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Abstract

This paper presents two new theorems for establishing the

convergence properties of multistep constrained optimization algorithms

with antijamming features. The theorems extend earlier results of

Polak and Klessig and are based on a transcription of multistep

methods into one-step methods in a higher dimensional space.
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I. Introduction

Zoutendijk's introduction, in 1960 [18], of the concept of "e-active"

constraints in an antijamming device for a class of methods of feasible

directions, has led to the use of similar features in a number of other

algorithms. These range from algorithms for solving min max problems fl],

to dual methods of feasible directions [4,8], to algorithms for solving

infinitely constrained optimization problems [12], to combined phase I-

phase II methods [13] as well as some others, e.g. [10,11,16]. To coin

a phrase, we shall refer to all these algorithms as being e-controlled.

e-controlled algorithms can be either one step or multistep. Zoutendijk's

original methods of feasible directions [18] were multistep and the proof

of their convergence was extremely involved and difficult to follow. In

an effort to achieve a conceptual simplification, Polak [10] constructed

a parallel family of one step methods of feasible directions and showed

that their convergence followed in a simple and straightforward manner

from a general convergence theorem ((1.3.10 in [10]). Nevertheless,

multistep methods have their merits and many more were constructed, though

a proof of convergence was generally evaded. The reason for this was

that there was a lack of understanding of the essential properties of

these e-controlled, multistep methods, which ensure the convergence

of these methods. The first attempts at elucidation were made by

R. Klessig [3] and R. Meyer [6] who proposed closely related special

purpose convergence theorems. These theorems were still fairly

difficult to grasp and cumbersome to apply; nevertheless, they were

unquestionably helpful in the construction of a number of algorithms

(e.g. [5], [12], [13]).

In this paper we re-examine the essential properties of both one

step and multistep e-controlled algorithms. We show, by example
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that the simple, one-step algorithms can be used as a stepping stone

to the understanding of the more complex multistep methods, and hence

to relatively straightforward proofs of convergence. We then abstract

out observations in the form of a one step algorithm model in an augmented

space and an appropriate convergence theorem. Both this model and the

convergence theorem fit in very nicely with earlier results of this type

(see e.g. (1.3.10) in [10]). Our results are much simpler than Klessig's

[2] and Meyer1s [6] and are easier to apply.

We hope that our success in simplifying the analysis of multistep

feasible directions type algorithms, by transcribing them into one-step

methods in a higher dimensional space, will lead to similar successes

for other classes of multistep algorithms, such as quasi-Newton and

conjugate directions methods.

2. The Essential Properties of e-controlled Algorithms

The simplest examples of e-controlled algorithms which have all the

essential properties of e-controlled algorithms are the Polak [10] and

Zoutendijk [18] methods of feasible directions. Polak's algorithmis the

simpler of the two: it is one step. Zoutendijk1s algorithm is multistep.

Both of these algorithms solve the problem:

(1) min{f°(z)|fj(z) <0,j =1,2,...,m},

where f :IR -*-!R, j = 0,1,... ,m are continuously differentiablef under

the following assumption. Let

(la) fl 4 {z|fj(z) <0, j€J },
m

<lb> Jm 4 {1.2,...,m}.
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(2) Assumption. The set ft has an interior and it is equal to the

closure of its interior, (see (4.2.5) and (4.3.2) in [10]). ###

For each z € ft, s^O, we define

(3) J(e,z) 4 {j eJjfj(z) >-e},

(4) 6(e,z) 4min max{< Vfj(z) ,h >|j S J(e,z) U{0}},
hGS

where S is the L^-unit sphere about the origin, i.e.,

(4a) S4{hS R^llh1! <1, i=1,2,...,n}.

Note that 6(e,z) <_ 0 for all e >_ 0 and z 6 ft.

We shall say that a feasible point z is a desirable point if it

satisfies the first order F. John necessary condition for optimality

for problem (1) [21], i.e., z€ ft and 0€ co{Vfj(z)|j <= {0} U J(0,z)}.

Let A be the set of all desirable points. Then, by Theorem (1.2.8) in

I10J, we have

(5) A » {z € ft|e(0,z) » 0},

where 6(-,») is defined by (4).

For the sake of compactness, we state the Polak and Zoutendijk

algorithms as one, with a selector p. When p = 0, the algorithm becomes

Polak1s while when p =» 1 the algorithm becomes Zoutendijk1 s. Both

algorithms make use of a function e : H. x-.ft + "R , defined, in terms

of a parameter a € (0,1), by

A I k
(6) e(e,x) = max{ef Je1 =0 ore1 =a e, k € E ;

0 f(x) £ -e1}, where U 4 {0,1,2,...}.
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(7) Algorithm.

Parameters: ot,8,Y ^ (0,1).

Step 0: Compute zn £ ft, choose en > 0, set i » 0.

Step 1: Choose p = 0 or p = 1.

Comment: p = 0 indicates that Polak1s antijamming scheme is chosen;

P = 1 indicates that ZoutendijkTs antijamming scheme is chosen (see Step 4).

Step 2: If z.G A, stop; else, compute a vector h. as a solution

of (4) for z = z. and e = e(e.,z ).

Step 3: Compute the smallest nonnegative integer I. such that

X. 4 3 satisfies

(8) f^+X^) -f°(2i) <.YX^Ce.z^,
(9) f^+X^) <0,. j€jm.

Step 4: Set z±+1 = z^X^. If p= 0, set e+1 « e ;else set

ei+l = e<Vzi}-
Step 5: Set i = i+1 and go to Step 1. ###

(10) Remark. The step length selection in Step 6 can be modified by
0

using a step-size parameter X > 0, so that X » B X ..• M#
s s

Referring to sec. 4.3 in [10], we find that Polakfs method has

the following:

(11) Essential Properties (P)

(i) Since e± =* eQ for i-0,1,2,..., e=e(e±,z±) «e(e0,Zi), as
used in step 2 to compute a descent direction, is a function of z only

and hence h± is a function of z± only, i.e., the method is a one step

method.
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(ii) For every z € ft ~ A, there exist p > 0 and e ? 0 such that
z z

e(e0,z±) >_ ez for all z± S B(z,pz) 4 {z1 |llz-z!fl <_ p }.

(iii) For every s > 0 and z G. ft ~ a, there exists a p > 0 and an
e ,z

integer £ > 0 such that for all z: ^ B(z,p ) satisfying e(eA,z.) > e,
e,z — i ' e,z . ° 0 i —

Z

l,9 as computed in Step 3, satisfies I. < I ; i.e. X. > 8 e'z for
j- i — e,z i —

all ZA e B(z,p ). ###
1 e,z

It is very easy to deduce the convergence properties of Polak1s

algorithm from its essential properties, as follows.

(12) Theorem [10]. Suppose {z.} is an infinite sequence constructed

by Polak*s algorithm. Then every accumulation point of {z.} is in A.

Proof: Suppose that {z.} has an accumulation point z. Then, because

8(e,z.) <_ 0 always, it follows from (8) and the continuity of f (•) that

f (z^) xf (z) as i•-»• «. Now, for the sake of contradiction, suppose that

z % A. Then according to Properties (11) (ii) and (11) (iii), there

exist p> 0, e >0 and ££ U such that e(eQ,z.) >_ e, l± <_ %and by (8),

f ^Zi+1* " f ^i^ 1 YXi8(e(£o»zi)»zi) - ~Ye £< °' for a11 zi G B^'^*
But this shows that {f°(z )} is not Cauchy and hence we have a contradiction.

###

Our reexamination of Zoutendijk*s method, leads to our isolation

of the following:
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(13) Essential Properties (Z)

(i) Since e. - = e(e,,z ) depends both on e. and z., the same

holds for h and hence the method is multistep if the sequence {z.} only

is considered.

(ii) From Essential Property (11) (ii) and (6), it follows for

Zoutendijk.'s method that for every z € ft - A there exist p > 0 and
z

e > 0 such that
z

(14) e(ei,z±) ^min^.e } for all z. € B(z,p )

(iii) From Essential Property (11) (iii), it follows for Zoutendijk*s

method that for every e > 0 and z G ft ~ A, there exist a p > 0 and
e,z

an integer I >, 0 such that for all e > e and z. e B(z,p ),
£»z i i e,z

satisfying e(e. ,z ) >_ e, £ , as computed in Step 3, satisfies I < SL
I i- e,z'

i.e., the step size X >_ g e»z.

(iv) (Common to Polak and Zoutendijk methods). Since Qh D <_/a.

for all h± S S and z±+1 = z + Xh ,

(14a) X± > Oz^-z^l/i^

(v) (Common to Polak and Zoutendijk methods). From theorem

(4.3.35) in [10], for every z S ft ~ a, there exist pf > 0 and e1 > 0
z z

such that for all e. € [0,ef] and z, S B(z,pf)
l z i z

(14b) 6(ei,zi) < -e^ ###

We get two important immediate consequences of properties (13)(iii)-

(v). First, from (13)(iii), (13)(v) and (8), given e > 0 and z € ft ~ A, there

exist p > 0, I ^ 0 such that for all e, > e and z, £ B(z,p )
e»z e,z — i — i N e,z

such that e(e.,z ) >_ e,

(15) f°(2i+i) "*°(*±) ±y\Q(e(z±>z±),z±) <-y3 e,Ze 4-6£ z<0.
Next, from (8) and (13) (iv) and (v), we conclude that for every
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z€ ft - a there exist p* G' (0^p ]. and e» S (0,e ']' such that for all
z z z z

e > 0 and z € B(z,p*)
1 i z

(15a) «°(s1+1) -f0^) IT^eUd^.z^.z^

4-*; '-i+i-i1
C16) Theorem: Suppose {z.} is an infinite sequence constructed by

Zoutendijk*s algorithm. Then every accumulation point {z.} is in A.

Proof: Suppose {z } has an accumulation point z, i.e., z ->-z, KCl,

Then, because 9(e^,z.) £ 0 always holds, it follows from (8) and the

continuity of f (•) that f (z.) \ f (z) as i -*• ». For the sake of

contradiction, suppose that z £ A.

Let e = e* > 0 and p = min{p-,p-} be as specified in Essential
z z z

Property (13)(ii) and (v) for z. If z. € B(z,p) for all i >. iQ, for
* A -some i0, then from (14), e. >_ min{e ,e} =» e for all i >_ in and alsoi iQ o

e(e ,z ) >^e for all i >, iQ. It now follows from (13) (iii) and (8),

via (15) that there exists an i. > L such that

(17) f°<zi+i> "f0<zi> £-«- £<0for all i>. ix, i€K

and hence {f (z.)} is not Cauchy. Since this contradicts the fact that

f (z.) \ f (z), we must have an infinite subsequence of {z.} outside

of B(z,p). Let u € (0,1). Since z. •*• z, there exists an i« such that

z± €B(z,up) for all i£ i£ and i€ K. For any i6 K, i>i2 let j>0be

In this case, as z. keeps reentering B(z,p), e., could, conceivably, be

decreasing to zero and hence the arguments used in the proof of Theorem (12)
cannot be used here.
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the smallest integer such that z .£ B(z,p). Then, since e± > 0 for all

i, from arepeated application of (15a) and the fact "zi+4*"z^ 1. (l-u)p,

we obtain, with 6* =* 5* , that
z

(18) f°(zi+j> "f°(z±) £-6,(l-Vi)P
which shows that {f (z.)} is not Cauchy. Hence we have a contradiction

and the proof is complete. ###

The above proof of the convergence of Zoutendijk*s method seems

about as simple as it can be made. The simplification was achieved

by using Polaks*s method as a stepping stone and by observing that

the proof of convergence for Zoutendijk* s method has to differ from the

one given for Polak*s method by an appropriate use of properties (15)

and (15a).

In the next section, we restate our observations on Zoutendijk*s

method in the form of an algorithm model and convergence theorem applicable

to the class of algorithms discussed in the introduction.

3. A Generalization of Polak* s Algorithm Model and Convergence Theorem

Let X be a closed subset of a normed linear space and let

£ C x be a set of solution points. In [10], Polak considers one step

X
algorithms defined by a map A :X •*• 2 , as follows:

C19) Algorithm Model a.3.9) in [10]:

Step 0: Choose xQ £ X; set i « 0.

Step 1: If x. 6 E, stop.

Step 2: Compute an x - € A(x ).

Step 3: Set i « i+1 and go to Step 1. ###

The corresponding convergence theorem reads as follows:
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C20) Theorem CI.3.10) in [10]: Suppose that CD there exists a c :X •+ K.

which is either continuous or bounded from below on X, and (ii) for every

x € X - I, there exist p > 0, 6 > 0 such that c(x") - c(x*) <_ -<5
XX X

for all x* £ B(x,pJn X, for all x" S AC**). Then all accumulation

points of an infinite sequence {x.} constructed by CI9) are in E. ###

To cast both one step and multistep e-controlled algorithms in the

one step form (19), we only need to augment the set in which the

iterations take place to X x i to introduce two maps: A:X x IR -»• 2X

and E :X x 3R -* 2 . , Referring to Algorithm (7), we find that the

appropriate generalization reads as follows:

C21) Algorithm Model.

Step 0: Choose eQ > 0, x. G X, set i = 0.

Step 1: If x, £ Z, stop.

Step 2: Compute e. -£ E(e.,x.), x.+1 ^ ACe.,x.) .

Step 3: Set i » i+1 and go to Step 1. ###

Referring to Zoutendijk*s method, we see that in that case

E(e.,z.) » {e(e.,z.)} and A(»,») has the form A(e.,z.) =» A*(e(e^9z^),z^),

with the definition of A*(»,«) obvious from the algorithm.

In Polak*s algorithm, E(e ,z ) = {eQ} and A(«,») is defined in the

same manner as for Zoutendijk*s algorithm.

As in the case of Theorem (20) , we shall assume that there exists a

cost function c :X -*• H associated with Algorithm Model (21). To complete

our notation, for r > 0, x e X, we define

(22) B(x,r) A {x* € x|Hx*-xll £ r},

where D•II is a particular norm associated with the space containing X.
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(23) Definition: Let {(e^x )} be any sequence constructed by (21).

We say thatXj is asuccessor of xx if (e^x^ and (e.,x.) are points
in the sequence and j > i. ###

The Essential Properties (P) and (Z) now lead to the set of

assumptions in the theorem below.

(24) Theorem: Suppose that

(i) For all e > 0, x e E, A(e,x) » {x} and E(e,x) = {0}.

(ii) c(») is locally bounded from below on X " E.

(iii) For each x G x ~ E there exist p > 0 and
x

e > 0 such that for any x* € B(x,p ), e* > 0,
** X

e"€E(e*,x*),

(25) e" > min{e*,e }.
— x

(iv) For each x G X ~ E and e > 0 there exist p > 0 and 5 > 0
e»x e,x

such that

(26) c(x") - c(x*) < -6e ^ for all e* >_ e, x* S B(x,p ), x" G A(e*,x*)
' w }X

(v) For each x € x - E, there exist p* > 0 and 6* > 0 such that
x x

for any r € (0,p*], and a € (0,1), there exists u > 0
x o*,r

with the property that if x. € X - B(x,r) is a successor of

x. € B(z,ar) then

(27) c(Xj)-c(Xi)<-«;Vr+.

Let {(e^9x^)} be any infinite sequence constructed by Algorithm

Model (18). Then every accumulation point of {x.} is in E.

Proof. Because the sequence {e ,z } to be considered is

infinite, x± S X ~ Efor all i. For the sake of

contradiction, assume that there exists a subsequence

{xi}iQC SUCh that xi "*" *> with x€ X - E. Hence by (24) (ii)

lim inf c(x ) = c > -co. since x € X - E for all i and en > 0,
iQC *_ 0

t ""
This assumption is an obvious generalization of (15a).
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conditions (24) Ciii), (iv) imply that e, > 0 and c(x._) < c(x^),
1 i+1 i

for all i. Since the sequence ic(x±)} is monotonically decreasing, c(x.) >c
as i •>• ». - _ •

Let r = min{p-,pi}, where p. and pi are positive

constants as in (24) (iii) and (24) (v) respectively. We may assume

that k± S B(x,r) for all iG K. Two cases may arise:

(i) There exists an integer iQ such that x S B(x,r) for all

^V

(ii) There exists an infinite subsequence {x.}^,. such that

x € X ~ B(x,r), for all jGK'.

In case (i), let e- be as specified in (24) (iii), then for

all i 1 i0» z± >.min{e. ,e-} 4 e. Let 5* - be as specified in (24) (iii),
q x e,x

then (26) implies that c(x.,_) - c(x.) < -<S- - for all i > i; > iA, i € K.
i+l i — e,x — 1. — 0

But this implies that {c(x±)} is not Cauchy, which is a contradiction.

We now consider case (ii). Let a £ (0,1) be arbitrary

and let y^ ^ be the constant in (24)(v). Let ±2 be an integer such

that x± e B(x,ar) for all i >i2and i^L Let K* CKU K' be

an infinite subset of integers constructed as follows. We denote

the elements of K* by i(k), with i(k+l) > i(k), for all

k «=• 0,1 We choose i(0) £ K such that i(0) _> i . For

k = 0,1,..., given i(k) G K*, if k is even, we let i(k+l) S K*;

if k is odd, we let i(k+l) € K. (The choice of the elements in K, K*

is arbitrary except that the ordering i(k+l) > i(k) must be observed.)

Making use of (24) (iv), we obtain for all i(k) £ K* and k even,

C(xi(k+i)) -c(aW i-*xVy

This implies that {c(x )J.^ is not Cauchy which contradicts

the fact that every subsequence of a Cauchy sequence is a Cauchy

sequence. Hence, our proof is complete. ###

-12-



Although Theorem (24) seems to be in the most general form

possible, it suffers from the aesthetic drawback that assumption

(v) is really a multistep assumption that is made for a one step

algorithm. At a slight loss of generality this matter can be remedied

as follows (c.f. (15a)) .

(28) Corollary: Suppose that assumption (v) of Theorem (24) is replaced

with: (iv)* For every x € x ~ E, there exist p* > 0 and 5* > 0 such
x x

that for all x* e B(x,p*) and any e* >_ 0,
x

(29) c(x") - c(x*) < -6'Dx"-x'H for all x" S A(x*,e')
x

Then the conclusions of theorem (24) remain valid. ###

Quite obviously the above assumption (iv) * implies assumption (iv)

in Theorem C24) and hence there is no need for a proof of

the corollary.

Algorithm Model (21) follows the pattern set in Algorithm Model (19)

in that it suppresses all the detail of the structure of the maps

E(«,-) and A(«,«).
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Conclusion

This paper was motivated by a desire to simplify the proofs of

convergence of a class of algorithms which, in structure, resemble

Zoutendijk*s methods of feasible directions. Our approach was to

establish the essential properties of these algorithms as a consequence

of the essential properties of the simpler, Polak type methods of

feasible directions and to present the main steps one needs to follow

in constructing a simple proof. We then abstracted our findings in the

form of an algorithm model and a general convergence theorem. We hope

that the results in this paper will eliminate a good part of the

difficulties in understanding e-controlled algorithms and their

convergence properties.
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