of processing aggregates must be both complex and

expensive.

For concurrency control, the permissive distribution
criterion resembles the free control case in that a given

primary site for a tuple is not known. All copies of a
needed fragment must be locked either through communications
with all sites or with a primary site determined by some

means other that the distribution criterion (e.g. a fixed

ordering of the sites). The flexibility of the concurrency
control is limited in that one cannot necessarily have dif

ferent primary sites for different relation fragments.

-13-



Distribution Criteria

A primary site designation for each relation could be

added to the syntax of the permissive control. This would

most likely make the syntax dense and confusing. The pri
mary tuple for multiple copies of tuples would then be at
the primary site. However, the distribution and number of

copies could not be changed independently.

-14-



Distribution Criteria

V. CONCLUSIONS

Free control is useful for temporary relations created

by the system, for example the "temp" relation in section

II. It requires no decisions on the part of the user in
exchange for potentially poor performance. This is because

it provides no help for limiting the scope of a query. This
inability, together with the poor aggregation capabilities
makes free control a poor choice for permanent user rela

tions.

Restrictive control provides better performance for

retrieval than does free control. Since updates are pro

cessed as a retrieve followed by the actual update, any

improvement in retrieval will help updates as well. We can

provide much more locality because fragments can be elim
inated using the distribution criterion. .

Restrictive control yields the most flexibility in

choosing from concurrency control alternatives. Since frag
ments are associated with the values taken on by their

tuples, it is possible to have a query which is completely

local and requires no network locking.

Permissive control is the most elegant. The copy

mechanism is the same as the distribution control mechanism.

If there is no good partitioning, permissive control is
probably easier to use than restrictive control. For exam

ple, a decision to store accounting data both at a headquar
ters and the appropriate branch can be specified without
deciding on which site should have the primary fragment.

However its elegance is not without cost. It never

provides more efficient processing than restrictive control
and there are many situations where it is substantially

worse. In addition, since there is no notion of a copy vs.

the real tuples, aggregation is very complex and messy.

Both restrictive and permissive control have the ano

maly that a tuple might not be accepted on any site. For
example, with the distribution criterion specified in sec

tion III under user restrictive control, a tuple with

branch_code = 4 and a balance of less than 50,000 could not
reside at any site. Ideally this shouldn't happen since if
the user desired to restrict certain values, an integrity

-15-



Distribution Criteria

constraint mechanism would have been used. It is not clear

what should be done if a tuple cannot reside at any site

given in the distribution criterion.

Both the restrictive and permissive methods require

that the site selection be inferred from the tuples. This

may require the database designer to force the addition of
another domain to the tuple, or encode site information into
the distribution criterion. For example, the "savings"

relation defined in section II is distributed at four sites:

headquarters, berkeley, albany, and sf. The association
that berkeley is "branch_code" number two, albany is
"branch_code" number three, etc. is encoded in the distri
bution criterion.

The principle reason why restrictive control gives the
best performance is that a good partition was chosen. If
there is no good partitioning (i.e. one cannot say what
sites will query what data) then the user may be forced to
place the data at a single site, and duplicate the data at
other sites.

The fact that the restrictive control is the only way

to efficiently provide a "duplicate free" environment should
not be overlooked. That is, one can efficiently guarantee

that no tuple is duplicated on any other site.

Upon reviewing the ramifications of the three distribu
tion criteria approaches, a restricted control where tuples
are partitioned according to a user supplied criterion is
preferred for several reasons. First, it provides the con
cept of primary tuples, which is extremely important for
processing aggregates and for concurrency control. Second,
a copy mechanism separate from the distribution criterion
allows the concept of a primary fragment and thus the
highest possible locality. In addition, the separate copy
mechanism allows one to be changed without redefining ,the

other.

One area for future research is how the database

management system can choose the distribution criterion
based on access patterns. This could be part of an
automatic restructuring process which could also create (or
destroy) copies. The difficulty of knowing how to do such
restructuring is, of course, enormous.

-16-



Distribution Criteria

REFERENCES

[CHU69] Chu, W.W.; "Optimal File Allocation in a Multiple
Computer System", IEEE Transactions on Computers,

vol. C-18, no. 10 October 1969.

[CHU76] Chu, W.W.; "Performance of File Directory Systems
for Data Bases in Star and Distributed Networks",

NCC Conference Proceedings, vol. 45, 1976.

[C0DD70] Codd, E.F.; "A Relational Model of Data for Large

Shared

1970.

Data Banks", CACM vol. 13, no. 6, June

[ELLI77] Ellis, C.A.; "A Robust Algorithm for Updating
Duplicate Databases", 1977 Berkeley Workshop on

Distributed Data Management and Computer Networks,

Lawrence Berkeley Laboratory, May 1977-

[EPST78] Epstein, R. ; Stonebraker, M

buted Query Processing in a

System", SIGMOD Conference Proceedings, May, 1978.

; Wong, E; "Distri-

Relational Data Base

[ESWA76] Eswaran, K.P., Gray, J.N., Lorie, R.A., Traiger,
L.I.; "On the Notions of Consistency and Predicate
Locks in a Database System", CACM vol. 19, no. 11,

November, 1976.

[HELD75] Held, G.D.; Stonebraker, M.R.; Wong, E.; "INGRES -
A Relational Data Base System", Proc. NCC vol. 44,

1975.

[ROSE77] Rosenkrantz, D.J., Sterns, R.E., Lewis, P.M.; "A
system Level Concurrency Control for Distributed

Database Systems", 1977 Berkeley Workshop on Dis
tributed Data Management and Commputer Networks,

Lawrence Berkeley Laboratory, May 1977.

[ROTH77J Rothnie, J.B.; Goodman, N.; "An Overview of the
Preliminary Design of SDD-1: A System for Distri

buted Databases," 1977 Berkeley Workshop on Dis
tributed Data Management and Computer Networks,

-17-



Distribution Criteria

Lawrence Berkeley Laboratory, May 1977-

[STON75] Stonebraker, M.R.; "Implementation of Integrity
Constraints and Views by Query Modification",
University of California, Electronics Research
Laboratory, Memorandum ERL-M514, March 1975.

[STON78] Stonebraker, M.R.; "Concurrency Control and Con
sistency of Multiple Copies of Data in Distributed
INGRES", University of California, Electronics
Research Laboratory, (To appear.)

-18-


	Copyright notice 1978
	ERL-78-22

