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Abstract- The problem of single-row routing represents the

backbone of the problem of general routing of multilayer

printed circuit boards. In this paper, the necessary and
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formulation is introduced. Examples are given to illustrate
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of the condition is also given.
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I. INTRODUCTION

Recent advances in microelectronics have drastically changed the tasks

and design philosophy of circuit designers. One of the primary concerns

nowadays is the efficient layout of chips and circuit modules which may

contain thousands of interconnected devices and units. While CAD packages

for layout are frequently used for various purposes in industry, the

general problem of circuit layout is far from solved. As a matter of fact,

basic study in the field from a theoretical point of view is lacking.

One main problem seems to be the difficulty in formulating explicitly stated

problems which are relevant to practical circuit layout.

In this paper we deal with a crucial problem, the problem of single-row

*

routing. It arises in the layout design of multilayer printed circuit boards

and backplanes. It is a simple problem, it can be unambiguously stated, and

it represents the backbone of the general routing problem. The problem was

first introduced by H. So of the Bell Labs. [1]. Subsequently, algorithms

and sufficient conditions for routing to minimize the tracks needed have

been proposed [2]. In the present paper, we introduce a novel formulation

of the same problem. With the new formulation, it becomes possible to

understand the intricacies of the problem, thus we have been able to obtain

a complete set of necessary and sufficient conditions for optimum routing.

A graph theory interpretation is also given. Although an efficient algorithm

has yet to be worked out to employ these conditions for general routing,

examples are given to illustrate how the conditions are used to obtain optimum

routing.

We sometimes use the term routing to mean realization.



H. FORMULATION OF THE PROBLEM

Given a set of n nodes evenly spaced on a row which is located on the

real line R as shown in Fig.l. A net list L = { Ni, N2,••*, N } is given

which prescribes the connection pattern of the m nets to the n nodes.

The specification can be expressed in terms of an m x n 0-1 matrix A=[a..],

where a ..= 1 if net N, is to connect node v., and a,.= 0, otherwise,
ij 1 J ij

It should be stressed that a node is to be connected to one and only one net,

thus there exists one and only one l's in each column of the matrix.

A net list is to be realized with a set of m non-intersecting nets which

consist of only horizontal and vertical paths connecting the nodes according

to specification. An example depicting a realization of a given net list

together with the matrix specification and some pertinent terminology is

shown in Fig.2. The space above the real line R is referred to as the upper

street and the space below R is referred to as the lower street. The number

of horizontal tracks needed in the realization in the upper street, is called

the upper-street congestion. Similarly, we define the lower-street congestion.

In the realization, we allow a net to switch from upper street to lower street,

and coversely, as shown by the net N^ in Fig.2.

Previously, it has been shown that given a net list, a realization always

exists [2]. An optimum realization is one which minimizes the street congestion

in both streets. Sufficient conditions for realization to minimize street

congestion together with a routing algorithm were proposed in [2],

Unfortunately, the algorithm has been found to be incomplete and it could fail.

A counter examples is given in the Appendix. In this paper we give the

necessary and sufficient condition for optimum realization. We introduce a

new formulation of the problem as follows.

Consider the set of m nets given by the net list in terms of the matrix A.

Let us draw a set of m horizontal intervals representing the m nets in the

order given by the matrix from top down. This is illustrated in Fig.3

*

A net N is said to be the minimal net among a set of nets if there is
no net N' in the set of nets with relation N' < N.
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for the problem given by the matrix A in Fig.2. Note that each horizontal

line corresponds to the interval specified by a row of A between the extreme

left and right l*s. Each node is appropriately marked on the lines as shown.

We call this the interval graphical representation of the matrix A. Since

there are m! row permutations, there exist a total of m! interval graphical

representations for a given net list. In the following we will first

demonstrate that, for each representation, there corresponds a unique realization.

The interval graphical representation of the example in Fig.3 is redrawn

in Fig.4a together with a set of line segments in broken lines connecting

the nodes. Let us define a reference line as the continuous line segments

which connect the nodes in succession from left to right. The m interval

lines together with the reference line form a graph. The crux of our proposed

realization lies in a topological mapping of the graph so constructed. Let us

stretch out the reference line and set it on top of the real line R. The m

horizontal interval lines are mapped topologically into vertical and horizontal

paths. Nets and portions of nets which lie above the reference line are mapped

into paths in the upper street. Similarly, nets and portions of nets below

the reference line are mapped into paths in the lower street. This prosess

defines a unique realization. For the example in Fig.4a, This mapping results

in the realization as shown in Fig.4b. It becomes obvious that the problem

of finding an optimum realization is reduced to that of finding a matrix A

which represents an optimum ordering of the m nets in the form of horizontal

intervals. In order to pursue further we need to understand the property of

street congestions in terms of the new formulation.

First, let us define the cut number of a node v., denoted by c., as in [2],

Let us draw a vertical line at v. superimposed on the interval graphical

representation as shown in Fig.3 for example by the line at V6. The cut number

c. is defined as the number of nets cut by the vertical line, disregarding

the net to which v. belongs. The nets cut by the vertical line are called

the nets which cover the node v.. Thus at V6 in Fig.3 C6=2, and nets N2 and
1



Ni» are said to cover V6. We next introduce the upper cut number at v^ ciu,

as the number of nets cut by the vertical line above v±. Similarly, we define

the lower cut number at v., c. , as the number of nets cut by the vertical
1 iw

line below v.. Obviously, for all i, c±= ci + c.w. These cut numbers of all

the nodes for the example are listed in the table in Fig.3. We similarly,

define a net covering the node v. from the above as the net which intersects

with the vertical line above v., and a net covering the node v. from below

as the net which intersects with the vertical line below v.. Thus in Fig.3,

N2 covers the node V6 from the above and Ni* covers the node V6 from below.

Let C = max c,u i iu (1)

and C = max c.
w i iw

From the topological mapping just introduced, it becomes clear that C gives

the track number in the upper street and is equal to the upper street congestion

for the realization. Similarly, C is equal to the lower street congestion.

Therefore, our problem of finding an optimum realization or routing* amounts

to finding an ordering of the m nets among the m! permutations for which the

max {C , C } is a minimum,
u . w

It would be hopeless to generate all m! realizations in order to obtain

an optimum one. In the next section, we will first study the characterestics

of an optimum realization to gain some insight. The necessary and sufficient

conditions for an optimum realization will be given in section 3V .

* We sometimes use the term routing to mean realization.



HI. OPTIMUM ROUTING, A PREAMBLE

Before we discuss optimum routing, it is necessary to introduce the

term, cut number of a net N., denoted by q. as was done in [2]. We difine

q. as the maximum of the cut number of the node which belongs to the net N.

For the example in Fig.3, we have qi= 3, q2= 1, qa= 2 and qt,= 3. It is

clear that the cut number of a net is an important property in determining

the net ordering for an optimum routing. For example, if the first net

from the top has a cut number q then C is at least q, because at one of

the nodes which belong to the first net, the lower cut number is q.

Similarly, if the last net chosen has a cut number q, then C is at least
u

q, because at one of the nodes which belong to the last net, the upper cut

number is q. Thus, it makes sense to select those nets with least cut

numbers as the outer nets for optimum routing.

In an optimum realization, let Q be the street congestion, thus

Q = max{C , C }. Let us further denote by
o u w J

q = mm q,
m j 3

q = max q.nM j ^j

(2)

then we can state the following:

Proposition 1 Q >= max{q ,q} where q= fqM/2| and fx| is

the smallest integer not smaller than x.

Poof Q >. q has already been shown by the argument above.

Q ^ q = [qM/2I is proven by first assuming that we assign the net with q

in one of the middle rows. For example, if qw is even, at the node v. where
^M l

c.= qM, the best we could do is to choose qM/2 nets covering the node from

the above and q.,/2 nets covering the node from below. Thus c. = c. = qw/2.
ri iu iw M

If q is odd, at the node where c.= q.f, the best we could do is to choose

(q„ + l)/2 nets on one side of v, and (q - l)/2 nets on the other. Thus

either c±u= (qM + l)/2 and ciw= (qM - l)/2, or c±u= (qM - l)/2 and

c. = (q._ + l)/2. It is also clear that with any other ordering we cannot do
iw M °



better than this. Therefore, we have shown that Qq= max{Cu, Cw} >, kM/2l •
Q.E.D.

From the above, we see that the strategy to obtain an optimum routing

is to choose those nets with the lowest cut number as the outer rows and

to divide up c. properly between c. and c. at those nodes where the cut

number is larger than q . Although detailed specifications are to be

worked out for an optimum routing, it seems that an increasing ordering

of nets based on the cut number of a net from the outer rows to the center

rows is perhaps the right strategy for an optimum routing. Before we give the

necessary and sufficient conditions for optimum realization, let us consider

an example.

""Example 1. Given the net list as represented by the interval graphical

representation of Fig.5. The net list consists of 16 nodes and 8 nets.

The cut numbers of the nodes and nets are marked on the figure. From that,

we see q = 2 and q = 3. thus Q > 2 . Our question is whether Q = 2 can be
TQ M o = o

realized. For comparison, the problem does not satisfy the sufficient

condition given in [2]. From our discussion so far, it is clear that we

should select Ni and N7 as the outer rows because they have the lowest cut

number; but how about the rest?

First we consider all the nodes with cut number less than 3. These

are vi, v2, V3, v6, V7, vio , vu , vft , vi5 and v^ . Clearly, at any of

these nodes, since the cut nunber is less than 3, c. and ciw at these

nodes will not cause trouble. This means that we only need to concern

ourselves with the remaining six nodes with cut number equal to three:

vi*, V5, V8, V9, V12 and V13 . At these nodes, we must make sure that in

assigning the nets, the cut number is divided up between the lower street

and the upper street. A 2-1 division or a 1-2 division of the cut number

is fine. But a 3-0 or a 0-3 division is not. In Table 1 we list all

necessary information at these nodes:



node

associated

net nets cut

Vl» N- Ni N2 N3

V5 N3 Ni N2 Ni,

V8 N6 Ni N2 N5

V9 N5 Ni N2 N6

V12 N8 N2 N6 N7

V13 N2 N6 N7 N8

Table 1. Pertinent information for optimum routing in Example 1

The first column gives all the nodes with cut number larger than 2.

The second column indicates the net to which the node belongs. The third

column gives the nets which cover the node or nets cut by a vertical line

drawn at the node. From the table, we can decide an ordering of the eight

nets such that nets in the second column will have at least one net above

it and one net below it among the nets specified in the third column.

For this example, there exist many such orderings, for example

Ni N3 Ni, N5 N6 N2 N8 N7

The interval graphical representation and its corresponding realization are

shown in Fig.6. Thus Q = 2 has been realized.



]V. THE NECESSARY AND SUFFICIENT CONDITIONS

In general, the task of obtaining an optimum routing is more involved.

However, the concept is the same. We must check those nodes at which the

cut number is large. A table similar to that of Example 1 needs to be

constructed. We must test whether an optimum division of the cut numbers

between the lower street and the upper street is possible. Although the

determination of a feasible order may not be simple, a set of necessary

and sufficient conditions can always be stated.

First we need to define some useful terms.

Let *- «H " «t (3)

A net x is said to cover a net y at a node v which belongs to y if x covers v.

Similarly, net x is said to cover net y from the above if net x covers node

v from the above, and net x is said to cover net y from below if x covers v

from below.

Theorem 1 There exists an optimum realization with street congestion

QQ= qt if and only if there exists an ordering such that for each v. with

c = q + k (k=l,•••,£) the net associated with v. is covered from the

above and below by at least k nets.

Proof Since at each v. with c. < q , c. and c. < q , we only need
l i=tiu iw = ^t J

to concern ourselves with those v. where c. > q . At these nodes, with cut

number qt + k, k > 0, if there are at least k nets above the node and k nets

below the node, the maximum cut number, C and C are at most q . Since
w u ^t

from Proposition 1 Qq > q thus the optimum Q = q is realized. This proves

the sufficiency. To prove the necessity, we assume that at those nodes v
l

with cut number q£ + k, there are less than k nets covering v. from the above

or below. Then, since cui + c .= c.= q + k, either c . or c . must be greater

than qt» Therefore the street congestion is larger than q . Q.E.D.

To deal with the general situation we need to introduce the definition

of p-excess property.
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By p-excess property we mean that there exists an ordering such that

for each v. with c = q + k (k=p+l,•••,&) the net associated with v. is

covered by at least k-p nets from the above and from the below.

Theorem 2 There exists an optimum realization with street congestion

Q = q + P» if ana only if p is the least non-negative integer for which

the p-excess property holds.

The proof of this theorem is exactly the same as that of Theorem 1 and

is therefore omitted.

Remark Theorem 1 is a special case of Theorem 2 when p=0.

Example 2 In this example there are 30 nodes and 15 nets. An interval

graphical representation is shown in Fig.7 together with the cut number of

the nodes and of the nets'. For convenience we use alphabets in capital letters '

to designate nets. It is seen that q = 4, q = 7, q = 4 and % = 3. In Table 2,
^m M ' nt '

we give those nodes with cut number larger than 4, the associated nets and

the nets that cover the pertinent nodes. The nodes are grouped into three parts

according to their cut numbers. First, we must check whether the conditions

in Theorem 1 are satisfied. To determine the net ordering, it is useful to

note that there are two nets which have cut numbers less than 5. They are

net D and net G, and they are assigned right away to the outer rows. As to

the others, we will start from inside out by considering the first part of

Table 2. Both nets K and L have cut number 7, we need to assign them in the

middle. We next consider nets in the second part, namely: C, H and 0.

Since they have cut number 6, and we will temporarily assign them next to

nets K and L. In checking with the nets which cover the nodes with cut

number 7, a tentative ordering of

FCHLKJIG

will satisfy the conditions that both L and K have three nets above and below.

Similarly, for the second part in Table 2 a tentative assignment of

MNFOCHLKJIG

is made. This will satisfy the conditions that 0, C and H have two nets

above them and two nets below them among those which cover the pertinent nodes.



Nodes Cut number Associated nets Nets covering nodes

17 7 K F C H L J I G

16 7 L F C H K J I G
—

24 6 C F 0 N M I G

18

23

15

6

6

H

0

K

F C L J I G

F C N M I G

6 F C H J I G

7 5 A D B E F C

11 5 B E F C H G

13

6

5 E F C H I G

5 F D A B E C

25 5 F 0 N M I G

12 5

5

5

I E F C H G

14

21

J F C H I G
—

J F C M I G

20

22

19

5 M F C J I G

5

5

N

L

H

F C M I G

F C J I G
....

10 5 B E F C G

il

Table 2 Example 2:

Nodes with cut number larger than q , the associated

nets and the nets which cover the nodes.

The remaining part of Table 2 contains nodes with cut number 5. An ordering

must be obtained to satisfy the remaining conditions with the clue that net

D and net G are assigned in the outer-rows. We discover that there are

various constraints among the nets with cut number 5. An ordering as

DMNFABEOCHLKJIG

satisfies all conditions except at node 20 where net M should have a net

from the above among the pertinent ones. After much cut and try, we are

convinced that not all the conditions can be simultaneously satisfied.

This means that the conditions in Theorem 1 cannot be met, thus Q > q .
' xo t

By applying Theorem 2, it becomes clear that Theorem 2 is satisfied with

P = 1. Therefore, we conclude that Q = q + 1 = 5, and the ordering given

above gives one such solution. The interval graphical representation is

drawn in Fig.8 together with the reference line. The realization is shown



in Fig.9. It is seen that at node v20, C = 5, which is the maximum C

among the nodes. Thus an optimum Q = 5 has been realized.

To gain further insight of the conditions given in Theorem 1 and

Theorem 2, we will classify the nodes into different sets according to

their cut number. Let 3k, k=l,2,»««,£ be the set of nodes with cut

number equal to qfc + k. Then the test to be made can be stated in terms

of net covering to satisfy a specific table generated as in Example 2.

The necessary and sufficient conditions for an optimum realization can be

summarized by the flow chart as given in Table 3. In the flow chart we use

the terminology "cover,8k(j)" to mean nets covering nodes in the set with

cut number q + k from the above and below j times.

12
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V. GRAPH THEORY INTERPRETATIONS

The necessary and sufficient conditions for optimum routing can be

interpreted in terms of graphs. This may lead to an efficient algorithm

which is to be determined. For a given net list and a specified value of

p we first construct a bipartite graph G as follows:

We assign a node v. in G to every node v. with cut number c.> q + p.

This forms the first set of nodes of the bipartite graph G. The second set

of nodes consists of node N. in G representing all the nets. The edges are

defined according to the covering relation. Thus, there exists an edge

between v. and N. if, in the net list, net N. covers node v.. Next we choose
i J J l

the orientation of the edges to satisfy the covering property at each node v^

An edge enters v. from node N. if net N. covers v. from the above; and an

edge leaves from v. to node N. if net N. covers v. from below. Thus to satisfy

the p-excess property, for each node v. with cut number c = q + k (k=p+l,•••,£),

both the number of edges entering v, and leaving from v.-must be at least k-p.

For Example 1, with p=0, the bipartite graph is shown in Fig.lOa with an edge

orientation selected according to the ordering in Fig.6.

Next, we introduce a reduced digraph G1 from the directed bipartite graph

G by the following operations. First identify node v. in G to its associated

net, node N. by shorting v. and N.. Parallel edges with same directions are
3 • i 3

then merged. The reduced digraph G' thus consists of m nodes representing

all the nets. For the present example, G' is shown in Fig.lOb. We note that

G' defines a precedence relation among the nets. A proper ordering can be

obtained by observing the precedence relation and tracing through the digraph G .

First, it is important to note that the reduced digraph G' has no cycle.

This is almost self-evident because G' gives the precedence relation among nets.

We are now in a position to state the following theorem.

Theorem 3 The necessary and sufficient condition for a net list to have

the p-excess property is that there exists an orientation for the edges in the
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bipartite graph G with the following properties:

(i) For each node v., the number of edges entering v. and leaving from

v. must be at least k-p, and (ii) the reduced digraph Gf is acyclic.

Poof (i) is obvious and follows directly from the definitions of G

and the p-excess property. To prove necessity for (ii), we assume that there

is a directed cycle in G'

[Ni, N2], [N2, N3],'--, [Nk-1, Nfc], [Nk, Ni]

Then, reading the list from left to right, we see that Ni is above N2, N2 above

N3,,#', N, above N, , and N, above Ni. Therefore, we conclude that Ni is

above Ni, which is a contradiction. To prove sufficiency for (ii), we introduce

an ordering among nets based on the orientation of the edges in 6'. For two

distinct nets N and N' we say N < N1 if and only if there exists a directed

path

[Ni, N2],---, [Nk_lf Nfc]

where N = Ni and N* = N, . Since there exists no directed cycles, one of

the following cases must hold for any two distinct nets N and Nf.

(1) N < N'

(2) N'< N

(3) There exists no order relation between N and Nf.

Because of the transitive relation that N < N1 and N1 < N" imply N < N",

there exists a partial order < among the nets in G'. Therefore a proper

ordering among the nets can be obtained.

Q.E.D.

In our example in Fig.10b, Ni is the minimal net. By starting with Ni

and tracing through GT, we obtain a proper ordering

Ni N3 N^ N5 N6 N2 N8 N7

** A net N is said to be the minimal net among a set of nets if there is no

net N' in the set of nets with relation Nf< N.
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This is the order which we obtained in Fig.6. Obviously, there exist many

proper orderings because, at each stage, we may pick up arbitrarily a

minimal net among many. For example, N5 may be picked ahead of N3 to

obtain the following proper orderings:

Ni N5 N6 N3 Ni» N2 N8 N7

and * Ni N5 N3 Ni» N6 N2 N8 N7 .
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VI. CONCLUSIONS

In this paper we have demonstrated that by the use of an interval

graphical representation of the net list of the single row routing problem

we obtain a set of necessary and sufficient conditions for optimum realization.

The conditions are given in terms of feasible orderings of the nets. A graph

theory interpretation is also given. So far, an efficient algorithm has not

yet been worked out to implement a procedure for properly ordering the nets.

However, cut-and-try has been rather easy for modestly complicated problems.

The special case with Q < 2 is of interest for practical printed-

circuit-board routing. For this case, a simple algorithm can be derived by

the use of directed graphs. As the general problem of multilayer printed-

circuit-board routing depends in a crucial way on single-row routing, especially

situation with maximum of two rows, the major problem remains to be solved

is optimum layering. The problem is to decompose in an optimum way a single

row, multilayer net list into a number of single-row, single-layer problems.[3]

In conclusion, as far as optimum single-row routing is concerned, the

present paper gives a complete set of necessary and sufficient conditions.

Work is still needed to derive an algorithm for the implementation of net

ordering to satisfy these conditions.
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APPENDIX

In [2], Theorem 2 stated that a net list L over R is realizable with

C=C=M>pl = fp/2l if the following holds: for every unit interval
u w = ••

(a,b) with density d(a,b)= I, I >M+ 1, there exists at least 2(I-M) nets

covering (a,b) such that each of them has cut number less than I. The

theorem gives a sufficient condition for realization (not necessarily the

optimum). An Assignment algorithm for realization was also given. In the

Assignment algorithm, there usually exists leeway as to which nets among

several eligible ones should be assigned at each step. No specific

information on the ordering was given. In the following example, it is

shown that an arbitrary ordering will fail in obtaining a realization.

Example 3 Consider the net list given in Fig.11 together with the

density for all the intervals, the cut number of the nodes and of the nets.

Since p = 6, M >_ 3, we only need to check first those intervals with

density larger than or equal to 3. The conditions given*in Theorem 2 in [2]

are satisfied with M = 3, therefore a realization with street congestion

equal to 3 should exist.

Let us test the Assignment algorithm. The first interval from the left

is (4,5), and we have four nets, Ni , N2 , N3 and Ni* to choose for U and W.

Since the algorithm does not indicate priority, we choose N«» in U and Ni in W.

The next interval (8,9) can be passed. The next one is (10,11), and we have

N2 and N3 to choose for U. We assign N3 in U. The next interval (12,13)

can be passed. The next interval is (16,17), and we assign N2 in U.

The last one (18,19) can be passed. We thus completed all intervals with

density 4. This is summarized in Fig.12.

The leftmost unit interval with density 5 is (5,6). There are 4 nets,

Ni , N2 , N3 and Ni, two of which must be in U and two remaining must be in W.

Thus the algorithm fails.



The same problem can be solved easily with our present method. From

the given information, we have q = 0 q = 5, q = 3 and Jl = 2.

The information to satisfy Theorem 1 is summarized in Table 4. It is easily

checked that an ordering as

Ni , N2 , N5 , Ne , N7 , N8 , Nio , Nu , N9 , N3 , Ni»

satisfies all the conditions. Thus Q = q = 3, and an optimum ordering is

shown in Fig.13.

It should be noted that the Assignment algorithm given in [2] always

assigns nets from outside inward. This is because the way that routing is

defined in the upper street and lower street. The interval graphical

representation given in the present paper avoids completely the difficulty

of sequential routing.

Nodes Cut number Net Asso. Nets cut

6 5 N6 Ni N2 N3 Ni» Ns

7 5 N5 Ni*N2 N3 Nk N6

5 4 Ns Ni N2 N3 N!*

8 4 N6 Ni N2 N3 Ni>

11 4 Ns Ni N2 N3 N7

12 4 N7 Ni N2 N3 N8

16 4 Nn Ni N2 N9 Nio

17 4 Nio Ni N2 N9 Nn

Table 4 Example 3

19
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Fig. 1. A set of n nodes on a single-row.

Fig. 2. A realization of the net list L = {Ni, N2, N3, Ni.} where

Ni= (vi, v5), N2= (v2, v8), N3= (v3, v6> & Ni»» {vi*, v7, v9}.

Upper street congestion = 1 track, lower street

congestion = 3 tracks in this realization.

Fig. 3. Interval graphical representation of the matrix A in Fig.2 and

the node cut numbers.

Interval graphical representation together with the reference line.

Net list realization which corresponds to the interval graphical

representation of Fig.4a and the matrix A of Fig.2.

Example 1, an arbitrary ordering together with cut numbers.

An optimum realization of the example given in Fig.5.

Example 2 indicating an interval graphical representation with

cut numbers of the nodes and nets.

Fig. 8. A specific ordering representing an optimum with Q = q + 1 = 5.

Fig. 9. An optimum realization with Q = 5.

Fig. 10a. A bipartite graph G representing net ordering of Example 1.

Fig. 10b. The reduced digraph Gf.

Fig. 11. A counter example to the Algorithm in Ref.[2],

Fig. 12. An ordering which fails.

Fig. 13. An optimum ordering for Example 3.

Fig. 4a.

Fig. 4b.

Fig. 5.

Fig. 6.

Fig. 7.
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