Copyright © 1978, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

NONLINEAR CONVERTERS

FOR PULSE-CODE-MODULATION SYSTEMS
by
G. Smarandoiu

Memorandum No. UCB/ERL M78/27
24 May 1978

NONLINEAR CONVERTERS

FOR PULSE-CODE-MODULATION SYSTEMS

by
G. Smarandoiu

Memorandum No. UCB/ERL M78/27
24 May 1978

1

ELECTRONICS RESEARCH LABORATORY

College of Engineering University of California, Berkeley 94720

NONLINEAR CONVERTERS
FOR PULSE-CODE-MODULATION SYSTEMS
D. Eng. Gheorghe Smărăndoiu

Dept. of Electrical
Engineering and
Computer Sciences

ABSTRACT

The work presented in this report was directed towards the practical implementation of charge-redistribution techniques in nonuniform converters used in Pulse-CodeModulation (PCM) telephone transmission.

An encoder-decoder converter pair implementing the $\mu 255$ companding law was comercially manufactured using standard CMOS technology.

The codec (coder-decoder) meets standard telephone transmission specifications.

DEDICATIE

Această lucrare este dedicata soţiẹi mele Lili. Sacrificiile ei au făcut-o posibilă.

DEDICATION

This manuscript is dedicated to my wife Lili. Her sacrifices made it possible.

ACKNOWLEDGEMENTS

I am greatly indebted to Professor David A. Hodges whose guidance and encouragement throughout my years of graduate study led to the successful completion of the work presented in this report. This work does also draw from the ideas of Professor Paul R. Gray and I would like to thank him Eor so generously offering them.

I was fortunate to study at U.C.B. with Dr. James L. McCreary and Dr. Yannis P. Tsividis and I do sincerely appreciate the many fruitful discussions that we had, as well as their work from which the present one is amply inspired.

At Siliconix I had an excellent working relationship with George F. Landsburg who actually took over the "reconstruction" work after I had left the company. The many useful suggestions of Lorimer Hill and Nalter Broedner are also appreciated. For so generously supporting the internship idea and for helping me through some of the most difficult moments I am deeply indebted to John Hulme, Vice President of Engineering at Siliconix Inc.

The completion of the manuscript was made possible by the kindness of my ex-Berkeleyan Director Dr. Constantin D. Bulucea and I would like to thank him once again for his support during the doctoral program.

No words would be sufficient to express my gratitude towards my family who had faith and patience during these last years of continuous sacrifice. I hope they will forgive me.

The work described in this report was performed mainly during the internship that I spent at Siliconix Inc. in Santa Clara, California.

I would also like to acknowledge the support that I received as a Fulbright-Hays fellow and the support from the National Science Foundation received under Grant ENG73-04184-A01.

The whole program was made possible by the generous leave of absence that I was granted from my company Institutul de Cercetări pentru Componente Electronice, Bucureşti, Romania.
3.2.2 The circuit 85
3.2.3 Stability analysis 89
3.2.4 Buffer response time 95
3.2.5 Device sizing 100
3.2.6 Computer evaluation 106
3.2.7 Experimental results 118
3.3 THE CMOS COMPARATOR 125
3.3.1 Design objectives 125
3.3.2 The circuit 128
3.3.3 Sample acquisition 131
3.3.4 Comparator stability 139
3.3.5 Comparator speed 154
3.3.6 Device sizing 172
3.3.7 Computer evaluation 175
3.4 THE CMOS SAMPLE AND HOLD BUFFER AMPLIFIER 193
3.4.1 Design objectives 193
3.4.2 The transconductance amplifier 196
3.4.3 The hold amplifier 203
3.4.4 Stability analysis 209
3.4.5 Device sizing 216
3.4.6 Computer evaluation 218
3.4.7 Critique of the original S/H amplifier design 229
3.4.8 Experimental results 235
CHAPTER 4 244
4. EXPERIMENTAL RESULTS. 245
CHAPTER 5 255

TABLEOFCONTENTS

CHAPTER 1 1

1. INTRODUCTION 2
CHAPTER 2 13
2.1 CHARGE REDISTRIBUTION CONVERSION TECHNIQUES 14
2.2 ENCODING ALGORITHM 14
2.3 PRACTICAL CIRCUIT CONFIGURATIONS 18
CHAPTER 3 22
3.1 THE CAPACITOR ARRAYS 23
3.1.1 The relation between the shape of the transfer curves and capacitor matching 23
3.1.2 Maximum individual capacitor deviations from ideal values 29
3.1.3 Combinations of capacitor nonidealities 36
3.1.4 Practical methods for the implementation of matched capacitor arrays 41
3.1.5 Capacitor structure and layout for the PCM codec 47
3.1.6 The absolute dimensions of the unit capacitor 54
3.1.7 The influence of long range gradients on capacitor matching 66
3.1.8 Electrical properties of MOS capacitors 66
3.1.9 Experimental results 72
3.2 THE CMOS BUFFER AMPLIFIER 82
3.2.1 Design objectives 82

5. CONCLUSIONS 256

APPENDIX . . 258
REFERENCES 299

Be
e

CHAPTER 1

1. INTRODUCTINN.

The potential of and need for a totally digital communications network are well. understood and its practical implementation is under way. Such a digital hierarchy requires at the first level terminals which onvert analog signals into digital form suitable for transmission and then reconstruct the digital information into analog form. At the present time the most common terminal is the so called digital channel bark (1). Pulse-Code-Modulation (PCM) and Time-DivisionMultiplex (TDM) techniques are used to convert several voice channels into binary form and vice-versa. The analog-todigital (ADC) and digital-to-analog (DAC) converters are shared over a number of 24 to 32 voice channels. This type of digital channel bank configuration is presented in Figure 1.1.

A channel bank operating with per channel dedicated $A D C$'s and $D A C$'s would eliminate the relatively complicated analog multi- and demultiplexing and would also greatly simplify maintenance. Such a system is presented in Figure 1.2.

The main factor determining the choice between these tw:c possible architectures is cost. The version containing cedicated channel converters becomes economically feasable crly if the converters can be produced at a competitive cost. Thereas relatively inexpensive linear converters have been available for somo time, this has not been the case with the specialized converters used in the digital channel banks. such converters known as codec's (coder-decoder) have

PCM in Existing Systems

Figure 1.1

Use of PCM with Per Channel CODEC

ADVANTAGES
 -DIGITAL MUX IS SIMPLER THAN ANALOG MUX \& SAMPLING

-CROSSTALK DUE TO ANALOG SmIAPLI:NG a BIUX IS ELIAIINATED

Figure 1.2
to implement nonlinear transfer curves, illustrated in figure 1.3 and respectively 1.4. Such transfer curves represent Fiece-wise linear approximations of idcally logarithmic transfer curves. The reasons for such transfer curves have been explained in great detail elsewhere (2,3).

The coder implements a compressing conversion while the decoder will reconstruct the original signal based on an expanding transfer characteristic. The overall effect is coarser resolution at large analog inputs than at smaller ones. This corresponds to adequate conversion of voice signals yielding acceptable signal-to-noise ratios (SNR) over a wide dynamic range. The SNR is defined as the power ratic between the reconstructed fundamental signal and the rest of the harmonics, these harmonics being mainly the result of quantization errors. The limits for acceptable SNR performance are illustrated in Figure 1.5a. The +3dB signal corresponds to a maximum amplitude equal to the full scale of the converters (approximately). An other parameter characterizing the codec is the gain-tracking (GTRCK) defined as the power ratio between the reconstructed signal and the oricinal ore. The acceptable limits are illustrated in Figure 1.5b. Eoth tests, SNR and GTRCK, are performed with 1 kHz sinuscidal signals scanning the dynamic range. The sampling frecuency is of 8 kHz corresponding to a maximum input siynal bencoifth of 4 kHz , i.e. typical for voice.

The piecewisc linear approximation of the ideal logarithmic transfer curves is implemented with 8 positive and 8 negative

Encoder Transfer Characteristic

SEGMENT ENDPOINTS FALL ON CURVE y $=\frac{\log (1+\mu x)}{\log (1+\mu)} \cdot \mu=255$

Figure 1.3

Decoder Transfer Characteristic

Figure 1.4

Figure 1.5
kinary weighted secments, each of them being divided into 16 steps. The segments are such that the length of a segment is double to that of the previous one. The only exseption to this rule is the first segment which contairs 15 and $1 / 2$ steps yielding a smooth transition through 0 . This is illustrated in Figure 1.6. The rest of the coder segments contain 16 equal steps. The last step in the decoder segments is 1.5 times longer than the previous ones. This is illustrated in Figure 1.7 and is also done for smoothness. Such an arrangement yields 255 discrete decision levels, whence the name of the conversion law, $\mu 255$.

The SNR and GTRCK curves presented in Figure 1.5
correspond to the case of a perfect codec which implements the piecewise linear approximation of the ideal logarithmic conversion law. These piecewise linearized transfer curves sould in principle be implemented in any number of ways, with one of the first attempts (4) using resistive ladders.

With the introduction of charge-redistribution techniques $(5,6)$ the realization of economical single chip codecs has become for the first time realistically feasable. The suitability of this technique to nonuniform conversion such as the one recuired in PCM communication will he analized shertly in Charter 2. An extensive analysis can be found in (3). Chapter 3 is devoted to the practical circuit design aspects of the capacitor arrays and the amplifiers used in the converters. Some of the experimental results not covered in Chapter 3 are included in Chapter 4.

Encoder transfer characteristic around $V_{i n}=0$

Figure 1.6

Decoder transfer characteristic around the boundary between two segments.

Figure 1.7

The conclusions of this work are presented in Chapter 5. Since the design was extensively based on computer simulations using XCODEC (7) the modified version used for the present work has been reproduced in the Appendix. This is done with the kind permission of Y. P. Tsividis, the author of XCODEC.

It should be mentioned that the present work is a natural extension of the work done by J. L. McCreary and Y. P. Tsividis; therefore a complete understanding of the topics being discussed in this report is possible only after the understanding of their original effort presented in (8) and (3). With this in mind some of the topics have been described very briefly with no pretense for completness.
p^{*}
8

CHAPTER 2

2.1

 CHARGE REDISTRIBUTION CONVERSION TECHNIQUES.The feasability of analog-to-digital converters based on the use of capacitors instead of resistive ladders and on charge redistribution techniques has been demonstrated by the realization of 8 and 10 bit linear converters (6,5). One of the major benefits of this technique lies in the fact that the MOS capacitors are compatible with a high yield technology capable of integrating on the same chip digital as well as analog circuitry. Whereas the application of MOS/LSI techniques to digital circuitry has become common practice, its suitability for analog functions has only been demonstrated more recently (9,10,11).

The charge-redistribution technique based on ratioed capacitors (8) appears to be particularly well suited for the implementation of single-channel PCM codecs. The conversion technique used in this case is very similar to the one implemented in the original linear converter (12) and its applicability to nonuniform conversion has been demonstrated in a multichip implementation (13).

2.2 ENCODING ALGORITHM.

The encoding algorithm can be described on the basis of Figure 2.1. The conversion is based on the use of two binary weighted capacitor arrays. The segment array, containing capacitors CXI to CXI28, is used to determine the segments of the coder transfer curve, whereas the step array, CYl to CY8 and CYT, is used for the generation of the steps within a segment.

Simplified encoder block diagram.

Eigure 2.1

A conversion proceeds as follows:
First the top plates of the segment array are grounded ard the bottom pletes are connected to the analog input. In this way the segement canacitors are charged up with V_{a}, the analog input voltage, the polarity being such that the top plates are at $-V_{a}$ with respect to the bottom plates. The sign (polarity) of the input sample is determined by opening the grcinding switch at the top of the segment capacitors, and by grounding the hottom plates. By doing so the voltage at the top plates goes to:

$$
v_{\text {top }}^{1}=-v_{a}
$$

and the comparator will switch accordingly. The placement of the analog sample within the segments of the transfer curve is determined by using successive approximation. By throwing the bottom plates of capacitors CX1 to CX8 to the appropriate V_{P} (reference voltage), the voltage at the top plates becomes:

$$
\begin{gathered}
\mathrm{v}_{\text {top }}^{2}=-\mathrm{v}_{\mathrm{a}}+\frac{\mathrm{CX1}+\mathrm{CX} 2+\mathrm{CX} 4+\mathrm{CX8}}{\mathrm{CXTOT}} \mathrm{v}_{\mathrm{R}}=-\mathrm{v}_{\mathrm{a}}+\frac{15}{25} \mathrm{v}_{\mathrm{R}} \\
\text { If } \mathrm{v}_{\text {tof }}^{2}>0 \text {, then: } \\
\mathrm{v}_{\mathrm{a}}<\frac{15}{255} \mathrm{v}_{\mathrm{R}}
\end{gathered}
$$

which implies that the input sample falls within the lower 4 segments of the transfer curve (with V_{a} and V_{R} assumed to te positive for simplicity). During the following step cx4 and cx8 are thrown back to ground so that:

$$
v_{\text {top }}^{3}=v_{\text {top }}^{2}-\frac{\mathrm{cX4} 4+\mathrm{cX} 8}{\mathrm{CXTOT}} v_{\mathrm{R}}=-v_{a}+\frac{3}{255} v_{\mathrm{R}}
$$

and if $V_{\text {top }}^{3}$ is again positive then V_{a} falls within the first two segments of the transfer curve, etc.

At the end of the fourth charge redistribution the placrment within one of the 8 segments of the transfer curve is known (sign bit +3 "segment bits"). The position of the sample within a segment is determined using the step capacitors.

Thus at the end of the "segment conversion" the capacitors are thrown such that the polarity of:

$$
v_{\text {top }}^{4}=-v_{a}+\frac{C X 1+\ldots . . C X j}{C X T O T} v_{R}
$$

can be changed by either adding to $v_{\text {top }}^{4}$ the value $\frac{C X(j+1)}{C X T O T} v_{R}$ or by subtracting $\frac{C X j}{C X T O T} V_{R}$. If $v_{\text {top }}^{4}$ is negative then the placement of the analog sample within the respective segment is found by adding to $v_{\text {top }}^{4}$ multiples of $\frac{C X(j+1)}{C X T O T} \times \frac{v_{R}}{16}$. These multiples are generated with the step capacitor array and fed through the buffer and the segment capacitor $C X(j+1)$ to the top of the segment array. The algorithm is once again successive approximation. Four charge redistributions are needed for the placement of the analog sample within the 16 rossible levels in the segment (yielding 4 "step bits").

It is more or less obvious that the matching of the serment capacitors has nothing to do with the matching of the step capacitors. This is probably the most important advantage of the conversion scheme as far as practical implementation is concerned. One can also observe that the encoder will be strictly monotonic.

2.3 PRACTICAL CIRCUIT CONFIGURATIONS.

The block diagrams of a practical encoder and respectivel.y decoder circuit based on charge redistribution in capacitive ladders are shown in Figures 2.2 and 2.3.

The analog-to-digital conversion is performed during 12 time slots within a frame of $125 \mu s$ corresponding to a sampling frequency of 8 kHz . The resulting length of a time slot is therefore about 10.4 's. 3 time slots are used for the acquisition of the analog sample, 8 for the charge redistributions yielding the digital output code and 1 for loading the output shift register. The time slots are obtained by internally dividing the incoming l.544MHz clock. The digital output word is shifted out at a rate of $1.544 \mathrm{Mbit} / \mathrm{s}$ corresponding to the use of the circuit as a single-channel encoder used in a 24 channel digital channel bank. The operations that have to be performed during one time slot are: digital control, actual charge redistribution after switch closure, buffer settling, correct comparator response and logic interpretation of the response. The time available in a time slot should be divided accordingly; how this is done will be described in the next chapter.

The operation of the decoder is much simpler being of the " one shot" type. The digital word is first loaded into a buffer register. This operation is performed during a SYNC pulse having a duration of about $5.18 \mu s$ (in the encoder the dicjital word is shifted out during a similar SYNC pulse).

Encoder Block Diagram

Figure 2.2

Figure 2.3

The corresponding analog voltage is then set up by closing the appropriate switches. This voltage is initially set up at the top plates of the segment capacitors while the internal switch of the sample and hold amplifier is still open. The switch is closed after a short time necessary for charge redistribution and the analog voltage is presented at the S/H amplifier output. The sampling switch is kept closed for about $12.95 \mu \mathrm{~s}$ but the amplifier will settle much faster. The amplifier is then put into hold until the occurence of an other SYNC pulse. With the timing circuitry that was built in, the decoder can handle up to 4 channels if "synched" 4 times during a frame; this corresponds also to a sampling rate of 32 kHz 。

The critical circuit elements of the codec pair will be analized in the next chapter.

3.1 THE CAPACITOR ARRAYS.

It has been mentioned earlier that the performance of a PCM codec is evaluated mainly in terms of signal-to-noise ratio (SNR) and gain tracking (GTRCK).

Assuming that electrical and dynamic conditions are satisfied, the only element that will influence the SNR and GTRCK values is the shape of the transfer curve implemented by the codec. This shape in turn is determined by capacitor ratios, the offset voltages and gains of the buffers used in both the coder and the decoder.

This section is concerned with the requirements imposed on capacitor matching - one of the most important ingredients to the success of the conversion scheme. 3.1.1 The relation between the shape of the transfer curves and capacitor matching.

An important (and decisive for practicality) feature of the conversion scheme is the fact that the capacitors in the segmentarrays do not have to be matched with the capacitors in the step arrays; the reason for the validity of this statement is that the end points of the segments are determined solely by the capacitors in the segment array and the step length ratios within a segment are determined solely by the step array capacitors. Exceptions to this rule are caused by some nonideal parameters such as buffer offset voltage and buffer gain. These imperfections will alter the ratio of either the first or last step to any other step within a segment and
they will also affect the segment ratio in the decoder. It may be noted though that these exceptions do not conflict with the statement about matching, they merely qualify the interpretation of the segment or step ratios. The relation between capacitor ratios and the shape of the transfer curves is illustrated in Figures 3.1 to 3.3 by means of examples; the L's refer to the length of the segments or respectively steps.

For the implementation of the $\mu 255$ companding law the ideal length ratio between consecutive segments is 2 . In the coder the 16 steps within a segment should be equal and in the decoder the last step in every segment should be 1.5 times longer than any one of the other 15 steps. Deviations from these ideal values will result in SNR and GTRCK values that are worse than the theoretical limits attainable with a perfect codec. A practical codec yielding SNR and GTRCK values that lie within some range of the ideal values will be acceptable as long as this range does not exceed the margins specified by the telecommunication industry.

The question then is: how much deviation from the ideal capacitor ratios is tollerable before the codec fails to pass SNR and GTRCK specifications? This question has to be answered before any attempt is made towards practical implementation; as a consequence the effect of nonideal capacitor ratios (as well as that of other nonidealities) on the SNR and GTRCK performance has to be evaluated via simulation.

$\frac{\mathrm{L} 7}{\mathrm{~L} 6}=\frac{\mathrm{CX} 64}{\mathrm{CX} 32}$

L6 is measured in voltage units from the beginning of the sixth segment to the beginning of the seventh segment. The beginning of the sixth segment is the voltage at which the code lol0llll starts to occur when the transfer curve is scanned from left to right or the code 10110000 starts to occur when the transfer curve is scanned from right to left. The beginning of the seventh segment is defined in a similar manner (l001llll, left to right, l0100000, right to left); etc.

Segment capacitor matching in the coder.

Figure 3.1

$$
\frac{L 7}{\mathrm{~L} 6}=\frac{\mathrm{CX64}}{\mathrm{CX} 32} * \frac{1+\frac{\mathrm{CX128}}{\mathrm{CX64}} * \frac{\text { VOSAY }}{\mathrm{VREF}-\mathrm{VOSAY}}}{1+\frac{\mathrm{CX64}}{\mathrm{CX} 32} * \frac{\text { VOSAY }}{\mathrm{VREF}-V O S A Y}}
$$

L6 is measured in voltage units and is the difference between the output voltage corresponding to the code loolllll and the output voltage corresponding to the code lol0llll; etc.
VOSAY is the offset voltage of the step array buffer.
Segment capacitor matching in the decoder.

Figure 3.2

$\frac{\mathrm{L} 77}{\mathrm{~L} 74}=\frac{\mathrm{CY1}}{\mathrm{CY4-CY2-CY1}}$
L74 is measured in voltage units and is the difference between the output voltage corresponding to code l0011011 and the output voltage corresponding to code 10011100; etc.

Step capacitor matching in the coder (top) and in the decoder (bottom).

The tool for such a simulation has been created by Y. P. Tsividis (7); it is XCODEC - a computer program for the evaluation of companded PCM codecs and it is based on a statistical approach to the coding process.

The analysis is static in the sense that a codec is characterized solely through the dc transfer curves of the compressing ADC and the expanding DAC. This is in agreement with the earlier statement that the shape of the transfer curre alone will determine the SNR and GTRCK performance.

This shape in turn should depend only on static parameters such as capacitor ratios and amplifier imperfections.

The influence of dynamic and electrical factors on the shape of the transfer curve can be eliminated, or at least minimized, through proper circuit design and will be treated later.

The transfer curves used by XCODEC have to be supplied by the user via appropriate subroutines. XCODEC will then use these transfer curves to simulate SNR and GTRCK testing procedures and provide outputs similar to the ones that would be obtained in an actual practical evaluation of a codec. The SNR and GTRCK values are compared against the spec limits and any failure is signaled through an appropriate message.

Sample outputs obtained from XCODEC are shown in the Appendix.

Since the relation between the static parameters (capacitor ratios, offset voltages, etc.) and the shape of the transfer curve is straightforward it turns out that

XCODEC can be used to evaluate the influence of any one imperfection on the performance of the codec. Due to the complexity of the relation between the transfer curve and the SNR and GTRCK performance it is difficult to determine combinations of acceptable maximal imperfections. On the other hand it is easy to keep all but one of the parameters ideal and then find the maximum acceptable deviation for that single parameter. The collection of these individual parameter deviations can then be used as a guide for the construction of a set of possible multiple parameter deviations; in this way one can evaluate the sensitivity of the codec to more than one imperfection.

The iteration process used to find the maximum acceptable single parameter deviation can be incorporated into XCODEC as a semiautomated search routine. Such a routine is described in the appendix containing the XCODEC users manual.
3.1.2 Maximal individual capacitor deviations from ideal values.

Since the absolute magnitude of the capacitance is irrelevant from a matching point of view (not in practice) one can describe the capacitor arrays by means of normalized capacitors. In this context the ideal values of the capacitors would be:

- in the coder and decoder segment arrays:

CXI=1/255; CX2=2/255; CX4=4/255; CX8=8/255; CX16=16/255;
CX32 $=32 / 255 ; \quad$ CX64 $=64 / 255 ; \quad$ CXI28 $=128 / 255$;
$\mathrm{CXTOT}=\mathrm{CX1}+\mathrm{CX} 2+\ldots+\mathrm{CX1} 28=1$
$\operatorname{CXP}($ parasitic $)=0 \%$ of CXTOT $=0 \%$

- in the coder step array

CY1=1/16; $\mathrm{CY} 2=2 / 16 ; ~ C Y 4=4 / 16 ; ~ C Y 8=8 / 16 ;$
CYTM (terminal) $=1 / 16$
CYTOT=CY1+CY2+...+CYTM=1
CYP $=0 \%$ of $\mathrm{CYTOT}=0 \%$

- in the decoder step array

CYHS (halfstep) $=1 / 33 ; C Y 1=2 / 33 ; C Y 2=4 / 33 ; C Y 4=8 / 33$;
$C Y 8=16 / 33$;
CYTOT $=$ CYHS + CYI + . . + CYTM $=1$
CYP $=0 \%$ of $\mathrm{CYTOT}=0 \%$
Deviations of the capacitors from their ideal values will alter the individual capacitors but will not affect the total normalized capacitance of an array. This definition reflects the fact that an array acts as a divider in which the only relevant thing is the ratio between the capacitance of the individual components and the total capacitance of the array. Therefore no matter how distorted the individual members of the array are in absolute value, their sum can still be considered as equal to 1 ; the distortions merely act on the redistribution of the individual ratios.

Mathematically these statements are expressed as follows:

- in the coder and decoder segment arrays

$$
\operatorname{CXI}(1+d C X 1)+C X 2(1+d C X 2)+\ldots+C X 128(1+d C X 128)=1
$$

where CXI, CX2, etc. are the ideal values of the components
and dCX1, dCX2, etc. are the deviations of those components fron their ideal values. It follows that:

CX1 $\mathrm{x} \mathrm{dCXl}+\mathrm{CX} 2 \mathrm{x} \mathrm{dCX} 2+\ldots+\operatorname{CX128} \mathrm{xdCX1} 28=0$
or: $\quad \mathrm{dCxl}+2 \mathrm{dCx} 2+\ldots+128 \mathrm{dCxl} 28=0$

- in the coder step array:

CY1 $(1+\mathrm{dCY})+\mathrm{CY} 2(1+\mathrm{dCY} 2)+\ldots+\mathrm{CYTM}(1+\mathrm{dCYTM})=1$
or: CYl $\mathrm{x} \mathrm{dCY1}+\mathrm{CY} 2 \mathrm{x}$ dCY2 $+\ldots+\mathrm{CYTM} \mathrm{x} \mathrm{dCYTM}=0$
or: $\quad \mathrm{dCY} ~+2 \mathrm{dCY} 2+\ldots+\mathrm{dCYTM}=0$

- in the decoder step array:

CYHS (1+dCYHS $)+$ CY1 $(1+$ dCY1 $)+\ldots+\operatorname{CYTM}(1+d C Y T M)=1$
or: CYHS x dCYHS + CYI x dCYI $+\ldots+\mathrm{CYTM} \mathrm{x}$ dCYTM $=0$
or: \quad dCYHS +2 dCYl $+\ldots+2$ dCYTM $=0$
As a result of these bounding relations if one capacitor deviates from its ideal value then at least one other capacitor will deviate in the opposite sens in order to maintainithe balance. In the case of individual parameter deviations only one of the capacitors will be "deliberately" altered.

Thus for example if $\mathrm{dCXl}=1 \%$ then:
$\mathrm{dcx} 2=\mathrm{dcx} 4=\ldots=\mathrm{dCx1} 28=-(1 \%) / 254=-0.004 \%$
In other words CX2, CX4, etc. up to CX128 are matched among themselves but are not matched with CXI. Therefore the individual parameter deviation analysis will show how far one single capacitor can be out of line before the codec fails to pass SNR and GTRCK specs. The results of such tests performed for all the capacitors in all the arrays are shown in TABLES 3.1 to 3.4. The other factors influencing the shape of the transfer curve have been considered ideal.

Maximal individual positive deviations of coder capacitors using a perfect decoder (\%).

$\mathrm{dCX1}$	dCX	dCX	$\mathrm{dCX8}$	$\mathrm{dCX16}$	dCX 32	$\mathrm{dCX64}$	$\mathrm{dCX128}$
-3.38	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01
-0.06	7.99	-0.06	-0.06	-0.06	-0.06	-0.06	-0.06
-0.19	-0.19	11.63	-0.19	-0.19	-0.19	-0.19	-0.19
-0.43	-0.43	-0.43	13.36	-0.43	-0.43	-0.43	-0.43
-1.19	-1.19	-1.19	-1.19	17.81	-1.19	-1.19	-1.19
-2.65	-2.65	-2.65	-2.65	-2.65	18.44	-2.65	-2.65
-3.71	-3.71	-3.71	-3.71	-3.71	-3.71	11.06	-3.71
-11.15	-11.15	-11.15	-11.15	-11.15	-11.15	-11.15	11.06

dCY1	dCY2	dCY4	dCY8	dCYTM	CYP
65.6	-4.4	-4.4	-4.4	-4.4	0
-4.7	33.1	-4.7	-4.7	-4.7	0
-5.7	-5.7	17.2	-5.7	-5.7	0
-7.7	-7.7	-7.7	7.7	-7.7	0
-12.9	-12.9	-12.9	-12.9	206.3	0
0	0	0	0	0	15.9

TABLE 3.1

Maximal individual negative deviations of coder capacitors using a perfect decoder (\%).

dCXI	dCX2	dCX4	dCX8	dCX16	dCX32	dCX64	dCX128
-13.28	0.05	0.05	0.05	0.05	0.05	0.05	0.05
0.08	-10.63	0.08	0.08	0.08	0.08	0.08	0.08
0.19	0.19	-12.19	0.19	0.19	0.19	0.19	0.19
0.44	0.44	0.44	-13.59	0.44	0.44	0.44	0.44
1.07	1.07	1.07	1.07	-15.94	1.07	1.07	1.07
1.70	1.70	1.70	1.70	1.70	-11.88	1.70	1.70
2.07	2.07	2.07	2.07	2.07	2.07	- 6.19	2.07
13.04	13.04	13.04	13.04	13.04	13.04	13.04	-12.94

dCY1	dCY2	dCY4	dCY8	dCYTM
-66.0	4.4	4.4	4.4	4.4
5.4	-37.5	5.4	5.4	5.4
5.1	5.1	-15.3	5.1	5.1
9.4	9.4	9.4	-9.4	9.4
4.5	4.5	4.5	4.5	-71.9

TABLE 3.2

Maximal individual positive deviations of decoder capacitors using a perfect coder (\%).

dCX1	dCX2	dCX4	dCX8	dCX16	dCX32	dCX64	dCX128
14.69	-0.06	-0.06	-0.06	-0.06	-0.06	-0.06	-0.06
-0.09	11.72	-0.09	-0.09	-0.09	-0.09	-0.09	-0.09
-0.21	-0.21	13.31	-0.21	-0.21	-0.21	-0.21	-0.21
-0.49	-0.49	-0.49	15.23	-0.49	-0.49	-0.49	-0.49
-1.17	-1.17	-1.17	-1.17	17.50	-1.17	-1.17	-1.17
-2.24	-2.24	-2.24	-2.24	-2.24	15.63	-2.24	-2.24
-2.64	-2.64	-2.64	-2.64	-2.64	-2.64	7.88	-2.64
-11.34	-11.34	-11.34	-11.34	-11.34	-11.34	-11.34	11.25

dCYHS	dCY1	dCY2	dCY4	dCY8	dCYTM	CYP
187.5	-5.9	-5.9	-5.9	-5.9	-5.9	0
-4.4	67.8	-4.4	-4.4	-4.4	-4.4	0
-4.1	-4.1	30.0	-4.1	-4.1	-4.1	0
-5.7	-5.7	-5.7	17.8	-5.7	-5.7	0
-7.4	-7.4	-7.4	-7.4	7.9	-7.4	0
-5.7	-5.7	-5.7	-5.7	-5.7	89.1	0
0	0	0	0	0	0	6.1

TABLE 3.3

Maximal individual negative deviations of decoder capacitors using a perfect coder (\%).

dCXI	dCX2	dCX4	dCX8	dCX16	dCX32	dCX6 4	dCX128
- 4.53	0.02	0.02	0.02	0.02	0.02	0.02	0.02
0.06	- 7.03	0.06	0.06	0.06	0.06	0.06	0.06
0.18	0.18	-11.44	0.18	0.18	0.18	0.18	0.18
0.44	0.44	0.44	-13.59	0.44	0.44	0.44	0.44
1.13	1.13	1.13	1.13	-16.88	1.13	1.13	1.13
2.51	2.51	2.51	2.51	2.51	-17.50	2.51	2.51
3.46	3.46	3.46	3.46	3.46	3.46	-10.31	3.46
14.17	14.17	14.17	14.17	14.17	14.17	14.17	-14.06

dCYHS	dCY1	dCY2	dCY4	dCY8	dCYTM
-100.0	3.1	3.1	3.1	3.1	3.1
3.7	-57.0	3.7	3.7	3.7	3.7
4.2	4.2	-30.6	4.2	4.2	4.2
5.4	5.4	5.4	-16.9	5.4	5.4
9.4	9.4	9.4	9.4	-9.9	9.4
6.5	6.5	6.5	6.5	6.5	-100.0

3.1.3 Combinations of capacitor nonidealities.

Once the maximal individual capacitor deviations are known one can use these as a guide and check the Derformance of the codec in the presence of more than one nonideality. The results of such tests are shown in Figures 3.4 to 3.6 ; they correspond to the codec descriptions given in TABLE 3.5. The amplifier nonidealities used for these evaluations are comparable to practically realizable values.

Parameters that have no influence on the SNR and GTRCK performance of the codec have been kept ideal. Such parameters are the parasitic capacitance in the segment arrays of both the coder and decoder, the offset and gain of the output buffer in the decoder and the gain of the amplifiers associated with the step arrays. This last parameter can in fact influence the performance of the codec but the practical gain of such a buffer is sufficiently close to unity and therefore it can be considered perfect for the purpose of the present analysis.

The capacitor deviations listed in TABLE 3.5 were chosen in a manner that yields a "wavy" overall codec transfer curve such that the decoder nonidealities acentuate the coder imperfections.

The results of this multiple deviation analysis are somewhat puzzling in as far as the mismatch between CXI and at least half of the capacitors in each segment array is larger in TABLE 3.5 than in TABLE 3.1 and respectively 3.4.

Coder

nonidealities	(a)	(b)	(c)
			3.00%
dCX1	1.00%	2.00%	-3.00%
dCX2	-1.00%	-2.00%	3.00%
dCX4	1.00%	2.00%	-3.00%
dCX8	-1.00%	-2.00%	3.00%
dCX16	1.00%	2.00%	-3.00%
dCX32	-1.00%	-2.00%	3.00%
dCX64	1.00%	2.00%	-1.01%
dCX128	-0.34%	-0.67%	5.00%
dCY1	5.00%	5.00%	-5.00%
dCY2	-5.00%	-5.00%	5.00%
dCY4	5.00%	5.00%	-1.25%
dCY8	-1.25%	-1.25%	-5.00%
dCYTM	-5.00%	-5.00%	2.00%
CYP	2.00%	2.00%	-0.10%
VOSC (\% of VR)	-0.10%	-0.10%	1.00%
VOSA (\% Of VR)	1.00%	1.00%	1.00

Decoder
nonidealities

dCX1	-1.00%	-2.00%	-3.00%
dCX2	1.00%	2.00%	3.000
dCX4	-1.00%	-2.00%	-3.00%
dCX8	1.00%	2.00%	3.00%
dCX16	-1.00%	-2.00%	-3.00%
dCX32	1.00%	2.00%	3.00%
dCX64	-1.00%	-2.00%	-3.00%
dCX128	0.34%	0.67%	1.01%
dCY1	-5.00%	-5.00%	-5.00%
dCY2	5.00%	5.00%	5.00%
dCY4	-5.00%	-5.00%	-5.00%
dCYHS	-5.00%	-5.00%	-5.00%
dCYTM	5.00%	5.00%	5.00%
dCY8	1.56%	1.56%	1.56%
CYP	1.00%	1.00%	1.00%
VOSAY (\% of VR)	-1.00%	-1.00%	-1.00%

Codec nonidealities corresponding to SNR and GTRCK. curves shown in Figures 3.4 to 3.6 .

(a) Signal-to-distortion ratio for the codec described in TABLE 3.5a.
Input level (horizontal axis) and SNR (vertical axis) are expressed in dB's.

(b) Gain tracking for the codec described in TABLE 3.5a Input level (horizontal axis) and GTRCK (vertical axis) are expressed in dB's.

Figure 3.4

(a) Signal-to-distortion ratio for the codec described in TABLE 3.5b.
Input level (horizontal axis) and SNR (vertical axis) are expressed in $d B^{\prime} s$.

(b) Gain tracking for the codec described in TABLE 3.5b. Input level (horizontal axis) and GTRCK (vertical axis) are expressed in $d B^{\prime} s$.

Figure 3.5

(a) Signal-to-distortion ratio for the codec described in TABLE 3.5c.
Input level (horizontal axis) and SNR (vertical axis) are expressed in dB^{\prime} s.

(b) Gain tracking for the codec described in TABLE 3.5c. Input level (horizontal axis) and GTRCK (vertical axis) are expressed in dB's.

Figure 3.6

3.1.4 Practical methods for the implementation of matched MOS capacitors.

The methods for building matched MOS capacitors in integrated circuits have been described by J. L. McCreary (8). They will be repeated here for the sake of completeness. The classical MOS capacitor structure is illustrated in its crudest form in Figure 3.7a and the electrical behavior of this device is described in Figures 3.7b and 3.8. The MOS structure has been the object of innumerable investigations reported in a comparable number of papers; therefore it is believed that the two figures mentioned before do suffice for the purpose of the present discussion without further elaboration. References (14) and (15) can be used for a more complete description.

From Figure 3.7b it is apparent that for a given process the ratio of two capacitors is equal to the ratio of the areas defining those two capacitors. The qualifier "for a given process" implies that the permittivity of the insulator, $\varepsilon_{o x}$, and the insulator thickness, $d_{o x}$, are constant across the capacitor array. Therefore the only parameter under the control of the circuit designer is the area of the capacitors. The following matching rules (8) apply for the case of capacitor matching through area ratioing.

1. If the capacitance ratio of two capacitors is m / n, where m and n are integers, then the two capacitors should

MOS capacitor structure
(a)

MOS capacitance definition
(b)

Figure 3.7

MOS capacitance-voltage curves (qualitative).

Figure 3.8
be built out of units such that the ratio between the number of units will be equal to m / n. This idea is illustrated in Figure 3.9a. Such an implementation will yield area ratios insensitive to the absolute value of the unit dimensions. This is in contrast to the case illustrated in Figure 3.9b; here the linear dimensions of the two capacitors are modified by the same amount in absolute value. The net result of this effect is the fact that the area ratio is a function of u, the "edge uncertainty".

In practice the different sized patterns defining the two areas may exhibit different "u"'s due to different etching conditions. Therefore it would be difficult and certainly impractical to base a design on the approach illustrated in Figure 3.9b.
2. The layout of the capacitors should be such that every single pattern defining the area will "see" the same surroundings. This is illustrated in Figure 3.10 for the case when the area is defined by the metal plate (8). In such a layout every capacitor will present the same etching front and the resulting linear dimensions are likely to be indeed the same for all the units.
3. The capacitor layout should be insensitive to reasonable mask misalignment. The solution proposed in (8) is illustrated in the same Figure 3.10. In this implementation the top metal plate is allowed to shift on top of the thin oxide area. The capacitance will remain constant as long as the metal plate remains inside the thin oxide area.It can

$$
A 4=4 * d^{2}
$$

d

$$
\mathrm{A} 8=8 * \mathrm{~d}^{2}
$$

A8/A4 $=2$ (independent of d)
(a)

$A 4=(d 4-u)^{2}$

$A 8=(D 8-u) *(d 8-u)$
no-

$$
\mathrm{d} 4=\mathrm{d} 8 \quad \mathrm{~A} 8 / \mathrm{A} 4=(\mathrm{D} 8-\mathrm{u}) /(\mathrm{d} 4-\mathrm{u})=\mathrm{f}(\mathrm{u})
$$

(b)
Capacitor ratioing methods.

Figure 3.9

Thin oxide
(defined mainly by metal plate)

Figure 3.10
be seen that the contribution to the capacitance resulting from the interconnecting metal "stubs" is also constant as a consequence of the symmetrical layout.
4. If the matching of the capacitors is extremely critical then in order to eliminate the effect of long range oxide gradients the capacitors should be laid out in a centroid pattern. This idea is illustrated in (8). 3.1.5 Capacitor structure and layout for the PCM codec.

All the rules mentioned before, with the exception of rule No. 4, have been used in the course of the work being described here. Since the ultimate goal was to build a commercial product some of the detail choices made in (8) have been modified to suit the present case.

Rule No. I has been used to the fullest extent by building all the capacitors as multiples of the smallest capacitor in the particular array. Such a decision is justified from a yield point of view since it completely eliminates the influence of run to run variations in etching rates. This is particularly important in the PCM application since the allowable tolerance for the smallest capacitor in the segment arrays is much tighter than in the case of a linear converter - about 4\% (PCM) compared to 50% (linear).

Application of rule No. 2 is a natural fallout frum the extensive use of rule No. I since the capacitors can be arranged in a very regular array. As opposed to (8) it was
decided to determine the value of the capacitance mainly through the area of the insulator, i.e. the thin oxide. The resulting capacitor structure is illustrated in Figure 3.11. There are several reasons for making this choice and they will be examined in the following lines.

The value of a capacitor defined mainly by the metal plate, as the one shown in Figure 3.10 , is more sensitive to irregularities in the metal edge than the value of a capacitor defined mainly by the thin oxide area, Figure 3.ll.

This is so because the thin oxide amplifies the effect of irregularities in the "metal capacitor" whereas this effect is attenuated by the thick oxide in the "oxide capacitor". The edge that is important for the"oxide capacitor" is the edge of the thin oxide region; this edge is the result of an etching process of much longer duration than the one used for metal and therefore less likely to be "jagged".

A comparison between the masking steps used to define the metal edge in both the "metal" and the "oxide" versions, Figure 3.12 and respectively 3.13 , illustrates the fact that in the second version the adherence between mask and wafer is better so that the definition of the pattern image is likely to be superior in the "oxide capacitor" case. The critical edge in this implementation, the thin oxide edge, is defined by a similar "nongap" masking step. An other argument in favor of the thin oxide defined capacitor is the fact that in the metal-defined capacitor the critical

MOS capacitor.
(defined mainly by thin oxide)

Figure 3.11

Figure 3.12

Light

Photoresist
Silicondioxide

Figure 3.13
edge is etched inside a "groove" and this may cause local etchant concentration variations which accentuate the jaggedness. This situation is illustrated dramatically in Figure 3.14. The structure shown in this figure exagerates the effect mentioned before but it nevertheless illustrates the point. It is also apparent that the thin oxide edge is much smoother than the metal edge inside the groove; so is the metal edge on top of the thick oxide.

One final argument against the metal defined capacitor is that from a reliability point of view it is undesirable to leave portions of thin oxide uncovered with metal. This is particularly troublesome when the circuit is packaged in plastic. Obviously such a reason becomes important only at the production level.

The insensitivity to misalignment, rule No. 3 , is realized in the insulator defined capacitor by ensuring that the metal plate covers the thin oxide area. The interconnect capacitance is fixed in a similar manner as in the metal defined capacitor; it is smaller in absolute value though, an advantage that comes "free".

The centroid layout aimed at reducing the effect of long range oxide gradients is not very attractive from an interconnect point of view. Fortunately the mismatches traceable to long range oxide gradients are negligible in the case of the PCM codec, as will be shown later. As a result the layout was not done in a centroid manner.

Illustration of the "in groove" etching of aluminum.

Figure 3.14

3.1.6 The absolute dimensions of the unit capacitors.

After deciding on the type of structure to be used for the capacitors one has to choose the absolute dimensions of the unit.

Consider two capacitors of "identical" size that have to be matched within ε and for the time being let us assume that the only variables are the linear dimensions.

The vehicle for this analysis is defined in Figure 3.15, where the inside squares define the thin oxide areas and the outside squares represent the top metal plates. If the matching of any two distinct units can be maintained within ε then the ratio of any two capacitors built out of such units will deviate from its ideal value by at most ε. The relation between this error and the relative mismatches of the linear dimensions is straightforward and is illustrated in Figures 3.16 to 3.19. It was assumed that the oxide is ten times thicker under the metal lip than in the center of the structure. In order to obtain numerical results one has to assign a value to r, the ratio between the nominal lateral dimensions of the two squares. In the course of the design this would be done in an iterative manner but for the purpose of illustration we can use $r=1.3$ which corresponds to the final choices made for the lateral dimensions. The sensitivity of the matching error to y, the relative deviation in the metal edge dimension decreases as r approaches 1 . In spite of the

Matching of "identical" capacitors.
Figure 3.15

Matching error ε in the case $\Delta o x=0$

Figure 3.16

Figure 3.17

Figure 3.18

Matching error ε in the case $(\Delta O x) *(\Delta m)>0$

Figure 3.19
relatively large value chosen for r one can see that y has much less influence on the matching error than x.

The finite Δ 's are the result of several imperfections. From measurements made on working plate patterns it was found that $\Delta o x$ (or at least the contribution to it) can be of about . $1 \mu \mathrm{~m}$, this being the difference between the lateral dimensions of otherwise "straightedged" squares. A similar value of Δm is obviously much less troublesome. The main contribution to $\Delta \mathrm{m}$ results from the jaggedness of the etched edge. This is illustrated in an exagerated manner in Figure 3.20. Such jaggedness could probably be described by a more or less complicated random function but eventually some of the parameters entering this description would have to be measured experimentally.

One parameter of the "jaggedness" that can be easily measured without having to resort to special test structures is the maximum difference between the "peaks" and "valleys" occuring along the edge. This has been denoted as j in Figure 3.20. It is reasonable to expect that j is much larger than the Δ of the same figure; therefore an estimate. like $\Delta=j / 2$ appears to be safely conservative. From measurements made on reasonably well behaved metal edges it was found that j is of about $.6 \mu \mathrm{~m}$. It has been argued earlier that the quality of the thin oxide edge is likely to be superior to the quality of the metal edge (see also Figure 3.14). Therefore if we estimate $\Delta o x$ as being of the same magnitude with the "metal Δ ", i.e. about . $3 \mu \mathrm{~m}$, we
run a good chance of obtaining a superconservative $\Delta o x$. The sum of the Δ contributions from mask differences and from jaggedness would then be about . $4 \mu \mathrm{~m}$. From Figure 3.21 it follows that in order to meet the 1% matching condition of Figure 3.19 one would have to choose Lox $>65 \mu \mathrm{~m}$, which yields $\mathrm{x}<.6 \%$. In view of all the conservative assumptions made so far one may expect that a value of Lox $=50 \mu \mathrm{~m}$ will be adequate. Such reasoning as the one just presented is likely to lead to oversized capacitors but as long as the final array size is within practical limits one may argue that it is worth building in the additional safety margin. This safety margin will then allow other parameters to deviate more than in the case of a critically dimensioned capacitor array. The final choice of capacitor dimensions is shown in Figure 3.22; these dimensions yield a unit of about . 85 pF . A sufficiently wide metal lip ensures insensitivity to misalignment; this overlap was in fact exagerated so that the sizes of the squares would permit an easy conversion to the exide defined capacitor if there were a desire for doing so.

The final layout for the segment array is shown in Figure 3.23. One may notice the "gaps" in the bottom diffusion plates of the capacitors; these gaps ensure the matching of the interconnect contributions. As a result one may safely claim that the capacitors are matched within fringing field effects.

$C \sim(\tilde{L})^{2}=(\operatorname{Lnom} \pm \Delta)^{2}$

Capacitor with jagged edge.

Figure 3.20

Absolute dimensions of unit capacitor.

Figure 3.22

METAL - BLACK
INSULATOR - GREEN
SEN!CONDUCTOR - RE:C

FIGURE 3.23

3.1.7 The influence of long range oxide gradients on capacitor matching.

After the absolute value of the unit capacitor and the layout of these units in the array are known one can evaluate the sensitivity of the noncentroid layout to long range oxide gradients. The two most likely cases are illustrated in Figure 3.24. The center to center spacing between two adjacent capacitors is 3.3 mils; assuming a gradient of $100 \mathrm{ppm} / \mathrm{mil}$ one can easily compute the resulting mismatches. These results are listed in TABLE 3.6. By comparing these deviations with the results obtained from XCODEC simulations one must conclude that long range oxide gradients have no effect on the capacitor matching. Therefore the penalty for not using a centroid layout appears to be negligible.

3.1.8 Electrical properties of the MOS capacitors.

In a CMOS process there are three choices of bottom plates for an MOS capacitor, $\mathrm{n}^{+}, \mathrm{p}^{+}$, or p^{-}. A fourth choice the n^{-}substrate is in general impractical because of its permanent connection to the positive supply. The fact that the capacitance of the MOS structure is voltage dependent has been already mentioned by means of Figures 3.7 and 3.8. Since it was decided to try to maintain the matching of the capacitors within 1% it turns out that the type of bottom plate to be used has to be capable of such a performance. This means that the capacitance variation traceable to voltage dependence has to be small enough.

Figure 3.24

	Horizontal gradient	Vertical gradient
dCX1	$\pm 0.25 \%$	$\pm 0.02 \%$
dCX2	$\pm 0.23 \%$	$\pm 0.08 \%$
dCX4	$\pm 0.20 \%$	$\pm 0.15 \%$
dCX8	$\pm 0.13 \%$	$\pm 0.21 \%$
dCX16	± 0	$\pm 0.05 \%$
dCX32	± 0	$\pm 0.10 \%$
dCX64	± 0	$\pm 0.07 \%$
dCX128	$\mp 0.02 \%$	$\mp 0.05 \%$
Capacitance deviations in the segment		

TABLE 3.6

A good indicator of the voltage dependance of an MOS capacitor is the capacitance at the flat-band voltage.

$$
c_{F B}=\frac{\varepsilon_{o x}}{d_{o x}+\frac{\varepsilon_{o x}}{\varepsilon_{s}} \sqrt{\frac{k T \varepsilon_{s}}{c_{B} q^{2}}}}
$$

where: $\quad \varepsilon_{o x}$ is the permittivity of the insulator

$$
\varepsilon_{s} \text { is the permitivitty of silicon }
$$

$$
C_{B} \text { is the doping concentration of the bottom }
$$ plate diffusion

$d_{o x}$ is the insulator thickness

$$
\frac{\mathrm{kT}}{\mathrm{q}}=25.9 \mathrm{mV} \text { at } 300^{\circ} \mathrm{K}
$$

The MOS capacitance reaches the maximum value when there is an accumulation of carriers in the bottom plate.

This maximum value is:

$$
c_{\max }=\frac{\varepsilon_{o x}}{d_{o x}}
$$

The relative deviation of the MOS capacitance from the maximum value is:

$$
\Delta C=\frac{C_{\max }-C}{C_{\max }}
$$

The dependence of $\Delta C_{F B}$ on bottom plate doping is
listed in TABLE 3.7 for an oxide thickness of $1000 \AA$.
TABLE 3.7 describes the small signal behavior of the capacitors whereas in the charge redistribution scheme the relevant description is the large signal capacitance. Since the latter is an integral of the former it turns out that the large signal capacitance will exhibit less voltage dependence due to the averaging process. Still the order of magnitude of the percentage deviations from the maximum value will be comparable so that the numbers listed in TABLE 3.7 can be used as an indication of the "quality" of a given bottom plate. In the standard process used for the implementation of the PCM converters the three possible bottom plates yield the following values:

$$
\begin{array}{ll}
\mathrm{p}^{-} \text {with } \mathrm{C}_{\mathrm{B}}=(3-4) \times 10^{16} \mathrm{~cm}^{-3} & \Delta \mathrm{C}_{\mathrm{FB}}>4.14 \% \\
\mathrm{p}^{+} \text {with } \mathrm{C}_{\mathrm{B}}=(5-9) \times 10^{17} \mathrm{~cm}^{-3} & \Delta \mathrm{C}_{\mathrm{FB}}>1.35 \% \\
\mathrm{n}^{+} \text {with } \mathrm{C}_{\mathrm{B}} \cong 10^{20} \mathrm{~cm}^{-3} & \Delta \mathrm{C}_{\mathrm{FB}}<.43 \%
\end{array}
$$

From a matching point of view it appears that the only acceptable choice is the n^{+}diffusion as long as one tries to maintain the matching within the 1% limit mentioned earlier. The n^{+}bottom plates do also present reduced resistance thus simplifying the interconnection of the unit capacitors and hence the layout.

C_{B}	$\Delta C_{F B}$	$V_{t h}-V_{F B}$
$\left(\mathrm{~cm}^{-3}\right)$	$(\%)$	(V)
10^{14}	57.72	.522
10^{15}	30.16	.803
10^{16}	12.01	1.481
10^{17}	4.14	3.503
10^{18}	1.35	10.033
10^{19}	$.43^{-}$	31.600^{-}
10^{20}	$.14^{-}$	103.076^{-}

Values marked with ' have been "forced" by an extension of Fermi-Dirac statistics; at such doping levels the semiconductor is degenerate and the statistics governing the behavior of the carriers are different.

TABLE 3.7
3.1.9 Experimental results.

The capacitors were built according to the design
lecisions presented up to this point.
The Scanning Filectron Microscope (SEM) pictures of the unit canacitor are presented in Figures 3.E1 to 3; F5.

Figure 3.El represents a top view of the unit capacitor and one can see that the "inside edge", defined by the thin oxide, is indeed smoother than the "outside edge", defined by the metal. This feature can be observed at a magnified scale in Figure $3 . E 2$ which represents a view of the capacitor corner. The straightness of the oxide edge is illustrated in Figure $3 . E 3$ and in Figure $3 . E 4$, both representing close up views of the "inside edge". In contrast to this smooth edge, the "outside edge", presented in Figure 3.E5, is more "jagged".

Figure 3,E6 represents a top view of a few capacitors in the segment array.

Due to the small absolute value of the capacitances it is not practical to directly measure the capacitance for the rurnose of matching evaluation. Matching can nevertheless be measured indirectly by measuring the "voltage length." of the secments or steps in the transfer curve. Results obtained from such measurements are presented in TABIE 3.El. The segment start is defined as the voltage at which the output. code (at the cutput of the coder) changes by 1 bit. This messurement does also yield the comparator offset voltage, which in this particular case was of about 6 mV . Thus it repers that the caracitor matching is within the desired
limits. Since the segment capacitor matching is close to perfect one can assume that the same holds for the step array capacitors. Based on this observation one car estimate the buffer offset voltage and the parasitic capacitance in the stey array by measuring the sters. The results of such an experiment are presented in TARLE 3.E2. By repeating this type of measurement on a statistical basis, one can reduce the parasitic capacitance in the step array by trimming the terminator and thus improve the performance even more.

Top SEM view of the unit capacitor.

Figure 3.El

SEM view illustrating the inside edge of the MOS capacitor.

Figure 3.E3

SEM view illustrating the inside edge of the MOS capacitor.

Figure 3.E4

SEM view illustrating the edge of the top metal plate in the MOS capacitor.

Figure 3.E5
?isure 3. E6

		Serjment No.	Segment start from above (mV)	Segment start from below (mV)	Average starting point (mV)	Segment length (mV)	Segment ratio of consecutive segements
		$8+$	1486	1488	1487		
		$7+$	733	736	734.5	752.5	1.999
		6+	357	359	358	376.5	2.003
		$5+$	169	171	170	188	2.
		$4+$	75	77	76	94	2.
		$3+$	28	30	29	47.	1.958
		$2+$	4	6	. 5	24	
		2^{-}	-17	-18	-17.5	23.5	
		$3-$	-40	-42	-41	47.5	2.021
		4-	-88	-89	-88.5	94	1.979
		$5-$	-182	-183	-182.5	187.5	1.995
		$6{ }^{-}$	-369	-371	-370	376.5	2.008
		$7{ }^{-}$	-746	-747	-746.5	751	1.995
		8-	-1497	-1498	-1497.5		

Digital code	Step start from below	Step start from above	Average starting point	Step length	Step length adjusted for buffer offset
	(mV)	(mV)	(mV)	(mV)	(mV)
00011111	751	751	751		
00010010	1326	1326	1326	43.5	43.5
00010001	1369	1370	1369.5	42.5	42.5
00010000	1412	1412	1412	89.5	100.25
00001111	1501	1502	1501.5	108.5	85.5
00001110	1610	1610	1610	87	87
00001101	1697	1697	1697	87	87
00001100	1784	1784	1784		
10011111	725	726	725.5		
10010010	1280	1281	1280.5	43.5	43.5
10010001	1324	1324	1324	43	43
10010000	1367	1367	1367	111	100.25
10001111	1477	1479	1478	62.5	85.5
10001110	1540	1541	1540.5	87.5	87.5
10001101	1628	1628	1628	87	87
10001100	1715	1715	1715		

Step size measurements showing quasi nerfect capacitor matching and yielding buffer offset and parasitic
capacitance in the step array (in this case the parasitic capacitance represents 131% of the unit)

3.2 THE CMOS BUFFER AMPLIFIER

In order to be able to generate the correct step voltages, the capacitor array used for this purpose has to be buffered from the segment capacitor array. This is accomplished with the aid of a unity gain buffer amplifier. 3.2.1 Design objectives.

The ideal buffer is characterized by the following parameters:

- the voltage gain is exactly 1
- the voltage offset is exactly 0
- the common mode range is rail-to-rail
- the input resistance is infinite
- the input capacitance is" 0
- the output follows the input instantaneously

The practical question then is: how close do the practical parameters have to be to the ideal ones?

The acceptable tolerances of the static parameters can be found using XCODEC. The response time will depend on converter timing.

The XCODEC simulation was performed on a single parameter deviation basis, i.e. all the parameters except for the one under investigation were kept ideal. The results of this aralysis are:

	Coder	Decoder
Minimum gain	.865	.952
Maximum nffset	5.6% of V_{R}	5% of V_{R}

This implies an open loop gain greater than 6 in the coder and greater than 20 in the decoder and the practical gain is obviously much larger than that.

The voltage offset is less predictable than the gain. The mean offset voltage can be brought arbitrarily close to 0 through proper design but the practical circuit will be sensitive to device mismatches which can not be arbitrarily minimized. The input stage with its relatively low gain will be the main contributor to the offset voltage.

Generally accepted remedies for this problem are large input devices and symmetrical layout of the input stage. Since the single stage gain is much lower in an MOS implementation than in a bipolar one the expected offset voltages will be sensibly larger in the MOS amplifier. The values generally quoted are of the order of tens of mV .

According to the XCODEC analysis, for a reference voltage of 3 Volts the tolerable offsets are equal to about 170 mV and respectively 150 mV . In the case of a 5 Volt reference the numbers are 280 mV and respectively 250 mV .

The practical offset voltages are likely to be much smaller than these values so that no attempt has been made to cancel the buffer amplifier offset voltage.

The common mode range of the buffer has to be sufficiently large to accomodate the references. The choice of references in turn depends on the combination between supply voltages and the type of analog switches that are used. The maximum supply voltages compatible with the CMOS process used for the
codec implementation were ± 7.5 Volts. Larger positive values require guard rings with the associated area penalty. With these supplies and nominal threshold voltages of $\pm 1.5 \mathrm{~V}$ one can build CMOS amplifiers with a common mode range of about $\pm 5 \mathrm{~V}$. This then would be the maximum limit for the choice of references. This limit can be used only with CMOS analog switches capable to switch voltages up to the two supplies.

A true CMOS switch is obviously more space consuming than a p-channel or n-channel switch. Therefore an attempt has been made to use only single polarity switches. In the particular process used for the codec implementation the p-channel switch is the one capable of handling the largest voltages. The practical limits with $\pm 7.5 \mathrm{~V}$ supplies are $\pm 3 \mathrm{~V}$.

These values have been chosen for the reference voltages to be used in the codec. From this point of view the practical common mode range of $\pm 5 \mathrm{~V}$ is obviously acceptable.

The input resistance of a CMOS amplifier can be safely neglected. The input capacitance depends on the type of input stage being used and on the loop gain of the feedback path. From this point of view the differential input stage seems to be quite adequate.

The response time of the buffer has to be such as to allow enough time for the various operations performed during a converter time slot. At a sampling rate
of 8 kHz these time slots have a duration of about $10 \mu \mathrm{~s}$ and this becomes $5 \mu \mathrm{~s}$ at 16 kHz , etc. The time within a time slot is used for various operations among them being the generation of step voltages. From this point of view it seems reasonable to ask for an acquisition time of about $1.5 \mu \mathrm{~s}$. This would allow enough time for other operations such as comparator response, switch closure, etc. Since the step capacitor array generates only 16 voltage levels, it appears that the buffer output will be acceptable once it settles to within 3% of its final value (worst case at full scale). In fact from XCODEC results it follows that even worse settling accuracy would be acceptable (see gain requirements). Therefore a buffer settling in $1.5 \mu \mathrm{~s}$ to within 1% of the final output voltage will easily exceed the requirements for the codec application and will be useful from a design point of view for other applications as well.

3.2.2 The circuit.

The circuit approach that was chosen is of the classical 741 type using a differential input stage and a common source second stage for level shifting and most of the gain. Since the load driven by the buffer is cafacitive there is no need for an output stage with low dc output resistance. Due to the relatively low gm of the MOS transistor, the negative ero introduced by the compensation capacitor is relatively close to the unity gain frequency thus considerably degrading the phase margin. It has been shown (3) that this undesirable
effect can be eliminated by placing a close to unity gain buffer between the output of the second stage and that side of the compensation capacitor which would be cornected otherwise directly to the second stage output. The circuit diagram containing all of the above mentioned components is shown in Figure 3.25.

In the CMOS process used for the codec implementation the n-channel transistors are built in a p^{-}well which in turn is imbedded in the starting n^{-}substrate. As a result of this sequence the n-channel transistcrs exhibit larger body effect than their p-channel counterpart; in fact they are quite ineffective in any other configuration than the one Yielding 0 source to body bias. Therefore the circuit presented in Figure 3.25 contains only n-channel transistors which have the source and body connected and the number of such devices is kept to a minimum. A reversed version of the buffer schematic, i.e. n-channel drivers in the input. stage etc., would require more than one p^{-}well in order to accomodate all the n-channel devices and this is obviously space consuming. On the other hand one could argue that under similar bias conditions the p-channel transistor is larger than the n-chanel. This is so not because of the higher carrier mobility in the n-channel device but because of lower breakdown at equal channel length in the p-channel. The higher carrier mobility in the n-channel is counterbalanced by the larger body effect which yields a higher than nominal effective threshold voltage.

Therefore the size difference in favor of the n-channel

CMOS buffer amplifier.

Figure 3.25
(neglecting the p^{-}well) is determined mainly by the breakdown limitation. The equivalent of the p^{-}well needed for n-channel transistors is the guard ring required for the isolation of p-channel transistors operating in the analog section of the converters. But guard rings have to be used even between the p^{-}wells so that it appears that the polarity of devices chosen for the buffer implementation yields less space consumption than the reversed choice would do.

An other argument in favor of the version that was chosen is the fact that p-channel transistors are claimed to be less noisy than n-channel transistors. This is probably the result of fewer processing steps used in the implementation of the p-channel (one diffusion vs. two) which leave the semiconductor material less damaged in the respective locations. If most of the noise is generated by the input stage drivers then the polarity choice that has been made should be helpful.

The bias circuitry consists of a simple two transistor
string M1OB and MIIB. The ratio of the transistor aspect ratios was chosen such as to yield V_{7} greater than $\frac{V S}{2}$. With $\mathrm{VS}=7.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{th}}=-1.5 \mathrm{~V}$ it turns out that transistors M5B, M6B and M9B will still be saturated when V_{2}, V_{5} or respectively v_{6} are within $3.75 \mathrm{~V}-1.5 \mathrm{~V}=2.25 \mathrm{~V}$ of the positive rail: therefore the gain of the second stage will be practically constant up to positive ortput voltages as high as 5.25 V . The open loop gain will obviously be degraded at such
output (hence input) levels because M5B enters the linear region. But even so, the total gain will be at least equal to the gain of the second stage which is quite sufficient in the codec application. The common mode range can be extended by increaring V_{7}, the final choice being a compromise between common mode range requirements and area. This is so because at constant current the size of $M 5 B, M 6 B$ and $M 9 B$ increases with increasing V_{7}.

In the negative direction the gain will be practically constant until $M 4 B$ and $M 8 B$ enter the linear region. This happens when the output (hence input) voltage is equal to $V_{3}-1.5 V$. Therefore the lower V_{3}, the more extended the useful negative common mode range will be. For a symmetrical common mode range the choice of V_{7} is obviously more restrictive than that of V_{3}.

The nominal 0 offset voltage is obtained by mirroring the currents in the two stages.

The actual size of the devices will be determined by the required drive capability, by slew rate requirements and by the stability conditions. These conditions will be derived next.
3.2.3 Stability analysis.

Since the buffer is used in a closed loop configuration it has to satisfy the classical stability conditions:
and

$$
\begin{equation*}
A<1 \text { at } \varphi=180^{\circ} \tag{3.1}
\end{equation*}
$$

where:

$$
\begin{equation*}
\varphi<180^{\circ} \text { at } A=1 \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
A_{B}=A e^{j \varphi} \tag{3.3}
\end{equation*}
$$

is the open loop gain of the buffer amplifier in the presence of the load.

The stability analysis will be performed for both compensation schemes, i.e. with nonbuffered and with buffered compensation capacitor. In order to be able to evaluate the performance of the buffer amplifier under various loading conditions, the amplifier will first be replaced with an equivalent voltage generator. The small signal equivalent circuits used for this exercise are shown in Figure 3.26.

In the section dealing with the CMOS comparator it will be shown that the input stage can be replaced with an equivalent current generator as shown in Figure 3.26 . For the time being this replacement will be taken for granted.

The equations yielding the open loop open circuit voltage gain are:

$$
\begin{aligned}
& g m_{1} v_{i n}+\left(G_{o l}+s C_{o l}\right) v_{4}+s C_{F}\left(V_{4}-V_{6}\right)=0 \\
& s C_{F}\left(V_{4}-V_{6}\right)=g m_{8} V_{4}+\left(G_{6}+s C_{6}\right) v_{6}
\end{aligned}
$$

where: $\quad v_{\text {in }}=\mathcal{L}_{v_{\text {in }}}(t)$, etc.
The essence of this compensation scheme can be highlighted by initially neglecting all capacitors except C_{C}. The result of such an idealization is:

$$
\begin{equation*}
A_{B}^{o}=\frac{v_{6}}{V_{i n}}=\frac{g m_{8} R_{6} g m_{1} R_{o l}\left(1-s \frac{c_{c}}{g m_{8}}\right)}{1+s C_{c}\left(g m_{8} R_{6} R_{o l}+R_{o l}+R_{6}\right)} \tag{3.4}
\end{equation*}
$$

There is a dominant pole in this expression at a frequency given by:

$$
\begin{equation*}
\omega_{p}=\frac{1}{c_{c}\left(g m_{8} R_{6} R_{o l}+R_{o l}+R_{6}\right)} \tag{3.5}
\end{equation*}
$$

(a) Small signal circuit of CMOS amplifier with non-buffered compensation capacitor.

(b) The CMOS amplifier as an equivalent voltage generator.

(c) Small signal circuit of CMOS amplifier with buffered compensation capacitor.

Figure 3.26
and there is clearly a negative zero at:

$$
\begin{equation*}
\omega_{z}=\frac{\mathrm{gm}_{8}}{c_{c}} \tag{3.6}
\end{equation*}
$$

The unity gain crossover frequency of the nonloaded amplifier will be:

$$
\begin{equation*}
\omega_{B W}=\frac{g m_{1}}{c_{c}} \tag{3.7}
\end{equation*}
$$

Frovided that the negative zero occurs beyond this unity gain frequency.

The output impedance of the buffer is found by applying a test generator at node 6 and grounding the input. The equations are:

$$
\begin{aligned}
& \left(G_{o l}+s C_{o l}\right) V_{4}+s C_{F}\left(V_{4}-V_{6}\right)=0 \\
& I_{T E S T}+s C_{F}\left(V_{4}-V_{6}\right)=g m_{8} V_{4}+\left(G_{6}+s C_{6}\right) V_{6}
\end{aligned}
$$

Neglecting again all capacitors except C_{C} we find:

$$
\begin{equation*}
z_{o}=\frac{V_{T E S T}}{I_{T E S T}}=\frac{V_{6}}{I_{T E S T}}=\frac{R_{6}\left(1+s C_{c} R_{O 1}\right)}{1+s C_{C}\left(g m_{8} R_{6} R_{O 1}+R_{O 1}+R_{6}\right)} \tag{3.8}
\end{equation*}
$$

and beyond the dominant prle, (3.8) can be expressed as:

$$
z_{0}=\frac{1}{g_{8}}+\frac{1}{\operatorname{sgm}_{8}^{R_{0}} r_{c}}=R_{0}+\frac{1}{s C_{0}}
$$

The open loor gain if the loaded amplifier can now be evoluated in a straightforward manner. According to Figure 3.26b and at frequencies beyor the dominant fole:

$$
\begin{equation*}
\Lambda_{B}=A_{B}^{0} \frac{C_{0}}{C_{0}+C_{L}} \frac{1+s C_{L} R_{L}}{1+\frac{s C_{0} C_{L}}{C_{0}+C_{L}}\left(R_{0}+R_{L}\right)} \tag{3,9}
\end{equation*}
$$

From (3.9) it is apparent that the interaction between load and output impedance generates a doublet with a pole at:

$$
\begin{equation*}
\omega_{p L}=\frac{c_{0}+c_{L}}{\left(R_{0}+R_{L}\right) c_{0} c_{I}} \tag{3.10}
\end{equation*}
$$

and a zero at:

$$
\begin{equation*}
\omega_{z L}=\frac{1}{C_{L} R_{L}} \tag{3.11}
\end{equation*}
$$

The small signal eruivalent circuit of the amplifier with buffered compensation capacitor is shown in Figure 3.26 c . The equations yielding the open circuit voltage gain are:

$$
\begin{align*}
& g m_{1} V_{i n}+\left(G_{01}+s C_{01}\right) V_{4}+s C g d_{8}\left(V_{4}-V_{6}\right)+s C_{c}\left(V_{4}-V_{5}\right)=0 \\
& \operatorname{sCgd}_{8}\left(\mathrm{~V}_{4}-\mathrm{V}_{6}\right)+\operatorname{sCgs}_{7}\left(\mathrm{~V}_{5}-\mathrm{V}_{6}\right)=\mathrm{gm}_{8} \mathrm{~V}_{4}+\left(\mathrm{G}_{6}+\mathrm{sC}_{6}\right) \mathrm{V}_{6} \\
& s C_{C}\left(V_{4}-V_{5}\right)+\operatorname{sCgs}_{7}\left(V_{6}-V_{5}\right)=g m_{7}\left(V_{5}-V_{6}\right)+\left(G_{5}+s C_{5}\right) V_{5} \\
& \text { By following a similar procedure as earlier, we find: } \\
& A_{B}^{o}=\frac{V_{6}}{V_{i n}}=\frac{g_{1} R_{o 1} g_{8} R_{6}\left(1+\frac{s C_{c}}{g m_{7}}\right)}{1+s C_{C}\left(g m_{8} R_{6} R_{o 1}+R_{o 1}+\frac{1}{g m_{7}}\right)} \tag{3.12}
\end{align*}
$$

the only approximation being $\mathrm{gm}_{7} \mathrm{R}_{5} \gg 1$, i.e. a condition to be expected from a follower.

There is a dominant pole in this expression at:

$$
\begin{equation*}
\omega_{p}=\frac{1}{C_{c}\left(g m_{8} R_{01} R_{6}+R_{o 1}+\frac{1}{g m_{7}}\right)} \tag{3,13}
\end{equation*}
$$

and there is now a true zero at a frequency given by:

$$
\begin{equation*}
\omega_{z}=\frac{g_{m}}{c_{c}} \tag{3.14}
\end{equation*}
$$

The unity gain frequency of the nonloaded amplifier is the same as before, namely the one given by (3.7). This is obviously true only if the zero occurs beyond ω_{BW}.

The output impedance of the amplifier with buffered compensation capacitor is found in a similar manner as earlier:

$$
\begin{aligned}
& \left(G_{o l}+s C_{01}\right) V_{4}+\operatorname{sCgd}_{8}\left(V_{4}-V_{6}\right)+s C_{c}\left(V_{4}-V_{5}\right)=0 \\
& I_{T E S T}+\operatorname{sCgd}_{8}\left(V_{4}-V_{6}\right)+s \operatorname{Sgs}_{7}\left(V_{5}-V_{6}\right)=9 m_{8} V_{4}+\left(G_{6}+s C_{6}\right) V_{6} \\
& s C_{C}\left(V_{4}-V_{5}\right)+\operatorname{sCgs}_{7}\left(V_{6}-V_{5}\right)=\left(G_{5}+s C_{5}\right) V_{5}+g m_{7}\left(V_{5}-V_{6}\right)
\end{aligned}
$$

Neglecting again, in a first approximation, all the capacitors except C_{c}, we find:

$$
\begin{equation*}
z_{0}=\frac{R_{6}\left(1+s C_{c}\left(R_{01}+\frac{1}{g m_{7}}\right)\right)}{1+s C_{c}\left(g m_{8} R_{6} R_{01}+R_{01}+\frac{1}{g m_{7}}\right)} \tag{3.15}
\end{equation*}
$$

this result being based on the same assumption of $g m_{7} R_{5} \gg 1$.
The output impedance as given by (3.15) is practically the same as the one given by (3.8). Beyond the dominant pole, again the same in both cases, the output impedance can be expressed as in. $\left(3.8^{\circ}\right)$. As a result of all these similarities, the open loop gain of the loaded amplifier with buffered compensation capacitor will be of the form of (3.9) except that A_{B}° is the one given by (3.12).

At this point it is clear that the influence of the load
is the same in both cases. By placing the negative and respectively the true zero at the same frequency, the magnitude of the open loop open circuit gain will also be the same. The important difference between the two compensation schemes lies in the way they affect the phase shift. The nonbuffered compensation capacitor will increase the phase shift while the buffered capacitor will decrease it. At the location of the zero the improvement in phase shift is of 90. certainly a desirable situation.

The neglected capacitors will obviously generate additional singularities. The ratio between the frequencies at which these singularities will occur and the unity gain crossover frequency of the amplifier is of the same order of magnitude with the ratio between the value of the compensation capacitor and the value of those capacitors that have been neglected. These "upper" singularities are determined by process parameters and by the acceptable power dissipation. In the present case, although this may not be necessary, the bandwidth of the buffer has been "stretched" as far as the process would allow at the same time maintaining a comfortable safety margin.

3.2.4 Buffer response time.

The response time of the buffer amplifier under small signal conditions can be evaluated by using the gain derived in the previous section. The unity gain compensated amplifier can be considered in this case as being described by a single pole transfer function. If the open loop gain can be expressed

$$
\begin{equation*}
A_{B}=\frac{\omega_{B W}}{s+\omega_{p}} \tag{3.16}
\end{equation*}
$$

then the closed loop gain can be expressed as:

$$
\begin{equation*}
A_{B}^{c}=\frac{\omega_{B W}}{s+\omega_{B W}+\omega_{p}} \cong \frac{\omega_{\mathrm{BW}}}{\mathbf{s}+\omega_{\mathrm{BW}}} \tag{3.17}
\end{equation*}
$$

The response of a circuit described by (3.17) to a step input is an exponential with a time constant $\zeta=\frac{1}{\omega_{B W}}$. The output will settle to within $.1 \%$ of its final value in a time given by:

$$
\begin{equation*}
\Delta t=6 \ln 1000=6.9 \succeq \tag{3.18}
\end{equation*}
$$

For sufficiently large input signals, the response time will be limited by the slew rate rather than the small signal bandwith. The equivalent hybrid circuits used to analize this case are presented in Figure 3.27, where all the irrelevant elements have been omitted. The qualitative description of the slewing process goes as follows:

If a positive voltage step is applied to the gate of M2B and the step is sufficiently large, then M2B will be turned off and all of the tail current, $2 I$, will have to flow through M1B and M3B. Obviously under these conditions the first stage of the amplifier can no longer be described by its small signal parameters. The current 2 I flowing through M3B will be mirrored by $M 4 B$ and, as long as $M 4 B$ is kept out of the linear region and M 2 B is shut off, the input stage will act as a current sink of value $2 I$. This behavior is described by the large signal transconductance characteristic shown in

(a) Hybrid circuit for slewing analysis.

(b) Input stage transconductance.

(c) Step response under slew-rate conditions.

Figure 3.27b. In spite of the "drastic" switching occuring in the first stage, the potential at the output of this stage will react more slowly. This is the result of the negative feedback through the compensation capacitor. As long as V_{4} does not change appreciably, the second stage will still act as a linear amplifier and can be described like in Figure 3.27a. The equations describing the hybrid circuit of Figure 3.27a are:

$$
\begin{aligned}
& \Delta V_{4}=\Delta V_{6} \pm \frac{1}{C_{c}} \int I_{0} d t \\
& \Delta V_{6}=-\frac{1}{C_{L}} g m_{8} \Delta V_{4}
\end{aligned}
$$

With $I_{0}=2 I$ and using the Lapalce transform we find:

$$
\begin{equation*}
\mathscr{L}\left(\Delta v_{4}\right)=\mathscr{L}\left(\Delta V_{6}\right) \pm \frac{2 I}{s^{2} c_{c}} \tag{3.19}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{L}\left(\Delta V_{6}\right)=-\frac{g m_{8} \mathcal{L}\left(\Delta V_{4}\right)}{s C_{L}} \tag{3.20}
\end{equation*}
$$

From (3.19) and (3.20) we find:

$$
\begin{align*}
& \Delta V_{4}=\mp \frac{2 I \sigma_{s}}{C_{c}}\left(1-e^{-t / \sigma_{s}}\right) \tag{3.21}\\
& \Delta V_{6}= \pm \frac{2 I}{C_{c}}\left(t-\sigma_{s}\left(1-e^{-t / \sigma_{s}}\right)\right) \tag{3.22}
\end{align*}
$$

where: $\quad \sigma_{S}=\frac{C_{L}}{g m_{8}}$
Expression (3.22) is presented in graphical form in

Figure 3.27c. The results are consistent with the initial assumptions as long as M4F acts as a current sink of value 2I. The biasing parameter that changes at the beginning of the slewing process is the gate drive of $M 4 B$, trying to "force" the tail current $2 I$ through M4R. If this can be done at constant V_{4} then M4B will indeed start as a current sink of value $2 I$. If $M 4 B$ is too small to carry the tail current, then M4B will start as a current sink of lesser value than 2I. In any event V_{4} will tend to decrease in the case of positive step inputs applied at the gate of M2B. From (3.21) it is apparent that ΔV_{4} will reach the final value within a time interval of the same order of magnitude with \boldsymbol{Z}_{s}. This final value will be:

$$
\begin{equation*}
\Delta V_{4 \max }=-\frac{2 I}{g m_{8}} \cdot \frac{C_{L}}{C_{C}}=-V_{G S e f f} \frac{g_{1}}{g^{m}} \cdot \frac{C_{L}}{C_{C}} \tag{3.24}
\end{equation*}
$$

where $V_{G S e f f}$ is the effective gate to source voltage of M1B, respectively $M 2 B$, in equilibrium. Such a voltage step as given by (3.24) could possibly turn off the driver of the output stage, M8B. In this case the slew rate will be:

$$
\begin{equation*}
\frac{d V_{6}}{d t}=\frac{I_{9}}{C_{L}} \tag{3.25}
\end{equation*}
$$

where I_{9} is the quiescent current of the output stage. Similar arguments can be used in the case of negative step inputs except that such inputs will not turn off the second stage driver. The conclusions of this analysis are:

- under relatively light loading conditions, i.e.
small C_{L}, the output slew rate will be determined by:

$$
\begin{equation*}
\frac{d V_{6}}{d t}=\frac{2 I}{C_{c}} \tag{3.26}
\end{equation*}
$$

- under "heavy" loading conditions, i.e. large C_{L}, the positive slew rate will be determined by (3.25). The fact that the amplifier will be slewing faster in the negative direction than in the positive one is a consequence of the polarity choice that has been made, i.e. n-channel driver and p-channel load in the second stage.
3.2.5 Device sizing.

The elements determining the absolute size of the devices are:

- the speed requirements
- the loading
- the stability conditions
- the available voltage differential

The relation between slew rate and the small signal bandwidth follows from (3.7) and (3.25), respectively (3.26).

For negative slewing:

$$
\frac{d V}{d t}=\omega_{B W} V_{G S e f f 1}
$$

For pcsitive slewing under heavy loading:

$$
\frac{d V}{d t}=\omega_{B W} V_{G S e f f l} \frac{I_{9}}{2 I} \frac{C_{C}}{C_{L}}
$$

where $V_{\text {GSeffl }}$ is the effective gate drive of M1B or M2B.
$V_{\text {GSeffl }}$ will be more or less fixed by the available supplies and the nominal threshold voltages. For supplies of $\pm 7.5 \mathrm{~V}$ and nominal thresholds of $\pm 1.5 \mathrm{~V}, \mathrm{~V}_{\text {GSeffi }}$ will be equal to about 2 V .

The compensation scheme will be effective only if the unity gain frequency of the open loop configuration is sufficiently removed from the singularities which have been neglected in the stability analysis. Those singularities occur at frequencies of the order of:

$$
\omega_{\mathrm{T}}=\frac{\mathrm{gm}}{\mathrm{C}_{\mathrm{gs}}}
$$

In terms of process parameters and supplies $\boldsymbol{\omega}_{\mathbf{T}}$ can be expressed as:

$$
\omega_{T}=\frac{2 \beta v_{\text {GSeff }}}{c_{o x} L^{2}}
$$

where:

$$
\begin{aligned}
& \beta_{p}=5 \mu \mathrm{~A} / \mathrm{v}^{2} \text { for } \mathrm{p} \text {-channel transistors } \\
& \beta_{\mathrm{n}}=10 \mu \mathrm{~A} / \mathrm{v}^{2} \text { for } n \text {-channel transistors } \\
& c_{o x}=.22 \mathrm{pF} / \mathrm{mil}^{2} \\
& L_{p}=.3 \mathrm{mil} \text { for } \mathrm{p} \text {-channel transistors } \\
& L_{n}=.2 \mathrm{mil} \text { for } n \text {-channel transistors } \\
& \text { With } v_{\text {GSeff }} \text { of } 2 \mathrm{~V} \text { as found earlier: }
\end{aligned}
$$

$$
\omega_{T} \cong 1 \mathrm{Grad} \quad \text { or } \quad \mathrm{f}_{\mathrm{T}} \cong 160 \mathrm{MHz}
$$

From this point of view it seems reasonable to place the unity gain frequency $f_{B W}$ at about 5 MHz , which would yield slew rates of tens of volts per $\mu \mathrm{s}$ and a small signal settling time of about. $22 \mu \mathrm{~s}$.

The bandwidth as given by (3.7) is strictly speaking the unity gain crossover frequency of the open loop and unloaded buffer amplifier, provided that ω_{z} of (3.14) will occur beycnd $\omega_{B W}$. The load will affect the overall gain in the way shown earlier by generating the loublet described by (3.10) and (3.11). The maximum load seen by the buffer corresponds to the generation of step voltages in the last segment when CX_{128} is connected to the buffer output and at the same time is connected in series with the parallel combination of all the other segment capacitors. The resulting capacitance is of about 50 pF . A reasonable compensation capacitor size for the desired bandwidth of 5 MHz is equal to about 10 pF . Therefore c_{0} of (3.8^{\prime}) wil] have a value of about 200 pF to 400 pF , depending on the exact value of the gain coefficient $g_{8} R_{o l}$. The series combination between C_{6} and C_{L} will therefore be clearly dominated by the load capacitor C_{L}. It also follows that the doublet will have little influence on the overall gain as long as $R_{L} \gg R_{0}$, case in which the pole and zero generated by the load tend to cancel each other. If $R_{L} \ll R_{0}$ then the zero of (2.11) will occur beyond the pole of (3.10), the distance bet ween the two being proporticnal th the ratio of R_{I} vs. F_{0}. The classical approach in such a case is to place the second pole at the unity gain crossover frequency $\omega_{B W}$. Due to the positive zero given by (3.14), such a choice will yield more than acceptable phase margin.

Thus:

$$
\omega_{B W}=\frac{\mathrm{gm}_{1}}{\mathrm{C}_{\mathrm{c}}}=\omega_{\mathrm{pL}}=\frac{1}{R_{0} C_{L}}=\frac{\mathrm{gm}_{8}}{\mathrm{C}_{\mathrm{L}}}=31 \mathrm{Mrad}
$$

It follows that:

$$
\mathrm{gm}_{1}=.314 \mathrm{~mA} / \mathrm{V} \text { and } \mathrm{gm}_{8}=1.57 \mathrm{~mA} / \mathrm{V}
$$

The value found for gm_{8} can now be used for the sizing of the output stage. For $\mathrm{V}_{\mathrm{GS}}=25 \%$ vS and using a "handmodel" for the transistor we find:

$$
k_{8}=\frac{\mathrm{gm}_{8}}{2 \beta_{\mathrm{n}}\left(\mathrm{~V}_{\mathrm{GS} 8}-\mathrm{v}_{\mathrm{th}}\right)}=22
$$

This result is deceptive since the handmodel is too simplified in the case of the n-channel transistors used in the particular CMOS process. The discrepancies between the designed and actual parameters are due mainly to the heavy body effect which effectively increases the threshold voltage (as a result of potential distribution along the channel).

The devices can be described more accurately with models of the type available in ISPICE (16). This has been done and the pertinent parameters have been adjusted for reasonable fitting of experimental data. Using ISPICE we find that for $g m_{8}=1.57 \mathrm{~mA} / \mathrm{V}$ one needs $\mathrm{k}_{8}=80$. The corresponding dr. current flowing through the output stage is equal to $700 \mu \mathrm{~A}$.

By choosing again $\mathrm{V}_{\mathrm{GS} 9}=25$ \% vs we find:

$$
k_{9}=\frac{I_{9}}{\beta_{p}\left(V_{G S 9}-V_{t h}\right)^{2}}=40
$$

This result is in good agreement with computer simulation based on fitted models since the handmodel is more accurate in the case of lightly doped substrate.

The ratio between the gm's of the drivers in the two stages of the amplifier can be realized approximately by setting:

$$
I_{5}=\frac{I_{9}}{2}
$$

which in turn yields:

$$
I_{1}=I_{2}=\frac{I_{9}}{4}
$$

The size of the input stage drivers is found from:

$$
k_{1}=k_{2}=\frac{\frac{g m_{1}^{2}}{4}}{\beta_{p} I_{1}}=\frac{g m_{1}^{2}}{\beta_{p} I_{9}}=28
$$

The sizes of $M 3 B, M 4 B$ and $M 5 B$ are the result of direct scaling:

$$
k_{5}=\frac{k_{9}}{2}=20 \quad \text { and } \cdot k_{3}=k_{4}=\frac{k_{8}}{4}=20
$$

The slew rates resulting from the choices made so far are:

$$
\frac{\mathrm{dV}^{+}}{\mathrm{dt}}=\frac{\mathrm{I}_{9}}{\mathrm{C}_{\mathrm{Lmax}}}=\frac{700 \mu \mathrm{~A}}{50 \mathrm{pF}}=14 \mathrm{~V} / \mu \mathrm{s}
$$

and:

$$
\frac{d V^{-}}{d t}=-\frac{I_{5}}{C_{c}}=-\frac{350 \mu \mathrm{~A}}{10 \mathrm{pF}}=35 \mathrm{~V} / \mu \mathrm{s}
$$

The small signal settling time of (3.18) will be of about. $22 \mu \mathrm{~s}$. Such values are quite acceptable in the codec application.

The current flowing through the follower used for the buffering of the compensation capacitor has to be at least equal with the tail current of the input stage. Otherwise the follower rather than the input stage would limit the slew rate. Therefore $I_{6}=I_{5}$. For stability reasons the pozitive zero of (3.14) has to be placed beyond $\omega_{B W}$: otherwise the amplifier could be unstable in the absence of a heavier load. The location of the zero was arbitrarily chosen as:

$$
\omega_{z} \cong 2 \omega_{\mathrm{BW}}
$$

Such a choice yields $\mathrm{gm}_{7}=.68 \mathrm{~mA} / \mathrm{V}$ and $\mathrm{k}_{7}=53$. The size of $M 6 B$ is obviously such as to yield $k_{6}=k_{5}$.
Once the aspect ratios have been found, the absolute size of the devices depends on the choice of channel length.

The channel length that was chosen, . 3mil for p-channel transistors and . 2mil for n-channel transistors, is the minimum value compatible with reasonable breakdown voltages and saturated output resistance. The final values of the geometrical parameters are shown in TABLE 3.8 which contains the ISPICE circuit description of the CMOS buffer amplifier.

3.2.6 Computer evaluation.

The performance of the "paper amplifier" was evaluated using ISPICE. The circuit description that was used is shown in TABLE 3.8. The dc biasing conditions and small signal parameters are listed in TABLE 3.9. The computer analysis does obviously take into account all the elements which have been neglected during the simplified analysis performed earlier.

The open loop gain and the output impedance of the amplifier with buffered compensation capacitor are shown in Figure 3.28a, respectively 3.28b. The output impedance of the nonbuffered version is shown in Figure 3.28c. It is clear that the two output impedances are practically identical within the bandwidth of the amplifier; therefore it is indeed justified to compare the two compensation schemes based on the open loop gain alone.

The results of the computer analysis performed under maximum loading conditions are shown in Figure 3.29a for the buffered version and Figure $3.29 b$ for the nonbuffered version.

The maximum load, $C_{L}=50 \mathrm{pF}$, is connected to the buffer output via an equivalent switch resistor of .5 k . This resistor is comparable to the output resistance of the amplifier so that the case is indeed worst from a stability point of view.

The bandwidth in the presence of the load is practically the same in both cases. The nonbuffered version exhibits an additional phase shift of about 20°, but the phase margin of 45° is still acceptable.

The step response under similar loading conditions is

Circuit description of CMOS buffer.

```
M1B \(3628 \operatorname{PSGX}(6.4,6.4,8.0 M I) 8.0 M I, .3 M I\)
M2B \(4128 \operatorname{PSGX}(6.4,6.4,8.0 M I)\) 8.OMI,.3MI
M3B \(3 \quad 399 \operatorname{NSGX}(3.2,3.2,4.0 \mathrm{MI}) 4.0 \mathrm{MI}, .2 \mathrm{MI}\)
M4B \(43999 \operatorname{NSGX}(3.2,3.2,4.0 \mathrm{MI}) 4.0 \mathrm{MI}, .2 \mathrm{MI}\)
M5B \(2788 \operatorname{PSGX}(2.4,2.4,6.0 M I) 6.0 M I, .3 M I\)
M6B \(5788 \operatorname{PSGX}(4.8,4.8,6.0 M I) 6.0 M I, .3 M I\)
M7B 9658 PSGX(12.8,12.8,16.OMI) 16.OMI,.3MI
M8B \(6499 \operatorname{NSGX}(12.8,12.8,16.0 M I)\) 16.OMI..2MI
M9B \(6788 \operatorname{PSGX}(9.6,9.6,12.0 M I)\) 12.OMI,.3MI
M10B \(7788 \operatorname{PSGX}(.88, .88,1.5 M I) 1.5 M I, .3 M I\)
MIIB \(0078 \operatorname{PSGX}(.88, .88,1.2 M I)\) 1.2MI,.4MI
D 94 D
MODEL \(D \operatorname{D}(C J O=54 * .173 p, I S=54 * 20 p)\)
CC 45 10P
Vplus 807.5
Vminus \(90-7.5\)
PSGX MODEL
PSGX (DR,SO,W)
\(\operatorname{PSCM}(V T O=1.5, \mathrm{PHI}=.575, \mathrm{UO}=300, \mathrm{NB}=.95 \mathrm{E}+15, \mathrm{CO}=4.0 \mathrm{E}-8, \varepsilon\)
\(\mathrm{IS}=1.0 \mathrm{E}-16, \mathrm{CI}=8.7 \mathrm{P}, \mathrm{C} 2=8.7 \mathrm{P}, \mathrm{CBD}=\mathrm{DR} * .066 \mathrm{P} / \mathrm{W}, \mathrm{CBS}=\mathrm{SO} * .066 \mathrm{P} / \mathrm{W}, \varepsilon\)
\(\mathrm{PB}=.7, \mathrm{RS}=10 \mathrm{MI}, \mathrm{RD}=10 \mathrm{MI}, \mathrm{MN}=1.2, \mathrm{KN}=.0354\) )
NSGX MODEL
NSGX (DR, SO, W)
\(\mathrm{NSCM}(\mathrm{VTO}=1.5, \mathrm{PHI}=.675, \mathrm{UO}=700, \mathrm{NB}=1.1 \mathrm{E}+16, \mathrm{CO}=4.0 \mathrm{E}-8, \mathrm{~s}\)
\(I S=1.0 \mathrm{E}-16, \mathrm{Cl}=19.4 \mathrm{P}, \mathrm{C} 2=19.4 \mathrm{P}, \mathrm{PB}=.7, \mathrm{RD}=10 \mathrm{MI}, \mathrm{RS}=10 \mathrm{MI}\), \&
\(\mathrm{CBD}=\mathrm{DR} * .173 \mathrm{P} / \mathrm{W}, \mathrm{CBS}=\mathrm{SO}^{*} .173 \mathrm{P} / \mathrm{W}, \mathrm{KN}=.007, \mathrm{MN}=1.12, \varepsilon\)
ECRIT \(=8.5 \mathrm{E}+4, \mathrm{KL}=2\) )
```

	VGS	VDS	ID
	(V)	(V)	(μA)
M1B	-3.128	-8.122	166.9
M2B	-3.129	-8.091	167.0
M3B	2.507	2.507	166.9
M4B	2.507	2.537.	167.0
M5B	-3.239	-4.371	334.0
M6B	-3.239	-4.400	334.4
M7B	-3.099	-10.60	334.4
M8B	2.537	7.501	767.6
M9B	-3.239	-7.499	767.6
M10B	-3.239	-3.239	78.7
M11B	-4.261	-4.261	78.7

(a) Dc biasing conditions.

	$g m$ $(m A / V)$	$g d s$ $(\mu \mathrm{~A} / \mathrm{V})$	Cgs (pF)	$C g d$ (pF)
M1B	.33	4.54	.6	.17
M2B	.33	4.54	.6	.17
M3B	.33	3.50	.34	.19
M4B	.33	3.48	.34	.19
M5B	.36	16.50	.44	.13
M6B	.36	16.50	.44	.13
M7B	.68	8.85	1.18	.35
M8B	1.46	10.23	1.37	.79
M9B	.84	31.63	.88	.26
M10B	.08	4.45	.11	.03
M11B	.06	1.95	.11	.02

(b) Small signal parameters.

(c) Junction capacitances.

(a) Open loop gain/phase characteristics of the CMOS buffer amplifier with buffered compensation capacitor. No load.

(b) Output impedance of the CMOS buffer amplifier with buffered compensation capacitor.
(0 dB corresponds to a lk resistor)

Figure 3.28

($O d B$ corresponds to a $1 k$ resistor)

(a) Open loop gain/phase characteristics of the CMOS buffer amplifier with buffered compensation capacitor. The amplifier is loaded with $C_{L}=50 \mathrm{pF}$ and $R_{L}=.5 \mathrm{k}$.

shown in Figure 3.30.
The computer results are consistent with the simplified analysis of the previous sections, showing that the approximations have been reasonable.

It appears that the follower used for the buffering of the compensation capacitor could be eliminated; the penalties are: 20° more phase shift at the unity gain crossover frequency, $3 \mathrm{~V} / \mu \mathrm{s}$ less positive slew rate and $4 \mathrm{~V} / \mu \mathrm{s}$ less negative slew rate. The savings would be: 15% less area and 25% less power dissipation. Since it was felt that the advantages of the buffered version are worth the area and power penalties, the follower was nevertheless included in the practical circuit.

The final parameters of the buffer amplifier are listed in TABLE 3.10.

(a) Step response to positive input.

(b) Step response to negative input.

Figure 3.30

	Simul.	Measr.
Open loop dc gain	62 dB	60-66dB
Bandwidth (open circuit)	5 MHz	-
Phase margin (open circuit)	106°	-
Bandwidth ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{L}}=.5 \mathrm{k}$)	3 MHz	-
Phase margin ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ and $\mathrm{R}_{\mathrm{L}}=.5 \mathrm{k}$)	70°	-
Common mode range	$\pm 5 \mathrm{~V}$	$\pm 5 \mathrm{~V}$
Common mode rejection	-	60dB
Input offset	-	20 mV
Positive slew rate (loaded with $\mathrm{C}_{\mathrm{L}}, \mathrm{R}_{\mathrm{L}}$)	13v/us	$8 \mathrm{~V} / \mathrm{us}$
Negative slew rate (loaded)	34V/us	$33 \mathrm{~V} / \mathrm{us}$
Power dissipation	22 mW	20 mW
Area	$560 \mathrm{mil}{ }^{2}$	$560 \mathrm{mil}{ }^{2}$

Computed and measured performance of CMOS buffer amplifier.

TABLE 3.10

3.?.7 Experimental results.

The practical performance of the buffer amplifier was evaluated using a special metal mask which brings out the input and output terminals of the amplifier alone.

The experimental common mode range is shown in Figure $3 . E 7$ and is practically $\pm 6 \mathrm{~V}$ at $\pm 7.5 \mathrm{~V}$ supplies.

The open loop gain is measured with the setup shown in Figure $3 . E 8$ on the basis of:

$$
A=\frac{\Delta V_{\text {out }}}{\Delta\left(v_{\text {in }}-V_{\text {out }}+V_{\text {offs }}\right)}
$$

where:

$$
v_{\text {offs }}=v_{\text {out }} \text { at } v_{\text {in }}=0
$$

This experiment shows that $A>1000$, i.e. adequate for the codec application.

The measured offset voltage is of the order of a few tens of mV , which is again acceptable in the codec.

The step response is shown in Figures 3.E9 to 3.El2.
The magnitude of the input step is 5 V and the load consisted of a 50 pF capacitor connected to the amplifier output via a .5 k resistor. The experimental slew rates are:

$$
\frac{d V^{+}}{d t}=\frac{10 V}{\mu s} \quad \text { and } \frac{d V^{-}}{d t}=-\frac{30 V}{\mu s}
$$

These results are reasonably close to the computer predictions: they happen to be equal to the idealized results obtained for the nonkuffered compensation version, which shows that the decision to keep the follower was justified since the practical degradation of slew rate could otherwise become critical.

Dc transfer characteristic of unity gain CMOS buffer amplifier.

Figure $3 . E 7$

Experimental set-up for gain measurement. and measured results for 2 samples.

Figure $3 . E 8$

CMOS amplifier response to a positive 5 V input step; $C_{L}=50 \mathrm{pF}$ and $R_{L}=.5 \mathrm{k}$.

CMOS amplifier response to a positive 5 V input step (magnified); $C_{L}=50 \mathrm{pF}$ and $R_{L}=.5 \mathrm{k}$.

Figure $3 . E 10$

[^0]

[^1]Figure $3 . E 12$
3.3 THF: CMOS COMPARATOR.

The need for a comparator is okvious in an analog to digital converter. The circuitry used for this purpose in the first charge-redistributior convecter (8) consisted of a rroactband linear gain stage cascaded with a sense amplifier.

The linear stage is needed for offset cancellation and since the converter was built in n-channel technology, the moderate gain of this stage had to be supplemented by the "infinite" gain of the positive feedback sense amplifier.

The sense amplifier requires dedicated switching circuitry which can be space consuming and will certainly complicate the layout. A linear amplifier with sufficient gain would therefore be a more attractive solution and with the availability of complementary devices it can also become a practical one.
3.3.1 Design objectives.

The comparator has two roles in the PCM coder: during the sampling of the analog input signal it provides a virtual Grourd frr the charging fath and during the conversion it compares the voltage at the common top plate of the segment array capacitors against that virtual ground. The virtual cround is created by connecting one end of the "sampling switch" to the output of the comparator rather than directly to ground and by grounding the noninverting input of the comparator. This is shown in Ficure 3.31. Surh a connection will eliminate the offrct of the finite comparator offset voltage.

If cne would ground the ton plates during sampling

(a) Switch configuration during input sampling

Simplified sampling configuration
(b) with offset cancellation
(c) without offset cancellation
then the voltage presented at the inverting input of the comparator during the conversion would be referenced to the electrical ground and as a result the transfer curve of the coder would be shifted by an amount equal to the comparator offset voltage. If this shift is too pronounced the codec will fail passing SNR and GTRCK specifications. The acceptable offset was found through computer simulation using XCODEC; it is equal to 28 of $V_{R^{\prime}}$ in the case when all the other parameters of the converters are perfect. With a reference voltage of 3 V this implies an acceptable offset of about 60 mV and since the practical offset is likely to be of the same order of magnitude it turns out that it has to be eliminated from the comparison. By connecting the sampling switch "around" the comparator, the offset is stored on the capacitor array itself and will no longer affect the comparison process. The effective comparator offset will be the result of feedthrough from the sampling switch and this then has to be less than 2% of V_{R}.

The sampling switch - comparator combination has to provide an acceptable impedance during sampling and the resulting feedback configuration has to be stable.

During conversion the comparator has to be able to switch state at an input overdrive as small as $V_{R} / 8160$, corresponding to one half of a step in the middle segment of the transfer curve. Therefore the comparator has to exhibit a dc gain larger than:

$$
G_{\min }=\frac{d V_{\text {out }}}{d V_{\text {in }}}=8160 \frac{V_{T}}{V_{R}}
$$

where V_{T} is the trigger voltage of the inverter following the comparator. The maximum acceptable response time is determined by the length of the time slot alloted for one decision and the number of operations performed during that time slot. A reasonable limit is equal to about $2 \mu \mathrm{~s}$; added to the $1.5 \mu \mathrm{~s}$ assigned for buffer settling this yields a total of $3.5 \mu \mathrm{~s}$. The duration of an entire time slot is of $10 \mu \mathrm{~s}$ at a sampling rate of 8 kHz and $5 \mu \mathrm{~s}$ at 16 kHz . Therefore it appears that the choices made so far allow sufficient time for logic operations and charge redistribution.

3.3.2 The circuit.

The circuit appproach chosen for the comparator is shown in Figure 3.32. The reasons for using p-channel drivers in the input stage and n-channel in the cascode are similar to the ones presented in the buffer section.

The differential input stage provides the possibility for choosing a convenient comparator threshold. One may be tempted to set this at the logic threshold of the digital circuitry but such a choice is unfavorable from a biasing point of view. The comparator has to exhibit the largest gain around its threshold and it turns out that the most convenient biasing arrangement for maximum gain requires setting of the threshold at ground. This solution does also provide the most flexibility for the choice of reference voltages,

The second stage of the comparator is a cascode, used here for its large dc gain and its small input capacitance.

CMOS Comparator

Figure 3.32

The level shifter, MIOC and MIIC, translates the 0 centered voltage swing at the output of the comparator to the logic threshold centered voltage swing required to drive the digital section; it also buffers the comparator output from the capacitive load presented by the digital circuitry.

MIOC and MIIC are scaled with the bias string transistors M12C and M13C and these in turn are built of equal size; therefore the bias potential V_{11} will be at about +VS/2, which is above the logic threshold of a CMOS inverter biased at $+V S$. As a result of the scaling V_{10} will be equal with v_{11} when $V_{6}=0$, i.e. during sampling. Therefore the digital circuitry will be set into a definite state during sampling and this process will not be affected by noise resulting from random switching.

By virtually setting the comparator threshold at ground potential the biasing of the cascode is greatly simplified, namely the gates of transistors M6C and M7C can be tied directly to ground. This connection saves unnecessary biasing circuitry and improves the dynamic behavior of the circuit.

The arrangement does also make the best use of the available supplies by evenly distributing the voltage over the four devices in the cascode. The gain of the comparator will be large over an output range of about $2 \mathrm{~V}_{\text {th }}$ centered around 0 ; but this is exactly the region where the most gain is required, therefore the somewhat limited output common mode range resulting from the hiasing of M6C and M7C is not "harmful" in this application.

3.3.3 Sample acquisition.

As has been mentioned earlier, the time spent in sampling is of about 3 time slots, the conversion being divided into 12 equal time slots. This yields about $31 \mu \mathrm{~s}$ at a sampling rate of 8 kHz and $15 \mu \mathrm{~s}$ at 16 kHz . The capacitance of the "sampling" capacitor is of about 217 pF . The maximum frequency of the analog input signals is 4 kHz for voice and the maximum amplitude V_{R}. These numbers have to be used to design the circuit elements involved in the sampling process.

The worst case for sampling is illustrated in Figure 3.33 and corresponds to the sampling of the maximum amplitude 4 kHz sinewave. At the end of the first conversion the potential at the comparator input is close to 0 and the capacitors of the segment array are all charged up to V_{R} with the polarity shown in Figure 3.33b. At the beginning of the second sampling operation the switches are thrown as shown in Figure3.33c. If the switch connecting the analog input to the bottom plate of C_{S} is closed first, then the potential at the comparator input can momentarily go to $2 \mathrm{~V}_{\mathrm{R}}$ and if $2 \mathrm{~V}_{\mathrm{R}}>\mathrm{VS}$ then such an ever.t is undesirable. A safer procedure is to discharge C_{S} first and then connect the analog input. If $2 \mathrm{~V}_{\mathrm{R}}<\mathrm{VS}$, then slich precautions are unnecessary.

A first order analysis of the sampling process can be made if one assumes that the comparator has infinite bandwidth and is described by the de transconductance shown in fiyure 3.34a. The equivalent circuits used to describe the behavior of the configuration during sampling are shown in Figure 3.34 . The discharging of the sampling capacitor C_{S} and the

(a) Sampling of a 4 kHz full scale sinewave

(b) Sampling capacitor at end of lst conversion

$$
\mathrm{V}_{\mathrm{a}}=+\mathrm{V}_{\mathrm{R}}
$$

(c) Sampling capacitor at beginning of 2nd sample acquisition without (left) and with (right) initial discharging.

Figure 3.33

(a) Comparator dc transconductance

(b) Discharging the sampling capacitor

(c) Acquisition of the analog sample

Figure 3.34
acquisition of the new analog sample will be treated as separate steps in order to keep the analysis clean. The total time spent for discharging and sample acquisition will be the longer of the two as long as superposition holds.

At the beginning of the second sampling the capacitor is charged up to V_{R} as shown in the right half of Figure 3.33c.

The discharging process will be described by the following equations:

If:

$$
\begin{equation*}
\mathrm{v}_{\text {in }}(\mathrm{t}=0)>\frac{\mathrm{w}}{2} \tag{3.31}
\end{equation*}
$$

then:

$$
\begin{equation*}
0=R_{G} I^{\prime}-V_{R}+\frac{I^{\prime} t}{c_{s}}+V_{i n} \tag{3.32}
\end{equation*}
$$

If:

$$
\begin{equation*}
v_{\text {in }}(t=0)<\frac{w}{2} \tag{3.33}
\end{equation*}
$$

then:

$$
\begin{equation*}
0=R_{G} i-v_{R}+\frac{1}{C_{s}} \int i d t+v_{i n} \tag{3.34}
\end{equation*}
$$

From (3.32) we find:

$$
V_{i n}(t=0)=V_{R}-R_{G} I^{-}
$$

Therefore the condition of saturated operation can be written as:

$$
R_{G} I^{\cdot}+\frac{W}{2}<V_{R}
$$

The opposite condition obviously implies linear operation:

$$
\mathrm{R}_{\mathrm{G}} \mathrm{I}^{\prime}+\frac{\mathrm{W}}{2}>\mathrm{V}_{\mathrm{R}}
$$

From (3.32) we can also find the time spent in
saturation:

$$
\begin{equation*}
t_{1}=\frac{\left[\mathrm{v}_{\mathrm{R}}-\frac{\mathrm{w}}{2}\right] \mathrm{c}_{\mathrm{s}}}{\mathrm{I}^{\prime}}-\mathrm{R}_{G} \mathrm{C}_{\mathrm{s}} \tag{3.36}
\end{equation*}
$$

During the linear period, when (3.35) holds, the discharging process will be described by:
or:

$$
\begin{gather*}
v_{i n}=\frac{w}{2} e^{-t / G_{G}} \tag{3.37}\\
v_{i n}=\frac{v_{R}}{1+G_{t r} R_{G}} e^{-t / \sigma_{G}} \tag{3.38}
\end{gather*}
$$

where:

$$
\begin{equation*}
G_{G}=\frac{1+G_{t r} R_{G} C_{S}}{G_{t r}} \cong R_{G} C_{s} \tag{3.39}
\end{equation*}
$$

Equation (3.37) is valid with (3.31) and (3.38) with (3.33). The voltage across the sampling capacitor is described by:

$$
\begin{equation*}
v_{C_{s}}=-\left(1+G_{t r} R_{G}\right) v_{i n}\left(t_{1}\right) e^{-t / G_{G}} \tag{3.40}
\end{equation*}
$$

where $V_{\text {in }}\left(t_{1}\right)$ is the input voltage at the end of saturated operation, i.e. $V_{\text {in }}(0)$ as given by (3.37) or respectively (3.38). From (3.40) we can find the time required to discharge the capacitor to the desired extent. An estimate of the discharging time can be obtained by arbitrarily imposing:

$$
\left|\mathrm{V}_{\mathrm{C}_{\mathrm{s}}}\right|<\frac{\mathrm{V}_{\mathrm{R}}}{255 \times 16 \times 2}=\frac{\mathrm{V}_{\mathrm{R}}}{8160}
$$

(3.40) coupled with (3.37) and respectively (3.38) yields:

$$
\begin{equation*}
t_{2} \cong\left[\ln 8160-\ln \frac{V_{R}}{R_{G} I^{\prime}+\frac{W}{2}}\right] \boldsymbol{\sigma}_{G} \tag{3.41}
\end{equation*}
$$

or:

$$
\begin{equation*}
t_{2} \cong \sigma_{G} \ln 8160=9 \sigma_{G} \tag{3.42}
\end{equation*}
$$

The total time spent for discharging will then be the sum of t_{1} and t_{2} or respectively only t_{2}. If the sampling time is sensibly larger than t_{1} or t_{2} then the capacitor
will in fact be discharged to a greater extent than just one half of a first segment step.

The acquisition of the analog sample is described by similar equations, i.e.:
if:

$$
\begin{align*}
& v_{A}(t)=R_{A} I^{-}+\frac{I^{\prime} t}{c_{s}}+v_{i n}(t) \tag{3.43}\\
& v_{A}(0)>\frac{w}{2}+R_{A} I^{0} \tag{3.44}
\end{align*}
$$

and:

$$
\begin{equation*}
v_{A}(t)=R_{A} i+\frac{1}{c_{s}} \int i d t+v_{i n}(t) \tag{3.45}
\end{equation*}
$$

with i given by (3.35) and if (3.44) is not true.
During the sampling of the input signal the switch resistance associated with the analog input terminal could possibly be different from the one used for discharging; therefore R_{A} takes the place of R_{G} and σ_{G} is replaced by Z_{A} with the latter of the same form with (3.39).

The analog input will be represented by a sinewave:

$$
v_{A}(t)=U \sin \omega\left(t+t_{d}\right)
$$

where $\omega=2 \pi(4 \mathrm{kHz})$ and t_{d} is the delay between the 0 crossing of the sinewave and the moment when acquisition starts. The sampling capacitor is being assumed as completely discharged.

The time spent in saturation is found from (3.43):

$$
t_{1}=\frac{\left[v_{A}\left(t_{1}\right)-\frac{w}{2}\right] c_{s}}{I^{\prime}}-R_{A} c_{s}
$$

Under linear conditions the expressions for the input voltage and the acquisition error, ε, are found on the basis of (3.45) and (3.35). Namely:

$$
v_{\text {in }}\left(t+t_{1}\right)=\frac{\left(\omega \sigma_{A}\right)^{2} v_{A}\left(t+t_{1}\right)+\sigma_{A} \frac{d V_{A}\left(t+t_{1}\right)}{d t}}{\left[1+G_{\left.t r^{R} R_{A}\right]\left[1+\left(\omega \sigma_{A}\right)^{2}\right]}^{\left[1+G_{t r} R_{A}\right]\left[1+\left(\omega \sigma_{A}\right)^{2}\right]}\right.}+
$$

and:

$$
\begin{equation*}
\varepsilon=v_{A}\left(t+t_{1}\right)-v_{C_{S}}\left(t+t_{1}\right)=\left(1+G_{t r} R_{A}\right) v_{\text {in }}\left(t+t_{1}\right) \tag{3.47}
\end{equation*}
$$

where t_{1} is the time spent in saturation.
It turns out that the ratio between the time length of the sampling interval and σ_{A} can be designed large enough as to minimize the exponential terms to an acceptable level. The same is not true for the periodic terms since $\left(\omega \zeta_{A}\right)$ can not be made arbitrarily small. After the exponential terms have vanished and taking into account that ($\omega \boldsymbol{b}_{A}$) is nevertheless a small number, the input voltage can be written as:
$V_{\text {in }}\left(t+t_{1}\right) \cong \frac{\left(\omega \sigma_{A}\right)^{2} V_{A}\left(t+t_{1}\right)+\sigma_{A} \frac{d V_{A}\left(t+t_{1}\right)}{d t}}{1+G_{t r} R_{A}}$
The acquisition error then will be:

$$
\begin{equation*}
\varepsilon \cong\left(\omega \zeta_{A}\right)^{2} v_{A}\left(t+t_{1}\right)+\delta_{A} \frac{d v_{A}\left(t+t_{1}\right)}{d t} \tag{3.49}
\end{equation*}
$$

The maximum error occurs when the input signal goes through 0 at the end of the sampling interval and is given by:

$$
\begin{equation*}
\varepsilon_{\max }=\left(\omega \delta_{A}\right) U \tag{3.50}
\end{equation*}
$$

In the case $U=V_{R}$ this error can be quite large, possibly larger than for instance one half of a first segment step. On the other hand one can see that the error is large when the maximum amplitude of the sinewave is large too. But the samples acquired with such large error occur with the lowest probability and therefore one would expect that the effect of such errors on SNR and GTRCK will not be too harmful. The situation could also be interpreted as the result of a variable offset voltage and this then could be analyzed in principle with a program like XCODEC. At this point it seems sufficient to mention the problem and to keep it in mind in the event of questionable experimental results.

An other interesting conclusion of the sampling analysis is the fact that the sampling switch resistance has no effect on the time constants. In order for this to be true the switch has to be able to carry the maximum current of the comparator, I^{\prime}, otherwise the switch rather than the comparator would determine the maximum charging current. In the next section it will be shown that the switch resistance is nevertheless important from a stability point of view.

3.3.4 Comparator stahility.

The equivalent small signal circuit of the sampling configuration is shown in Ficure $3.35 a$, where:

- r is the equivalent resistance of the sampling switch at equilibrium, i.e. with $V_{D S}=0$.
- $C s_{A}$ and $C s_{B}$ are gate plus junction capacitances associated with the sampling switch.
- C_{s} is the total capacitance of the segment array.
- R_{A} is the equivalent resistance of the analog switches connecting C_{s} to the input voltage source plus the output resistance of that source.
- C_{p} and R_{p} are the parasitic elements associated with C_{s}. The capacitors are built with the n^{+}bottom plate imbedded into a p^{-}well; C_{p} is the capacitance of the $n^{+} p^{-}$ junction and R_{p} is the equivalent resistance from the bot.tom plates to the negative supply, to which the p^{-}well is tied.

This configuration will now be analyzed from a stability point of view.

The closed loop voltage gain of the circuit shown in Figure 3.35 a can be expressed as:

$$
\begin{equation*}
\frac{\Delta V_{\text {out }}}{\Delta v^{+}}=\frac{A}{1+f A} \tag{3.51}
\end{equation*}
$$

where:

$$
A=\frac{\Delta v_{\text {out }}}{\Delta v_{\text {in }}} \text { is the open loop voltage gain of the }
$$

comparator in the presence of the feedback network (with

(a) Block diagram for stability analysis

(b) Equivalent circuit used for stability analysis
the loop, dashed line, broken) and $f=\frac{\Delta v_{f}}{\Delta v_{\text {out }}}$ is the
feeciback factor. By replacing the comparator with an equivalent current generator, as shown in Figure 3.35b, the open loop voltage gain can be expressed as:

$$
\begin{equation*}
A=\frac{Y_{t r} Z_{\text {out }}\left(r+7 s^{\prime}\right)}{Z_{\text {out }}+r+Z_{s}} \tag{3.52}
\end{equation*}
$$

where Z_{s} is composed of $C_{B}, C_{s}, C_{p}, R_{p}$ and R_{A}, and $Z_{\text {out }}$ includes Cs_{A}. The feedback factor can obviously be expressed as:

$$
\begin{equation*}
\mathrm{f}=\frac{\mathrm{z}_{\mathbf{s}}}{Z_{\mathrm{s}}+\mathbf{r}} \tag{3.53}
\end{equation*}
$$

From (3.52) and (3.53) we find the loop gain:

$$
\begin{equation*}
T=f A=\frac{Y_{t r} Z^{2} \text { out }^{2} s}{z_{\text {out }}+r+Z_{s}} \tag{3.54}
\end{equation*}
$$

The well known stability conditions are:

$$
|T|<1 \quad \text { at } \quad \varphi(T)=180^{\circ}
$$

and: $\varphi(T)<180^{\circ}$ at $|T|=1$
The transconductance, $Y_{t r}$, and output impedance, $Z_{\text {out' }}$ will next be derived on a step by step basis, i.e. in order to make the complete comparator analysis more tractable we will first replace the input stage with an equivalent current generator. The equivalent smalj signal circuit of the input stage alone is shown ir Figure 3.36. It shoulc be mentioned that the separate analysis of the input stage is nossible only if one can neglect the stage interaction via the kiasing network.

Equivalent small signal circuit of the comparator input stage.

The short circuit current of the input stage is found by grounding node 4. The equations are:

$$
\begin{align*}
& I_{\text {SHORT }}=\cdot \cdot \text { SCgd }_{2} V_{i n}-\operatorname{gm}_{2}\left(V_{2}-V_{\text {in }}\right)-G_{2} V_{2}-s C \cdot g d_{4} V_{3}+g m_{4} V_{3} \tag{3.55}\\
& \operatorname{sCgs}_{2}\left(V_{2}-V_{i n}\right)+\mathrm{gm}_{2}\left(\mathrm{~V}_{2}-\mathrm{V}_{\text {in }}\right)+\mathrm{G}_{2} \mathrm{~V}_{2}+\left(\mathrm{G}_{9}+\mathrm{sC} \mathrm{C}_{2}\right) \mathrm{V}_{2}+\mathrm{gm}_{1} \mathrm{~V}_{2}+ \\
& G_{1}\left(V_{2}-V_{3}\right)=0 \tag{3.56}\\
& \mathrm{gm}_{1} \mathrm{~V}_{2}+\mathrm{G}_{1}\left(\mathrm{~V}_{2}-\mathrm{V}_{3}\right)=\left(\mathrm{gm}_{3}+\mathrm{G}_{3}+\mathrm{sC} \mathrm{C}_{3}\right) \mathrm{V}_{3}+\operatorname{sCg}_{4} \mathrm{~V}_{3} \tag{3.57}
\end{align*}
$$

Considering the "stacking" of the input stage devices it appears that the driver and load will be biased at approximately equal V_{GS} 's; therefore at equal nominal threshold voltages and obviously equal current the driver and load will exhibit similar gm's. Based on this observation one can make the following simplifications:

$$
g m_{1}=g m_{2}=g m_{3}=g m_{4}=g m_{i n}
$$

Based on this observation and neglecting G"s whenever they are added to gm 's we find that equation (3.57) can be rewritten as:

$$
V_{3}=\frac{v_{2}}{1+\frac{s C_{3 t}}{g m_{i n}}}
$$

But $\mathrm{gm}_{\text {in }} / \mathrm{C}_{3 t}$, where $\mathrm{C}_{3 t}=\mathrm{C}_{3}+\mathrm{Cg}_{4}$, is a frequency of the same order of magnitude with the ω_{T} of the transistors.

Therefore V_{3} can be considered equal to V_{2} over a wire frequency range. If this is so then equation (3.56) can be rewritten as:

$$
v_{2}=\frac{v_{i n}}{2} \frac{1+s \operatorname{cgs}_{2} / g m_{i n}}{1+s C_{2 t} / 2 g_{i n}}
$$

where $C_{2 t}=C_{2}+C g s_{2}$ is the total capacitance at node 2.
The frequencies $\mathrm{gm}_{\mathrm{in}} / \mathrm{Cgs}_{2}$ and $2 \mathrm{gm}_{\text {in }} / \mathrm{C}_{2 \mathrm{t}}$ are again of the same order of magnitude with ω_{T}. Therefore, if it was reasonable to consider $V_{2}=V_{3}$, it will also be reasonable to consider over the same frequency range $V_{2}=V_{i n} / 2$. Under such circumstances equation (3.55) can be rewritten as:

$$
I_{S H O R T}=\operatorname{gm}_{i n} V_{i n}\left(1-s \frac{\mathrm{Cgd}_{2}+\mathrm{Cgd}_{4} / 2}{g m_{i n}}\right)
$$

The breakfrequency entering this last expression is even higher than the previous ones; therefore the short circuit current of the input stage can be expressed over a wide frequency range as:

$$
I_{\text {SHORT }}=g m_{\text {in }} V_{\text {in }}
$$

This expression will be valid for stability evaluation as long as the unity gain crossover frequency of the loop gain will be sufficiently smaller than the breakfrequencies mentioned during the previous analysis.

The output impedance is found by grounding the input, node 13, and applying a test generator at node 4. The equations are:

$$
\begin{align*}
& \mathrm{I}_{\text {TEST }}=\mathrm{sCgd}_{2} \mathrm{~V}_{4}-\mathrm{gm}_{2} \mathrm{~V}_{2}+\mathrm{G}_{2}\left(\mathrm{~V}_{4}-\mathrm{V}_{2}\right)+\operatorname{sCgd}_{4}\left(\mathrm{~V}_{4}-\mathrm{V}_{3}\right)+\mathrm{gm}_{4} \mathrm{~V}_{3}+ \\
& \left(G_{4}+5 C_{4}\right) V_{4} \tag{3.58}\\
& g m_{2} \mathrm{~V}_{2}+\operatorname{sCgs} \mathrm{V}_{2}+\mathrm{G}_{2}\left(\mathrm{~V}_{2}-\mathrm{V}_{4}\right)+\left(\mathrm{G}_{9}+\mathrm{sC}_{2}\right) \mathrm{V}_{2}+\mathrm{cm}_{1} \mathrm{~V}_{2}+\mathrm{G}_{1}\left(\mathrm{~V}_{2}-\mathrm{V}_{3}\right)=0 \tag{3.59}\\
& G_{1}\left(V_{2}-V_{3}\right)+g m_{1} V_{2}=\left(g m_{3}+G_{3}+s C_{3}\right) V_{3}+s C g d_{4}\left(V_{3}-V_{4}\right) \tag{3.60}\\
& \text { These equations can be rewritten in a more meaningful } \\
& \text { form as follows: }
\end{align*}
$$

$$
\begin{align*}
& \frac{I_{\text {TEST }}}{V_{4}}=C_{2}+C_{4}+s C_{4}+\left(g m_{4}-s C_{g d_{4}}\right) \frac{V_{3}}{V_{4}}-\left(g m_{2}+G_{2}\right) \frac{V_{2}}{V_{4}} \quad\left(3.58^{\circ}\right) \\
& \left(g m_{2 t}+s C_{2 t}\right) \frac{V_{2}}{V_{4}}-C_{1} \frac{V_{3}}{V_{4}}=G_{2} \\
& \left(g m_{1}+G_{1}\right) \frac{V_{2}}{V_{4}}-\left(g m_{3 t}+s C_{3 t}\right) \frac{V_{3}}{V_{4}}=-\operatorname{sCgd}_{4}
\end{align*}
$$

where $g m_{2 t}, g m_{3 t}$ and $C_{2 t}, C_{3 t}, C_{4 t}$ are the total conductances and capacitances "hanging" at the respective nodes. The possible simplifications are:
$G m_{1}=g m_{2}=g m_{3}=g m_{4}=g m_{i n} \quad$ and $G_{1}=G_{2}=1 / R_{1}$
Using these simplifications and combining (3.58 ${ }^{\circ}$) with (3.60 $)$ we find:

$$
\frac{I_{\text {TEST }}}{V_{4}}=\frac{1}{Z_{\text {out }}}=G_{2}+G_{4}+s C_{4 t}+\text { sCgd }_{4}-\left(G_{1}+G_{3}+s C_{3 t}+\operatorname{sCgd}_{4}\right) \frac{V_{3}}{V_{4}} \quad\left(3.58^{-\infty}\right)
$$

Solving (3.59 $)$ and (3.60) for V_{3} / V_{4} we find:
$\frac{V_{3}}{V_{4}}=\frac{G_{1}\left(g m_{i n}+G_{1}\right)+g m_{2 t} s C l g d_{4}+s^{2} C_{2 t} C_{g d_{4}}}{\left(g m_{2 t}+s C_{2 t}\right)\left(g m_{3 t}+s C_{3 t}\right)}$
By "forcing" the roots of the numerator, (3.61) can be rewritten as:
$\frac{v_{3}}{v_{4}}=\frac{1}{G m_{3} t^{R_{1}}} \frac{1+g m_{i n^{R}}}{G m_{2 t^{R}}} \frac{1+s \frac{g m_{2} t_{1}}{1+g m_{i n} R_{1}} R_{1} C g d_{4}}{1+s \frac{G_{3 t}}{g m_{3 t}}}$
At frequencies below $1 / 2 p_{j}, \operatorname{Cgc},\left(3.61^{\prime}\right)$ can be approximated as simply $1 / 2 g_{3 t} R_{1}$ which is much smaller than 1 . At higher
freyencies the ratio V_{3} / V_{4} car be expressed as:

This last expression is acjain much less than 1 over a wicie frequency range. Beyond $\mathrm{gm}_{3 t} / \mathrm{C}_{3 \mathrm{t}}$ the ratio saturates to $\mathrm{Cgd}_{4} / \mathrm{C}_{3 t}$ which is itself less than 1 . Therefore one can safely assume that up to frequencies of the same order of magnitude with ω_{T} the output impedance of the input stage can be expressed as:

$$
\begin{equation*}
\frac{1}{\mathrm{Z}_{\text {out }}^{1}}=G_{2}+G_{4}+s C_{4}+\mathrm{sCgd}_{4}=\frac{1}{R_{o l}}+s C_{o l} \tag{3.62}
\end{equation*}
$$

The equivalent small signal circuit used for the derivation of $Y_{t r}$ and $Z_{\text {out }}$ is shown in Figure 3.37.

The short circuit current is found by grounding the output, node 6 . The equations are:

$$
\begin{align*}
& I_{\text {SHORT }}=\mathrm{gm}_{6} V_{5}+\left(G_{6}+s C_{65}\right) V_{5} \tag{3.63}\\
& \mathrm{gm}_{\text {in }} V_{\text {in }}+\left(\mathrm{c}_{01}+s C_{01}\right) V_{4}+\operatorname{sCgd}_{5}\left(V_{4}-V_{5}\right)=0 \tag{3.64}\\
& \operatorname{sCgd}{ }_{5}\left(V_{4}-V_{5}\right)=\mathrm{gm}_{5} V_{4}+\left(G_{5}+s C_{5}\right) V_{5}+I_{\text {SHORT }} \tag{3.65}\\
& \text { From }(3.63) \text { we find: }
\end{align*}
$$

$I_{\text {SHORT }}=g m_{6} V_{5}\left(1+s \frac{\bar{C}_{65}}{9 m_{6}+G_{6}}\right)$
But $\left(g m_{6}+G_{6}\right) / C_{65}$ is a frequency of the same order of magnitude with ω_{T}; therefore, up to such frequencies, the short circuit current can be expressed as:

Figure 3.37

$$
S_{p \delta}\left({ }^{9} w \delta / S_{w \sigma}\right)+{ }^{7 \delta_{0}}={ }^{7 \phi}
$$

:әхәчм
$\left(99^{\circ} \varepsilon\right)$
:se pessaxdxa əq uẽ əouezonpuossuedz xo7exeduros

$$
\mathrm{S}_{\mathrm{p} 6 \mathrm{D}+}{ }^{10}{ }_{0}={ }^{7 \nabla_{0}}: \text { әхәчм }
$$

(. $\quad 9^{\circ}$)

$\left(\ldots 59^{\circ} \varepsilon\right)$

$$
\nabla_{\Lambda} \frac{9_{\mathrm{u} \sigma}}{\varsigma_{\mathrm{W} \sigma}}-=\varsigma_{\Lambda}
$$

:se pazeurtxoxide əq uev S^{\wedge} feyt os L_{m} of
 (. S9:E)
(., $\left.\varepsilon 9^{\circ} \varepsilon\right)$

$$
\begin{aligned}
& \text { : puţ } \left.\operatorname{an}\left(59^{\circ} \varepsilon\right) \text { ut (., } \varepsilon 9^{\circ} \varepsilon\right) \text { butsn } \\
& S_{5+}{ }^{9} \mathrm{ub} 5
\end{aligned}
$$

$$
\begin{aligned}
& \text { am (59* } £ \text {) UT } \\
& { }^{5} \Lambda^{9}{ }^{\text {urs }}={ }^{\mathrm{L}} \mathrm{dOHS}_{I}
\end{aligned}
$$

The nutpu+ impedance, Z out' is found by grounding the input.i.e. $V_{i n}$ of Figure 3.37 is zero, and by applying a test generator at node 6. The analysis can be simplified by separately consifering the "upward" and "downward" path in the output stage.

Looking upwards through M7C and M8C we find:

$$
\begin{align*}
& \mathrm{I}_{\mathrm{TEST}}^{\mathrm{u}}=-\mathrm{gm}_{7} \mathrm{~V}_{7}+\mathrm{G}_{7}\left(\mathrm{~V}_{6}-\mathrm{V}_{7}\right) \tag{3.68}\\
& \mathrm{Gm}_{7} \mathrm{~V}_{7}+\mathrm{G}_{7}\left(\mathrm{~V}_{7}-\mathrm{V}_{6}\right)+\left(\mathrm{G}_{8}+\mathrm{sC} \mathrm{C}_{7}\right) \mathrm{V}_{7}=0 \tag{3.69}
\end{align*}
$$

Equation (3.69) can be rewritten as:

$$
\begin{equation*}
v_{7}=\frac{G_{7}}{g m_{7}+G_{7}+G_{8}} v_{6} \frac{1}{1+s \frac{C_{7}}{g_{7}+G_{7}+G_{8}}} \tag{3.69º}
\end{equation*}
$$

The breakfrequency $\left(g m_{7}+G_{7}+G_{8}\right) / C_{7}$ is of the same order of magnitude as ω_{T}; therefore up to such high frequencies:

$$
v_{7}=\frac{G_{7}}{{g m_{7}}+G_{7}+G_{8}} \quad v_{6}
$$

Combining (3.68), (3.69) and (3.69 ${ }^{\circ}$) we find:

$$
\begin{equation*}
z_{\text {out }}^{u}=\frac{V_{6}}{T_{T E S T}^{u}}=\frac{\left(g m_{7} R_{8}+1\right) R_{7}+R_{8}}{1+s C_{7} R_{8}} \tag{3.70}
\end{equation*}
$$

Looking downwards through M6C and M5C we find:
$I_{\text {TEST }}^{\mathrm{d}}=-\mathrm{gm}_{6} \mathrm{~V}_{5}+\left(\mathrm{G}_{6}+\mathrm{sC} \mathrm{C}_{65}\right)\left(\mathrm{V}_{6}-\mathrm{V}_{5}\right)$
$g m_{6} V_{5}+\left(G_{6}+s C_{65}\right)\left(V_{5}-V_{6}\right)+\left(G_{5}+s C_{5}\right) v_{5}+$ $\mathrm{gm}_{5} \mathrm{~V}_{4}+\operatorname{sCgd}_{5}\left(\mathrm{~V}_{5}-\mathrm{V}_{4}\right)=0$
$\operatorname{sCgd}_{5}\left(\mathrm{~V}_{4}-\mathrm{V}_{5}\right)+\left(\mathrm{G}_{\mathrm{ol}}+\mathrm{sC}_{01}\right) \mathrm{V}_{4}=0$
These equations can be rewritten in a more useful form as:

$$
\begin{align*}
& \frac{I_{T E S T}^{d}}{V_{6}}=G_{6}+s C_{65}-\left(g m_{6}+G_{6}+s C_{65}\right) \frac{V_{5}}{V_{6}} \\
& \operatorname{gm}_{5}\left(1-s \frac{C_{g d_{5}}}{g m_{5}}\right) \frac{V_{4}}{V_{6}}+\left(g m_{6}+G_{5}+C_{6}\right)\left(1+s \frac{C_{5 t}}{g m_{6}+G_{5}+G_{6}}\right) \frac{V_{5}}{V_{6}} \\
& \left(G_{6}+s C_{65}\right) \\
& \frac{V_{4}}{V_{6}}=\frac{V_{5}}{V_{6}} \frac{s C g d_{5} R_{01}}{1+s C_{4} t_{01}}
\end{align*}
$$

whern: $C_{5 t}=C_{5}+$ Cgd $_{5}+C_{65}$
The breakfrequencies $g m_{5} / C g d_{5}$ and $\left(g m_{6}+G_{5}+G_{6}\right) / C_{5 t}$ are of the same order of magnitude as ω_{T}; therefore up to such high frequencies ($3.72^{\text { }}$) can be rewritten as:

$$
g m_{5}-\frac{V_{4}}{V_{6}}+\left(g m_{6}+G_{5}+G_{6}\right) \frac{V_{5}}{V_{6}}=G_{6}+s C_{65}
$$

Combining (3.71"), (3.73) and (3.72") and neglecting an additional high breakfrequency, namely $\left(g_{6}+G_{6}\right) / C_{65}$, we find:

$$
\begin{equation*}
z_{\text {out }}^{d}=\frac{v_{6}}{I_{\text {TEST }}^{d}}=\left(\left(g m_{6} R_{5}+1\right) R_{6}+R_{5}\right) \frac{1+s / z_{1}}{\left(1+s / p_{1}\right)\left(1+s / p_{2}\right)} \tag{3.74}
\end{equation*}
$$

where:

$$
1 / z_{1}=C_{4 t}^{\prime} R_{01} ; 1 / p_{1}=\left(g m_{5} R_{5}{C g d_{5}}+C_{4 t}\right) R_{01} ; 1 / p_{2}=C_{65} R_{6}
$$

The total cutput impedance, Z out, will be a parallel. combination hetween $z_{\text {out }}^{u}, Z_{\text {out }}^{\text {d }}$ and C_{6}.

Considering the relatively large dc values of $\mathrm{z}_{\mathrm{out}}^{\mathrm{u}}$ and $z_{c u}^{d}$. it follows that the output impedance will exhibit a mȧこr broakfrequency at:

$$
\begin{equation*}
\omega_{z_{\text {out }}}=\frac{\frac{\sigma_{5} C_{6}}{g_{6}+G_{5}+G_{6}}+\frac{G_{7} G_{8}}{g^{m} 7_{7}+G_{7}+G_{8}}}{C_{6}}=\frac{1}{R_{c} C_{6}} \tag{3.75}
\end{equation*}
$$

Beyond this breakfrequency Z nut will be dominated by C_{6} which is most likely larger than the "residual" capacitive values of the two "unilateral" Zout's.

At this point all the parameters entering the expression of the lonp gain, T, are known analytically.
7.s of Figure 3.35 b can be replaced with a parallel combination between Cs_{B} and the series combination of R_{A} and C_{s}; this is so because R_{A} is normally smaller than R_{p}.

Thus:

$$
\begin{equation*}
z_{s}=\frac{1+s C_{s} R_{A}}{s C_{s}\left(1+s C_{B} R_{A}\right)} \tag{3.76}
\end{equation*}
$$

where the only additional simplification has been $C_{S} \gg \mathbf{C s}_{B}$.
The breakfrequency $1 / C s_{B} R_{A}$ is most likely of the same order of magnitude as ω_{T}; therefore up to such high frequercies Z_{s} can be approximated as:

$$
Z_{s}=R_{A}+\frac{1}{s C_{s}}
$$

Based on (3.65), (3.75) and (3.76) the loop gain, T, car be expressed as:

$$
\begin{equation*}
T=\frac{g m_{5} g m_{i n} R_{01} R_{0}\left(1+s C_{s} P_{A}\right)}{\left(1+s C_{4 \pm}^{-} R_{C l}\right)\left(1+s C_{s}\left(R_{0}+R_{A}+r\right)+s C_{6} R_{0}+s^{2} C_{s} R_{0} C_{6}\left(r+R_{A}\right)\right)} \tag{3.77}
\end{equation*}
$$

After some minor "ront forcing" in the denominator, T can be rewritten as:

$$
\begin{equation*}
T=\frac{g m_{5} g m_{n_{n}} R_{0} P_{01}\left(1+s C_{s} R_{A}\right)}{\left(1+s C_{s} R_{0}\right)\left(1+s C_{4} t^{R}{ }_{01}\right)\left(1+s C_{6}\left(r+R_{A}\right)\right)} \tag{3.77}
\end{equation*}
$$

The dominant pole, $1 / C_{s} R_{n}$, occurs at a very low frequency since both C_{S} and R_{o} are ver: large compared to other circuit elements. Beyond this low frequency pole, the loop gain can te written as:

$$
\begin{equation*}
T=\frac{g m_{5}}{s C_{s}} \times \frac{g m_{i n} R_{o l}}{1+s C_{4 t} t_{o l}} \times \frac{1+s \dot{C}_{s} R_{A}}{1+s C_{6}\left(r+R_{A}\right)} \tag{3.78}
\end{equation*}
$$

The two remaining importarit singularities of this expressior arc the pole at $1 / C_{\Delta} t^{R}{ }^{R}$, and the zero at $1 / C_{s} R_{A}$; the pole nccuring at $1 / C_{6}\left(r+R_{A}\right)$ is a highfresuency "second order" pole and can be neglocted frr the time being.

If the zero occurs hefore the unity gain crossoverfrequency then this frequency will be expressed ty:

$$
\begin{equation*}
\omega_{B W}=g m_{5} R_{A} \frac{g m_{i n}}{C_{4 t}^{\prime}} \tag{3.79}
\end{equation*}
$$

But $\mathrm{gm}_{\text {in }} / \mathrm{C}_{4 \mathrm{t}}$ is a relative'y hish frequency of the same order of macnitudr $=s \omega_{T}$; therefore $\omega_{B W}$ has tc be much smaller than $g_{j n} / C_{4 t}^{\prime}$, otherwise the phase shift contributed by all the neglected ω_{T} type singularities could become unacceptable. It follows that:

$$
\begin{equation*}
g m_{5} R_{A}<1 \tag{3.80}
\end{equation*}
$$

is a necessary condition for stability \therefore Placing of the zero before the unity gain crossoverfrequency implies:

$$
\begin{equation*}
\frac{1}{C_{s}{ }^{R}}<\left(g m_{5} R_{A}\right) \frac{g m_{i n}}{C_{4 t}^{r}} \tag{3.81}
\end{equation*}
$$

which can also be expressed as:

$$
R_{A}^{2}>\frac{C_{4 t}^{-}}{C_{S}} \times \frac{1}{g m_{5} g m_{i n}}
$$

If onditions (3.80) and (3.8 $\left.\mathrm{I}^{\boldsymbol{r}}\right)$ are satisfied then one may expect that the phase shift at the unity gain crossover frequency, and obviously before that, will not exceed 180°.

At this point one may also attempt to evaluate the contrifution of the singularities that have been neglected so far. If $\omega_{B W}$ is placed at about $10 \% \omega_{T}$, then the phase shift contributed by any one of the ω_{T} type singularities will be of about 5°, at $\omega_{B W}$. I+ seems reasonable to consider that there will be as many high order phase contributors as there are low impedance nodes. Therefore the phase shift contributed by the 6 principal nodes could be of about 30°.

This then would be added to the phase shift generated by the main singularities, which in the case of the arrangement mentioned earlier, would he of 90° at $\omega \mathrm{BW}$. The resulting phase margin of about 60° would certainly be acceptable. The pole placed at $1!C_{6}\left(r+R_{A}\right)$ will become bothersome only i.f the output capacitance C_{6} is large compared to the gate and junction capacitances associated with the sampling switch;

3.3.5 Comparator speed.

The comparator has to be able to switch state within a finite t.ime interval under minimum overdrive conditions. This general statement implies at least two things, i.e. the gain of the comparator has to be large enough to ensure a detectable output swing at minimum overdrive and the dynamic behavior of the comparator has to be such that the output swing will be realized within the alloted time. It has been mentioned earlier that $2 \mu s$ would be adequate. The acceptable overdrive in the PCM converter case can be found using XCODEC. In the pseudoideal case where only the overdrive is finite, $X C O D E C$ yields an acceptable value equal to $.016 \%$ of $V_{R^{\prime}}$ the reference voltage; this corresponds to about 64\% of a step in the smallest segment of the transfer characteristic. The overdrive as used in XCODEC is defined as follows: the comparator (with zero offset voltage) will exhibit a given output state for an input greater than OVERDR and will switch state if the input changes to a value smaller than -OVERDR. The comparator will not switch state: for input signals in the range bordered by OVERDR and -OVERDR but will retain the previous output state. Such a definition implies a constant overdrive assumption, i.e. the overdrive is independent of the comparator input transition magnitude; since the codec 's performance is dependent mainly on the uniformity of the transfer curve steps it is to be expected that the acceptable overcrive is in fact "segment dependent", i.e. a larger overdrive can be tolerated in the case of a sample falling into the larger steps of the transfer curve. Since the overdrive problem appears to be most critical in the smaller segments, at least from a dc gain point of view, it seems reasonable to analyse the dynamic behavior of the comparator in the middle segment of the transfer curve.

For input signals that are smaller than $V_{R} / 255$ the PCM codec acts like any other pair of linear converters since only the middle segment of the transfer characteristic is involved. In order for all the steps to exist the minimum detectable overdrive has to be less than "0\% of the ideal step "length". In order for this to be possible the dc gain of the comparator has to be at least:

$$
G_{\min }=\frac{\mathrm{V}_{\mathrm{T}}}{\mathrm{~V}_{\mathrm{R}} /(255 \times 16 \times 2)}=8160 \frac{\mathrm{~V}_{\mathrm{T}}}{\mathrm{~V}_{\mathrm{R}}}
$$

where V_{T} is the trigger voltage of the inverter following the level shifter. The dynamic behavior under minimum overdrive conditions can be analysed using a step by step approach.

The first stage of the comparator will react linearly for voltases corresponding to the middle segment. This is a result of the relation between the rail to rail voltage differential of ahout 15 V and the value of the reference voltage, 3 V , which yields first segment voltages smaller thar 12 mV . The typical de gain of a differential input CMOS amplifier is also small enough to keep the output transistors, in tris case M2C and M4C, eaturated. As a result of these orservatinns the first stage can be treated as a linear amplifier with the equivalent circuit shown in Figure 3.36. After some conventional algekraic manipulation lesing the Iaflace transform we find:

$$
\begin{equation*}
\Delta V_{4}=\Delta V_{1} \frac{g m}{g_{4}}+A \Delta V_{1} e^{-t / \sigma_{2}}+B \Delta V_{1} e^{-t / \sigma_{3}}+C \Delta V_{1} e^{-t / \sigma_{4}} \tag{3.117}
\end{equation*}
$$

where:

$$
\text { re: } A=\frac{g m}{g m-g_{4}\left(C_{3 t} / C_{4 t}\right)}\left[\frac{\left(c_{3 t}+C_{34}\right)\left(C_{3 t}+c_{13}\right)}{C_{3 t} C_{4 t}}+\frac{\left(C_{3 t}+C_{34}\right)\left(C_{3 t} \cdot c_{12}\right)}{\left(C_{2 t}-2 C_{3 t}\right) C_{4 t}}\right]
$$

$$
\begin{aligned}
& B=-\frac{g m}{2 g m-g_{4}\left(C_{2 t} / C_{4 t}\right)} \times \frac{\left(C_{3 t}+C_{34}\right)\left(C_{2 t}-2 C_{12}\right)}{\left(C_{2 t}-2 C_{3 t}\right) C_{4 t}} \\
& C=\frac{g m\left(g m-g_{4}\left(C_{12} / C_{4 t}\right)\right)}{\left(2 g m-g_{4}\left(C_{2 t} / C_{4 t}\right)\right)\left(g m-g_{4}\left(C_{3 t} / C_{4 t}\right)\right)} \times \frac{C_{3 t}+C_{34}}{c_{4 t}}- \\
& \frac{\left(g m+g_{4}\left(C_{13} / C_{4 t}\right)\right)\left(g m+g_{4}\left(C_{34} / C_{4 t}\right)\right)}{g_{4}\left(g m-g_{4}\left(C_{3 t} / C_{4 t}\right)\right)}
\end{aligned}
$$

ΔV_{1} is the amplitude of the input transition.

$$
\mathrm{gm} \cong \mathrm{gm} \mathrm{~m}_{1} \cong \mathrm{gm} 2 \cong \mathrm{gm}_{3} \cong \mathrm{gm}_{4}
$$

$$
c_{12}=\operatorname{cgs}_{1} ; c_{13}=\operatorname{cgd}_{1} ; c_{34}=\operatorname{cgd}_{4} ;
$$

$$
C_{2 t}=C g s_{1}+C g s_{2}+C j s_{1}+C j s_{2}+C j d_{9}+C g d_{9} ;
$$

$$
c_{3 t}=\operatorname{Cgs}_{3}+\operatorname{Cgs}_{4}+\operatorname{cgd}_{1}+\operatorname{Cgd}_{4} ;
$$

$$
c_{4 t}=\mathrm{Cjd}_{4}+\operatorname{Cgd}_{4}+\mathrm{Cjd}_{2}+\operatorname{Cgd}_{2}+\operatorname{Cgs}_{5}+2 \operatorname{Cgd}_{5} ;
$$

$$
\text { (} 2 \mathrm{Cgd}_{5} \text { is the result of the cascode driver "s unity gain) }
$$

$$
g_{4}=g d s_{2}+g d s_{4}
$$

$$
\sigma_{2}=c_{2 t} / 2 \mathrm{gm}
$$

$$
\sigma_{3}=c_{3 t} / \mathrm{gm}
$$

$$
\sigma_{4}=C_{4 t} / g_{4}
$$

The only approximations made on the way leading to (3.117) were: $\mathrm{c}_{3 \mathrm{t}} \mathrm{C}_{4 \mathrm{t}} \gg \mathrm{C}_{34}^{2}$ and $\mathrm{C}_{4 \mathrm{t}} \gg \mathrm{C}_{34}$. The assumption of equal $\mathrm{gm}{ }^{\circ} \mathrm{s}$ is. designed and is the consequence of the fact that for optimum "stacking" of the first stage transistors the VGS's are comparable.

From (3.117) and the definition of the parameters it is apparent that the response of the first stage is practically given by:

$$
\begin{equation*}
\Delta V_{4}=\Delta V_{1} \frac{g m}{g_{4}}\left(1-e^{-t / \sigma_{4}}\right) \tag{3.118}
\end{equation*}
$$

The response time in the critical case of minimum overdrive
can be defined as corresponding to:

$$
\begin{equation*}
\Delta V_{4}=\frac{\Delta V_{1}-\text { OVERDR /10 }}{\Delta V_{1}} \quad \Delta V_{4 f i n a l} \tag{3.119}
\end{equation*}
$$

correspondingly the first stage delay will be:

$$
\begin{equation*}
\Delta t_{1}=\zeta_{4} \ln \frac{10 \Delta V_{1}}{\text { OVERDR }} \tag{3.120}
\end{equation*}
$$

As a result of this definition the effect of the overdrive will be practically exhausted in the time Δt_{1}, at least as far as the response of the first stage is concerned. The longest delay corresponds to the largest input transition which in the first segment is equal to $\mathrm{V}_{\mathrm{R}} /(255 \times 2)$; at an overdrive equal to one half of a first segment step (3.120) yields a delay of:

$$
\Delta t_{1}=\sigma_{4} \ln \frac{10 V_{R} /(255 \times 2)}{v_{R} /(255 \times 16 \times 2)}=5 \sigma_{4}
$$

The largest possible input transition is equal to $64 \mathrm{~V}_{\mathrm{R}} / 255$ and corresponds to the switching of capacitor CX64 to either the reference or to ground. In this case the input stage of the comparator is obviously no longer a linear amplifier; nevertheless it may be interesting to use (3.120) as an indicator even for this larfest possible transition; the result is:

$$
\Delta t_{1}=\sigma_{4} \ln \frac{10 \times 64 \mathrm{~V}_{\mathrm{R}} / 255}{\mathrm{v}_{\mathrm{R}} /(255 \times 15 \times 2)}=10 \sigma_{4}
$$

This last result is a quite conservative estimate since the input stage will react faster thar "linear".

In a worst case type of analysis the delay of the input stage can then be added to the delay of the cascode which in turn is excited with an input step equal to $\Delta V_{1}\left(g m / g_{4}\right)$.

The switching of the cascode can be analysed using a piecewise linearized model for the transistors since some of them will start out of the linear region and end up saturated whereas other ones will undergo the opposite sequence. The two possible cases, along with the corresponding equivalent circuits, are illustrated in Figures 3.38 and 3.39 . For input transitions corresponding to the steps of the middle segment the dc current flowing through the cascode does not undergo drastic changes; this is so recause ΔV_{4} is in these cases reasonably small compared to the equilibrium value of $\mathrm{VGS}_{4} \cdot$. Based on this observation one can easily relate the cutput resistance of a "linear" transistor to the equilibrium gm. By doing so the handanalysis becomes much more tractable.

The switching sequence in the case of a HIGH to LOW transition at the cascode input can be analysed on the basis of the equivalent circuits shown in Figure 3.38. Initially (Figure 3.38a) transistors M5C and M6C are linear and M7C and M8C are saturated. M5C will then exjt the linear region (Figure 3.38b) and eventually M6C will follow suite (Figure 3.38c). The order of saturatinn, i.e. M5C first and then mch, can be justified as follows: M6C will exit saturation when $V_{6}=-V_{\text {th }}$ (an that $\operatorname{VGS}_{6}=\operatorname{VDS}_{6}+V_{t h}$). In order to keen M5C saturated at $V_{6}=0$ (for maximum gain) and at the same time use the ground connection for riasing the gate of M6C it turns out that M5C and M6C have to be of cimparable sizes with $V G S_{6}=$ VGS $_{5}$. Therefore when M6C is at the border of saturation $M 5 C$ is hiased with $V G S_{5}=V S_{5}=V S / 2$, i.e. saturated: All the transistors will be saturated during zero crossing at node 6. This is the nominal switching point since the level shifter will translate the zero crossing at node 6 into a logic threshold crossing at the input of the following CMOS inverter.

Equivalent circuits used for the analysis of a LOW to HIGH transition at the comparator output.

The equations describing the circuit of Figure 3.40a are:

$$
\begin{align*}
& g l_{5} \mathcal{L} V_{5}+s C_{5} \mathcal{L} V_{5}+\left(g l_{6}+s C_{56}\right)\left(\mathcal{L} V_{5}-\mathscr{L} V_{6}\right)=\frac{\Delta I}{s} \\
& \left(g l_{6}+s C_{56}\right)\left(\mathscr{L} v_{5}-\mathscr{L} v_{6}\right)+g m_{7} \mathscr{L} v_{7}=s C_{6} \mathscr{L} v_{6}+g_{7}\left(\mathscr{L} v_{6}-\mathscr{L} v_{7}\right) \tag{3.121}\\
& \mathrm{gm}_{7} \mathcal{L} \mathrm{~V}_{7}+\mathrm{g}_{7}\left(\mathscr{L} \mathrm{~V}_{7}-\mathscr{L} \mathrm{V}_{6}\right)+\left(\mathrm{sC}_{7}+g_{8}\right) \mathscr{L} \mathrm{V}_{7}=0
\end{align*}
$$

The gl's are output conductances of linear transistors and the g 's are output conductances of saturated transistors. Based on an earlier observation about the equivalence between $g l$'s and $g m$'s (3.121) can be rewritten as:

$$
\begin{align*}
& \left(g m_{5}+g m_{6}+s C_{5 t}\right) \mathscr{L} V_{5}-\left(g m_{6}+s C_{56}\right) \mathscr{L} V_{6}=\frac{\Delta I}{s} \\
& \left(g m_{6}+s C_{56}\right) \mathscr{L} V_{5}-\left(g m_{6}+g_{7}+s C_{6 t}\right) \mathscr{L} v_{6}+\left(g m_{7}+g_{7}\right) \mathscr{L} v_{7}=0 \tag{3.122}\\
& -g 7 V_{6}+\left(g m_{7}+g_{7}+g_{8}+s C_{7}\right) \mathscr{L} v_{7}=0
\end{align*}
$$

From (3.122) we find $\mathscr{L} \mathrm{V}_{6}$:

$$
\begin{equation*}
\mathscr{L} V_{6}=\frac{\Delta I C_{56} C_{7}\left(s+g m_{6} / C_{56}\right)\left(s+g m_{7} / C_{7}\right)}{s \alpha C_{5} C_{6} C_{7}\left(s^{3}+A s^{2}+B s+C\right)} \tag{3.123}
\end{equation*}
$$

where:

$$
\begin{aligned}
& \alpha=1+\frac{C_{56}}{C_{5}}+\frac{C_{56}}{C_{6}} \\
& A=\frac{g m_{7}}{C_{7}}+\frac{g m_{6}}{\alpha C_{6}}+\frac{g m_{5}\left(1+C_{56} / C_{6}\right)+g m_{6}}{\alpha C_{5}} \\
& B=\frac{g m_{7}}{C_{7}} \times \frac{g m_{5}\left(1+C_{56} / C_{6}\right)+g m_{6}}{\alpha C_{5}}+\frac{g m_{7}}{C_{7}} \times \frac{g m_{5}}{\alpha C_{6}}+\frac{g m_{5}}{\alpha C_{5}} \times \frac{g m_{6}}{C_{6}} \\
& C=\frac{g m_{7}}{C_{7}} \times \frac{g o u t}{C_{6}} \times \frac{g m_{5}+g m_{6}}{\alpha C_{5}} \\
& \text { gout }=\frac{g m_{5} g m_{6}}{g m_{5}+g m_{6}}+\frac{g_{7} g_{8}}{g_{7}+g_{8}+g m_{7}} \cong \frac{g m_{5} g m_{6}}{g m_{5}+g m_{6}}
\end{aligned}
$$

The coefficient C is the exact result following from (3.122) and coefficients A and B are found by neglecting output conductances of saturated transistors whenever they are added to $\mathrm{gm}^{\circ} \mathrm{s}$. It follows that $\mathscr{L} \mathrm{v}_{6}$ can be expressed as:

$$
\begin{equation*}
\mathscr{L} v_{6}=\frac{\Delta I C_{56} C_{7}\left(s+\mathrm{cm}_{n} / C_{56}\right)\left(s+g m_{7} / C_{7}\right)}{s \propto C_{5} C_{6} C_{7}\left(s+g m_{7} / C_{7}\right)\left(s+2 g m_{n} / \alpha C_{5}\right)\left(s+g m_{n} / 2 C_{6}\right)} \tag{3.124}
\end{equation*}
$$

where: $\mathrm{gm}_{\mathrm{n}} \cong \mathrm{gm}_{5} \cong \mathrm{gm}_{6}$
In the time domain (3.124) is translated as:

$$
\begin{equation*}
v_{6}(t)=\frac{\Delta I}{g m_{n}}\left(1-p e^{-2 g m_{n} t / \alpha C_{5}}-q e^{-g m_{n} t / 2 C_{6}}\right) \tag{3.125}
\end{equation*}
$$

where:

$$
p=\frac{\alpha C_{5}-2 C_{56}}{\alpha C_{5}-4 C_{6}} ; \quad q=\frac{4 C_{6}-2 C_{56}}{4 C_{6}-\alpha C_{5}}
$$

This response will be valid as long as M5C is linear. The maximum rate of change is given by:

$$
\begin{equation*}
\left.\frac{d v_{6}(t)}{d t}\right|_{t=0}=\frac{\Delta I}{C_{5}+C_{6}+C_{5} C_{6} / C_{56}} \tag{3.126}
\end{equation*}
$$

After M5C enters saturation the operation of the cascode can be analized on the basis of the equivalent circuit shown in Figure 3.38b. The analysis will be started "from scratch" with $\Delta I{ }^{\prime}$ representing the remaining current deviation from the final equilibrium value. The equations are:

$$
\begin{align*}
& \left(g_{5}-s c_{5}\right) \mathscr{L} v_{5}+\left(g l_{6}+s c_{56}\right)\left(\mathscr{L} v_{5}-\mathscr{L} v_{6}\right)=\frac{\Delta I}{s} \\
& \left(\mathrm{cl}_{2}-s C_{56}\right)\left(\mathscr{L} v_{5}-\mathscr{L} v_{6}\right)+g m_{7} \mathscr{L} v_{7}+g_{7}\left(\mathscr{L} v_{7}-\mathscr{L} v_{6}\right)=s c_{6} \mathscr{L} v_{6} \tag{3.127}\\
& g m_{7} \mathscr{L} v_{7}+g_{7}\left(\mathscr{L} v_{7}-\mathscr{L} v_{6}\right)+\left(g_{8}+s C_{7}\right) \mathscr{L} v_{7}=0 \\
& \text { Solving for } \mathscr{L} v_{6} \text { we find: } \\
& \mathscr{L} v_{6}=\frac{\Delta I-\left(g m_{6}+s C_{56}\right)\left(g m_{7}+g_{7}+g_{8}+s C_{7}\right)}{s \alpha C_{5} c_{6} c_{7}\left(s^{3}+A s^{2}+B s+C\right)} \tag{3.128}
\end{align*}
$$

where:

$$
\begin{aligned}
& A=\frac{g m_{7}}{C_{7}}+\frac{g m_{6}}{\alpha C_{5}}\left(1+\frac{C_{5}}{C_{6}}\right) \\
& B=\frac{g m_{7}}{C_{7}} \times \frac{g m_{6}}{\alpha C_{5}}\left(1+\frac{C_{5}}{c_{6}}\right) \\
& C=\frac{g m_{7}}{C_{7}} \times \frac{g m_{6}}{\alpha C_{5}} \times \frac{\text { gout }}{C_{6}} \\
& \text { gout }=\frac{g m_{6} g_{5}}{g m_{6}+g_{5}}+\frac{g_{7} g_{8}}{g m_{7}+g_{7}+g_{8}} \cong g_{5} \\
& \alpha=1+\frac{C_{56}}{C_{5}}+\frac{C_{56}}{C_{6}}
\end{aligned}
$$

The roots of the denominator are found by inspection as in the previous case. In the time domain $v_{6}(t)$ will have fast and slow components. The final value corresponding to (3.128) is found again by inspection as being $A I / g_{5}$.

Therefore by neglecting the fast components we find:

$$
\begin{equation*}
v_{6}(t) \stackrel{\sim}{=} \frac{\Delta I}{g_{5}^{\prime}}\left(1-e^{-g_{5} t / C_{6}}\right) \tag{3.129}
\end{equation*}
$$

and the maximum rate of change is given by:

$$
\begin{equation*}
\left.\frac{d v_{6}(t)}{d t}\right|_{t=0}=\frac{\Delta I}{C_{6}} \tag{3.130}
\end{equation*}
$$

When all the devices are saturated, Figure 3.38cr the cascode is described by:

$$
\begin{gather*}
\left(g m_{6}+g_{5}+s C_{5}\right) \mathscr{L} v_{5}+\left(g_{6}+s C_{56}\right)\left(\mathscr{L} v_{5}-\mathscr{L} v_{6}\right)=\frac{\Delta I \cdots}{s} \\
\operatorname{gm}_{6} \mathscr{L} v_{5}+\left(g_{6}+s C_{56}\right)\left(\mathscr{L} v_{5}-\mathscr{L} v_{6}\right)+g m_{7} \mathscr{L} v_{7}+ \\
g_{7}\left(\mathscr{L} v_{7}-\mathscr{L} v_{6}\right)=s C_{6} \mathscr{L} v_{6} \tag{3.131}\\
g_{7}\left(\mathscr{L} v_{7}-\mathscr{L} v_{6}\right)+\left(g m_{7}+g_{8}+s C_{7}\right) \mathscr{L} v_{7}=0
\end{gather*}
$$

Here again the analysis is started from scratch with $\Delta I I^{\prime \prime}$ being the remaining difference from the final dc value. Following a similar routine as earlier we find:

$$
\begin{equation*}
\mathcal{L} v_{6}=\frac{\Delta I \cdots\left(g m_{6}+g_{6}+s C_{56}\right)\left(g m_{7}+g_{7}+g_{8}+s C_{7}\right)}{s \alpha C_{5} C_{6} C_{7}\left(s^{3}+A s^{2}+B s+C\right)} \tag{3.132}
\end{equation*}
$$

where:

$$
\begin{aligned}
& A=\frac{g m_{7}}{C_{7}}+\frac{g m_{6}}{\alpha C_{5}} \\
& B=\frac{g m_{7}}{c_{7}} \times \frac{g m_{6}}{\alpha c_{5}} \\
& C=\frac{g m_{7}}{C_{7}} \times \frac{g m_{6}}{\alpha C_{5}} \times \frac{\text { gout }}{c_{6}} \\
& \text { gout }=\frac{g_{7} g_{8}}{g m_{7}+g_{7}+g_{8}}+\frac{g_{5} g_{6}}{g m_{6}+g_{5}+g_{6}}
\end{aligned}
$$

The roots of the denominator are found again by inspection and the slow component of $v_{6}(t)$ coupled with the obvious final value yield:

$$
\begin{equation*}
v_{6}(t)=\frac{\Delta I \cdots}{\text { gout }}\left(1-e^{-g_{\text {out }} t / C_{6}}\right) \tag{3.133}
\end{equation*}
$$

The maximum rate of change is:

$$
\begin{equation*}
\left.\frac{d v_{6}(t)}{d t}\right|_{t=0}=\frac{\Delta I m}{C_{6}} \tag{3.134}
\end{equation*}
$$

The response of the cascode in the case of a LOW to HIGH transition at node 4 can be derived in a manner very similar to the one used in the previous case. The equivalent circuits are shown in Figure 3.39, and the results are similar to to the ones obtained earlier.

During the time when M8C is jinear the output voltage is given by:

$$
\begin{equation*}
\mathcal{L} v_{6}=-\frac{\Delta I\left(g m_{6}+s C_{56}\right)\left(g m_{7}+g m_{8}+s C_{7}\right)}{s \alpha C_{5} C_{6} C_{7}\left(s^{3}+A s^{2}+B s+C\right)} \tag{3.135}
\end{equation*}
$$

where:

$$
\begin{aligned}
& A=\frac{g m_{7}}{\beta c_{6}}+\frac{g m_{7}+g m_{8}}{c_{7}}+\frac{g m_{6}}{\alpha c_{5}} \\
& B=\frac{g m_{6}}{\alpha c_{5}} \times \frac{g m_{7}+g m_{8}}{c_{7}}+\frac{g m_{7}}{\beta c_{6}} \times \frac{g m_{8}}{c_{7}}+\frac{g m_{6}}{\alpha c_{5}} \times \frac{g m_{7}}{c_{6}}
\end{aligned}
$$

Equivalent circuits used for the analysis of a HIGH to LOW transition at the comparator output.

$$
\begin{aligned}
& c=\frac{g m_{6}+g_{5}+g_{6}}{\alpha C_{5}} \times \frac{g m_{7}+g m_{8}}{C_{7}} \times \frac{\text { gout }}{C_{6}} \\
& \text { gout }=\frac{g_{5} g_{6}}{g m_{6}+g_{5}+g_{6}}+\frac{g m_{7} g m_{8}}{g m_{7}+g m_{8}} \cong \frac{g m_{p}}{2} \\
& g m_{p} \cong g m_{7} \cong g m_{8} \\
& \alpha=1+\frac{C_{56}}{C_{5}}+\frac{c_{56}}{C_{6}} \\
& \beta=1+\frac{C_{56} C_{5}}{C_{6}\left(C_{5}+C_{56}\right)} \cong 1
\end{aligned}
$$

With some minor forcing, as has been the case before, $\mathscr{L} \mathrm{V}_{6}$ can be rewritten as:

$$
\begin{equation*}
\mathscr{L} v_{6}=-\frac{\Delta I C_{56} C_{7}\left(s+g m_{6} / C_{56}\right)\left(s+2 g m_{p} / C_{7}\right)}{s \alpha C_{5} C_{6} C_{7}\left(s+2 g m_{p} / C_{7}\right)\left(s+g m_{6} / \alpha C_{5}\right)\left(s+g m_{p} / 2 C_{6}\right)} \tag{3.136}
\end{equation*}
$$

With one additional simplification, ice. $\mathrm{gm}_{6} \cong \mathrm{gm}_{\mathrm{p}}$,
$\mathcal{L} \mathrm{v}_{6}$ can be translated into the time domain as:

$$
\begin{equation*}
v_{6}(t)=-\frac{2 \Delta I}{g m_{p}}\left(1-p e^{-g m_{6} t / \alpha c_{5}}-q e^{-g m_{p} t / 2 c_{6}}\right) \tag{3.137}
\end{equation*}
$$

with:

$$
p=\frac{\alpha C_{5}-C_{56}}{\alpha c_{5}-2 C_{6}} ; \quad q=\frac{2 c_{6}-C_{56}}{2 C_{6}-\alpha c_{5}}
$$

The maximum rate of change is:

$$
\begin{equation*}
\left.\frac{d v_{6}(t)}{d t}\right|_{t=0}=-\frac{\Delta I}{C_{5}+C_{6}+C_{5} C_{6} / C_{56}} \tag{3.138}
\end{equation*}
$$

After M8C enters saturation:

$$
\begin{equation*}
\mathscr{L} V_{6}=-\frac{\Delta I^{\prime}\left(g m_{6}+g_{6}+s C_{56}\right)\left(g m_{7}+g_{8}+s C_{7}\right)}{s \alpha C_{5} C_{6} C_{7}\left(s^{3}+A s^{2}+B s+C\right)} \tag{3.139}
\end{equation*}
$$

where:

$$
\begin{aligned}
& A=\frac{g m_{6}}{\alpha C_{5}}+g m_{7}\left(1 / C_{7}+1 / \beta C_{6}\right) \\
& B=\frac{g m_{6}}{\alpha C_{5}} \times g m_{7}\left(1 / C_{7}+1 / C_{6}\right) \\
& C=\frac{g m_{6}}{\alpha C_{5}} \times \frac{g m_{7}}{c_{7}} \times \frac{g o u t}{c_{6}} \\
& g o u t=\frac{g_{5} g_{6}}{g m_{6}+g_{5}+g_{6}}+\frac{g m_{7} g_{8}}{g m_{7}+g_{8}} \cong g_{8} \\
& \alpha=1+C_{56} / C_{5}+C_{56} / C_{6} \\
& \beta=1+\frac{C_{56} C_{5}}{C_{6}\left(C_{5}+C_{56}\right)} \cong 1
\end{aligned}
$$

Combining the slow component of $v_{6}(t)$ with its final

$$
\begin{equation*}
v_{6}(t) \cong-\frac{\Delta I^{0}}{g_{8}}\left(1-e^{-g_{8} t / C_{6}}\right) \tag{3.140}
\end{equation*}
$$

The maximum rate of change is:

$$
\begin{equation*}
\left.\frac{d v_{6}(t)}{d t}\right|_{t=0}=-\frac{\Delta I}{C_{6}} \tag{3.141}
\end{equation*}
$$

After all the devices enter saturation the behavior of the cascode can be described on the basis of Figure 3.39c. Going through the same lengthy calculations and using similar arguments as in the case described by Figure 3,38c, we find:

$$
\begin{equation*}
v_{6}(t) \cong-\frac{\Delta I \cdots}{\text { gout }}\left(1-e^{-g_{\text {out }} t / C_{6}}\right) \tag{3.142}
\end{equation*}
$$

with the same gout as in (3.134). Again the maximum rate of change is given by:

$$
\begin{equation*}
\left.\frac{d v_{6}(t)}{d t}\right|_{t=0}=-\frac{\Delta I \cdots}{c_{6}} \tag{3.143}
\end{equation*}
$$

At this point we can attempt to evaluate the delay of the cascode under minimum overdrive conditions. It has been shown that both the HIGH to LOW as well as the opposite transitions can be divided into three distinct phases; these phases might be called for convenience the linear phase, the semilinear phase and the saturated phase. The delay associated with the linear phase is of the same order of magnitude with the time constants involved; these time constants,
$\alpha C_{5} / 2 \mathrm{gm}_{\mathrm{n}}, \quad 2 \mathrm{C}_{6} / \mathrm{gm}_{\mathrm{n}}, \quad \alpha \mathrm{C}_{5} / \mathrm{gm}_{6}, \quad 2 \mathrm{C}_{6} / \mathrm{gm}_{\mathrm{p}}$, are normally much smaller than the time constants associted with the first stage and can be safely neglected.

The delay associated with the semilinear phase can be evaluated by observing that the final "semilinear voltage" corresponds to a current equal to $\Delta I^{\prime}-\Delta I^{\prime \prime}$.

Therefore the delay can be found on the basis of:

$$
\frac{\Delta I^{-}-\Delta I^{\cdots}}{g_{5} \text { or } g_{8}}=\frac{\Delta I^{\circ}}{g_{5} \text { or } g_{8}}\left(1-e^{\left.-\left(g_{5} \text { or } g_{8}\right) t / C_{6}\right)}\right.
$$

which yields:

$$
\begin{equation*}
\Delta t_{2 \text { semilin }}=\frac{C_{6}}{g_{5} \text { or } g_{8}} \ln \frac{\Delta I^{\prime}}{\Delta I^{\prime \prime}} \tag{3.144}
\end{equation*}
$$

The delay associated with the saturated phase can be estimated on the basis of the following observations.

The dc gain of the comparator has to exceed $8160\left(\mathrm{~V}_{\mathrm{T}} / \mathrm{V}_{\mathrm{R}}\right)$.
Using a supply voltage of +7.5 V and a reference of $3 V$ it turns out that the ratio $\left(V_{T} / V_{R}\right)$ is close to one; therefore the gain has to be larger than about 8160. But this requirement is easily exceeded with the cascode combination and therefore it is possible to assume that the output voltage will vary at constant rate during the saturated phase since the final value resulting from (3.133) or (3.142) is likely to be much larger than the output limits for this phase; these limits are $\pm \mathrm{V}_{\mathrm{th}}$. Therefore the "saturated delay " can be found by simply dividing the voltage excursion of $2 \mathrm{~V}_{\mathrm{th}}$ to the constant rate of change:

$$
\begin{equation*}
\Delta t_{2 s a t} \cong C_{6} \frac{2 V_{t h}}{\Delta I^{-l}} \tag{3.145}
\end{equation*}
$$

This last estimate is in fact conservative since the nominal switching point corresponds to the 0 crossing at node 6, i.e. a voltage swing of only $V_{t h}$ in saturated operation. In a properly designed comparator the final value resulting from (3.133) or respectively (3.142) should be larger than $2 \mathrm{~V}_{\mathrm{th}}$, i.e.:

$$
\begin{equation*}
\Delta I^{\cdots}>g_{\text {out }}{ }^{2 V_{t h}} \tag{3.146}
\end{equation*}
$$

Using this last condition and assuming that ΔI^{-} represents practically the total current deviation, we can estimate (3.144) as:

$$
\begin{equation*}
\Delta t_{2 \text { semilin }}<\frac{C_{6}}{g_{5} \text { or } g_{8}} \ln \frac{A_{1} g m_{5 e f f} \Delta V_{i}}{g_{\text {out }} 2 V_{t h}} \tag{3.144́}
\end{equation*}
$$

where A_{1} is the dc gain of the input stage and ΔV_{1} is the total input voltage swing. This last expression can obviously be rewritten as:

$$
\Delta t_{2 \text { semilin }}<\frac{C_{6}}{g_{5} \text { or } g_{8}} \ln \frac{A_{\text {tot }} \Delta V_{1}}{2 V_{t h}}
$$

where $A_{\text {tot }}$ is the total gain of the comparator when it is largest, i.e. when all the devices in the cascode are saturated.

Obviously on the basis of (3.146) we can also estimate (3.145) as:

$$
\Delta t_{2 \text { sat }}<\frac{C_{6}}{g_{\text {out }}}
$$

The upper limit of the total delay will then be found by adding (3.120), (3.144*) and (3.145) and is:

where the $g_{\text {out }}$ used in the last equations is naturally the one corresponding to the saturated case, i.e. the smallest possible.

3.3.6 Device sizing.

After the analysis presented in the previous sections we should he able to decide on the actual size of the devices.

Some of the reasons underlying the choices to be made have been already presented. Thus it has been shown that from a gein point of view it is desirable to set the nominal threshold of the comparator equal to 0 . This can be done by mirroring the currents in the two stages, i.e. (with reference to Figure 3.32) by attemting to realize: $V_{7}=V_{2}$ and $V_{3}=V_{4}=V_{5}$ so that $V_{6}=0$ at equilihrium. These voltage conditions can be translated into size relations as follows:
for $v_{7}=V_{2} \quad k_{9}=\alpha k_{8}$ and $k_{1}+k_{2}=\alpha k_{7}$
for $v_{3}=v_{4}=v_{5} \quad k_{3}+k_{4}=\alpha k_{5}$
The supplies are most efficiently used if one chooses $k_{1}+k_{2}=k_{7}$, which also implies $k_{7}=k_{8}$. The other alternatives do either waste area or else degrade the common mode rejection.

In a process with symmetrical p and n-channel thresholds one can also choose $k_{3}=k_{1}$, etc., so that V_{4} and respectively V_{7} will. be below -VS/2 when both M4C and M5C are saturated; such a choice leaves enough room for the cascode device M6C.

It follows that there are only two choices left to be made, namely the dc currents flowing through the two conparator stages. The current flowing through the output stage, I° of Figure 3.34a, determines the time spent in saturated operation during the sampling of the analog input signal; this time, t_{1} as giver by $\left(3.3 f^{\prime}\right)$ is inversely proportional to I^{\prime}. But the same I^{-}does also determine the value of gm_{5} which, for
starility reasons, has to satisfy condition (3.80). The final chcise of I^{-}is therefore clearly the result of some compromise.

In order to be able to proceed with the design of the comparator it appears to be necessary to justify the choice made for R_{A}. This will be done next.
"Historically" the design of the PCM coder started with the sizing of the capacitor arrays. The total capacitance of the segment array, $C_{s}=200 \mathrm{pF}$, is therefore the result of the independent design considerations presented in section 3.1. The analog switches were designed next, but such as to yield acceptable time constants. Fortunately it turned out that the maximum time constant corresponding to a minimum size capacitor coupled with a minimum size switch and under worst biasing conditions is:

$$
\zeta=(.8 \mathrm{pF})(57 \mathrm{k})=45.6 \mathrm{~ns}
$$

The worst case biasing conditions refer to the switching of the negative reference voltage. The resistance is derived with the classical formula:

$$
r=\frac{1}{2 \beta_{p} k\left(v_{G S}-v_{t h}\right)}
$$

where: $v_{t h}=v_{t h}^{0}+\gamma_{p} \sqrt{v_{B S}}, \beta_{p}=5 u A / v^{2}$ and $\gamma_{p}=.5 v^{-1 / 2}$.
The best case corresponds to the switching of the positive reference voltage and yields:

$$
\zeta=(.8 \mathrm{pF})(12 \mathrm{k})=9 \mathrm{~ns}
$$

Since the time constants turn out to be relatively small, there is no need for accurate scaling of the analog switches.

The final switch sizes were therefore determined by converient layout rather than by speed requirements.

The rosulting equivalent resistances are: $R_{A}^{\prime}=1 k$ at tre switching of the nogative reference and $R_{A}^{\prime}=.2 k$ at the switching of the positive reference voltace. R_{A}^{-}here refers only to the on-chip component of R_{A}. From a design point of view it was considered reasonable to add to R_{A}^{\prime} an exterral resistor of value $.6 k$, quite typical in the telecommunication environment: this yields $R_{\text {Amax }}=1.6 \mathrm{k}$ and $R_{\text {Amin }}=.8 k$. Knowing R_{A}, we can now return to the task of setting the value of I^{\prime}.

By imposing that t_{1} of (3.36) be equal to about 10% of the time assigned for sample acquisition, which at a sampling rate of 16 kHz is of about $15 \mu \mathrm{~s}$, we find:

$$
I^{-}=\frac{V_{R^{C}}}{t_{1}}=\frac{3 \mathrm{~V} \cdot 200 \mathrm{pF}}{1.5 \mu \mathrm{~S}}=400 \mu \mathrm{~A}
$$

Such a current will yield:

$$
\mathrm{gm}_{5}=\frac{2 I}{V_{G S}-V_{t h}}=.4 \mathrm{~mA} / \mathrm{V}
$$

So that condition (?.80) reads:
$(.4 \mathrm{~mA} / \mathrm{V})(1.6 \mathrm{k})=.64<1$ or $(.4 \mathrm{~mA} / \mathrm{V})(.8 \mathrm{k})=.32<1$
Although condition (3.80) is not "strongly" satisfied for the chosen value of gm_{5}, it will be shown later that the choice is still acceptable. In any case it appears that there is some room left for improving on stability since t_{1} could be easily increased with negligible penalty in speed.

The current flowing through the input stage is again the result of seme compromise. From a speed point of view the time constant associated with node 4 should be as small is possible; therefore it would be desirable to minimize the capacitive load at this node. This can be done by building the input stage "stronger" than the output stage, so that the switching speed of the input stage will be determined by its "intrinsic" limits. From a stability point of view it would be desirable to "degrade" the output capacitance at noce 4 so that the frequency $\mathrm{gm}_{\text {in }} / C_{4 t}$ be sensibly smaller than ω_{T}. Since speed turned out to be more critical than stability, the final choice was made for an input stage tail current of 1.6 mA .

The final device sizes were determined initially by kand and then refined by using ISPICE.

3.3.7 Computer evaluation.

The performance of the "paper comparator" was analized uring ISPICE. The circuit description used for this purpose is shown in TABLE 3.12; the biasing conditions at equilibrium are shown in TABLE 3.13, the small signal parameters in TABLE 3.14 and the junction capacitances in TABLE 3.15.

The dc transconductance characteristic of the CMOS sominarator is shown in Fisure 3.40. With reference to Figure 3.34a and the sample acquisition analysis we find:

$$
\mathrm{w}=60 \mathrm{mV}
$$

The time spent in saturated operation during sample acquisition can now be evaluated according to (3.36"): its

```
M1C 3 1 2 13 PSGX(12.8,9.99,16.0MI) 16.OMI,.4MI
M2C 4 0 2 13 PSGX(12.8,9.99,16.0MI) 16.OMI,.4MI
M3C 3 3 14 14 NSGX(9.0,9.0,6.0MI) 6.OMI,.22MI
M4C 4 3 14 14 NSGX(9.0,9.0,6.0MI) 6.0MI,.22MI
M5C 5 4 14 14 NSGX(2.4,2.4,3.OMI) 3.OMI,.22MI
M6C 6 0 5 5 NSGX(1.2,1.2,1.5MI) 1.5MI,.22MI
M7C 6 0 7 13 PSGX(7.2,2.0,8.0MI) 8.OMI,.4MI
M8C 7 11 13 13 PSGX(2.0,2.0,8.0MI) 8.OMI,.4MI
M9C 2 11 13 13 PSGX(19.88,19.88,32.0MI) 32.0MI,.4MI
M1OC 0 6 10 13 PSGX(.64,1.5,.8MI) .8MI,.4MI
M11C 10 11 13 13 PSGX(1.5,.64,.8MI) .8MI,.4MI
Ml2C 0 0 11 13 PSGX(5.51,1.3,2.9MI) 2.9MI,.4MI
M13C 11 11 13 13 PSGX(1.3,1.3,2.9MI) 2.9MI,.4MI
DN 5 13 DN
MODEL DN D(CJO=.053Px9.61)
DP 6 13 DP
MODEL DP D(CJO=.0664PxSWA)
Vplus 13 0 7.5
Vminus 14 0 -7.5
```

Circuit description of CMOS comparator

	VGS	VDS	ID
	(V)	(V)	$(\mu \mathrm{A})$
M1C	-3.920	-8.019	805.2
M2C	-3.920	-8.020	805.2
M3C	3.401	3.401	805.2
M4C	3.401	3.400	805.2
M5C	3.400	3.310	401.7
M6C	4.190	4.189	397.5
M7C	-3.989	-3.989	397.5
M8C	-3.502	-3.511	401.5
M9C	-3.502	-3.580	1610.4
M10C	-3.998	-3.998	40.1
M11C	-3.502	-3.502	40.1
M12C	-3.998	-3.998	145.5
M13C	-3.502	-3.502	145.5

Dc biasing conditions of CMOS comparator

TABLE 3.13

	gm $(\mathrm{mA} / \mathrm{V})$	gds $(\mu \mathrm{A} / \mathrm{V})$	Cgs (pF)	Cgd (pF)
M1C	.82	16.56	1.45	.35
M2C	.82	16.56	1.45	.35
M3C	.82	13.91	.53	.30
M4C	.82	13.91	.53	.30
M5C	.41	7.04	.27	.15
M6C	.28	6.33	.13	.07
M7C	.39	9.63	.73	.18
M8C	.38	16.34	.73	.18
M9C	.04	64.79	2.91	.70
M10C	.04	1.64	.07	.02
M11C	.14	3.53	.26	.06
M12C	.14	5.93	.26	.06

Small signal parameters of CMOS comparator

Junction capacitances for CMOS comparator.

TABLE 3.15

DC transconductance characteristic of
CMOS comparator.

Figure 3.40
maximum value will be:

$$
t_{1}=\left(\frac{3 \mathrm{~V}-30 \mathrm{mV}}{400 \mathrm{uA}}-.8 \mathrm{k}\right)(204 \mathrm{pF})=1.35 \mu \mathrm{~s}
$$

The time constant associated with nonsaturated sample acquisition, ζ_{A} of (3.46) will have a maximum value of:

$$
\zeta_{A}=(1.6 \mathrm{k})(204 \mathrm{pF})=.326 \mu \mathrm{~s}
$$

Considering the time alloted for sample acquisition, about $31 \mu \mathrm{~s}$ at 8 kH z sampling rate and $15 \mu \mathrm{~s}$ at 16 kHz sampling rate, it turns out that one can safely neglect any initial concition effects.

The error multiplier, $w b_{A}$ of (3.50) will have a maximum value of:

$$
\omega \zeta_{\mathrm{A}}=(2 \pi 4 \mathrm{kHz})(.326 \mu \mathrm{~s})=.75 \%
$$

The maximum acquisition error, ε of (3.50) will therefore be of:

$$
\varepsilon=.75 \% 3 \mathrm{~V}=22.5 \mathrm{mV}
$$

and it has been already mertioned that, even though such an error is greater than the whole first segment of the transfer characteristic, it should be nevertheless quite unharmful since it corresponds to low probability samples of a large sigral. The specs for the codec being written for a signal frecuency of lkHz , it turns out that in this case ε will he of about 5 mV which is already within the magnitude of the first segment and possibly comparable to the dc offset of the trarsfer curve.

The results of the computer simulations supporting
the s+ability amalysis of section 3.3 .4 are presented in Figures 3.41 to 3.48 . These computer simulation results do indeed fit very well with the simplified handanalysis. It is apnarent that the differences due to the size of the sampling switch are guite small, thus making it possible to use a minimum size, minimum offset switch. The case $R_{A}=.8 k$ does correspond to the phase shift speculations made earlier; the unity gain crosscver frequency of the loop gain is in this case equal to about 10% of the ω_{T} mentioned in the CMOS buffer section, and the phase marcin is indeed close to 60°.

It should be mentioned that R_{A} could in fact be smaller if the external component, due to finite source resistance, is less than .6 k .

Using the circuit parameters shown in the tables we can evaluate the comparator delay on the basis of (3.147) with:

$$
\begin{aligned}
& C_{4 t}=1.91 \mathrm{pF} \\
& g_{4}=30.5 \mu \mathrm{~A} / \mathrm{V} \\
& \mathrm{C}_{6}=.4 \mathrm{pF} \\
& g_{5}=6.33 \mu \mathrm{~A} / \mathrm{V} \text { or } \mathrm{G}_{8}=16.34 \mu \mathrm{~A} / \mathrm{V} \\
& \Delta V_{1}=\mathrm{V}_{\mathrm{P}} /(255 \times 2) \\
& \text { OVERDR }=\mathrm{V}_{\mathrm{R}} /(255 \times 16 \times 2) \\
& g_{\text {out }}=\frac{\mathrm{S}_{5} g_{6}}{g m_{6}+g_{5}+g_{6}}+\frac{\mathrm{I}_{7} g_{8}}{g_{7}+g_{7}+g_{8}}=.53 \mu \mathrm{~A} / \mathrm{V} \\
& A_{\text {tot }}=\left(g m_{2} / g_{4}\right)\left(\mathrm{gm}_{5} / g_{\mathrm{out}}\right)=(27)(773)=20,000 \\
& V_{\text {th }}=1.5 \mathrm{~V}
\end{aligned}
$$

Input stage transadmitance magnitude/phase characteristics.
(OdB corresponds to a transconductance of lmA/V)

Figure 3.41

Input stage output impedance magnitude/phase characteristics.
(0 dB corresponds to a lk resistor)

Figure 3.42
\because

CMOS comparator transadmitance magnitude/phase characteristics.
($0 d B$ corresponds to a transconductance of $1 \mathrm{~mA} / \mathrm{V}$)

Figure 3.43

CMOS comparator output impedance magnitude/phase characteristics.
(OdB corresponds to a lk resistor)

Loop gain magnitude/phase characteristics with $\mathrm{R}_{\mathrm{A}}=.8 \mathrm{k}$ and large sampling switch.

Unity gain crossover frequency is 15 MHz Phase margin is 63°

Figure 3.45

Loop gain magnitude/phase characteristics with $\underline{R}_{A}=.8 \mathrm{k}$ and minimum size sampling switch.

Unity gain crossover frequency is 14.5 MHz
Phase margin is 56°

Loop gain magnitude/phase characteristics with $\mathrm{R}_{\mathrm{A}}=1.6 \mathrm{k}$ and large sampling switch.

Unity gain crossover frequency is 24.5 MHz Phase margin is 37°

Loop gain magnitude/phase characteristics with $\mathrm{R}_{\mathrm{A}}=1.6 \mathrm{k}$ and minimum size sampling switch.

Unity gain crossover frequency is 23.5 MHz
Phase margin is 32°

Using these numbers we find:

$$
\begin{equation*}
\Delta t=.325 \mu s+.232 \mu s+.755 \mu s=1.312 \mu s \tag{3.147}
\end{equation*}
$$

Both the gain and the delay exceed the required performance but are obviously based on the less predictable output resistance of saturated transistors. This is indeed the weak point of the linear amplifier approach chosen for the implementation of the comparator. In order to compensate for this weakness every reasonable effort has been made to fit the device models used in ISPICE to existing devices. The relatively high yield of the finished chips shows that such an approach hasn't been totally wrong.

The computer simulated response under minimum overdrive conditions is presented in Figure 3.49. During this simulation the supplies were of 7 V and the input voltage swing was equal to the length of the first segment, i.e. $V_{R} / 255$. The total delay as given by (3.147) is reasonably close to the computer results although the partial delays, semilinear, saturated, etc. do not seem to fit very well. Apparently the comparator spends most of the time in the semilinear phase with a shorter period of saturated operation. The simplified hand analysis of the switching process is nevertheless useful at least qualitatively.

The experimental nerformance of the comparator can be evaluated only in the context of the complete coder and will be discussed in the final conclusions of this report.

V_{6} is the comparator output voltage
V_{10} is the level shifter output voltage
V_{12} is the output voltage of the inverter following the level shifter

Comparator response under minimum overdrive conditions.

Figure 3.49
3.4 THE CMOS SAMPIE AND HOIDD BUFFEP AMPLIFIER.

The sample and hold (S/H) buffer amplifier is used
in the decoder section of the PCM coder, where it buffers the segment capacitor array from the outside world. The amplifier will produce a staircaise output so that the gain requirements imposed on the filter following the decoder are considerably simplified.

3.4.1 Design objectives.

One of the most important design objectives imposed on the codec implementation was to eliminate as many external components as possible; therefore an attempt was made to incorporate a complete S / H amplifier on the decoder chip.

It may be necessary to mention that the task of the S/H amplifier is in this case rather simple compared to the many possible tasks encountered by a general purpose S/H amplifier. For instance: in the sample mode the amplifier is presented with inputs that are stable throughout the whole sampling interval; therefore aperture time is zero. The dc offset of the amplifier has practically no influence on the codec performance since the dc component of the output waveform is filtered out.

The S/H amplifier should be able to handle a common mode range of $\pm \mathrm{V}_{\mathrm{R}}$. At a sampling frequency of 8 kHz and with a staircaise output the amplifier should be fast enough to allow the output to settle within 1% of its final value in less than $5 \mu s$, corresponding to about 48 of the sampling period. This has to be done in the presence of a typical
load consisting of a parallel combination between a 10 k resistor and a 50 pF capacitor.

The solution that was chosen for the implementation of the S / H buffer amplifier is of the integrating type, Figure 3.50, and has been used before for the implementation of a completely monolithic s/H amplifier (仔).

The important advantage of this configuration is that the sampling switch operates at ground potential so that the feedthrough at switch opening, hence the dc offset introduced at the output, is constant. As mentioned earlier, this constant dc offset is practically unharmful as far as the operation of the codec is concerned. The fact that the dc offset is tollerable does also simplify the construction of the switch itself and of the associated driving circuitry. Thus for instance there appears to be no need for clamping the output of the transconductance amplifier A_{1} in order to reduce the gate drive of the sampling switch. Obviously, the reduced gate drive itself would require more than a regular switch driver operating between the two supplies. Since the size of the sampling switch is not constrained by feedthrough considerations, one can design the switch for stability, i.e. such that the undesired pole resulting from the combination between the equivalent switch resistance and the output capacitance of the transconductance amplifier will be sufficiently removed from the system bandwidth.

It may be intersting to mention that CMOS is in this case perfectly suited for the implementation of a broadband

Integrating sample and hold amplifier.

Figure 3.50
transconductance amplifier, a low input leakage hold amplifier, low leakage bidirectional sampling switch and a good quality integrated hold capacitor.

3.4.2 The transconductance amplifier.

The topology chosen for the transconductance amplifier is shown in Figure 3.51. This amplifier supplies the charging current to the hold capacitor C_{H} and has to be broadbanded for stability reasons.

The circuit contains a differential input stage used to steer the current flowing through a current mirror type output stage. At zero differential input voltage the tail current flowing through M5T is equal to the current flowing through M3T and respectively M4T. As a result of this equality and due to symmetry, the currents flowing through M1T, M2T, M9T, MllT, MllAT, M10T, Ml2T and M12AT are all equal. Therefore the maximum current capability of the output stage is equal to the tail current of the input stage. The stacking of devices M11T, M11AT and M12T, Ml2AT is used in order to reduce the nominal dc offset of the amplifier and to increase the dc output resistance.

The scaling of the currents in the two stages was chosen such as to yield the best use of the available power. More quiescent current flowing through the output stage would represent a waste of current; with less quiescent current the output stage would not be able to handle the maximum current which the input stage can switch.

This combination of input and output stage provides

CMOS transconductance amplifier.

Figure 3.51
a convenient means of differentially driving a current source whose output nominally operates at ground potential.

In order to evaluate the stability of the sample and hold configuration one has to replace the individual components with the appropriate small-signal equivalent circuits. The transconductance amplifier will be naturally replaced with an equivalent current generator.

The low frequency transadmitance of the amplifier can be found "by inspection" on the basis of Figure 3.52.

At equal currents and approximately equal V_{GS} 's the gm's of transistors M1T, M2T, M9T, MlOT, MllT and M12T are approximately equal. The low frequency load seen by transistors M1T and M2T at nodes 4 and respectively 5 will therefore be equal to $1 / g m_{T}$ (where $g m_{T}=g m_{1}=g m_{2}=\ldots$). Since the $g m$'s of MlT and $M 2 T$ are also equal to gm_{T} it follows that:
$\mathrm{v}_{4}-\mathrm{v}_{5}=\mathrm{v}_{2}-\mathrm{v}_{1}$
With the output stage acting as a current mirror, the short circuit current of the transconductance amplifier will be equal to:

$$
I_{S H O R T}=g m_{T} V_{4}-g m_{T} V_{5}=g m_{T}\left(V_{2}-V_{1}\right)
$$

The "upper" branch contribution, $-\mathrm{gm}_{\mathrm{T}} \mathrm{V}_{5}$, is the result of:

$$
\begin{aligned}
& v_{8}=g m_{T} V_{5}\left(r+\frac{1}{g m_{T}}\right)=\left(1+g m_{T} r\right) V_{5} \\
& v_{12}=g m_{T} r V_{8} /\left(1+g m_{T} r\right) \\
& S_{12 A} V_{12}=v_{12} / r=g m_{T} v_{5}
\end{aligned}
$$

where: $r=1 / \mathrm{Gm}_{11 \mathrm{~A}}=1 / \mathrm{gm}_{12 \mathrm{~A}}$.

Small-signal equivalent circuit of transconductance amplifier.

It follows that the low frequency transadmitance of the transconductance amplifier is equal to $g m_{T}$, the common gm of transistors MlT, M2T, M9T, M10T, M11T and M12T.

The only high impedance node in the amplifier is the output, node ll; therefore the transadmitance will be constant and equal to g_{T} up to breakfrequencies generated by the internal nodes. These breakfrequencies are anproximately equal to:

$$
\begin{aligned}
& \omega_{4}=\omega_{5}=g m_{T} / C_{4 t} \text { where } C_{4 t}=C j d_{1}+C g d_{1}+C j d_{3}+C g d_{3}+C g s_{9} \\
& \omega_{8}=\mathrm{gm}_{\mathrm{T}} / \mathrm{C}_{8 t} \text { where } \mathrm{C}_{8 t}=\mathrm{Cgs}_{11}+\mathrm{Cgs}_{12}+\mathrm{Cj}_{11}+\mathrm{Cg}_{12}+\mathrm{Cgd}_{9} \\
& \omega_{12}=\left(g m_{T}+1 / r\right) / C_{12 t} \text { where } C_{12 t}=C g s_{11}+C g s_{11 A}+C g s_{12 A}+ \\
& \mathrm{Cj}_{1{ }_{1 A}}+\mathrm{Cj}_{11}+\mathrm{Cg}_{12 \mathrm{~A}} \\
& \omega_{13}=g m_{T} / C_{13 t} \text { where } C_{13 t}=C g s_{12}+C g_{12 A}+C j d_{12 A}+C j s_{12}
\end{aligned}
$$

and are of the same order of magnitude with ω_{T}, the frequency at which the common gate current gain of the MOS transistors equals 1/2.

The output impedance at node 11 is found by grounding roth inputs, nodes 1 and 2, and applying a test generator at noce 11. The analysis can be considerably simplified by ohserving that the relatively large dc output resistance (a result of the cascode type connection) coupled with the node capacitance C_{11} will generate a low frequency break heyend which the output impedance will be dominated by C_{11}.

As a result of this observation it appears justified to consider that the real part of the output impedance will be equal to the dc output resistance and the imaginary part equal to
the output capacitance. The purely resistive part of the output impedance will in fact decrease with increasing frequency but this will start happening at frequencies far beyond the first break and at those frequencies the output impedance will by dominated anyway by the node capacitance C_{11}.

The output resistance is found on the basis of the same Figure 3.52. Rather than writing a complete set of nodal equations it seems to be more instructive to proceed on a step by step basis. The output resistance at node 11 can be considcred as being the result of a parallel combination between an "upward" and a "downward" component. The value of the downward component is found by looking only towards M10T.

Going through M1OT, M1T, M3T, etc. it turns out that one has to go as far as node 12 and start working backwards from there. Thus:

$$
\begin{aligned}
& V_{12}=\frac{r V_{8}}{\frac{l}{g m_{T}}+r} \text { or } \frac{V_{12}}{V_{8}}=\frac{g m_{T} r}{1+g m_{T} r} \\
& \left(V_{5}-V_{8}\right) G_{9}+g m_{9} V_{5}=\frac{V_{8}}{\frac{1}{g m_{T}}+r} \text { or } \frac{V_{8}}{V_{5}} \cong 1+g m_{T} r \\
& \left(V_{3}-V_{5}\right) G_{2}+g m_{2} V_{3}=G V_{5}+g m_{9} V_{5}+G_{9}\left(V_{5}-V_{8}\right) \text { or } \frac{V_{5}}{V_{3}} \cong 1 \\
& \left(V_{4}-V_{3}\right) G_{1}-g m_{1} V_{3}=G_{5} V_{5}+G_{2}\left(V_{3}-V_{5}\right)+G m_{2} V_{3} \text { or } \frac{V_{3}}{V_{4}} \cong \frac{1}{2 g m_{T} R_{1}}
\end{aligned}
$$

Based on these results one can now evaluate the output resistance at node 4, looking "into" the input stage:

$$
\frac{1}{R_{o 4}}=G_{3}+\frac{G_{1}\left(V_{4}-V_{3}\right)-g \Upsilon_{1} V_{3}}{V_{4}} \cong G_{3}+G_{1} / 2=\frac{R_{3}+2 R_{1}}{2 R_{1} R_{3}}
$$

The downward contribution to $R_{o l l}$ can thus be expressed with the well known formula:

$$
R_{o l 1}^{d l}=R_{04}+\left(1+g m_{10} R_{04}\right) R_{10} \cong \frac{2 g m_{T} R_{1} R_{3} R_{10}}{2 R_{1}+R_{3}}
$$

The upward component, looking through M12T is found on the basis of the following computation:

$$
\begin{aligned}
& \frac{V_{4}}{V_{11}}=\frac{R_{04}}{R_{04}+\left(1+g m_{T} R_{04}\right) R_{10}} \cong \frac{1}{g m_{T} R_{10}} \\
& \frac{V_{3}}{V_{11}}=\frac{V_{3}}{V_{4}} \times \frac{V_{4}}{V_{11}} \cong \frac{1}{2 g m_{T}^{2} R_{1} R_{10}} \\
& \frac{V_{5}}{V_{11}}=\frac{V_{5}}{V_{3}} \times \frac{V_{3}}{V_{11}} \cong \frac{1}{2 g m_{T}^{2} R_{1} R_{10}} \\
& \frac{V_{8}}{V_{11}}=\frac{V_{8}}{V_{5}} \times \frac{V_{5}}{V_{11}} \cong \frac{1+g m_{T} r}{2 g m_{T}^{2} R_{1} R_{10}} \\
& \frac{V_{12}}{V_{11}}=\frac{V_{12}}{V_{8}} \times \frac{V_{8}}{V_{11}} \cong \frac{r}{2 g m_{T} R_{1} R_{10}} \\
& g m_{12}\left(V_{13}-V_{8}\right)+G_{12}\left(V_{13}-V_{11}\right)+g m_{12 A} V_{12}+G_{12 A} V_{13}=0
\end{aligned}
$$

Thus:

$$
\frac{v_{13}}{V_{11}} \cong \frac{G_{12}+\left(r / 2 R_{1} R_{10}\right)}{g m_{T}+G_{12}+G_{12 A}} \cong \frac{G_{12}}{g_{T T}+G_{12}+G_{12 A}}
$$

and:

$$
\frac{1}{R_{O 11}^{U}}=\frac{G_{12 A} V_{13}+V_{12} / r}{{ }^{V} 11} \cong \frac{G_{12} G_{12 A}}{g m_{T}+G_{12}+G_{12 A}}+\frac{1}{2 g_{T} R_{1} R_{10}}
$$

The total ortput resitance can now be expressed as:

$$
\begin{equation*}
\frac{1}{R_{o T}}=\frac{1}{R_{o 11}^{U}}+\frac{1}{R_{o l 1}^{d}} \cong \frac{1}{\mathrm{gm}_{T}{ }^{R} 12^{R_{1}} 12 \mathrm{~A}}+\frac{R_{1}+R_{3}}{\mathrm{gm}_{T} R_{1} R_{3} R_{10}} \tag{3.148}
\end{equation*}
$$

The outrut copecitarce is simply:

$$
\begin{equation*}
\mathrm{c}_{\mathrm{om}}=\operatorname{cid}_{10}+\operatorname{cid}_{12}+\operatorname{cgd}_{10}+\cos _{12}+C_{\mathrm{sw}} \tag{3.149}
\end{equation*}
$$

where $C_{S W}$ is the capacitance associated with the switch connecting the transconductance amplifier to the hold capacitor. The transconductance amplifier can thus be replaced with an equivalent current generator described by:
$Y_{t r}=G m_{T}$
ara $Y_{o T}=S C_{O T}+G_{O T}$
whern $C_{o T}$ is given by (3.149) and $G_{O T}$ by (3.148).
3.4.3 The hold amplifier.

The circuit topology chosen for the hold amplifier is stown in Figure 3.53. It contains a "basic amplifier", similar to the ones used in conjunction with the step capacitor arrays, followed by an output stage with very low output resistance.

The low output resistance is obtained through a double buffering of the basic amplifier. The bipolar transistor is implemented with a substrate npn structure "naturally" availeble in cMOS and was used solely for its very low output resistance. This type of output starge was added because at the time of the criginal design it was felt that the decoder should be ahle to directly crive relatively low resistance. 'oads.

The unity gain compensated basic amplifier is needed bocause the holr? amplifier has to be stalle in the hold mode, when it operates in a unity gain configuration.

The stability conditions in the hold mode as well as in

CMOS hold amplifier ("opamp").

Figure 3.53
the sampling mode can be spelled out in a suggestive manner by replacing the hold amplifier with an equivalent voltage generator, The necessary analysis is considerably simplified if one makes use of the results obtained in the CMOS buffer section. Thus the "basic amplifier" portion can be replaced itself with an equivalent voltage generator described by:

$$
\begin{align*}
& A_{B}=\frac{g m_{1} R_{o l} g m_{6} R_{6}\left(1+s C_{c} / g m_{g}\right)}{1+s C_{c} g m_{6} R_{6} R_{01}} \cong \frac{g m_{1}}{s C_{c}}+\frac{g m_{1}}{g m_{9}} \tag{3.152}\\
& z_{O B}=\frac{R_{6}\left(1+s C_{c} R_{o l}\right)}{1+s C_{c} g m_{6} R_{6} R_{01}} \cong \frac{1}{s C_{C} m_{6} R_{o l}}+\frac{1}{g m_{6}} \tag{3.153}
\end{align*}
$$

where $R_{o l}$ is the output resistance of the input stage, R_{6} is the equivalent resitance at node 6, etc.

The voltage gain and output impedance of the complete hold amplifier can be found on the basis of Figure 3.54 .

Observing that normally: $\quad \mathrm{gm}_{6} \mathrm{R}_{\mathrm{ol}} \mathrm{C}_{\mathrm{C}}>\mathrm{Cgs}_{7}$, one can replace the series combination between these two capacitors with Cgs ${ }_{7}$ alone. The open circuit voltage gain is now found as follows:

$$
\begin{align*}
& \left(v_{7}+A_{E} V_{i n}\right) \frac{s C_{g} s_{7} g m_{6}}{g m_{6}+s C_{g s_{7}}}+g m_{7}\left(v_{7}-v_{6}\right)+\left(G_{7}+s C_{7}\right) v_{7}+ \\
& \left(\mathrm{V}_{7}-\mathrm{V}_{13}\right)\left(\mathrm{g}_{Q}+\mathrm{sC}_{Q}\right)=0 \tag{3.154}\\
& \left(V_{6}+A_{B} V_{i n}\right) \mathrm{gm}_{6}=\operatorname{sCcs}_{7}\left(\mathrm{~V}_{7}-\mathrm{V}_{6}\right) \tag{3.155}\\
& \left(\mathrm{V}_{7}-\mathrm{V}_{13}\right)\left(\mathrm{g}_{8}+\mathrm{sC} \mathrm{C}_{\mathrm{C}}\right)+\mathrm{gm}_{\varrho}\left(\mathrm{V}_{7}-\mathrm{V}_{13}\right)=\mathrm{V}_{13}\left(\mathrm{G}_{13}+\mathrm{sC} \mathrm{C}_{13}\right) \tag{3.156}
\end{align*}
$$

From (3.156) and with $\mathrm{gm}_{\Omega} \gg \mathrm{G}_{13}, C_{Q}>C_{13}$ we find:

Smali-signal equivalent circuit of
hold amplifier.

Figure 3.54

$$
v_{7} \cong v_{13}
$$

Combining this result with (3.154) and (3.155) we find:

$$
A_{H}^{O}=\frac{V_{13}}{V_{i n}} \cong-\frac{A_{B}\left(1+s C l g_{7} / g m_{7}\right)}{1+s\left(C g s_{7}+C_{7}\right) / g m_{7}+s^{2}\left(C g s_{7} / g m_{7}\right)\left(C_{7} / g m_{6}\right)}
$$

If $g m_{6} \cong g m_{7}$ then this last expression can be simplified to:

$$
\begin{equation*}
A_{H}^{o} \cong-\frac{A_{B}}{1+\mathrm{sC}_{7} / \mathrm{gm}_{6}} \tag{3.157}
\end{equation*}
$$

The output jmpedance is found by grounding the input, i.e. $\mathrm{V}_{\text {in }}=0$ in Figure 3.54 and applying a test generator at node 13.

The intermediate output impedance at node 7 (neglecting for the time being R_{7} and C_{7}) is found on the basis of:

$$
\begin{aligned}
& I_{\mathrm{TEST}}=\mathrm{gm}_{7}\left(v_{7}-V_{6}\right)+\frac{v_{7} \mathrm{sCg}_{7} g m_{6}}{\mathrm{sCgs}_{7}+g m_{6}} \\
& v_{6}=\frac{\operatorname{sCgs}_{7} V_{7}}{s \operatorname{sCgs}_{7}+g m_{6}}
\end{aligned}
$$

Thus:

$$
\frac{I_{\text {TEST }}}{V_{7}}=\mathrm{gm}_{6} \frac{\mathrm{gm}_{7}+\mathrm{sCgs}_{7}}{\mathrm{gm}_{6}+\mathrm{sCgs}_{7}} \cong \mathrm{gm}_{6}
$$

The total intermediate output impedance can thus be replaced with the parallel combination between C_{7} and $1 / \mathrm{gm}_{6}$. The nartial output imperance at node 13 , neglecting R_{13} and C_{13} is found on the basis of:

$$
\begin{align*}
& \mathrm{I}_{\mathrm{TEST}}=-\left(\mathrm{gm}_{\Omega}+g_{\Omega}+s C_{Q}\right)\left(\mathrm{V}_{7}-\mathrm{v}_{13}\right) \tag{3.158}\\
& \left(g_{Q}+s C_{Q}\right)\left(\mathrm{v}_{7}-\mathrm{v}_{13}\right)+\mathrm{v}_{7}\left(\mathrm{gm}_{6}+s C_{7}\right)=0 \tag{3.159}
\end{align*}
$$

Thus:

$$
\begin{equation*}
Z_{013}^{-}=\frac{V_{13}}{I_{T E S T}}=\frac{g_{Q}+g m_{6}+s C_{Q}}{\left(g m_{Q}+s C_{Q}\right)\left(g m_{6}+s C_{7}\right)} \tag{3.160}
\end{equation*}
$$

The zero in $(3.160),\left(g_{Q}+\mathrm{gm}_{6}\right) / C_{\text {@ }}$, occurs at a frequency akout β times smaller than the frequency corresponding to the pole gm_{Q} / C_{Q} and the nole gm_{6} / C_{7} is normally also quite removed from the zero. Therefore the cutput impedance can be expressed over a wide frequency range as:

$$
z_{013} \cong \frac{g_{Q}+g m_{6}}{g m_{Q} g m_{6}}+\frac{s C_{Q}}{g m_{Q} g m_{6}}
$$

or:

$$
z_{o l 3}^{\circ} \cong \frac{1}{\beta g m_{6}}+\frac{1}{g m_{Q}}+\frac{s}{\omega_{T Q}{ }^{g m_{6}}}
$$

where $\omega T_{T Q}$ is the unity current gain frequency of the common base connected substrate npn and β is the current gain.

For simplicity the neglected contribution, R_{13} and C_{13}, can be included in the load seen by the amplifier. Thus:

$$
\begin{equation*}
z_{\mathrm{OH}}=z_{\mathrm{Ol} 3}^{\circ} \tag{3.161}
\end{equation*}
$$

Since this impedance has an inductive character it seems reasonable to write:

$$
z_{\mathrm{OH}}=\mathrm{R}_{\mathrm{OH}}+s \mathrm{LL}_{\mathrm{OH}}
$$

with:

$$
\mathrm{R}_{\mathrm{OH}}=\left(1 / g \mathrm{~m}_{Q}\right)+\left(1 / \beta \mathrm{gm}_{6}\right)
$$

and:

$$
L_{O H}=1 / \omega_{T Q} g_{6}
$$

3.4.4 Stahility analysis.

The stability of the hold amplifier operating in the hold mode can be evaluated using Figure 3.55 . Since the input capacitance of the hold amplifier is normally much smaller than the value of the hold capacitor it turns out that the feedback factor is equal to 1 ; therefore the amplifier has to be unity gain stable.

The open loop gain in the presence of the load can be expressed as:

$$
\begin{equation*}
A_{H}^{L}=A_{H}^{O} \frac{Z_{L}}{Z_{L}+Z_{O H}}=\frac{A_{H}^{O}}{1+Y_{L} Z_{O H}} \tag{3.162}
\end{equation*}
$$

where A_{H}° is given by $(3.157), Z_{o H}$ by (3.161) and z_{L} is typically a parallel combination between R_{L} and C_{L}. After replacing Y_{L} and $Z_{o H}$ with their respective analytical expressions, the denominator of (3.162) can be written as:

$$
\begin{equation*}
1+Y_{L} Z_{O H}=1+\frac{R_{O H}}{F_{L}}+s\left(C_{L} R_{O H}+\frac{L_{O H}}{R_{L}}\right)+s^{2} C_{L} L_{O H} \tag{3.163}
\end{equation*}
$$

(3.163) represents the typical description of a resonant circuit. The absolute value of (3.163) will reach a minimum at:

$$
\begin{equation*}
\omega_{r}^{2}=\omega_{a}^{2}\left[1+\frac{\mathrm{R}_{\mathrm{OH}}}{\mathrm{R}_{\mathrm{L}}}-\frac{\omega_{a}^{2}}{\omega_{b}^{2}}\right] \tag{3.164}
\end{equation*}
$$

where:
and:

$$
\omega_{a}=\frac{1}{\sqrt{L_{O H} C_{L}}}=\sqrt{\omega_{T Q} \frac{\mathrm{gm}_{6 H}}{C_{L}}}
$$

$$
\frac{1}{\omega_{b}}=c_{L} R_{O H}+\frac{L_{O H}}{R_{L}}=\frac{\frac{1}{R_{L} C_{L}}+\frac{\omega_{T Q}}{\beta}\left(1+\frac{g_{6 H}}{g_{Q}}\right)}{\omega_{T Q} \frac{g_{6 H}}{C_{L}}}
$$

Equivalent circuit used for the stability
analysis of the hold mode.

Figure 3.55

The minimum absolute value of (3.163), occuring at ω_{r}, is:

$$
\begin{equation*}
\left|1+Y_{\mathrm{I}} Z_{\mathrm{OH}}\right|_{\min }=\frac{\omega_{a}}{\omega_{b}} \sqrt{1+\frac{R_{\mathrm{OH}}}{R_{L}}} \tag{3.165}
\end{equation*}
$$

and the corresponding phase shift is given by:

$$
\begin{equation*}
\operatorname{tg}\left[\arg \left(1+Y_{L} Z_{O H}\right)\right]=\frac{\omega_{b}}{\omega_{a}} \sqrt{1+\frac{R_{O H}}{R_{L}}-\frac{\omega_{a}^{2}}{\omega_{b}^{2}}} \tag{3.166}
\end{equation*}
$$

The ratio:

$$
\frac{R_{O H}}{R_{L}}=\frac{1}{g^{m_{6 H} R_{L}}}+\frac{1}{g_{Q} Q_{L} R_{L}}
$$

is normally much smaller than 1 . If the circuit is designed such that $\omega_{a} \ll \omega_{b}$ then:

$$
\begin{equation*}
\omega_{r} \cong \omega_{a} \tag{3.164}
\end{equation*}
$$

$$
\left|1+Y_{\mathrm{L}} Z_{\mathrm{OH}}\right|_{\min } \cong \frac{\omega_{\mathrm{a}}}{\omega_{\mathrm{b}}}
$$

and:

$$
\operatorname{tg}\left[\arg \left(1+Y_{L} z_{O H}\right)\right] \cong \frac{\omega_{b}}{\omega_{a}}
$$

and if ω_{r} occurs near the desired unity gain crossover frequency (which is the unity gain crossover frequency of A_{H}^{0}) then the overshoot and phase shift generated by (3.163) can make the hold configuration unstable.

The stability of the complete S / H configuration will be evaluated with reference to Figure 3.56. . The equations for the open loon, open sircuit voltage gain are:

Figure 3.56

$$
\begin{aligned}
& S_{S}\left(V_{O^{\prime T}}-V_{\text {init }}\right)=S C_{H}\left(V_{i n H}-V_{O H}\right) \\
& s C_{\mathrm{H}}\left({ }^{\mathrm{V}}{ }_{\mathrm{inH}}-\mathrm{V}_{\mathrm{OH}}\right)=\mathrm{Y}_{\mathrm{CH}}\left(\mathrm{~V}_{\mathrm{OH}}+A_{\mathrm{H}}^{\mathrm{O}} \mathrm{~V}_{\mathrm{irH}}{ }^{\prime}\right.
\end{aligned}
$$

Snlving for $V_{O H}$ and with $R_{O T} \gg r_{S}$ and $C_{H} \gg C_{O T}$, we find:
$A_{S H}^{O}=\frac{V_{C I I}}{V_{\text {inT }}}=-\frac{g m_{T}}{s C_{H}} \times \frac{A_{H}^{O}-s C_{H}^{2}{ }_{c H}}{s C_{o T^{2}} Z_{O H}+\left(1+s C_{o T} r_{s}\right)\left(1+A_{H}^{O}\right)}$
From a stability point of viev it monld be desirable to
have:

$$
A_{S H}^{\circ} \cong-\frac{g m_{T}}{s C_{H}}
$$

The "perturbing" terms in (3.167) can be evaluated as

follows:

$$
s C_{O T} z_{O H}=s C_{O T}^{R} O H+s^{2} C_{O T}^{L}{ }_{O H}=\frac{s}{\omega_{x}}+\frac{s^{2}}{w_{y}^{2}}
$$

where:

$$
\begin{aligned}
& \frac{1}{\omega_{X}}=\frac{1}{\beta \frac{g m_{6 H}}{C_{O T}}}+\frac{\frac{1}{g m_{Q}}}{C_{O T}} \quad \text { and } \quad \omega_{Y}=\sqrt{\omega_{T Q} \frac{g m_{6 H}}{C_{O T}}} \\
& s C_{H} Z_{O H}=s C_{H} R_{O H}+s^{2} C_{H} L_{O H}=\frac{s}{\omega_{\mathrm{O}}}+\frac{s^{2}}{\omega_{\mathrm{q}}^{2}}
\end{aligned}
$$

where:

$$
\frac{1}{\omega_{p}}=\frac{1}{\beta \frac{g^{m} H_{H}}{C_{H}}}+\frac{\frac{1}{g_{Q}}}{C_{H}} \text { and } \omega_{q}=\sqrt{\omega_{T Q} \frac{g^{m_{6 H}}}{C_{H}}}
$$

The frequencies $\omega_{x}, \omega_{Y}, \omega_{p}$ are normally much larger than the desired unity gain crosscver frequency of A_{H}^{0} (which is $g_{1 H} / C_{C}$); therefore the respective terms can ke safely neglected. The pole generated by $C_{O T}$ and r_{s} can easily be
:iaced far beyond $g_{1 H} / C_{c}$. The frequency ω_{q} should be placed reaconably far beyond $\mathrm{gm}_{\mathrm{T}}{ }^{\prime} \mathrm{C}_{\mathrm{H}}$ at least. In the presence of this perturbation and be; ond the domirant pole of $A_{H}^{O}, A_{S H}^{O}$ can be expressed as:

$$
\frac{1-\frac{s^{3}}{\omega_{T \Omega} \frac{g^{m_{6 H}}}{C_{H}} \frac{g^{g m}{ }_{1 H}}{C_{C}}}}{1+s C_{c} / g m_{1 H}}
$$

and one can see that the action of the numerator singularity is similar to that of a true zero. It is also apparent that the bandwidth of the open lnop, open circuit hold amplifier becomes the second pole of $A_{S H}^{O}$. If the numerator singularity cocurs beyond $\mathrm{sm}_{1 \mathrm{H}} / \mathrm{C}_{\mathrm{C}}$ then the oper lcof, open circuit gain of the complete sample and hold amplifier can be conveniently expressed as:

$$
\begin{equation*}
A_{S H}^{O}=-\frac{G m_{T}}{s C_{H}} \times \frac{A_{H}^{O}}{1+A_{H}^{O}} \tag{3.168}
\end{equation*}
$$

The cutput impedance of the complete S / H amplifier is found using again Figure 3.56 with $V_{i n T}=0$. Thus:

$$
\begin{aligned}
& \left(G_{O T}+s C_{O T}\right) V_{O T}+G_{S}\left(V_{O T}-V_{i n H}\right)=0 \\
& g_{S}\left(V_{O T}-V_{i n H}\right)=s C_{H}\left(V_{i n H}-V_{O H}\right) \\
& s C_{H}\left(V_{O H}-V_{i n H}\right)+Y_{O H}\left(V_{O H}+A_{H}^{O} V_{i n H}\right)=T_{T E S T}
\end{aligned}
$$

Solving for $V_{O H}$ and okserving again that $R_{O T} \gg r_{S}$ and $C_{H} \gg C_{n T}$, we find:

$$
\begin{equation*}
?_{\mathrm{OSH}}=\frac{7_{\mathrm{OH}}}{1+A_{\mathrm{H}}^{\mathrm{O}}+\mathrm{sC} \mathrm{OT}_{\mathrm{OH}} \mathrm{R}_{\mathrm{OH}}+\mathrm{s}^{2} \mathrm{C}_{\mathrm{OT}} \mathrm{~L}_{\mathrm{OH}}} \tag{3.169}
\end{equation*}
$$

It has been already shown that the coupling between $C_{\text {OT }}$ and $?_{\text {oH }}$ causes no trouble within the bandwith of either A_{H}^{O} or $A_{S H}^{O}$; therefore the output impedance can be expressed as:

$$
z_{\mathrm{OSH}} \simeq \frac{z_{\mathrm{OH}}}{?+A_{\mathrm{H}}^{0}}
$$

The open loop gain of the complete S / H amplifier in the prosence of the load can now be easily evaluated as:

$$
\begin{equation*}
A_{S H}^{L}=A_{S H}^{O} \frac{Z_{L}}{Z_{L}+Z_{O S H}}=\frac{A_{S H}^{O}}{1+Y_{L} Z_{O S H}} \tag{3.170}
\end{equation*}
$$

Using (3.168) for $A_{S H}^{\circ}$ and (3.169) for $Z_{O S H}$, we find:

$$
A_{S H}^{L}=-\frac{g m_{T}}{s C_{H}} \times \frac{A_{H}^{O}}{A_{H}^{O}+\left(1+Y_{L} Z_{O H}\right)}
$$

This time the troublesome term $1+Y_{L} Z_{O H}$ is added to A_{H}^{0}; therefore if ω_{r} of $\left(3.164^{\circ}\right)$ occurs beyond the unity gain crossover frequency of A_{H}° then $A_{S H}^{L}$ can be safely approximated as:

$$
A_{S H}^{L} \cong-\frac{g m_{T}}{s C_{H}}
$$

If this is the case then the S / H configuration will be stable. An intersting conclusion of this analysis is the fact that the complete sample and hold configuration seems to be more stable than the hold amplifier alone. The necessary modifications needed to improve or eaven assure stability will be analized after the presentation of the actual original design.

3.4.5 Device sizing.

The devices should be sized such as to yield the desired spred and stable operation. The sample and hold amplifier was cesigned for maximum speed within the limits of the chosen circuit configuratina:

The slew rate of the S / H amplifier is given by:

$$
\begin{equation*}
\frac{d V}{d t}=\frac{I_{5 T}}{C_{H}} \tag{3.171}
\end{equation*}
$$

where $I_{5 T}$ is the tail current of the transconductance amplifier input stage. The bandwidth of the S / H amplifier is found from (3.170 ${ }^{\circ}$):

$$
\begin{equation*}
\omega_{\mathrm{BWSH}}=\frac{\mathrm{gm}_{\mathrm{T}}}{\mathrm{c}_{\mathrm{H}}} \tag{3.172}
\end{equation*}
$$

Thus:

$$
\begin{equation*}
\frac{d V}{d t}=\frac{I_{5 T} \omega_{B W S H}}{g m_{T}}=\omega_{B W S H} V^{\text {VGS }} \text { eff1T } \tag{3.173}
\end{equation*}
$$

where VGS efflt is the effective gate drive of MlT. This last expression does in fact set the limit that can be reached with this type of circuit configuration. Considering the value of the power supplies, the threshold voltages and the device "stacking", it turns out that VGS efflt is equal to about $1.5 V$.

For stability reasons (mentioned earlier) the bradwidth of the complete S / H amplifier, $\omega_{B W S H}$, has to be smaller than the bandwidth of the hold amplifier, $\omega_{B W H}$. It has been shown in a previous section that the practical bandwidth of a CMOS buffer amplifier can reach about 5 MHz . Applying a comfortable safety factor one can set the bandwidth of the S / H amplifier
at excut 1.5 MHz . Thus:

$$
\frac{d V}{d t} \cong 9.5 \mathrm{~V} / \mu \mathrm{s}
$$

With a practical compensation capacitor value of 10 pF anc: $\mathrm{gm}_{1 \mathrm{H}} \cong 150 \% \mathrm{gm}_{1 \mathrm{~T}}$, we find:

$$
C_{H} \cong C_{C} \frac{g_{1 H}}{g m_{1 T}}=25 \mathrm{pF}
$$

With $r_{H}=25 \mathrm{pF}$ and $\mathrm{dV} / \mathrm{dt}=9.5 \mathrm{~V} / \mu \mathrm{s}$, it follows that $I_{5 m}=24 \cap \mu A$. As a result of the current scaling in the transconductance amplifier, all the devices can be sized once $I_{5 T}$ is known. The final choices are presented in TABLE 3.16.

The input stage of the hold amplifier is scaled with the input stace of the transconductance amplifier, so that the bandwidth relation, $\omega_{B W H} \cong 3.3 \omega_{\text {BWSH }^{\prime}}$ is built in. At the time of the original design the stability analysis had been performed in a simplified manner which yielded no strong design condition for the second stage of the basic amplifier, M 6 H and M 8 H ; therefore the dc current of this stage was more or less arhitrarily set equal to the current flowing through the input stage drivers. The compensation capacitor buffer, M9H and M1OH, was sized such as to carry the same current as M5H; this is done in order not to limit the slew rate of the hold amplifier and it also places the true zero mentioned earlier beyond the bandwidth of the hold amplifier.

The output stage, containing a substrate npn structure, was sized to carry a current of about 5 mA , which (at the time of the original design) was felt to be necessary. The follower stage, containing $M 7 H$ and $M 12 H$, coupled with the bipolar transistor
yields the low output resistance, which would otherwise be R_{6} / β. The final device sizes are presented in TABLE 3.20 . 3.4.6 Computer eval :ation.

The criginal resigr was evaluated using ISPICE and was hased on the circuit description shown in TABLE 3.16 and 3.20. A minum size swit.ch, with built in feedthrough cancellation, :ras :usen to connect the two amplifiers.

The resilt of the dc operating point analysis is shown in TABLE 3.17 and respectively 3.21 . The corresponding small-signal parameters are listed in TABLE 3.18 and 3.19 and respectively 3.22 and 3.23 .

The transconductance amplifier performance is described by the magnitude/phase plots shown in Figure 3.57 and 3.58; these computer results are in very good agreement with the simplified analysis presented earlier. The "early" phase shift of the transadmitance is a result of the relatively redveed ω_{T} and this in turn is the result of the somewhat exagerated channel length chosen for the transistors. The lnncor channel lersth was choser at the time of the original ciesign in orier to avoid breakdown prohlems. As it turned out, such nrecautions are not justified so that the performance of the transconductance amplifier could be further improved by reducing the channel length, hence the area, and by increasing in this way the bandwidth. An interesting conclusion of this andysis is the fact that the current mirror stage in a CMOS amplifier should be built, if possihle, neing n-channel transistors since they normally yield larger ω_{T}. This was

TRANSCO

NODES (9.10,1.2,11)
Ml 4139 PSGX(10.5,6,7.5MI) 7.5MI,.4MI
M2 523 O $\operatorname{PSGX}(10.5,6,7.5 \mathrm{MI}) 7.5 \mathrm{MI}, .4 \mathrm{MI}$
M11 $88129 \operatorname{PSGX}(6,6,7.5 \mathrm{MI})$ 7.5MI,.4MI
M12 $118139 \operatorname{PSGX}(f, 6,7.5 M I)$ 7.5MI,. 4 MI
MILA $121299 \mathrm{PSCX}(1.8,1.8,4.5 \mathrm{MI}) 4.5 \mathrm{MI}, .6 \mathrm{MI}$
M12. 131299 PSGX(1.8,1.8,4.5MI) 4.5MI,.6MI
M3 $461010 \mathrm{NSCX}(3.84,3.84,4.8 \mathrm{MI}) 4.8 \mathrm{MI}, .32 \mathrm{MI}$
M4 $561010 \operatorname{NSGX}(3.84,3.84,4.8 \mathrm{MI}) 4.8 \mathrm{MI}, .32 \mathrm{MI}$
M9 8044 NSGX(1.92,1.92,2.4MI) 2.4MI,.32MI
M10 $11055 \mathrm{NSGX}(1.92,1.92,2.4 \mathrm{MI}) 2.4 \mathrm{MI}, .32 \mathrm{MI}$
M5 3799 PSGX(3.6,3.6,9.0MI) 9.0MI,.6MI
M6 6799 PSGX(4.65,4.65,1.5MI) 1.5MI,.6MI
M7 661010 NSGX(.64,.64,.8MI) .8MI,.32MI
MP1 7799 PSGX(1.08,1.08,1.5MI) 1.5MI,.3MI
MP2 0079 PSGX(1.08,1.08,1.2MI) 1.2MI,.4MI
D4 49 D
D5 59 D
MODFL $D \mathrm{D}(C J O=2.12 \mathrm{P})$

Circuit descrintion of CMOS transconductance amplifier.

	vgs (V)	VDS (V)	$\begin{aligned} & \text { ID } \\ & (\mu A) \end{aligned}$
M1	-3.16	-6.21	113.6
M2.	-3.16	- 6.22	113.5
M11	-3.27	- 3.27	150.0
M12	-3.26	- 3.96	150.0
M11A	-3.53	- 3.53	150.0
M12A.	-3.53	- 3.54	150.0
M3	2.95	4.45	263.6
M4	2.95	4.44	263.6
M9	3.05	3.75	150.0
M10	3.06	3.06	150.1
M5	-3.24	- 4.34	227.1
M6	-3.24	-12.05	43.2
M7	2.95	2.95	43.2
MP 1	-3.24	- 3.24	78.7
MP2	-4.26	- 4.26	78.7

Dc biasing conditions for
transconductance amplifier.

	gm $(\mathrm{mA} / \mathrm{V})$	gds $(\mu \mathrm{A} / \mathrm{V})$	Cgs (pF)	Cgd (pF)
M1	.22	2.3	.68	.17
M2	.22	2.3	.68	.17
M11	.24	3.6	.68	.17
M12	.24	3.5	.68	.17
M11A	.14	3.9	.56	.10
M12A	.14	3.9	.56	.10
M3	.36	2.7	.51	.24
M4	.36	2.7	.51	.24
M9	.19	1.7	.26	.12
M10	.19	1.9	.26	.12
M5	.25	5.1	1.13	.20
M6	.05	61.7	.19	.03
M7	.06	54.2	.09	.04
MP1	.08	4.4	.11	.03
MP2	.07	2.0	.11	.03

$\frac{\text { Small - signal parameters of transconductance }}{\text { amplifier. }}$

TA.BLE 3.18

	$\begin{aligned} & \text { At } V_{r e v} \\ & (\mathrm{FF}) \end{aligned}$	$\begin{aligned} & \text { At } V_{r e v}=0 \\ & (p F) \end{aligned}$	$V_{\text {rev }}$ (V)
$C^{\text {c.ja }}$. 17	. 69	10.55
Cjs ${ }_{1}$. 15	. 40	4.34
Cjd_{2}	. 17	. 69	10.55
CjS_{2}	. 15	. 40	4.34
Cj_{11}	. 12	. 40	6.8
CjS_{11}	. 16	. 40	3.53
Cja_{12}	. 12	. 40	7.5
CjS_{12}	. 16	. 40	3.54
$\mathrm{Cj}_{11}{ }^{\text {A }}$. 05	. 12	3.53
$\mathrm{Cj}_{12 \mathrm{~A}}$. 05	. 12	3.54
Cjd_{3}	. 25	. 67	4.45
Cjd_{4}	. 25	. 66	4.44
Cj_{9}	. 13	. 33	3.75
cja_{10}	. 14	. 33	3.06
Cj_{5}	. 09	. 24	4.34
cja_{6}	. 07	. 31	12.05
Cj_{7}	. 05	. 11	2.95
$\mathrm{Cj}_{\mathrm{pl}}$. 01	. 02	3.24
Cj $\mathrm{S}_{\mathrm{P} 2}$. 01	. 02	3.24

Iunction capacitances in the transconductance

 amplifier.
CMOSOPA

```
N\capDES(9,10,?,2,13)
M1 4 1 3 9 PSGX(14.0.8.0,10.0MI) 10.0MI,.4MI
M2 5 2 3 9 PSGX(14.0,8.0,10.0MI) 10.0MI,.4MI
M3 4 4 10 10 NSEX(2.4,2.4,3.0MI) 3.0MI,.32MI
M4 5 4 20 10 NSGX(2.4,2.4,3.0MI) 3.0MI,.32MI
M5 3 12 9 9 PSGX(4.8,4.8,12.0MI) 12.OMI,.6MI
M6 E 5 10 10 NSCX(2.4,2.4,3.0MI) 3.OMI,.32MI
M8 6 12 9 9 PSGX(4.8,4.8,6.0MI) 6.OMI,.6MI
M9 10 6 8 9 PSGX(9.6,9.6,12.0MI) 12.OMI,.3MI
M10 8 12 9 9 PSGX(6.6,6.6,6.0MI) 6.OMI,.3MI
M7 10 6 7 9 PSGX(4.8,4.8,6.0MI) 6.OMI,.3MI
M12 7 12 9 9 PSGX(1.2,1.2,3.OMI) 3.OMI,.3MI
29 7 13 ARB
Ml1 13 24 10 10 NSGX(7.68,7.68,9.6MI) 9.6MI,.12MI
M17 14 14 10 10 NSGX(.48,.48,.6MI) .6MI,.12MI
CCOMP 5 8 lop
D5 10 5 п
MODFL D D(CJO=7.79P)
M14 0 0 12 9 PSGX(1,1,1.2MI) 1.2MI,.4MI
M15 12 12 0 9 PSGX(1,1,1.5MI) 1.5MI,.3MI
M1814 12 9 9 PSGX(3.2,3.2,4.OMI) 4.OMI,.3MI
```

Circuit description of CMOS hold amplifier.

	VGS	VDS	ID
	(V)	(V)	$(\mu \mathrm{A})$
M1	-3.14	-7.59	150.0
M2	-3.15	-7.53	152.8
M3	3.06	3.06	187.7
M4	3.06	3.12	187.9
M5	-3.24	-4.35	302.9
M6	3.12	6.33	210.9
M8	-3.24	-8.67	164.2
M9	-3.25	-9.58	267.8
M10	-3.24	-5.42	351.0
M7	-3.04	-9.35	75.0
M12	-3.24	-5.66	177.3
M11	4.28	7.55	5014.0
M17	4.28	4.28	290.6
M14	-4.26	-4.26	78.7
M15	-3.24	-3.24	78.7
M18	-3.24	-10.72	290.6

De biasing conditions in the hold amplifier.
(the apparent current discrepancies are the result of the "fixing" resistors introduced in order to ensure dc convergence)

	$g m$ $(\mathrm{~mA} / \mathrm{V})$	$g d s$ $(\mu \mathrm{~A} / \mathrm{V})$	Cgs (pF)	Cgd (pF)
M1	.30	2.9	.91	.22
M2	.30	2.99	.91	.22
M3	.24	2.33	.32	.15
M4	.24	2.31	.32	.15
M5	.34	6.79	1.50	.26
M6	.26	1.84	.32	.15
M8	.18	2.7	.75	.13
M9	.52	6.8	.88	.26
M10	.38	15.96	.44	.13
M7	.20	1.88	.44	.13
M12	.19	7.94	.22	.07
M11	3.17	103.7	.68	.47
M17	.19	7.8	.04	.03
M14	.07	1.95	.11	.03
M15	.09	4.45	.11	.03
M18	.32	11.16	.29	.09

Small-signal parameters of the hold amplifier transistors.

	$\begin{gathered} \text { At } V_{\text {rev }} \\ (\mathrm{pF}) \end{gathered}$	$\begin{gathered} \text { At } V_{r e v}=0 \\ (\mathrm{pF}) \end{gathered}$	$\mathrm{V}_{\text {rev }}$ (v)
Cj_{1}	. 22	. 92	11.94
Cis	. 20	. 53	4.35
CjH_{2}	. 22	. 92	11.94
CjS_{2}	. 20	. 53	4.35
Cjd_{3}	. 18	. 42	3.06
Cjd_{4}	. 18	. 42	3.12
Cj_{5}	. 12	. 32	4.35
Cj_{6}	. 13	. 42	6.33
Cj_{8}	. 09	. 32	8.67
CjS_{9}	. 21	. 63	3.42
Cj_{10}	. 15	. 44	3.42
CjS_{7}	. 11	. 32	5.66
CjO_{12}	. 03	. 08	5.66
cja_{11}	. 38	1.33	7.55
CjO_{17}	. 03	. 08	4.28
cjCl_{14}	. 03	. 07	4.26
cjs_{15}	. 03	. 07	4.26
Cj_{18}	. 05	. 21	10.72

Magnitude/phase characteristics of the transconductance amplifier transadmitance.
(OdB corresponds to $1 \mathrm{~mA} / \mathrm{V}$)

Figure 3.57

Magnitude/phase characteristics of the transconductance amplifier output impedance.
($0 d B$ corresponds to a $l k$ resistor)
not irne in the case of the transconductance amplifier because the :rput stage was rujut such as to be "intrinsically" scaler mith the input stage of the held amplifier. Okviously in : rocess with reasonable control of the threshold ratio betwon n-type and p-type trancistors such an arguement does not $a_{i} \dddot{Z N}^{2} \underset{y}{ }$ as strictly and the transconductance amplifier could be firthor broadbanded ty reversing the polarity of the devices. The frecuency as well as time analysis of the hold arclifier alone and of the complete S / H configuration was urfortunately altered by chcosing an arbitrary model for the description of the bipolar transitor. This model incorporated an ercessively large $\omega_{T Q}$ so that the effects mentioned during the revicus stability analysis where unobservable. As a result the computer analysis predicted satisfactory performance anc the circuit was implemented according to the descriptions presented in the tables.

3.4.7 Critique of the original S / H amplifier design.

As mentioned earlier, the bipolar transistor was orijinally taken for granted by arbitrarily choosing a moonl description availahle in the ISPICE library. This was certainj: a had choice since the transistor was implemented us: $\because \mathrm{g}$ the substrate nfn structure "naturally" available in a ouns process. Such a transistor is built with the n^{-}substrate acting as collector, the F^{-}well (used for the implementation of the n-charnel transistors) acting as base and the n^{+}drain and source diffusion acting as emitter. The resulting practical base width is of about $7 \mu \mathrm{~m}$. Using the most simple model for
the clerivation of $\mathrm{f}_{\mathrm{TQ}}\left(14^{\prime}\right)$, we find:

$$
f_{T Q}=\frac{2 D_{n B}}{2 \pi w^{2}}=\frac{2 \times 20 \mathrm{~cm}^{2} / \mathrm{s}}{2 \pi(7 \mu \mathrm{~m})^{2}}=13 \mathrm{MHz}
$$

ard with the rlear advantege of hindsight we recognize that this frequency is dargerously close to the desired bandwidth of the hold amplifior. In fact the cutoff frequency of the bipclar transistor is even smaller than that of its MOS counterpart. As e result of this relatively low $f_{T Q}$, the resonance frequency, ω_{r} of (3.164°) can possibly fall within the clesired bandwidth of the hold amplifier. Thus, in the rreserce of the tynical load, $R_{T}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ and with $g_{6 H}=.25 \mathrm{~mA} / \mathrm{V}$, we find:

$$
\mathrm{f}_{\mathrm{r}}=\frac{1}{2 \pi} \sqrt{\omega_{\mathrm{TQ}} \frac{\mathrm{gm}_{6 \mathrm{H}}}{c_{\mathrm{L}}}}=\sqrt{(13 \mathrm{MHz})(.8 \mathrm{MHz})} \cong 3.22 \mathrm{MHz}
$$

which is obviously undesirable. It also turns out that the choice of $\mathrm{gm}_{6 \mathrm{H}}$ can no longer be arbitrary, aithough it is also apparent that the practical possibilities of increasing 3m6y are limited.

The effect of $f_{T Q}$ will re analized next numerically by considering a possible value of $f_{T Q}=10 \mathrm{MHz}$. The overshoot and whase shift raused by the resonance effect mentioned earlier can be computed as follows, with:

$$
\begin{aligned}
& f_{T Q}=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \quad \beta=100, \mathrm{gm}_{\mathrm{Q}}=\frac{5 \mathrm{~mA}}{25 \mathrm{mV}}=200 \mathrm{~mA} / \mathrm{V}, \\
& \mathrm{~T}_{\mathrm{Q}}=2 \mathrm{~mA} / \mathrm{V}, \mathrm{gm}_{6 \mathrm{H}}=.26 \mathrm{~mA} / \mathrm{V} \\
& \mathrm{f}_{\mathrm{a}}=2.83 \mathrm{MHz}, \mathrm{f}_{\mathrm{b}}=18.5714 \mathrm{~Hz}, \mathrm{f}_{\mathrm{r}} \cong \mathrm{f}_{\mathrm{a}}=2.83 \mathrm{MHz} \\
& \left|1+Y_{\mathrm{I}},{ }^{Z}{ }_{\mathrm{OH}}\right|_{\text {min }}=.152 \text { and } \operatorname{tg}\left[\arg \left(1+\mathrm{Y}_{\mathrm{L}} z_{\mathrm{OH}}\right)\right]=6.56
\end{aligned}
$$

The corresronding overshoot is of about 16 dB and the phase shift of 81°. Such contributions near the bandwidth of the amplifier can obviously be very unpleasant.

The stability aralysis as presented earlier was rerformed relatively late. In the mean time the decoder chip rad been built according to the original design and as it turned out the sample and hold amplifier did oscillate in the presence of heavier capacitive loads. The oscillation was most aptly eliminated (18) so that the reason of the present critique is to explain why the circuit does perform adequately in the present configuration and how it can be further improved.

After the discovery of the resonance effect, the hold amplifier was again subject to computer analysis, but this time a more appropriate model was used for the substrate npn transistor. The analysis was performed only in the frequency domain by replacing the MOS devices with their equivalent small-signal circuits available from the ISPICE analysis. This was done because the author rad no access to ISPICE or to a comparably powerful computer program. The analysis was performed using ANDREJ (22) a computer program similar to SPICE 1 (23) and implemented on a VARIAN 73 minicomputer. The bipolar transistor was described with:

$$
\begin{aligned}
f_{T Q} & =10 \mathrm{MHz}, \mathrm{gm}_{Q}=\left(\mathrm{T}_{\mathrm{C}} / \mathrm{V}_{\mathrm{T}}\right)=(5 \mathrm{~mA} / 25 \mathrm{mV})=200 \mathrm{~mA} / \mathrm{V} \\
\beta & =100, \mathrm{~g}_{Q}=\left(\mathrm{gm} \mathrm{Q}_{Q} / \beta\right)=2 \mathrm{~mA} / \mathrm{V}, \mathrm{C}_{Q}=\left(\mathrm{gm} / \omega_{\mathrm{TQ}}\right)=3 \mathrm{nF}
\end{aligned}
$$

This description is more realistic than the original one but still somewhat idealized since it does not take into
zccount second order effects, such as the dependence of $f_{T Q}$ on I_{c}.

The open loop gain of the unloaded hold amplifier is shown in Figure 3.59. During this simulation the amplifier is in fact loaded with the junction capacitance associated with the hold capacitor; at $V_{\text {out }}=0$, the junction capacitance is of about 6pFyielding:

$$
\begin{aligned}
& f_{r}=8.3 \mathrm{MHz}, f_{b}=23.7 \mathrm{MHz}\left(\text { with } R_{L}=R_{11}\right) \\
& \left|1+Y_{L} Z_{O H}\right|_{\mathrm{min}}=.35, \quad \operatorname{tg}\left[\arg \left(1+Y_{L_{O H}}\right)\right]=2.86
\end{aligned}
$$

The corresponding overshoot is of about 9 dB and the phase shift of 71°. The gain plot of Figure 3.59 doesn ${ }^{\circ} t$ seem to show these effects; the reason is that at 8.3 MHz the output impedance of the hold amplifier, presented in Figure 3.60 , isn't any longer strongly inductive so that the simplified model doesn ${ }^{\prime t}$ hold any longer. In the presence of the typical load f_{r} moves to 3.22 MHz , as shown earlier; this is sufficiently low in order to yield unfavorable coupling hetween the inductive output impedance and the capacitive load. The corresponding open loon gain is presented in Figure 3.61 and the amplifier would obviously be unstable if operated closed loop.

In principle one could try to move f_{r} beyond the desired randwidth by increasing $\mathrm{gm}_{6 \mathrm{H}}$. But the necessary increase is cuite unpractical. With $C_{L}=50 \mathrm{pF}$ and $\mathrm{gm}_{6 \mathrm{H}}=.26 \mathrm{~mA} / \mathrm{V}$ we find:

$$
\frac{g m_{6 H}}{2 \pi C_{L}}=827 \mathrm{kHz}
$$

Placing f_{r} sufficiently far beyond the unity gain crossover frequency would therefore require at least a ten fold increase of $g_{6 H}$. In any case, the limitation imposed by $F_{T Q}$ is practically unsurmountable.

A fossible rure, implying no major reconstruction of the amplifier would be the damping of the resonant circuit by placing a resistor between the emitter of the npn and the lnad (including the hold capacitor connection). This is shown in Figure 3.62a. The penalty is obviously higher output resistance but as it turned out there seems to be no real need for a very low output resistance. The open loop gain in the presence of the load can now be written as:

$$
\begin{equation*}
A_{H}^{L}=\frac{A_{H}^{O}}{1+Y_{L}\left(Z_{O H}+R_{A}\right)} \tag{3.174}
\end{equation*}
$$

The denominator of (3.174) can be written as:

$$
1+Y_{L}\left(Z_{O H}+R_{A}\right)=1+\left(G_{L}+s C_{L}\right)\left(R_{O H}+s L_{O H}+R_{A}\right)
$$

and with $R_{A} \gg \mathrm{R}_{\mathrm{OH}}$:

$$
1+Y_{L}\left(Z_{O H}+R_{A}\right)=1+\frac{R_{A}}{R_{L}}+s\left[\frac{L_{\mathrm{OH}}}{R_{L}}+c_{L} R_{A}\right]+s^{2} C_{L} L_{O H}
$$

The resonance analysis can be repeated, yielding:

$$
\begin{aligned}
& \omega_{\mathrm{r}}^{2}=\omega_{\mathrm{a}}^{2}\left[1+\frac{\mathrm{R}_{\mathrm{A}}}{\mathrm{R}_{\mathrm{L}}}-\frac{\omega_{\mathrm{a}}^{2}}{\omega_{\mathrm{b}}^{2}}\right] \\
& \omega_{\mathrm{a}}=\frac{1}{\sqrt{L_{O H} C_{L}}}=\sqrt{\omega_{\mathrm{TQ}} \frac{\mathrm{gm}_{6 H}}{C_{L}}} \\
& \frac{1}{\omega_{\mathrm{b}}}=\mathrm{R}_{\mathrm{A}} C_{L_{1}}+\frac{1}{g m_{6 H_{L}} \omega_{T Q}}
\end{aligned}
$$

In the presence of a heavier load:

$$
w_{b}=\frac{1}{R_{A} C_{L}}
$$

With $R_{A}=1 k$, and $C_{L}^{-}=56 p F$, we find:

$$
f_{a}=2.71 \mathrm{MHz}, f_{b}=2.84 \mathrm{MHz}, f_{r}=513 \mathrm{kHz}
$$

Thus:

$$
\left|1+Y_{L}\left(Z_{\mathrm{OH}}+P_{A}\right)\right|_{\min }=.95 \text { and } \operatorname{tg}\left[\arg \left(1+Y_{L}\left(Z_{O H}+R_{A}\right)\right)\right]=1.05
$$

The corresponding overshoot is only . 45 dB but the phase shift is still large, about 45°. The corresponding gain characteristics are shown in Figure 3.62b and it is apparent that the amplifier is still on the verge of oscillation.

A more drastic improvement can be obtained by isolating the load from the feedback tap point. This can be done by placing an additional resistor between the load and the junction of R_{A} with C_{H}. In this case, illustrated in Figure 3.63a, the open loop gain can be expressed as:

$$
\begin{equation*}
A_{H}^{L}=A_{H}^{O} \frac{R_{B}+Z_{L}}{R_{A}+R_{B}+Z_{L}+Z_{O H}}=\frac{A_{H}^{O}\left(1+R_{B} Y_{L}\right)}{1+\left(R_{A}+R_{B}\right) Y_{L}+Y_{L} Z_{O H}} \tag{3.175}
\end{equation*}
$$

The numerator of (3.175) can be written as:

$$
1+R_{B}{ }^{y} L=1+\frac{R_{B}}{R_{L}}+s R_{B} C_{L} \cong 1+s R_{B} C_{L}
$$

The denominator can be written as:

$$
\begin{aligned}
1+\left(R_{A}+R_{B}\right) Y_{L}+Y_{L} Z_{O H}=1+ & \left(R_{A}+R_{B}\right) / R_{L}+s\left(R_{A} C_{L}+R_{B} C_{L}+\frac{L_{O H}}{C_{L}}\right)+ \\
& s^{2} L_{O H} C_{L}
\end{aligned}
$$

Since it was possible to implement the condition $f_{a}=f_{b}$,
it should also be possible to implement $f_{b}<f_{a}$. Thus it turns out that resonance can he entircly eliminated by correspondingly sizing R_{A} and R_{B}. The true zern introduced by the coupling of R_{B} with C_{L} is obviously also an important contributor toward stability. In fact the addition of R_{A} transforms the resonance situation into a doublet type of situation with the associated relative benefits. The computer simulation corresponding to the case $R_{A}=R_{B}=1 k$ is shown in Figure 3.63 b and the amplifier is now rlearly stable.

The obvious observation at this point of the analysis is that the very low output resistance offered by the npn transistor has been in fact rendered ineffective by adding series resistance to it. Thus it appears that the bipolar transitor is in fact useless, to say the least, in this application. Since it turns out that the typical load does not require low output resistance it appears that the npn transistor, together with the buffer follower M7H and M12H, could be very well eliminated. A reasonable output resitance could be obtained by implementing the output stage as an all n-channel MOS transistor follower. The buffering of the load through a series resistor could still be used in order to take advantage of the resulting true zero.

3.4.8 Experimental results.

As mentioned earlier, the original design had to be modified in order to obtain stable opeartion. Fortunately this could be done by simply rearranging some of the crossunders. The "fixed" sample and hold amplifier did perform
adecuately. The typical performance in the presence of a
loaci consisting of $R_{L}=10 k$ and $C_{L}=50 \mathrm{pF}$ is described by:

Acquisition time ($1 \%, 3 \mathrm{~V}$ step) : less than $1 \mu \mathrm{~s}$
Droop rate: . less than $50 \mathrm{mV} / \mathrm{s}$
and this is quite adequate for the present application.

Open loop, open circuit voltage gain of the hold amplifier (in the presence of the junction capacitance associated with the hold capacitor).

Figure 3.59

Hold amplifier output impedance characteristics. (in the presence of the hold capacitor junction)
($0 d B$ corresponds to a lk resistor)

Figure 3.60

Figure 3.61

Equivalent circuit used for the stability analysis
of the hold mode in the presence of simple buffering $\left(R_{A}\right)$.

Figure 3.62a

Open loop gain of the hold amplifier with the load and the hold capacitor buffered from the emitter through a $1 k$ resistor $\left(C_{L}=50 \mathrm{pF}, R_{L}=10 k\right)_{\text {. }}$

Figure 3.62b

Equivalent circuit used for the stability analysis of the hold mode in the presence of double buffering $\left(R_{A}\right.$ and $\left.R_{B}\right)$ -

Figure 3.63a

Open loop gain of the hold amplifier with the hold capacitor "tapping" the buffer resistor which connects the load to the emitter of the substrate npn transistor (the tap is taken at the middle of a 2 k resistor with $C_{L}=50 \mathrm{pF}, R_{\mathrm{L}}=10 \mathrm{k}$).

Figure 3.63b

EXPERIMENTAL RESULTS.

The ADC and DAC converters as described in the previous chapters were implemented at Siliconix Inc. using standard CMOS technology.

The coder being more complicated was realized first. It has been already mentioned that the capacitor matching was well within the limits prescribed by the XCODEC analysis.

Scme trimming of the original design was performed after measuring the parasitic capacitance in the step capacitor arrays and the offset of the transfer curve due to imperfect feedthrough cancellation at the comparator input. These measurcments can be performed using the coder alone and observing the digital cutput transitions.

The behavior of the PCM coder in a complete codec configuration was evaluated initially using an existing commercial decoder (4). The transfer curve obtained with the set-up shown in Figure 4.1 is illustrated in Figure 4.El. More detailed views of the most positive and respectively most nogative portions of the transfer curve are shown in Figures 4.E2 and 4.E3. The apparent nonmonotonicity at the negative end of the transfer curve is due to the imposed surpresssion of the ideal code corresponding to negative full scale. The nonidealities causing deviations from the ideal transfer curve, such as parasitic capacitance in the step capacitor array, buffer offset voltage and comparator offset voltage can be conveniently visualized with the set-up shown in Figure 4.1, although they can be very well measured in

Experimental set-up for visualyzing the overall transfer characteristic of a codec composed of a charge redistribution encoder and a "classical" decoder.

Overall transfer curve of the codec obtained with the set-up shown in Figure 4.1

Figure 4.El

Most positive segment of the codec transfer characteristic.

Figure 4.E2

Most negative segment of the codec transfer characteristic.

Figure 4.E3
a "digital" manner. These nonidealities were within the limits prescribed by XCODEC so that the trimming was made more for "cosmetical" reasons.

The functionality of the coder ir the digital channel bank type of environment was tested by measuring SNR and GTRCK. The set-up used for this purpose is shown in Figure 4.2 .

Experimental SNR and GTRCK measurement results are shown in Figure 4.E4.

Since the circuit was intended for real world application it did include the possibility of handing signaling information, i.e. periodically the last bit in the digital output word is replaced with a bit carrying signaling information. This feature was perfectly functional.

The decoder chip, processed later, was also functional from the first run but originally the sample and hold amplifier output did oscillate in the presence of heavier capacitive loads. After this problem was fixed (18) the decoder performed adequately.

Typical specs describing the performance of the two converters are presented in TABLE 4.El.

A complete encoder die is shown in Figure 4.E5; overall dimensions are 120 by 120 mils. The decoder chip is somewhat smaller.

Experimental set-up used for SNR and GTRCK measurements.

Figure 4.2

(a) Experimental SNR measurements made with the set-up shown in Figure 4.2

(b) Experimental GTRCK measurements made with the set-up shown in Figure 4.2

Figure 4.E4

Siliconix DF331 Coder－ DF332 Decoder Specs（Typical）

Supply Voltages	＋5 to＋7．5，－7．5 to－－15
Supply Current	$\pm 3 \mathrm{~mA} @ \pm 7.5 \mathrm{~V}$
Reference Current（Peak）	$\pm 2 \mathrm{~mA} @ \pm 3 \mathrm{~V}$
Analog Input Current During Sampling	0.5 mA
Clock Frequency	1．544 MHz（ 3.5 MHz Max ）
Conversion Rate Coder	16 kHz Max 8 kHz Typ
Decoder	64 kHz Max
Coder Digital Output	Open Drain－Sinks 3 TTL Loads
Decoder Analog Output	Source／Sink 1.5 mA
＂A＂\＆＂$B^{\prime \prime}$ Channel Signaling：	Decoder Outputs－ 1 TTL Load

B

CHAPTER 5

5. CONCIUSIONS.

The work described in this report led to the commercial marufacturing of what is believed to be the first economically feasable chanrel dedicated codec.

Complement.ary MOS technology was employed to produce a PCM voice encoder and decoder which meet standard telephone transmission specifications. Operating speed is adequate for mu:tiplexing of two channels through each encoder and decoder, although this would not be the intended use of the converter pair. Die size and yield suggest that these components will become economically competitive with high-speed shared PCM cciecs.

Several possibilities for extension of this work are evident. A single reference supply would suffice if a buffer amplifier were added to the chip to provide the croosite polarity reference; demonstrated closed-loop gain ac-uracy of the amplifier discussed earlier is ample. Power switching of the buffer amplifier and comparator could crastically cut the power consumption of codecs not in use.

A modified version of the codec meeting the European A-law specs is clearly feasable.

A single chin codec could be developed based on timeshared use of one pair of capacitor arrays. If asynchronous (incoherent) encoding and decoding is required, adcition of a separate sample and hold amplifier to the encoder would fermit interruptions when decode operations are required.

Switchable analog attenuators, now desired at the drender output in many applications, can he realized simply based on precision-ratioed capacitor arrays on the chip (19). Another possihility is incorporation of the sharp-cutoff low-pass pre and post-sampling filters on the same chip. Recent work shows attractive possibilities for realizirg such filters based on precision-ratioed capacitors and operational amplifiers (20,21).

APPENDIX

XCODEC users manual.

XCODEC is a computer program capable of analyzing the performance of a codec in terms of signal-to-noise ratio (SNR) and gain tracking (GTRCK). A practical codec is described through user supplied subroutines. XCODEC itself has built in subroutines for ideal coders and decoders. The original version of XCODEC (7) has been modified for the purpose of the present work in order to automatically determine the maximum allowable parameter deviations. This automatic search routine is written for the particular practical codecs being investigated (in the present case charge redistribution converters). The coder and respectively decoder under consideration are of the charge redistribution type described in this report. The parameters affecting the performance of the codec are capacitor matching, finite amplifier offset voltages, nonideal amplifier gain, reference voltage matching etc. The program can analyze any one of the four possible combinations between practical and ideal coder or decoder. The output listing will contain the transfer characteristic of the particular codec under investigation and the results of the SNR and GTRCK analysis. In the case of practical converters the parameter deviations affecting the transfer curves will also be displayed.

The parameters describing the practical coder or decoder are defined as follows:

In the segment array for both the coder and the decoder:
$C X_{i}=\frac{i}{255}$, where $i=1,2,4, \ldots 128$
Thus $\mathrm{CX}_{1}+\mathrm{CX}_{2}+\ldots+\mathrm{CX}_{128}=\mathrm{CX}_{\text {tot }}=1$
Nonidealities are introduced as percentage deviations such that the practical capacitances will have the following values:

$$
\mathrm{Cx}_{\mathrm{ipr}}=\mathrm{Cx}_{\mathrm{i}}\left(1+\mathrm{DCX}_{\mathrm{i}} / 100\right)
$$

The parasitic capacitance is introduced as a percentage of the total capacitance, i.e.:

$$
\mathrm{cx}_{\text {totpr }}=\mathrm{CX}_{\text {tot }}+\mathrm{Cx}_{\text {par }} / 100
$$

In the coder step array:

$$
C Y_{i}=\frac{i}{16}, \text { where } i=1,2,4,8
$$

The terminator is expressed as: $C Y T=1 / 16$. Such a definition yields again a total array capacitance of 1.

The deviations are introduced in a similar manner to the case of the segment array. The parasitic capacitance is expressed again as a percentage of the total array capacitance.

In the decoder step array:
$C Y_{i}=\frac{2 i}{33}$, where $i=1,2,4,8$. The two terminators (used for 7 and respectively 8 bit decoding) are expressed as:

$$
\mathrm{CYT}_{2}=2 / 33 \text { and } \mathrm{CYT}_{1}=1 / 33
$$

The deviations from the ideal values and the parasitic capacitance are introduced like before.

The comparator offset voltage, VOSC, is introduced as a percentage of the reference voltage. The same applies for comparator overdrive, OVERDR, buffer amplifier offset in the decoder, VOSAY, and buffer amplifier offset in the coder, VOSA. The offset voltage of the sample and hold amplifier has no influence on SNR or GTRCK and is therefore assumed to be ideal. The nonideal amplifier gain is described with:

$$
\text { GAIN }=1-\text { DGAIN/100 }
$$

in the coder (and with DGAINY in the decoder).
The reference voltage mismatch is introduced as a deviation of the negative reference:

$$
v_{R}^{-}=-v_{R}^{+}(1+D V R N / 100)
$$

The automatic search procedure consists of an iterative analysis. One of the parameters describing the practical codec is modified such that initially the codec will fail to pass SNR and GTRCK specs. The nonideal parameter will then be modified by the program until the specs are met (or the maximum number of iterations is reached). In order to perform the automatic search routine the program has to be supplied with four numbers as follows:

DPARM(1) which is a deviation from the ideal value of the parameter being investigated that would yield spec "proof" codecs; DPARM(2) which is the initial deviation supplied by the user; JEM an integer which designates the particular parameter to be investigated and JUP, an integer representing the maximum number of iterations to be performed. The search algorithm operates as follows:

The parameter under investigation is modified with DPARM(2), the codec transfer characteristics are computed and the resulting combination is subject to SNR and GTRCK tests.

If the codec does not pass the specs then the next run is nerformed with:

$$
\operatorname{DPARM}(3)=\operatorname{DPARM}(2)-\frac{\operatorname{DPARM}(2)-\operatorname{DPARM}(1)}{2}
$$

If the test is successful then the next run is performed with:

$$
\operatorname{DPARM}(3)=2 \times \operatorname{DPARM}(2)
$$

This last modification of DPARM applies only in the case when the specs are passed the first time. Otherwise the modification of DPARM is performed on the basis of a successive approximation routine. Continuing this procedure, the program will find the largest acceptable deviation of the particular parameter being investigated. If the specs are still not being passed at the end of the routine then either DPARM(2) or JUP, or both, have to be modified. After completing the search the program will repeat the run corresponding to the largest possible deviation which does still yield acceptable performance and will prepare an output. The sequence of DPARM's used in the search algorithm will be printed thus simplifying the interpretation of the final result. The output will also contain a list of the parameter deviations for all the parameters describing the practical coder or respectively decoder. This is followed by the results of the $S N R$ and GTRCK analysis and the listing of the
transfer characteristics.
The input deck contains the following cards:

1. A card specifying the positive reference voltage, with the format Flo.3.
2. A card specifying the combination of coder and decoder being investigated:

11 for ideal coder and decoder
21 for practical coder and ideal decoder
22 for practical coder and decoder
12 for ideal coder and practical decoder
3. A card containing the deviations from their ideal values of the capacitors. in the coder segemnt array, $D C X_{i}$, with the format 8F10.3.
4. A card containing the deviations from their ideal values of the capacitors in the coder step array, DCY ${ }_{i}$, DCYT, with the format 5F10.3
5. A card containing the deviations from their ideal values of the remaining coder parameters, DVRN, VOSC, OVERDR, VOSA, DGAIN, CXP, CYP, with the format 7Fl0.5
6. A card containing the deviations from their ideal values of the decoder segement array capacitors, DCX_{i}, with the format 8Fl0.3.
7. A card containing the deviations from their ideal values of the decoder step array capacitors, $D C Y_{i}, D C Y T_{2}$, DCYT_{1}, with the format $6 \mathrm{Fl0.3}$.
8. A card containing the deviations from their ideal values of the remaining decoder parameters, DVRND, VOSAY, DGAINY,

CYPD, with the format 4 Flo.5.
9. A card containing the parameters used for the SNR and GTRCK analysis, DBUP, DBLOW, NPA. DBUP is the upper limit of the test sinewave, DBLOW is the lower limit and NPA is the number of points to be tested (amplitudes). An amplitude equal to the magnitude of the reference voltage is defined as +3 dB . The format for this card is: 2Flo.4,Il0.
10. This card contains the parameters for the automated search routine, DPARM(1), DPARM(2), JEM, JUP. The format is 2Flo.3,2I2. This card should be left out for single pass analysis.

The listing reproduced in this Appendix is a modified version of the original XCODEC; the modification was necessary in order to adapt the program to a VARIAN V73 minicomputer. The subroutines describing the practical coder and decoder have been obviously written for the particular type of codec described in this report.

The sample run reproduced in this Appendix corresponds to the automated search for the maximum allowable comparator overdrive.

```
1 07/28/77 FAST VORTEX FTN IV 2314 HOURS
```

```
C
```

```
#########################################################
```

\#

```
#########################################################
C
C
    /VOSA, GAIN, CXP;CYP,VGL(2,8,16),VGU(2;8,16)
    /VOSA, GAIN, CXP;CYP,VGL(2,8,16),VGU(2;8,16)
    /VOSA, GAIN, CXP;CYP,VGL(2,8,16),VGU(2;8,16)
    //DECOD/DCXBD(8),DCYBD(6),DCXD(8),DCYD(6);DURND,VOSAY,
    //DECOD/DCXBD(8),DCYBD(6),DCXD(8),DCYD(6);DURND,VOSAY,
    //DECOD/DCXBD(8),DCYBD(6),DCXD(8),DCYD(6);DURND,VOSAY,
    /GAINY,CYPD, VGO(2,8,16)
    /GAINY,CYPD, VGO(2,8,16)
    /GAINY,CYPD, VGO(2,8,16)
    //VALUES/DBUP, DBLOW,NPA, XPZ(54),SDRDBZ(54),GTRACZ(54).,
    //VALUES/DBUP, DBLOW,NPA, XPZ(54),SDRDBZ(54),GTRACZ(54).,
    //VALUES/DBUP, DBLOW,NPA, XPZ(54),SDRDBZ(54),GTRACZ(54).,
        /XFUNDZ(54), BOPTZ(54),ZAPZ(54);DBINZ(54), SMARZ(54).,
        /XFUNDZ(54), BOPTZ(54),ZAPZ(54);DBINZ(54), SMARZ(54).,
        /XFUNDZ(54), BOPTZ(54),ZAPZ(54);DBINZ(54), SMARZ(54).,
        /GMARZ(54)
        /GMARZ(54)
        /GMARZ(54)
    DIMENSION DPARM(15),INDEX(15)
    DIMENSION DPARM(15),INDEX(15)
    DIMENSION DPARM(15),INDEX(15)
    DATA Y,NO,OK/1HY, 2HNO,2HOK/
    DATA Y,NO,OK/1HY, 2HNO,2HOK/
    DATA Y,NO,OK/1HY, 2HNO,2HOK/
    IR=4
    IR=4
    IR=4
    1W=5
    1W=5
    1W=5
    PRC=0.
    PRC=0.
    PRC=0.
    PRD=0.
    PRD=0.
    PRD=0.
    READ(IR_11) XFL
    READ(IR_11) XFL
    READ(IR_11) XFL
    11 FORMAT (F10.4)
    11 FORMAT (F10.4)
    11 FORMAT (F10.4)
    READ(IR,16) KC,KD,ISA
    READ(IR,16) KC,KD,ISA
    READ(IR,16) KC,KD,ISA
    16 FORMAT (3II)
    16 FORMAT (3II)
    16 FORMAT (3II)
    IF(KC.EQ.1) GO TO 1003
    IF(KC.EQ.1) GO TO 1003
    IF(KC.EQ.1) GO TO 1003
    READ(IR,1000) (DCXB(I),I=1,8)
    READ(IR,1000) (DCXB(I),I=1,8)
    READ(IR,1000) (DCXB(I),I=1,8)
1000 FORMAT (8F10.3)
1000 FORMAT (8F10.3)
1000 FORMAT (8F10.3)
    READ(IR,1001)
    READ(IR,1001)
    READ(IR,1001)
1001 FORMAT(5F10.3)
1001 FORMAT(5F10.3)
1001 FORMAT(5F10.3)
    READ(IR,1002) DURN, VOSC,OVERDR,VOSA,GAIN, CXP, CYP
    READ(IR,1002) DURN, VOSC,OVERDR,VOSA,GAIN, CXP, CYP
    READ(IR,1002) DURN, VOSC,OVERDR,VOSA,GAIN, CXP, CYP
1002 FORMAT(7F10.5)
1002 FORMAT(7F10.5)
1002 FORMAT(7F10.5)
1003 1F(KD.EQ.1) GO TO 1007
1003 1F(KD.EQ.1) GO TO 1007
1003 1F(KD.EQ.1) GO TO 1007
    READ(1R,1004) (DCXBD(1),I=1,8)
    READ(1R,1004) (DCXBD(1),I=1,8)
    READ(1R,1004) (DCXBD(1),I=1,8)
1004 FORMAT(8F10.3)
1004 FORMAT(8F10.3)
1004 FORMAT(8F10.3)
    READ(IR,1005) (DCYBD(1),I=1,6)
    READ(IR,1005) (DCYBD(1),I=1,6)
    READ(IR,1005) (DCYBD(1),I=1,6)
1005 FORMAT (6F10.3)
1005 FORMAT (6F10.3)
1005 FORMAT (6F10.3)
    READ(IR,1006) DURND,VOSAY,GAINY,CYPD
    READ(IR,1006) DURND,VOSAY,GAINY,CYPD
    READ(IR,1006) DURND,VOSAY,GAINY,CYPD
1006 FORMAT(4F10.5)
1006 FORMAT(4F10.5)
1006 FORMAT(4F10.5)
1007 READ(IR,521) DBUP,DBLOW,NPA
1007 READ(IR,521) DBUP,DBLOW,NPA
1007 READ(IR,521) DBUP,DBLOW,NPA
    521 FORMAT (2F10.4,110)
    521 FORMAT (2F10.4,110)
    521 FORMAT (2F10.4,110)
        IF(ISA.巨R.1) GO TO 1009
        IF(ISA.巨R.1) GO TO 1009
        IF(ISA.巨R.1) GO TO 1009
        READ(IR,1008) DPARM(1),DPARM(2),JEM,JUP
        READ(IR,1008) DPARM(1),DPARM(2),JEM,JUP
        READ(IR,1008) DPARM(1),DPARM(2),JEM,JUP
1008 FORMAT (2F10.3.212)
1008 FORMAT (2F10.3.212)
1008 FORMAT (2F10.3.212)
    JAR=1
```

 JAR=1
    ```
    JAR=1
```

2 C
3 C
4 C
5 C
6 C


```
PAGE
```

46
47
48 49 50 51 52 53 54
55
56 57 58

DO 3500 NPAR $=1$, JUP

```
3500 INDEX (NPAR) \(=0\)
DO 3000 NPAR=2.JUP
DP ARAM=DPARM (NPAR)
4000 GOTO ( \(4001,4002,4003,4004,4005,4006,4007,4008,40092\)
/4010,4011,4012,4013,4014,4015,4016,4017,4018,4019,4020
\(1,4021,4022,4023,4024,4025,4026,4027,4028,4029,4030\),
/ 4031,4032; 4033,4034,4035,4036:4037;4038),JEM
4001 DCXB(1) \(=\) DPARAM
GOTO 4100
\(4002 \operatorname{DCXB}(2)=\) DPARAM
GOTO 4100
4003 DCXB(3) \(=\) DPARAM
GO TO 4100
\(4004 \mathrm{DCXB}(4)=\) DPARAM
GO TO 4100
\(4005 \mathrm{DCXB}(5)=\) DPARAM GO TO4100
4006 DCXB 6 ) \(=\) DPARAM GOTO 4100
\(4007 \mathrm{DCXB}(7)=\) DPARAM GOTO 4100
\(4008 \operatorname{DCXB}(8)=\) DPARAM GOTO 4100
4009 CXP =DPARAM
GOTO 4100
4010 DCYB(1) =DPARAM
GO TO 4100
\(4011 \mathrm{DCYB}(2)=\) DPARAM GOTO 4100
\(4012 \mathrm{DCYB}(3)=\) DPARAM GO TO 4100
4013 DCYB(4) \(=\) DPARAM GO TO 4100
4014 DCYB(5) =DPARAM
GOTO 4100
4015 CYP =DPARAM
GOTO 4100
4016 DURN =DPARAM
GO TO 4100
4017 VOSC =DPARAM
GOTO 4100
4018 OUERDR =DPARAM
GOTO 4100
4019 VOSA =DPARAM
```

PAGE
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

```
3 07/28/77 FAST
    GO TO 4100
    4020 GAIN =DPARAM
    GOTO 4100
    4021 DCXBD(1)=DPARAM
    GOTO 4100
    4022 DCXBD(2)=DPARAM
    GO TO 4100
    4023 DCXBD(3)=DPARAM
    GOTO 4100
    4024 DCXBD(4)=DPARAM
    GO TO 4100
    4025 DCXBD(5)=DPARAM
    GO TO 4100
    4026 DCXBD(6)=DPARAM
    GOTO 4100
    4027 DCXBD(7)=DPARAM
    GOTO 4100
    4028 DCXBD(8)=DPARAM
    GO TO 4100
    40.29 DCYBD(1)=DPARAM
    GO TO 4100
    4030 DCYBD(2)=DPARAM
    GO TO 4l00
    4031 DCYBD(3)=DPARAM
    GOTO 4100
    4032 DCYBD(4)=DPARAM
    GO TO 4100
    4033 DCYBD(5)=DPARAM
    GO TO 4100
    4034 DCYBD(6)=DPARAM
    GO TO 4100
    4035 CYPD =DPARAM
    GO TO 4100
    4036 DVRND =DPARAM
    GO TO 4100
    4037 VOSAY =DPARAM
    GO TO 4100
    4038 GAINY =DPARAM
    4100 CONT INUE
    1009 1F (KC.EQ.2) GO TO 12
        IF((ISA.NE.1).AND.(PRC.EQ.1.).AND.(JEM.GE.21))GO TO 17
        CALL IDCODR
        GO TO 17
        12 IF((1SA.NE.1).AND.(PRC.EQ.10).AND.(JEM.GE.21))GO TO 17
        CALL OVLAY(0,0,5HOUER1)
```

```
PAGE
    4 07/28/77 FAST
    THIS IS THE SUBROUTINE DESCRIBING THE PRACTICAL CODER
        17IF(KD.EN.2) GO TO 14
            IF((ISA-NE.I).AND.(PRD.EQ.1•).AND.(JEM.LE.20))GO TO 19
            CALL IDECOD
            GO TO 19
        14 IF((ISA-NE.1).AND.(PRD.EQ.1.).AND.(JEM.LE.20))GO TO 19
            CALL PDEECOD
        19 CONT INUE
            CALL OVLAY(0,0,5HOUER2)
C THIS IS DISTAC
    IF(ISA.ER.1) GO TO 1010
    IF(JAR.EQ.2) GO TO 1010
    SZAPm0.
    DO 8000 I=1.NPA
8000 SZAPmSZAP+ZAPZ(I)
    IF(SZAP•NE.O.) GO TO 7100
    INDEX(NPAR)=1
7100 DELTA=(DPARM(NPAR-1)-DPARM(NPAR))/2.
    DELT A=S I GN (DELTA, DPARAM)
    DO 3002 KAP=2,NPAR
    IF(INDEX(KAP).EQ.O) GO TO 3008
3002 CONTINUE
    DPARM(NPAR+1)=2.*DPARM(NPAR)
    IF(DPARM(NPAR+1):LT- - 100.)
    /DPARM(NPAR + 1)=DPARM(NPAR)/2.-50.
    GO TO 3000
3008 DPARM(NPAR+1)=DPARM(NPAR) +DELTA
    IF(INDEX(NPAR)-EQ.O) DPARM(NPAR+1)=DPARM(NPAR)-DELTA
3000 CONTINUE
    JUPM##UP-1
    JUPP=NUP+1
    DO 3004 K=1&JUPM
    KR=JUPP-K
    IF(INDEX(KR) & EQ.O) GOTO 3004
    DP ARAN=DPARM(KR)
    GO TO 3005
3004 CONTINUE
    DPARAM=DPARM(JUP)
3005 JAR=2
    GOTO 4000
    1010 CONT INUE
    IF(ISA.EQ.1) GO TO 7805
    URITE(IHO1)
    WRITE(IW%7800) JEM
7800 FORMAT (/10X.
```



```
PAGE
349 C
```

```
8 07/28/77 FAST
```

8 07/28/77 FAST
681FORMAT(1X,F7,4,2X,F6.2,3X,F5.2,2X,F5.2,1X,F7.4,2X,F7.4
681FORMAT(1X,F7,4,2X,F6.2,3X,F5.2,2X,F5.2,1X,F7.4,2X,F7.4
1,6X, 'UNDEF', 3X,F6.2)
1,6X, 'UNDEF', 3X,F6.2)
682 FORMAT(1X,F7.4;2X,F6.2,3X,F5,2,2X,F5,2,1X,F7.4,2X,F7.4
682 FORMAT(1X,F7.4;2X,F6.2,3X,F5,2,2X,F5,2,1X,F7.4,2X,F7.4
1,5X,F6.2,3X,F6.2)
1,5X,F6.2,3X,F6.2)
1013 CONTINUE
1013 CONTINUE
2003 WRITE(3.2004)
2003 WRITE(3.2004)
2004 FORMAT SIX.
2004 FORMAT SIX.
/ 'DO YOU WANT TRANSFER CHARACTERISTICS ? Y/NO')
/ 'DO YOU WANT TRANSFER CHARACTERISTICS ? Y/NO')
READ(3,2002) XLIST
READ(3,2002) XLIST
IF(XLIST.EQ:NO) GO TO 2005
IF(XLIST.EQ:NO) GO TO 2005
DO 8 KS=1.2
DO 8 KS=1.2
DO }8\mathrm{ KL=1,8
DO }8\mathrm{ KL=1,8
1F(MOD(KL,2)) 40.41.40
1F(MOD(KL,2)) 40.41.40
40 WRITE (3,2100)
40 WRITE (3,2100)
READ (3.2101) PAPER
READ (3.2101) PAPER
1F(PAPER.NE.OK) GO TO 2005
1F(PAPER.NE.OK) GO TO 2005
WRITE(IW%1)
WRITE(IW%1)
1 FORMAT(1H1;69(1H*)//1X, 'PROGRAM XCODEC'//IXP69(1H*)/)
1 FORMAT(1H1;69(1H*)//1X, 'PROGRAM XCODEC'//IXP69(1H*)/)
IF(KC.EQ.2) GO TO 1011
IF(KC.EQ.2) GO TO 1011
WRITE(IWO13)
WRITE(IWO13)
13 FORMAT (IX, 'THE CODER IS IDEAL *)
13 FORMAT (IX, 'THE CODER IS IDEAL *)
GO TO 1020
GO TO 1020
1011 WRITE(IW%18)
1011 WRITE(IW%18)
18 FORMAT (IX, THE CODER IS PRACTICAL`) 18 FORMAT (IX, THE CODER IS PRACTICAL`)
1020 1F(KD.EQ.2)*GO TO 1012
1020 1F(KD.EQ.2)*GO TO 1012
WRITE(IW;3)
WRITE(IW;3)
3 FORMAT (IX; 'THE DECODER IS IDEAL`) 3 FORMAT (IX; 'THE DECODER IS IDEAL`)
GOTO 1021
GOTO 1021
1012 WRITE(IW%15)
1012 WRITE(IW%15)
15 FORMAT.(IX, THE DECODER IS PRACTICAL`) 15 FORMAT.(IX, THE DECODER IS PRACTICAL`)
1021 CONTINUE
1021 CONTINUE
C
C
C EVALUATING CODEC INPUT - OUTPUT CHARACTERISTICS
C EVALUATING CODEC INPUT - OUTPUT CHARACTERISTICS

```
C
```

C
WRITE(IW,4)
WRITE(IW,4)
4 FORMAT(1X, 'S=SIGN BIT //IX,
4 FORMAT(1X, 'S=SIGN BIT //IX,
/ % =ONES COMPLEMENT OF" SEGMENT WORD IN DECIMAL`/IX, / % =ONES COMPLEMENT OF" SEGMENT WORD IN DECIMAL`/IX,
/ 'V=ONES COMPLEMENT OF STEP GORD IN DECIMAL %//IX,
/ 'V=ONES COMPLEMENT OF STEP GORD IN DECIMAL %//IX,
/69(1H*)//1X, 'S', IX, 'L', 2X, 'V', 5X, 'INPUT ', 5X;'INPUT ', 4X
/69(1H*)//1X, 'S', IX, 'L', 2X, 'V', 5X, 'INPUT ', 5X;'INPUT ', 4X
/, 'INPUT % 4X, "INPUT`; 5R; "OUTPUT", 3%, "TRACK&NG%/12X,"* /, 'INPUT % 4X, "INPUT`; 5R; "OUTPUT", 3%, "TRACK\&NG%/12X,"*
/GOWER ";5X,"OPPER"-4X,*STEP", 5%;"MIDDLE', 4X, 'LLEVEL", 4X
/GOWER ";5X,"OPPER"-4X,*STEP", 5%;"MIDDLE', 4X, 'LLEVEL", 4X
1% "ERROR"/12K, LIMIT",5X, "LIMIT", AX, "SIZE", 5X0 "POINT"/

```
    1% "ERROR"/12K, LIMIT",5X, "LIMIT", AX, "SIZE", 5X0 "POINT"/
```



```
            769(1H*))"*
```

 769(1H*))"*
 41 WRITE(IW, 42)
    ```
    41 WRITE(IW, 42)
```



```
PAGE
    1 07/28/77 FAST
            SUBROUTINE IDECOD
            COMMON XFL,PRC& PRD
            //DECOD/DCXBD(8),DCYBD(6),DCXD(8),DCYD(6), DURND, VOSAY,
            /GAINY, CYPD,YO(2,8,16)
            SCALIN =XFL/4079.5
            DO 301 IL=1.8
            DO 301 1V=1;16
            KL=IL-I
            KV=IV-1
            GV=FLOAT(KV)
            YO(1,IL,IV) =((2.0**KL)#(GV+16.5)-16.5)*SCALIN
    301 YO(2;IL;IV)=-YO(1;IL,IV)
        PRD=1.
        RETURN
        END
```

 0 ERRORS COMPILATION COMPLETE
    ```
PAGE 1 07/28/77 FAST
VORTEX FTN IV
O001 HOURS
```

```
SUBROUTINE PDECOD
COMMON XFL, PRC, PRD
//DECOD/DCXBD(8),DCYBD(6),DCXD(8),DCYD(6), DURND, VOSAY,
/GAINY, CYPD, VOU(2,8,16)
DIMENSION CX(8),CYD(8)
VR \(=X\) FL
VRN=-(1.+DVRND/100.)*XFL
VA=XFL*VOSAY/100.
GA=1.-GAINY/100.
SCX=0.
\(S U M=0\).
DO \(10 \quad 1=1,8\)
VAL \(=2\)-**(I-1)
IF(DCXBD(I)•EQ.O.) SCX=SCX+VAL
10 SUM=SUM-DCXBD (1) *VAL/100.
DEV=SUM/SCX
DO 11 I二 1,8
\(\operatorname{DCXD}(I)=D C X B D(I) / 100\).
\(1 F(D C X B D(I) \cdot E Q \cdot 0.) \operatorname{DCXD}(I)=\operatorname{DEV}\)
\(11 \mathrm{CX}(1)=(2 * *(1-1)) *(1 \cdot+D C X D(1)) / 255\).
SCY=0.
SUMY=0.
DO \(13 \mathrm{I}=1.4\)
VAL=2.**!
IF(DCYED(1).EQ.O.) SCY=SCY+VAL
13 SUMY=SUMY-DCYBD(I)*VAL/100.
SUMY=SUMY-DCYBD(5)/50.- - DCYBD (6)/1000.
IF(DCYED(5).EQ.O.) SCY=SCY+2.
IF(DCYED(6):EQ:O.) SCY=SCY+1:
DEVY~SUMY/SCY
DO \(141=1,6\)
\(\operatorname{DCYD}(I)=D C Y B D(1) / 100\).
IF(DCYBD(I).EQ.0.) DCYD(I)=DEVY
14 CONTINUE
DIV=33.*(1.+ CYPD/100.)
DO \(15 \mathrm{I}=1.4\)
J=2**I
K=2**(I-1)
\(15 \operatorname{CYD}(K)=\operatorname{FLOAT}(J) *(1 \cdot+D C Y D(I)) / D I V\)
DO \(1 \quad 1=1,2\)
\(\mathrm{Bl}=\) FLOAT \((1-1)\)
DO. \(1 \mathrm{~J}=1\) : 8
VOUT \(=0\).
IF(J.EQ.1) GO TO 2
KAP \(=\mathrm{J}-1\)
```

```
PAGE 2 OT/28/77 FAST OORTEX FTN IV OOL HOURS N%
    46 CSUMm0.
```

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
$07 / 28 / 77$ FAST
CSUM=0.
DO. 3 KAL=1, KAP
3 CSUM=CSUM+CX(KAL)
VOUT $=$ CSUM* $^{*}\left(V R^{*}(1:-B 1)+\right.$ URN*B1)
2 DO 1 K=1.16
LSTP $=1 K-1$
$L 5=L S T P / 8$
$156=M O D(L S T P, 8)$
L $6=156 / 4$
L67=MOD(L56.4)
L $7=167 / 2$
L8=MOD(L67,2)
B5 = FLOAT (L5)
B6=FLOAT (L6)
B7=FLOAT(L7)
B8=FLOAT (L8)
$Y Y T=C Y D(1) * B 8+C Y D(2)$ \#B7+CYD(4)*B6+CYD(8) \#B5
1 VOU(I.J;K) =VOUT+(VYT*(VR* (1:-BI) +VRN*Bt) -VA)* GA*CX(J)
PRDial.
RETURN
END

```
O ERRORS COMPILATION COMPLETE
```

```
07/29/77 FAST VORTEX FTN IV
    SUBROUTINE PCODER
    COMMON XFL,PRC.PRD
    / /CODER/DCXB(8);DCYB(5), DCX(8), DCY(5),DURN,VOSC,OVERDR.
    /VOSA, GAIN, CXP; CYP, VLO(2.8,165; VUP(2;8.16)
    DIMENSION UX(8),VXN(8),VY(15);VYN(15);CX(8),CY(16)
    UR=X FL.
    URNx-(10+DURN/100.)*XFL
    YOSCEF=-(10+CXP/100.) #VOSC#XFL/100.
    VAmXFL*VOSA/100:
    GA=1-GAIN/100.
    OVDR=OVERDR*XFL/100.
    SCX=0.
    SUM=0.
    DO 10 I=1.8
    VAL=2.**(1-1)
    IF(DCXB(1)\becauseEQ.0.) SCX=SCX+VAL
    10 SUM=SUM-DCXB(I)#UAL/100.
    DEV=SUM/SCX
    DO 11 I=71.8
    DCX(I)=DCXB(I)/100.
    IF(DCXB(I).EQ.O.) DCX(I)=DEV
    1& CX(I)=(2.*#(I-1))*(10+DCX(1))/255.
    VX(1)=CX(1)*VB
    VXN(1)=CX(1)#VRN
    DO 12`I=1.7
    VX(1+1)=VX(I)+CX(I+1)#VR.
    12 VXN(I+I)=UXN(I)+CX(1+1)*URN
    SCY=0.
    SUMY =0.
    DO 13 I=1,4
    VAL=2.**(I-1)
    1F(DCYB(I)\becauseEQ.0.) SCY=SCY+VAL
    13SUMY =SUMY-DCYB(1)*VAL/100.
    SUMY=SUMY-DCYB(5)/1000
    IF(DCYB(5)\cdotEQ.O.S SCY#SCY+1.
    DEVY=SUMY/SCY
    DO 14 I=10゙5
    DCY(I)=DCYB(I)/100.
    IF(DCYB(I).EQ:O.) DCY(I)=DEVY
    14 CONTINUE
    DIV=16.*(10+CYP/100.)
    DO 15 1= 1.4
    J=2**(1-1)
    15CY(J)=FLOAT(J)*(10+DCY(I))/DIV
    DO 16 I=1.15
```


91
92
93
94
95
96
97
98
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
118

$$
119
$$

$$
120
$$

$$
121
$$

122
$\dot{V} 4=\dot{V} X N(M 1 K E)-O \dot{Y} D R^{*}(1-B 3)+O \dot{V} D R * B 3$
$54=V 4^{*}(1 \cdot-B 4)+V R N * B 4$
$D 4=V 4^{*} B 4+V R^{*}(1--84)$
$T=V X N(M 1 K E)=C X(J)$ \#URN* $(1 \cdot-B 4)$
V5=T + CX (J) *VYN(8) -OVDR* ($1:-B 4)+O V D R * B 4$
3 DO $1 K=1.16$
LST $P=K-1^{-}$
$L 5=L S T P / 8$
$L 56=M O D(L S T P, 8)$
$L 6=L 56 / 4$
L67=MOD(L56.4)
$L 7=L 67 / 2$
$L 8=\operatorname{MOD}(L 67,2)$
$J A C K=4+8 \hbar 25$
$J I M=2+4^{*} L 6+8^{*} L 5$
$J A N=1+2$ HL $7+4$ स L $6+8$ \# $L 5$
B5 = FLOAT (L5)
$B 6=F L O A T(L 6)$
$B 7=F L O A T(L 7)$
$B 8=F L O A T(L B)$
IF(I.EQ.2) GO TO 4
$D 5=V 5^{*}(1 \cdot-B 5)+V R^{*} B 5$
S 5 = V 5*BS + VRN * ($1-=\mathrm{B} 5$)
$V 6=T+C X(J) * V Y(J A C K)=0 \cup D R^{*} B 5+O V D R^{*}(1--B 5)$
D6=V6* (1.- $-\mathrm{B} 6)+V R^{*} \mathrm{~B} 6{ }^{\circ}$

$V 7=T+C X(J) * V Y(J I M)-O V D R^{* B 6+O V D R *(1-1-B 6)}$
D7ㅍV7*(1。-B7) + VR*B7
S7=V7世B7+URN (1--B7)
V8=T+CX(J)*VY(JAN)-OVDR*B7+OVDR* (1- -B7)

$S 8=V 8^{*} B 8+U R N^{*}(1--B 8)$
GOTO 5
$4 S 5=V 5^{*}(1-E B 5)+$ URN* $^{*} B 5$
D5 = V5*B5 + VR ${ }^{*}(1-B 5)$
$V 6=T+C X(J) * V Y N(J A C K)-0 V^{*} R^{*}(1-B 5)+O V^{*} B 5$
S $6=$ V $6 *(1 .-B 6)+$ URN ${ }^{*}$ B6
$\mathrm{D} 6=\mathrm{V} 6{ }^{*} \mathrm{~B} 6+\mathrm{VR} \mathrm{E}^{*}(1-\mathrm{B} 6)$
$V 7=T+C X(J) * V Y N\left(J I M^{-}\right)-O V D R^{*}(1--B 6)+O V D R^{* B 6}$
S7=V7*(1-玉B7) +VRN*B7
D7=V7世B7+UR* (1- - B7)
$V 8=T+C X(J) * V ั Y N(J A N)-O U V^{*} *(1-B 7)+0 V ̃ D R^{*} B 7$
S $8=V 8^{*}(1 \cdot-B 8)+V R N * E 8$
$D 8=V 8^{*} B B+V R^{*}(1--B 8)$
5 CONTINUE

```
PAGE A 07/29/77 FAST VORTEX FTN IV 0009 HOURS
136 DREPT=AMIN1(D2,D3,D4,D5:D6.D7,D8)
$37
138
139
140
141
142
143
144
145
146
147
148
849
150
81.
852
153
154
155
156
157
158
159
$60
161
162
1 6 3
164
165
166
167
168
1 6 9
170
171
172
173
174
175
176
    STING=AMAXI (S2;S3;S4;S5;S6;S7;S8)
    IF(CI.EQ.1):AND.(STING.LT•D.)) STING#0.
    IF<(I:EQ.1S:ANDO(DREPTOLT:0:SS DREPTm0:
    IFC(IODRO2SOANDO(STINGOGTOOOS) STING=0%
    IF(CI\becauseEQ:2) AAND,(DREPTOGT:OOS) DREPT=0%
    VLO(I;J.K)=2.*XFL
    VUP(IDJ;K)=2.*XFL
    IF((1:EQ.1).AND.(J.EQ.8).AND.(K.EQ.16))DREPT=30%XFL
    IF((I.EQ:2) ANDO(J.EQ:85.AND.(KOEQ:16)SSTING=-3.*XFL
    IFCSTINGOGT:DREPT ) GOTO I
    VLO(IOJ.K)=STING+VOSCEF
    VUP(1; J.K) = DREPT+VOSCEF
        1 CONTINUE
    DO 20 J=1.8
    DO 20 K=1:16
    JR=9-J
    KR=17-K
    &F(VUP(1,JR&KR)-NE.2.*XFL) GO TO 20
    &F(KR -NE.16) GO'TO'2I
    VUP(1;JROKR)=VLO(10JR+1,1)
    VLO(1; JR; KR)= VUP(1;JRoKR)"
    GO TO 20
    21VUP(1, JR,KR)=VLO(1, JR,KR+1)
    VLO(1; JR; KRR) = VUP(1; JRj KR)
    20 CONTINUES
    DO 22 J=1,8
    DO 22 K=1;16
    JR=90J
    KR=17-K
    IF(VLO(2,JR,KR),NE.2.*XFL) GO TO 22
    LF(KR•NE*16) GO TO-23
    VLO(2,JR;KR)= VUP(2.JR+1,1)
    VUP(2.JR; KR)=VLO(2;JR;KR)
    60 TO 22
        23 VLO(2,JR,KR)=VUP(2,JR,KR+1)
        VUP(2;JR; KR ) = VLO(2; JR;KR)
        22 CONTINUE
        PRC표1.
        RETURN
        END
O ERRORS COMPILATION COMPLETE
```

```
PAGE
13
14
15
1 6
1 7
18
19
20
21
22
``` 8


\footnotetext{

}

 6 7 3 40 2 3 45
```

07/29/77 FAST

```
07/29/77 FAST
SUBROUTINE DISTAC
SUBROUTINE DISTAC
COMMON XFL,PRC, PRD
COMMON XFL,PRC, PRD
//CODER/DCXB(8);DCYB(5),DCX(8),DCY(5),DVRN,VOSC,OUERDR!
//CODER/DCXB(8);DCYB(5),DCX(8),DCY(5),DVRN,VOSC,OUERDR!
7VOSA, GAIN, CXP;CYP, VL(2;8,16);VU(2;8;16)
7VOSA, GAIN, CXP;CYP, VL(2;8,16);VU(2;8;16)
//DECOD/DCXBD(8) DCYBD(6); DCXD(8), DCYD(6) : DV'VND,VOSAY?
//DECOD/DCXBD(8) DCYBD(6); DCXD(8), DCYD(6) : DV'VND,VOSAY?
7GAINY,CYPDE VO(2;8:16)
7GAINY,CYPDE VO(2;8:16)
//VALUES/DBUP, DBLOWっNPA&XPZ(54),SDRDBZ(54),GTRACZ(54).
//VALUES/DBUP, DBLOWっNPA&XPZ(54),SDRDBZ(54),GTRACZ(54).
7XFUNDZ (54), BOPTZ(54), ZAPZ(54)SDEINZ(54),SMARZ(54):
7XFUNDZ (54), BOPTZ(54), ZAPZ(54)SDEINZ(54),SMARZ(54):
/ GMARZ (54)
/ GMARZ (54)
PI=3.1415926
PI=3.1415926
 PIR=P1/2.
 PIR=P1/2.
 NPB=NPA+1
 NPB=NPA+1
 QN=FLOAT(NPA)-1.
 QN=FLOAT(NPA)-1.
```

VORTEX FTN IV

```
VORTEX FTN IV
0020 HOURS
0020 HOURS
C THE O DB REFERENCE IS DEFINED AT 3 DB BELOG XFL
C THE O DB REFERENCE IS DEFINED AT 3 DB BELOG XFL
 XP=XFL*(10.**(-3.120.))
 XP=XFL*(10.**(-3.120.))
 DO 2 LG=1.NPB
 DO 2 LG=1.NPB
 IZ=1GG-I
 IZ=1GG-I
 IF(IZ) 200.201.200
 IF(IZ) 200.201.200
 200 2APZ(12)=0.
 200 2APZ(12)=0.
 201 CONTINUE
 201 CONTINUE
 IF(LG.EA.1) GO TO 3
 IF(LG.EA.1) GO TO 3
 QL=FLOAT(LG)-2.
 QL=FLOAT(LG)-2.
 DBIN=DBUP+(DELOW-DBUP) # (QL/QN)
 DBIN=DBUP+(DELOW-DBUP) # (QL/QN)
 XP=XFL*(10.%t((DBIN-3.)
 XP=XFL*(10.%t((DBIN-3.)
 3 <1=0.
 3 <1=0.
 X2=0%
 X2=0%
 X 3=0.
 X 3=0.
 BOPT: VO(1,8,16)
 BOPT: VO(1,8,16)
 IF(VU(1;8;16).LT.-XP) GO TO 100
 IF(VU(1;8;16).LT.-XP) GO TO 100
 BOPT=VO(2;8,16)
 BOPT=VO(2;8,16)
 IF(VL_(2,8;16),GT.XP) GO TO 100
 IF(VL_(2,8;16),GT.XP) GO TO 100
 IF(VL(1;1;1):GE.XP) GO TO 4
 IF(VL(1;1;1):GE.XP) GO TO 4
 IF(VU(1;1:1).LEOXPS GO TO 5
 IF(VU(1;1:1).LEOXPS GO TO 5
 BOPT=VO(1;1;1)
 BOPT=VO(1;1;1)
 IF(VL(1;1;1)@LE*-XP) GO TO 100
 IF(VL(1;1;1)@LE*-XP) GO TO 100
 XA=P I2-ASIN(UL(1:1,1)/XP)
 XA=P I2-ASIN(UL(1:1,1)/XP)
 XB=SQRT(XP**2-VL(1;1;1)**2)
 XB=SQRT(XP**2-VL(1;1;1)**2)
 X1=X1+VO(1;1,1)*XA
 X1=X1+VO(1;1,1)*XA
 X2=X2+(VO(1,1,1)*#2)#XA
 X2=X2+(VO(1,1,1)*#2)#XA
 X 3=X 3+VO(1,1,1) #XB
 X 3=X 3+VO(1,1,1) #XB
 GOTO4
 GOTO4
 5 DO 6 J=1,8
 5 DO 6 J=1,8
 JLP=|
 JLP=|
 DO 6 K=1.16
 DO 6 K=1.16
 KLP =~K
```

    KLP =~K
    ```


\begin{tabular}{|c|c|}
\hline & \[
\begin{aligned}
& \text { SEI } \\
& \text { पEI }
\end{aligned}
\] \\
\hline It9I／I＝「 608 & EEI \\
\hline & ても1 \\
\hline & IEI \\
\hline & 0\＆1 \\
\hline 日X＊0X \(+\varepsilon \times=\varepsilon \times\) & 6 1 \\
\hline & 821 \\
\hline ，\(X^{\text {m }} 0 \times X+1 X=1 X\) & Lて1 \\
\hline & 9 11 \\
\hline \(91=\%\) & Sて！ \\
\hline 91／WZ 1 ¢ \(=\) ¢ 40 & せて1 \\
\hline 8080士05 & とて1 \\
\hline & で1 \\
\hline t＋91／Kて Л3＝1908 & 121 \\
\hline & 0 O1 \\
\hline & 611 \\
\hline & 811 \\
\hline & 411 \\
\hline & 911 \\
\hline & S 18 \\
\hline 81 0L 09（1＊Qg－ZดY）dI & \(\square 11\) \\
\hline & EII \\
\hline & こ11 \\
\hline GRNILNOS 91 & III \\
\hline & 011 \\
\hline HENTH & 601 \\
\hline 91く1\＃H 9100 & 801 \\
\hline \(\boldsymbol{f} \mathbf{N T T}\) & 401 \\
\hline 8•1m¢910d St & 901 \\
\hline GחNTJNOS 71 & S 01 \\
\hline & \(\square 01\) \\
\hline \(\dot{H}=\mathrm{N} \Omega \mathrm{H}\) & E01 \\
\hline 91•I\＃H ४I Od & 201 \\
\hline ran＠r & 101 \\
\hline & 001 \\
\hline 1010109 & 66 \\
\hline \(g X_{k}(1 \times 1\)（ 2\() 0 \Lambda+\varepsilon X=\varepsilon X\) & 86 \\
\hline & 46 \\
\hline ＊x＊（1－1－2）0n＋1X＝1X & 96 \\
\hline & S6 \\
\hline ZId＋（dX／（1－1．Z）M & 76 \\
\hline & \(\varepsilon 6\) \\
\hline （1－1：Z）0ム＝1d0\＆ & 36 \\
\hline & 16 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \({ }^{\circ}{ }^{\prime \prime}\) & PAGE & 5 & & 07/29/77 & FAST & VORTEX & FTN & IV & 0020 & HOURS \\
\hline & 181 & & & BOPTZCI & 2) \(=180\) & & & & & \\
\hline * & 182 & & & DBINZ & Z) \(=\mathrm{DB}\) & & & & & \\
\hline & 183 & & & SMARZ 1 & Z) \(=\) SM & & & & & \\
\hline & 184 & & & GMARZ CI & \(Z)=G M\) & & & & & \\
\hline & 185 & & & 2 CONTINU & & & & & & \\
\hline & 186 & & 304 & 4 CONT INU & & & & & & \\
\hline & 187 & & & RETURN & & & & & & \\
\hline & 188 & & 100 & 0 1F(12) & 300.3 & & & & & \\
\hline & 189 & & 301 & 1 D0 303 & \(I=1, N\) & & & & & \\
\hline & 190 & & 303 & 3 2APZ(1) & \(=1\) 。 & & & & & \\
\hline & 191 & & & GOTO & 04 & & & & & \\
\hline & 192 & & 300 & 0 SDRDB=0 & & & & & & \\
\hline & 193 & & & GTRAC \(=1\) & & & & & & \\
\hline & 194 & & & AGTRAC & 1 - & & & & & \\
\hline & 195 & & & XOFUND & 0 - & & & & & \\
\hline & 196 & & & GO TO & 02 & & & & & \\
\hline & 197 & & & END & & & & & & \\
\hline & 0 ER & OR & C & COMP ILAT & ON CO & & & & & \\
\hline
\end{tabular}

PROGRAM XCODEC

THE NONIDEALITIES OF THE PRACTICAL CODER ARE:
1 DCX1 \(=0.000\)
2 DCX2 \(=0.000\)
3 DCXA \(=0.000\)
4 DCX8 \(=0.000\)
5 DCX16 \(=0.000\)
6 DCX32 \(=0.000\)
7 DCX64 \(=0.000\)
8 DCX128 \(=0.000\)
9 CXP \(=0.000\)
10 DCY \(=000\)
11 DCY2 \(=0.000\)
12 DCY4 \(=0.000\)
13 DCY8 \(=0.000\)
14 DCYTM \(=0.000\)
15 CYP \(=0.000\)
16 DVRN \(=0.000\)
17 VOSC \(=0.000\)
18 OVERDR \(=0.016\)
19 VOSA \(=0.000\)
20 DGAIN \(=0.000\)

\title{
THE NONIDEALITIES OF THE PRACTICAL DECODER ARE:
}
21 DCX1 \(=0.000\)
22 DCX2 \(=0.000\)
23 DCX4 \(=0.000\)
24 DCX8 \(=0.000\)
25 DCX16 \(=0.000\)
26 DCX \(32=0.000\)
27 DCX \(64=0.000\)
28 DCX128 \(=0.000\)
29 DCY1 \(=0.000\)
30 DCY2 \(=0.000\)
31 DCY4 \(=0.000\)
32 DCY8 \(=0.000\)
33 DCYTM \(=0.000\)
34 DCYHS \(=0.000\)
35 CYP \(=00.000\)
36 DVRN \(=00.000\)
37 VOSAY \(=00000\)
38 DGAINY \(=0.000\)

\section*{PROGRAM XCODEC}

THE CODER IS PRACTICAL
THE DECODER IS PRACTICAL
THE 0 DB REFERENCE IS \(2.12 V\) AT 3.00 V FULL SCALE

\begin{tabular}{cccccccc}
INPUT & INPUT & SDR & GAIN & OUTPUT & OUTPUT & SDR & GTRCK \\
& & C-MES & TRCK & FUNDM & DC & MARGIN & MARGIN \\
(V) & (DB) & (DB) & (DB) & (V) & (V) & (DB) & (DB)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 3.0000 & 3.00 & 41.84 & -. 02 & 2.9029 & 0.0000 & UNDEF & -48 \\
\hline 2.6738 & 2.00 & 41.72 & . 01 & 2.5941 & -. 0000 & UNDEF & \(\bigcirc 49\) \\
\hline 2.3830 & 1.00 & 40.93 & . 01 & 2.3130 & . 0000 & UNDEF & -49 \\
\hline 2.1238 & 0.00 & \(40 \cdot 71\) & 0.00 & 2.0588 & \(\cdots 0000\) & 7-71 & - 50 \\
\hline 1.8929 & -1.00 & 39.33 & . 02 & 1.8386 & .0000 & \(6 \cdot 33\) & -48 \\
\hline 1.6870 & -2.00 & 38.51 & -. 00 & 1.6350 & 0.0000 & 5.51 & \(\bigcirc 50\) \\
\hline 1.5036 & \(-3.00\) & 39.80 & . 03 & 1.4624 & \(\cdots 0000\) & 6.80 & \(\because 47\) \\
\hline 1.3401 & \(-4.00\) & 41.78 & -. 00 & 1.2986 & . 0000 & 8.78 & \(\bigcirc 50\) \\
\hline 1.1943 & -5.00 & 41.21 & .00 & 1.1579 & . 0000 & 8.21 & \(\bigcirc 50\) \\
\hline 1.0644 & -6.00 & 40.35 & -. 02 & 1.0299 & . 0000 & \(7 \cdot 35\) & \(\because 48\) \\
\hline . 9487 & -7.00 & 39.84 & .01 & . 9211 & . 0000 & 6.84 & -49 \\
\hline . 8455 & -8.00 & 38.90 & . 02 & . 8213 & -. 0000 & 5.90 & - 48 \\
\hline . 7536 & -9.00 & 40.27 & . 04 & . 7336 & . 0000 & 7.27 & -46 \\
\hline . 6716 & -10.00 & 40.86 & .. 01 & . 6503 & . 0000 & \(7 \cdot 86\) & . 49 \\
\hline . 5986 & \(-11.00\) & 40.58 & \(-.02\) & . 5787 & . 0000 & \(7 \cdot 58\) & -48 \\
\hline . 5335 & -12.00 & 39.54 & . 01 & -5177 & -. 0000 & 6.54 & -49 \\
\hline . 4755 & -13.00 & 40.17 & -. 01 & . 4603 & . 0000 & \(7 \cdot 17\) & -49 \\
\hline . 4238 & -14.00 & 39.89 & . 00 & . 4110 & . 0000 & \(6 \cdot 89\) & -50 \\
\hline . 3777 & -15.00 & 41.23 & . 01 & . 3666 & -. 0000 & 8.23 & -49 \\
\hline . 3366 & -16.00 & 41.56 & -.01 & . 3260 & .0000 & \(8 \cdot 56\) & \(\bigcirc 49\) \\
\hline . 3000 & \(\because 17.00\) & \(40 \cdot 74\) & -. 01 & . 2905 & -. 0000 & \(7 \cdot 74\) & - 49 \\
\hline . 2674 & \(-18.00\) & 40.23 & \(\because 01\) & -2588 & .0000 & \(7 \cdot 23\) & - 49 \\
\hline . 2383 & -19.00 & 38.79 & \(\because .01\) & .2308 & .0000 & 5.79 & \(\because 49\) \\
\hline . 2124 & \(-20.00\) & 37.90 & \(\because 00\) & . 2058 & .0000 & 4.90 & \(\bigcirc 50\) \\
\hline . 1893 & \(-21.00\) & 37.67 & -. 02 & . 1831 & -0000 & \(4 \cdot 67\) & . 48 \\
\hline . 1687 & -22.00 & 41.11 & -. 02 & . 1632 & . 0000 & 8.11 & . 48 \\
\hline . 1504 & -23.00 & 40.19 & \(\therefore .02\) & . 1455 & . 0000 & \(7 \cdot 19\) & . 48 \\
\hline . 1340 & -24.00 & 39.46 & \(\because 03\) & . 1295 & \(-0000\) & 6.46 & \(\bigcirc 47\) \\
\hline . 1194 & \(-25.00\) & 38.28 & -.01 & -1156 & -0000 & 5.28 & \(\because 49\) \\
\hline . 1064 & -26.00 & 37.10 & -.06 & -1024 & -0000 & 4.10 & \(\bigcirc 44\) \\
\hline . 0949 & -27.00 & 36.57 & -. 06 & -0913 & -. 0000 & \(3 \cdot 57\) & .44 \\
\hline . 0846 & -28.00 & 38.10 & . 01 & . 0821 & \(\because 0000\) & 5.10 & . 49 \\
\hline . 0754 & -29.00 & \(38 \cdot 76\) & -. 06 & - 0725 & . 0000 & \(5 \cdot 76\) & -44 \\
\hline . 0672 & -30.00 & 38.24 & -. 10 & . 0644 & -. 0000 & 5.24 & . 40 \\
\hline . 0599 & -31.00 & 36.67 & \(-.07\) & . 0575 & . 0000 & \(4 \cdot 27\) & . 43 \\
\hline
\end{tabular}

PROGRAM XCODEC

THE CODER IS PRACTICAL
THE DECODER IS PRACTICAL
THE O DB REFERENCE IS 2.12V AT 3.00V FULL SCALE

\begin{tabular}{lrrlllll}
INPUT & INPUT & SDR & GAIN & OUTPUT & OUTPUT & SDR & GTRCK \\
(V) & & C-MES & TRCK & FUNDM & DC & MARGIN & MARGIN \\
(DB) & (DB) & (DB) & (V) & \((V)\) & (DB) & (DE)
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline . 0533 & -32.00 & \(35 \cdot 39\) & -. 06 & . 0514 & - 0000 & 3.59 & . 44 \\
\hline .0475 & \(-33.00\) & 34:78 & -. 16 & . 0453 & . 0000 & 3.58 & \(\because 34\) \\
\hline . 0424 & \(-34.00\) & 34.89 & \(\because 13\) & . 0405 & . 0000 & 4.29 & \(\because 37\) \\
\hline . 0378 & \(-35.00\) & 35.22 & \(\cdots .14\) & \(\bigcirc 0360\) & -.0000 & 5.22 & \(\because 36\) \\
\hline \(\bigcirc 0337\) & \(-36.00\) & 33.96 & \(\because .05\) & .0324 & -0000 & 4.56 & \(\because 45\) \\
\hline . 0300 & \(-37.00\) & 33.46 & \(\because 08\) & \(\bigcirc 0288\) & \(-60000\) & 4066 & \(\because 42\) \\
\hline -0267 & -38.00 & 32.58 & \(\because 23\) & -0252 & . 0000 & 4.38 & \(\bigcirc 77\) \\
\hline . 0238 & \(-39.00\) & 31.40 & \(\because 07\) & -0229 & -. 0000 & 3.80 & \(\because 93\) \\
\hline . 0212 & -40.00 & 30.60 & -.19 & .0201 & \(\because 0000\) & 3.60 & \(\because 81\) \\
\hline . 0189 & \(-41.00\) & 30.64 & \(\because 34\) & \(\because 0176\) & .0000 & \(4 \% 64\) & \(\because 66\) \\
\hline .0169 & -42.00 & 28.97 & -.23 & . 0159 & \(\because 0000\) & 3.97 & \(\bigcirc 77\) \\
\hline -0150 & -43.00 & 28.97 & \(\because 54\) & . 0137 & .0000 & 4.97 & \(\because 46\) \\
\hline . 0134 & -44.00 & 27.95 & \(-50\) & \(\bigcirc 0123\) & \(\because 0000\) & 4.95 & \(\because 50\) \\
\hline .0119 & -45.00 & 26.99 & \(\because 37\) & \(\because 0111\) & \(\bigcirc 0000\) & 4.99 & \(\because 63\) \\
\hline .0106 & -46.00 & 25:35 & -.21 & . 0101 & \(\bigcirc 000\) & UNDEF & \(\bigcirc 79\) \\
\hline . 0095 & -47.00 & 24.99 & -. 48 & . 0087 & -. 0000 & UNDEF & \(\bigcirc 52\) \\
\hline . 0085 & -48.00 & 22.78 & \(\because .45\) & . 0078 & \(\bigcirc 0000\) & UNDEF & \(\because 55\) \\
\hline . 0075 & -49.00 & 23.63 & -1.00 & . 0065 & \(\bigcirc 0000\) & UNDEF & \(\therefore 00\) \\
\hline .0067 & \(-50.00\) & 22:11 & -. 96 & -0058 & \(\cdots 0000\) & UNDEF & \(\because 04\) \\
\hline
\end{tabular}

PROGRAM XCODEC

THE CODER IS PRACTICAL
THE DECODER IS PRACTICAL
S=SIGN BIT
L=ONES COMPLEMENT OF SEGMENT WORD IN DECIMAL
V=ONES COMPLEMENT OF STEP WORD IN DECIMAL

\begin{tabular}{ccccccc}
\(5 L \dot{V}\) & INPUT & INPUT & INPUT & INPUT & OUTPUT & TRACKING \\
& LOWER & UPPER & STEP & MIDDLE & LEVEL & ERROR \\
& LIMIT & LIMIT & SIZE & POINT & \\
& \((V)\) & \((V)\) & \((M V)\) & \((V)\) & (V)
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & U & 0 & 0.0000 & . 0012 & \(1 \cdot 2\) & . 0006 & 0.0000 & UNDEF. \\
\hline 1 & 0 & 1 & . 0012 & . 0020 & \(\therefore 7\) & . 0016 & \(\because 0007\) & -1.222 \\
\hline 1 & 0 & 2 & - 0020 & . 0020 & 0.0 & -0020 & -0014 & 369 \\
\hline 1 & 0 & 3 & - 0020 & . 0034 & 105 & -0027 & \(\because 0021\) & \(\because 256\) \\
\hline 1 & 0 & 4 & .0034 & \(\bigcirc 0039\) & \(\bigcirc 5\) & -0037 & -0029 & -289 \\
\hline 1 & 0 & 5 & - 0039 & -0039 & 000 & -0039 & \(\bigcirc 0036\) & \(\cdots 102\) \\
\hline 1 & 0 & 6 & . 0039 & -0047 & - 7 & -0043 & \(\therefore 0043\) & \(\cdots 005\) \\
\hline 1 & 0 & 7 & -0047 & \(\because 0064\) & \(1 \cdot 7\) & \(\therefore 0055\) & \(\because 0050\) & \(\cdots 105\) \\
\hline 1 & 0 & 8 & - 0064 & -0071 & \(\therefore 7\) & \(\because 0067\) & \(\because 0057\) & -.. 180 \\
\hline 1 & 0 & 9 & -0071 & \(\because 0078\) & \(\because 7\) & \(\because 0075\) & \(\because 0064\) & \(\because 164\) \\
\hline 1 & 0 & 10 & - 0878 & \(\because 0078\) & \(0 \cdot 0\) & \(\bigcirc 0078\) & \(\therefore 0071\) & \(\cdots 099\) \\
\hline 1 & 0 & 11 & \(\because 0078\) & -0083 & -5 & \(\bigcirc 0081\) & \(\because 0078\) & \(\bigcirc 031\) \\
\hline 1 & 0 & 12 & -0083 & \(\bigcirc 0098\) & \(1 \because 5\) & \(\because 0091\) & \(\because 0086\) & \(\cdots 061\) \\
\hline 1 & 0 & 13 & - 0098 & \(\because 0098\) & 0.0 & \(\because 0098\) & \(\because 0093\) & \(\bigcirc 059\) \\
\hline 1 & 0 & 14 & . 0098 & \(\because 0105\) & \(\because 7\) & \(\because 0102\) & \(\because 0100\) & \(\cdots 020\) \\
\hline 1 & 0 & 15 & .0105 & .0122 & \(1 \because 7\) & \(\because 0114\) & \(\because 0107\) & \(\because 066\) \\
\hline 1 & 1 & 0 & -0122 & -0137 & \(1 \cdot 5\) & . 0130 & -0118 & -103
\(\cdots 096\) \\
\hline 1 & 1 & 1 & -0137 & \(\because 0152\) & \(1: 5\) & \(\because 0145\) & \(\because 0132\) & \(\cdots 096\) \\
\hline 1 & 1 & 2 & - 0152 & -0157 & \(\bigcirc 5\) & \(\bigcirc 0154\) & \(\because 0146\) & \(\cdots 056\) \\
\hline 1 & 1 & 3 & -0157 & \(\because 0181\) & \(2: 4\) & \(\because 0169\) & \(\because 0160\) & \(\cdots 054\) \\
\hline 1 & 1 & 4 & . 0181 & -0196 & 105 & \(\bigcirc 0189\) & \(\therefore 0175\) & \(\because 080\) \\
\hline 1 & 1 & 5 & - 0196 & .0201 & \(\because 5\) & - 0199 & \(\because 0189\) & \(\because 051\) \\
\hline 1 & 1 & 6 & -0201 & -0216 & 105 & -0208 & \(\because 0203\) & -. 026 \\
\hline 1 & 1 & 7 & -0216 & \(\because 0230\) & \(1 \because 5\) & -0223 & \(\because 0217\) & -.026 \\
\hline 1 & 1 & 8 & \(\because 0230\) & \(\because 0255\) & \(2: 4\) & -0243 & \(\because 0232\) & \(\because 047\) \\
\hline 1 & 1 & 9 & -0255 & -0270 & 1.5 & \(\therefore 0262\) & \(\because 0246\) & \(\cdots 066\) \\
\hline 1 & 1 & 10 & -0270 & \(\because 0275\) & \(\because 5\) & \(\because 0272\) & \(\because 0260\) & -. 0.045 \\
\hline 1 & 1 & 11 & - 0275 & - 0289 & 105 & \(\therefore 0282\) & \(\because 0275\) & -.027 \\
\hline 1 & 1 & 12 & -0289 & \(\bigcirc 0314\) & 204 & \(\because 0301\) & \(\because 0289\) & \(\cdots 044\) \\
\hline 1 & 1 & 13 & -0314 & \(\because 0319\) & \(\bigcirc\) & -0316 & \(\because 0303\) & \(\cdots 043\) \\
\hline 1 & 1 & 14 & -0319 & -0333 & \(1: 5\) & . 0326 & \(\bigcirc 0317\) & \(\cdots 02\) \\
\hline 1 & 1 & 15 & . 0333 & \(\because 0358\) & \(2 \cdot 4\) & \(\because 0346\) & \(\because 0332\) & \(\cdots 042\) \\
\hline
\end{tabular}

THE CODER IS PRACTICAL
THE DECODER IS PRACTICAL
S=SIGN BIT
L=ONES COMPLEMENT OF SEGMENT WORD IN DECIMAL
V=ONES COMPLEMENT OF STEP WORD IN DECIMAL

\begin{tabular}{ccccccc}
\(S L \quad \dot{V}\) & INPUT & INPUT & INPUT & INPUT & OUTPUT & TRACKING \\
& LOWER & UPPER & STEP & MIDDLE & LEVEL & ERROR \\
& LIMIT & LIMIT & SIZE & POINT & \\
& \((V)\) & \((V)\) & \((M V)\) & (V) & (V) &
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 0 & . 0358 & . 0387 & 2.9 & . 0372 & . 0353 & -. 055 \\
\hline 1 & 2 & 1 & - 0387 & \(\because 0417\) & \(2 \because 9\) & \(\because 0402\) & \(\because 0381\) & \(\cdots 054\) \\
\hline 1 & 2 & 2 & - 0417 & . 0436 & 2.0 & -0426 & \(\bigcirc 0410\) & \(\cdots 040\) \\
\hline 1 & 2 & 3 & . 0436 & -0475 & \(3 \because 9\) & \(\bigcirc 0456\) & \(\bigcirc 0439\) & \(\because 040\) \\
\hline 1 & 2 & 4 & - 0475 & \(\bigcirc 0505\) & 2.9 & -0490 & \(\because 0467\) & \(\because 049\) \\
\hline 1 & 2 & 5 & -0505 & \(\because 0525\) & 2\%0 & \(\because 0515\) & \(\because 0496\) & \(\because 039\) \\
\hline 1 & 2 & 6 & -0525 & \(\bigcirc 0554\) & \(2 \cdot 9\) & -0539 & \(\because 0524\) & \(\cdots 029\) \\
\hline 1 & 2 & 7 & -0554 & -0593 & 3:9 & \(\bigcirc 0574\) & \(\because 0553\) & \(\because 038\) \\
\hline 1 & 2 & 8 & -0593 & -0622 & \(2 \cdot 9\) & \(\because 0608\) & \(\because 0581\) & \(\cdots 046\) \\
\hline 1 & 2 & 9 & -0622 & -0652 & \(2 \cdot 9\) & -0637 & -0610 & \(\cdots 045\) \\
\hline 1 & 2 & 10 & -0652 & -0672 & 2.0 & -0662 & -0638 & \(\cdots 037\) \\
\hline 1 & 2 & 11 & . 0672 & . 0701 & 2.9 & -0686 & -0667 & \(\because 030\) \\
\hline 1 & 2 & 12 & . 0701 & -0740 & 3.9 & -0721 & \(\because 0695\) & \(\because 037\) \\
\hline 1 & 2 & 13 & - 0740 & - 0760 & 200 & \(\because 0750\) & \(\because 0724\) & \(\cdots 036\) \\
\hline 1 & 2 & 14 & - 0760 & -0789 & \(2 \cdot 9\) & - 0775 & \(\bigcirc 0752\) & \(\cdots 030\) \\
\hline 1 & 2 & 15 & - 0789 & . 0819 & \(2 \cdot 9\) & -0804 & \(\bigcirc 0781\) & \(\cdots 030\) \\
\hline 1 & 3 & 0 & - 0819 & .0887 & 6.8 & . 0853 & -0824 & \(\therefore 036\) \\
\hline 1 & 3 & 1 & - 0887 & -0946 & 5.9 & -0917 & \(\bigcirc 0881\) & \(\because .041\) \\
\hline 1 & 3 & 2 & -0946 & . 0995 & \(4 \cdot 9\) & -0971 & \(\bigcirc 0938\) & \(\because 035\) \\
\hline 1 & 3 & 3 & - 0995 & .1064 & 6.8 & \(\therefore 1029\) & \(\bigcirc 0995\) & \(\because 035\) \\
\hline 1 & 3 & 4 & \(\therefore 1064\) & -1122 & 5:9 & \(\bigcirc 1093\) & \(\because 1052\) & \(\because 039\) \\
\hline 1 & 3 & 5 & - 1122 & \(\cdot 1172\) & \(4 \cdot 9\) & -1147 & \(\because 1109\) & \(\cdots 035\) \\
\hline 1 & 3 & 6 & -1172 & \(\because 1230\) & 5.9 & \(\bigcirc 1201\) & \(\because 1166\) & \(\cdots 30\) \\
\hline 1 & 3 & 7 & - 1230 & -1289 & 5:9 & \(\because 1260\) & \(\because 1223\) & \(\cdots 030\) \\
\hline 1 & 3 & 8 & - 1289 & \(\bullet 1358\) & 6.8 & -1324 & \(\because 1280\) & \(\because 034\) \\
\hline 1 & 3 & 9 & -1358 & \(\because 1417\) & 5.9 & -1387 & \(\because 1337\) & \(\because 038\) \\
\hline 1 & 3 & 10 & - 1417 & -1466 & 4:9 & \(\because 1441\) & \(\because 1394\) & \(\cdots 034\) \\
\hline 1 & 3 & 11 & - 1466 & - 1525 & \(5 \cdot 9\) & \(\therefore 1495\) & \(\because 1451\) & \(\because 030\) \\
\hline 1 & 3 & 12 & -1525 & - 1593 & \(6 \cdot 8\) & \(\therefore 1559\) & \(\because 1508\) & \(\cdots\) \\
\hline 1 & 3 & 13 & - 1593 & -1642 & \(4 \cdot 9\) & -1618 & \(\therefore 1565\) & \(\cdots 034\) \\
\hline 1 & 3 & 14 & -1642 & -1701 & 5.9 & -1672 & -1622 & \(\cdots 031\) \\
\hline 1 & 3 & 15 & -1701 & . 1760 & 5.9 & \(\therefore 1730\) & -1679 & \(\because 031\) \\
\hline
\end{tabular}

\section*{PROGRAM XCODEC}
```

THE CODER IS PRACTICAL
THE DECODER IS PRACTICAL
S=SIGN BIT
L=ONES COMPLEMENT OF SEGMENT WORD IN DECIMAL
V $=$ ONES COMPLEMENT OF STEP WORD IN DECIMAL

```

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{5 L} & \multirow[t]{3}{*}{V} & 1 NPUT & INPUT & INPUT & INPUT & OUTPUT & TRACKING \\
\hline & & LOWER & UPPER & STEP & MIDDLE & LEVEL & ERROR \\
\hline & & LIMIT & LIMIT & SIZE
(MV) & \[
\begin{aligned}
& \text { POINT } \\
& \text { (V) }
\end{aligned}
\] & (v) & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 4 & 0 & -1760 & . 1887 & 12.7 & -1824 & -1765 & \(\ldots 033\) \\
\hline 1 & 4 & 1 & - 1887 & \(\bigcirc 2005\) & 11.8 & -1946 & \(\because 1879\) & \(\because 036\) \\
\hline 1 & 4 & 2 & - 2005 & -2113 & \(10 \% 8\) & \(\because 2059\) & \(\because 1993\) & -. 033 \\
\hline 1 & 4 & 3 & - 2113 & -2240 & \(12 \cdot 7\) & -2176 & \(\because 2107\) & \(\cdots 033\) \\
\hline 1 & 4 & 4 & - 2240 & - 2358 & 11.8 & -2299 & \(\because 2221\) & \(\because 035\) \\
\hline 1 & 4 & 5 & -2358 & -2466 & 10.8 & \(\bigcirc 2412\) & \(\because 2335\) & \(\because 033\) \\
\hline 1 & 4 & 6 & - 2466 & - 2583 & 11.8 & \(\because 2525\) & \(\because 2449\) & \(\cdots 031\) \\
\hline 1 & 4 & 7 & - 2583 & -2711 & 12.7 & \(\because 2647\) & \(\because 2563\) & 3 \\
\hline 1 & 4 & 8 & -2711 & - 2828 & 11.8 & \(\bigcirc 2770\) & \(\because 2677\) & \(\cdots 034\) \\
\hline 1 & 4 & 9 & - 2828 & - 2946 & \(11: 8\) & -2887 & \(\therefore 2791\) & \(\cdots 034\) \\
\hline 1 & 4 & 10 & - 2946 & -3054 & 10.8 & - 3000 & \(\because 2906\) & \(\cdots 033\) \\
\hline 1 & 4 & 11 & - 3054 & - 3172 & 11.8 & - 3113 & -3020 & \(\therefore 031\) \\
\hline 1 & 4 & 12 & - 3172 & - 3299 & 12.7 & - 3235 & -3134 & \(\because 032\) \\
\hline 1 & 4 & 13 & - 3299 & \(\bigcirc 3407\) & 10.8 & - 3353 & -3248 & \(\cdots 032\) \\
\hline 1 & 4 & 14 & -3407 & - 3525 & 11.8 & - 3466 & \(\because 3362\) & \(\because 031\) \\
\hline 1 & 4 & 15 & - 3525 & -3652 & \(12 \cdot 7\) & \(\bigcirc 3588\) & \(\bigcirc 3476\) & \(\because 032\) \\
\hline 1 & 5 & 0 & - 3652 & - 3887 & 23.5 & -3770 & -3647 & \(\cdots 034\) \\
\hline 1 & 5 & 1 & - 3887 & -4122 & \(23: 5\) & \(\because 4005\) & \(\because 3875\) & \(\because 033\) \\
\hline 1 & 5 & 2 & .4122 & \(\because 4348\) & 22.6 & -4235 & -4103 & -032 \\
\hline 1 & 5 & 3 & .4348 & . 4593 & 24.5 & .4471 & \(\bigcirc 4332\) & \(\cdots 032\) \\
\hline 1 & 5 & 4 & . 4593 & . 4828 & 23.5 & \(\bigcirc 4711\) & \(\bigcirc 4560\) & \(\cdots 033\) \\
\hline 1 & 5 & 5 & . 4828 & .5054 & \(22 \cdot 6\) & \(\bigcirc 4941\) & \(\bigcirc 4788\) & \(\cdots 032\) \\
\hline 1 & 5 & 6 & - 5054 & - 5289 & 23.5 & -5172 & \(\because 5016\) & \(\cdots 031\) \\
\hline 1 & 5 & 7 & - 5289 & -5525 & \(23 \cdot 5\) & \(\therefore 5407\) & \(\bigcirc 5244\) & \(\cdots 031\) \\
\hline 1 & 5 & 8 & - 5525 & . 5770 & 24.5 & \(\because 5647\) & \(\bigcirc 5472\) & \(\cdots 032\) \\
\hline 1 & 5 & 9 & . 5770 & -6005 & \(23 \cdot 5\) & \(\bullet 5887\) & \(\because 5701\) & \(\cdots 033\) \\
\hline 1 & 5 & 10 & . 6005 & -6230 & 22.6 & -6118 & \(\bigcirc 5929\) & \(\cdots 032\) \\
\hline 1 & 5 & 11 & . 6230 & -6466 & 23.5 & \(\bigcirc 6348\) & \(\because 6157\) & \(\cdots 031\) \\
\hline 1 & 5 & 12 & - 6466 & -6711 & 24.5 & \(\bigcirc 6588\) & \(\because 6385\) & \(\cdots 032\) \\
\hline 1 & 5 & 13 & -6711 & - 6936 & 22.6 & \(\bigcirc 6824\) & -6613 & \(\cdots 032\) \\
\hline 1 & 5 & 14 & . 6936 & - 7172 & 23.5 & -7054 & \(\therefore 6841\) & \(\cdots 031\) \\
\hline 1 & 5 & 15 & - 7172 & - 7407 & 23.5 & -7289 & \(\therefore 7070\) & \(\cdots 031\) \\
\hline
\end{tabular}

PROGRAM XCODEC

THE CODER IS PRACTICAL
THE DECODER IS PRACTICAL
SaSIGN BIT
L=ONES COMPLEMENT OF SEGMENT WORD IN DECIMAL
VOONES COMPLEMENT OF STEP WORD IN DECIMAL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{S L} & \multirow[t]{4}{*}{v} & INPUT & INPUT & INPUT & INPUT & OUTPUT & tracking \\
\hline & & LOWER & UPPER & STEP & MIDDLE & LEVEL & ERROR \\
\hline & & LIMIT & LIMIT & SI2E & POINT & & \\
\hline & & (v) & (V) & (MV) & (V) & (V) & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & 6 & 0 & - 7407 & - 7887 & 48.0 & - 7647 & . 7412 & -. 032 \\
\hline 1 & 6 & 1 & - 7887 & . 8358 & 47.1 & -8122 & - 7868 & \(\because 032\) \\
\hline 1 & 6 & 2 & . 8358 & . 8819 & 46.1 & -8588 & -8324 & \(\bigcirc 032\) \\
\hline 1 & 6 & 3 & \(\bullet 8819\) & -9299 & 48.0 & -9059 & -8781 & \(\because 032\) \\
\hline 1 & 6 & 4 & - 9299 & . 9770 & 47.1 & . 9534 & \(\bigcirc 9237\) & \(\because 032\) \\
\hline 1 & 6 & 5 & -9770 & 1.0230 & 46.1 & 1.0000 & -9693 & \(\because 032\) \\
\hline 1 & 6 & 6 & 1.0230 & 1.0701 & 47.1 & 1.0466 & 100150 & \(\bigcirc 031\) \\
\hline 1 & 6 & 7 & 1.0701 & 1.1181 & 48.0 & 1.0941 & 1.0606 & -.032 \\
\hline 1 & 6 & 8 & 1.1181 & 1.1652 & 47.1 & 101417 & \(1 \because 1062\) & \(\cdots 032\) \\
\hline 1 & 6 & 9 & 1.1652 & 1.2122 & 47.1 & 1.1887 & 1:1519 & \(\because 032\) \\
\hline 1 & 6 & 10 & 1.2122 & 1.2583 & 46.1 & 1.2353 & 1.1975 & \(\cdots .032\) \\
\hline 1 & 6 & 11 & 1.2583 & 1.3054 & 47.1 & 1.2819 & \(1: 2431\) & \(\cdots 031\) \\
\hline 1 & 6 & 12 & 1.3054 & 1.3534 & 48.0 & 1.3294 & \(1 \because 2888\) & \(\cdots 032\) \\
\hline 1 & 6 & 13 & 1-3534 & 1.3995 & 46.1 & 1.3765 & \(1 \because 3344\) & \(\cdots 032\) \\
\hline 1 & 6 & 14 & 1.3995 & 1.4466 & 47.1 & 1.4230 & 1.3800 & -.031 \\
\hline 1 & 6 & 15 & 1.4466 & 1.4936 & 47.1 & 1.4701 & \(1: 4257\) & \(\cdots \bigcirc 031\) \\
\hline 1 & 7 & 0 & 1.4936 & 1.5887 & 95.1 & 1.5412 & 1.4941 & \(\ldots 031\) \\
\hline 1 & 7 & 1 & 1.5887 & 1.6828 & 94.1 & 1.6358 & 1.5854 & \(\therefore 032\) \\
\hline 1 & 7 & 2 & 1.6828 & 1.7760 & 93.2 & 1.7294 & 1:6766 & -. 031 \\
\hline 1 & 7 & 3 & 1.7760 & 1.8711 & 95.1 & 1.8235 & 1.7679 & \(-.031\) \\
\hline 1 & 7 & 4 & 1.8711 & 1.9652 & 94.1 & 1.9181 & 1.8592 & \(\bigcirc 032\) \\
\hline 1 & 7 & 5 & 1.9652 & 2.0583 & 93.2 & 2.0118 & 1.9504 & \(\because 031\) \\
\hline 1 & 7 & 6 & 2.0583 & 2.1525 & 94.1 & 2.1054 & 2.0417 & \(\because \because 031\) \\
\hline 1 & 7 & 7 & 2.1525 & 2.2466 & 94.1 & 2.1995 & 2.1330 & \(\because 031\) \\
\hline 1 & 7 & 8 & 2.2466 & 2.3417 & 95.1 & 2.2941 & 2.2242 & \(\because 031\) \\
\hline 1 & 7 & 9 & 2.3417 & 2.4358 & 94.1 & 2.3887 & 2.3155 & \(\because 032\) \\
\hline 1 & 7 & 10 & 2.4358 & 2.5289 & 93.2 & 2.4824 & 2.4068 & \(\cdots 031\) \\
\hline 1 & 7 & 11 & 2.5289 & 2.6230 & 94.1 & 2.5760 & \(2 \% 4980\) & \(\because 031\) \\
\hline 1 & 7 & 12 & 2.6230 & 2.7181 & 95.1 & 2.6706 & 2.5893 & -.031 \\
\hline 1 & 7 & 13 & 2.7181 & 2.81 .13 & 93.2 & 2.7647 & 2.6806 & \(\because 031\) \\
\hline 1 & 7 & 14 & 2.8113 & 2.9054 & 94.1 & 2.8583 & 2.7718 & \(-031\) \\
\hline 1 & 7 & 15 & 2.9054 & 9.0000 & 6094* & 5.9527 & 2.8631 & -1:079 \\
\hline
\end{tabular}

\section*{PROGRAM XCODEC}
```

THE CODER IS PRACTICAL
THE DECODER IS PRACTICAL
S=SI GN BIT
L=ONES COMPLEMENT OF SEGMENT WORD IN DECIMAL
V=ONES COMPLEMENT OF STEP WORD IN DECIMAL

```

\begin{tabular}{lllllll}
\(S L L\) & I & INPUT & INPUT & INPUT & INPUT & OUTPUT \\
& LOWER & UPPER & STEP & MIDDLE & LEVEL & ERROR \\
& LIMIT & LIMIT & SIZE & POINT & & \\
& (V) & (V) & (MV) & (V) & (V) &
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 0 & 0 & 0 & -. 0012 & 0.0000 & 1.2 & -. 0006 & 0.0000 & UNDEF. \\
\hline 0 & 0 & 1 & -. 0020 & -. 0012 & - 7 & \(\because 0016\) & \(\therefore 0007\) & -1.222 \\
\hline 0 & 0 & 2 & -. 0020 & \(-.0020\) & 0.0 & \(\because 0020\) & \(\because 0014\) & -. 369 \\
\hline 0 & 0 & 3 & -. 0034 & \(\therefore .0020\) & 1.5 & \(\because .0027\) & \(\because 0021\) & -256 \\
\hline 0 & 0 & 4 & -. 0039 & -. 0034 & - 5 & \(\because 0037\) & \(\because .0029\) & \(\cdots 289\) \\
\hline 0 & 0 & 5 & -. 0039 & -. 0039 & 0.0 & \(-.0039\) & \(\cdots 0036\) & \(\because 102\) \\
\hline 0 & 0 & 6 & -. 0047 & \(-.0039\) & - 7 & \(\therefore 0043\) & \(\because 0043\) & \(\because 005\) \\
\hline 0 & 0 & 7 & -. 0064 & -. 0047 & \(1 \cdot 7\) & \(-.0055\) & \(\because 0050\) & \(\because 105\) \\
\hline 0 & 0 & 8 & -. 0071 & -. 0064 & \(\bigcirc 7\) & \(\because .0067\) & \(\cdots 0057\) & \(\cdots 180\) \\
\hline 0 & 0 & 9 & -. 0078 & -. 0071 & - 7 & -.0075 & \(\because 0064\) & \(\cdots 164\) \\
\hline 0 & 0 & 10 & -. 0078 & -. 0078 & 0.0 & -. 0078 & \(\because 0071\) & \(\cdots 099\) \\
\hline 0 & 0 & 11 & -. 0083 & -. 0078 & - 5 & -.0081 & \(\because 0078\) & \(\cdots 031\) \\
\hline 0 & 0 & 12 & -. 0098 & -. 0083 & 1.5 & \(\because 0091\) & -.0086 & \(\because 061\) \\
\hline 0 & 0 & 13 & -. 0098 & -. 0098 & 0.0 & -. 0098 & \(\bigcirc 0093\) & \(\because 059\) \\
\hline 0 & 0 & 14 & -. 0105 & -.0098 & - 7 & -. 0102 & \(\because 0100\) & \(-020\) \\
\hline 0 & 0 & 15 & -. 0122 & \(-.0105\) & 1.7 & -.0114 & \(\because 0107\) & \(\because 066\) \\
\hline
\end{tabular}

\section*{PROGRAM XCODEC}

THE CODER IS PRACTICAL
THE DECODER IS PRACTICAL
S=SIGN BIT
\(L=O N E S\) COMPLEMENT OF SEGMENT WORD IN DECIMAL
V O ONES COMPLEMENT OF STEP WORD IN DECIMAL

\section*{}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{5 L} & \multirow[t]{3}{*}{V} & INPUT & INPUT & INPUT & INPUT & OUTPUT & TRACKING \\
\hline & & LOWER & UPPER & STEP & MIDDLE & LEVEL & ERROR \\
\hline & & LIMIT & LIMIT
(V) & SIZE
(MV) & POINT
(V) & (V) & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 0 & 2 & 0 & -. 0387 & -. 0358 & \(2 \cdot 9\) & -. 0372 & \(\therefore 0353\) & -. 055 & \\
\hline 0 & 2 & 1 & -. 0417 & \(\therefore .0387\) & 2.9 & \(\because .0402\) & \(\because 0381\) & \(\cdots 054\) & \\
\hline 0 & 2 & 2 & -. 0436 & \(=.0417\) & \(2 \cdot 0\) & -. 0426 & \(\because 0410\) & \(\cdots 040\) & \\
\hline 0 & 2 & 3 & -. 0475 & -. 0436 & 3.9 & \(\because 0456\) & \(\because 0439\) & \(\cdots 040\) & \\
\hline 0 & 2 & 4 & \(\therefore .0505\) & \(\therefore 0475\) & 2.9 & \(\because 0490\) & \(\because 0467\) & \(\cdots 049\) & \\
\hline 0 & 2 & 5 & -. 0525 & \(\therefore 0505\) & 2:0 & \(\because 0515\) & \(\because 0496\) & \(\cdots 039\) & \\
\hline 0 & 2 & 6 & -.0554 & \(\cdots 0525\) & 2:9 & \(\because 0539\) & \(\because 0524\) & \(\because 029\) & \\
\hline 0 & 2 & 7 & -. 0593 & -.0554 & \(3 \cdot 9\) & \(\because 0574\) & \(\cdots 0553\) & \(\because 038\) & \\
\hline 0 & 2 & 8 & -. 0622 & -.0593 & \(2 \cdot 9\) & \(\therefore 0608\) & \(\cdots 0581\) & \(\cdots 046\) & \\
\hline 0 & 2 & 9 & \(-0652\) & \(\cdots .0622\) & \(2: 9\) & \(\because 0637\) & \(\cdots 0610\) & \(\cdots 045\) & \\
\hline 0 & 2 & 10 & \(\cdots .0672\) & -.0652 & 2:0 & \(\because 0662\) & \(\cdots 0638\) & -. 037 & \\
\hline 0 & 2 & 11 & . . 0701 & \(\because .0672\) & 2.9 & -. 0686 & \(\cdots 0667\) & \(\cdots 030\) & \\
\hline 0 & 2 & 12 & \(\therefore 0740\) & \(\cdots 0701\) & 3.9 & -.0721 & \(\cdots 0695\) & \(\cdots 037\) & \\
\hline 0 & 2 & 13 & -. 0760 & \(-0740\) & 200 & \(\because 0750\) & \(\cdots 0724\) & \(\therefore 036\) & \\
\hline 0 & 2 & 14 & \(-.0789\) & \(\therefore .0760\) & \(2: 9\) & \(\because 0775\) & \(\cdots 0752\) & \(\cdots\) & \\
\hline 0 & 2 & 15 & -. 0819 & -. 0789 & \(2 \cdot 9\) & \(\because 0804\) & \(\cdots 0781\) & \(\ldots 030\) & \\
\hline 0 & 3 & 0 & -.0887 & -.0819 & \(6 \cdot 8\) & -. 0853 & \(\cdots 0824\) & -. 036 & \\
\hline 0 & 3 & 1 & -. 0946 & -.0887 & \(5 \cdot 9\) & \(\therefore 0917\) & \(\because 0881\) & \(\because 041\) & \\
\hline 0 & 3 & 2 & -. 0995 & \(\because 0946\) & \(4 \cdot 9\) & \(\therefore 0971\) & \(\because 0938\) & \(\therefore 035\) & \\
\hline 0 & 3 & 3 & \(\therefore 1064\) & -.0995 & 6.8 & \(\because 1029\) & \(\because 0995\) & -.035 & \\
\hline 0 & 3 & 4 & -.1122 & \(\because 1064\) & \(5 \cdot 9\) & \(\because 1093\) & \(\because 1052\) & \(\cdots 039\) & \\
\hline 0 & 3 & 5 & \(\therefore 1172\) & \(\because 1122\) & \(4 \cdot 9\) & \(\therefore 1147\) & \(\because 1109\) & -0035 & \\
\hline 0 & 3 & 6 & \(-1230\) & \(\because 1172\) & 5.9 & \(\because 1201\) & \(\because 1166\) & \(\because 030\) & P \\
\hline 0 & 3 & 7 & \(\because 1289\) & \(\because 1230\) & \(5 \cdot 9\) & \(\because 1260\) & \(\because 1223\) & \(\cdots 030\) & \\
\hline 0 & 3 & 8 & \(-1358\) & \(\therefore 1289\) & \(6: 8\) & \(\cdots 1324\) & \(\because 1280\) & \(\cdots\) & \\
\hline 0 & 3 & 9 & \(-1417\) & -. 1358 & 5:9 & \(\cdots 1387\) & \(\cdots 1337\) & \(\cdots\) & \% \\
\hline 0 & 3 & 10 & \(\therefore 1466\) & \(\because .1417\) & \(4 \cdot 9\) & \(\because 1441\) & \(\cdots 1394\) & \(\cdots 034\) & \\
\hline 0 & 3 & 11 & \(\because 1525\) & \(-1466\) & 5:9 & \(\cdots 1495\) & \(\cdots 1451\) & \(\cdots 030\) & \\
\hline 0 & 3 & 12 & \(\therefore 1593\) & -. 1525 & \(6 \cdot 8\) & \(\because 1559\) & \(\cdots 1508\) & \(\cdots\) & \\
\hline 0 & 3 & 13 & -. 1642 & -.1593 & 4.9 & \(\because 1618\) & \(\because 1565\) & \(\because 034\) & \\
\hline 0 & 3 & 14 & \(\therefore 1701\) & \(\because 1642\) & \(5 \cdot 9\) & \(\because 1672\) & \(\because 8622\) & \(\cdots 031\) & \\
\hline 0 & 3 & 15 & \(\therefore 1760\) & \(-1701\) & 5.9 & \(\because 1730\) & \(\because 1679\) & \(\bigcirc 031\) & \\
\hline
\end{tabular}

\section*{PROGRAM XCODEC}
```

THE CODER IS PRACTICAL
THE DECODER IS PRACTICAL
S=SIGN BIT
L=ONES COMPLEMENT OF SEGMENT WORD IN DECIMAL
V=ONES COMPLEMENT OF STEP WORD IN DECIMAL

```

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{5 L} & \multirow[t]{4}{*}{\(\dot{v}\)} & INPUT & INPUT & INPUT & INPUT & OUTPUT & TRACKING \\
\hline & & LOWER & UPPER & STEP & MIDDLE & LEVEL & ERROR \\
\hline & & LIMIT & LIMIT & SI2E & POINT & & \\
\hline & & (V) & (v) & (MV) & (V) & (v) & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 4 & 0 & -. 1887 & -. 1760 & 12.7 & -.1824 & \(\cdots 1765\) & -. 033 \\
\hline 0 & 4 & 1 & \(-2005\) & -. 1887 & 11.8 & \(\because 1946\) & \(\because 1879\) & -. 036 \\
\hline 0 & 4 & 2 & -.2113 & \(-.2005\) & 10.8 & \(\because 2059\) & \(\because 1993\) & \(\cdots\) \\
\hline 0 & 4 & 3 & -. 2240 & \(\because 2113\) & 12.7 & \(\therefore 2176\) & -. 2107 & \(\therefore 033\) \\
\hline 0 & 4 & 4 & -. 2358 & \(-2240\) & 11.8 & \(\because 2299\) & \(\cdots 2221\) & \(\because 035\) \\
\hline 0 & 4 & 5 & -. 2466 & \(\therefore .2358\) & 10.8 & -. 2412 & -. 2335 & \(\because .033\) \\
\hline 0 & 4 & 6 & -. 2583 & --2466 & 11.8 & \(\because 2525\) & \(\because 2449\) & 031 \\
\hline 0 & 4 & 7 & -. 2711 & -. 2583 & \(12 \cdot 7\) & \(\therefore 2647\) & \(\because 2563\) & 3 \\
\hline 0 & 4 & 8 & -. 2828 & -. 2711 & 11.8 & \(\cdots 2770\) & \(\because 2677\) & 34 \\
\hline 0 & 4 & 9 & -. 2946 & \(\therefore .2828\) & 11.8 & -. 2887 & \(\cdots 2791\) & \(\therefore 034\) \\
\hline 0 & 4 & 10 & -. 3054 & -. 2946 & 10.8 & -.3000 & \(\because 2906\) & -. 033 \\
\hline 0 & 4 & 11 & \(-3172\) & \(\because .3054\) & 11.8 & \(\because 3113\) & \(\because 3020\) & -. 031 \\
\hline 0 & 4 & 12 & -. 3299 & -. 3172 & \(12 \cdot 7\) & -.3235 & -.3134 & \(\cdots\) \\
\hline 0 & 4 & 13 & -. 3407 & - 3299 & 10.8 & \(\because 3353\) & -. 3248 & \(\cdots 032\) \\
\hline 0 & 4 & 14 & -. 3525 & \(\therefore 3407\) & 11.8 & \(\because 3466\) & \(\because 3362\) & -. 031 \\
\hline 0 & 4 & 15 & -. 3652 & \(\therefore .3525\) & \(12 \cdot 7\) & \(\ldots 3588\) & \(\because 3476\) & -. 032 \\
\hline 0 & 5 & 0 & - - 3887 & -. 3652 & \(23 \cdot 5\) & -. 3770 & -. 3647 & -034
\(\therefore 033\) \\
\hline 0 & 5 & 1 & -. 4122 & -. 3887 & 23.5 & \(\because 4005\) & \(\because 3875\) & -. 033 \\
\hline 0 & 5 & 2 & \(\cdots .4348\) & \(-4122\) & \(22 \cdot 6\) & \(\cdots 4235\) & \(\because 4103\) & -.032 \\
\hline 0 & 5 & 3 & -. 4593 & -. 4348 & \(24 \cdot 5\) & \(\because 4471\) & \(\cdots 4332\) & \(\cdots\) \\
\hline 0 & 5 & 4 & \(\because .4828\) & -.4593 & 23.5 & \(\because 4711\) & \(\cdots 4560\) & -.033 \\
\hline 0 & 5 & 5 & \(\therefore 5054\) & \(\because 4828\) & 22.6 & \(\because 4941\) & \(\because 4788\) & \(\because 032\) \\
\hline 0 & 5 & 6 & -. 5289 & -. 5054 & \(23 \cdot 5\) & \(\because 5172\) & \(\because 5016\) & -. 031 \\
\hline 0 & 5 & 7 & -. 5525 & -. 5289 & 23.5 & \(\because 5407\) & \(\because 5244\) & -0.31 \\
\hline 0 & 5 & 8 & -. 5770 & -. 5525 & 24.5 & \(\because 5647\) & \(\cdots 5472\) & \(\because 032\) \\
\hline 0 & 5 & 9 & -. 6005 & \(-.5770\) & 23.5 & \(\therefore 5887\) & \(\because 5701\) & \(\because 033\) \\
\hline 0 & 5 & 10 & -. 6230 & -. 6005 & \(22 \cdot 6\) & \(\therefore 6118\) & -55929 & \(\therefore 032\) \\
\hline 0 & 5 & 11 & -. 6466 & \(\therefore 6230\) & \(23 \cdot 5\) & -. 6348 & -. 6157 & \(\cdots 031\) \\
\hline 0 & 5 & 12 & -.6711 & -. 6466 & \(24 \cdot 5\) & -. 6588 & \(\because 6385\) & -. 032 \\
\hline 0 & 5 & 13 & -. 6936 & -. 6711 & 22.6 & -. 6824 & \(\because 6613\) & -. 032 \\
\hline 0 & 5 & 14 & -. 7172 & -. 6936 & 23.5 & \(\cdots 7054\) & \(\because 6841\) & -.031 \\
\hline 0 & 5 & 15 & -. 7407 & \(\because 7172\) & 23.5 & \(\because 7289\) & -.7070 & -. 031 \\
\hline
\end{tabular}

PROGRAM XCODEC

THE CODER IS PRACTICAL
THE DECODER IS PRACTICAL
S=SIGN BIT
L = ONE C COMPLEMENT OF SEGMENT WORD IN DECIMAL
\(\mathrm{V}=\) ONES COMPLEMENT OF STEP WORD IN DECIMAL

\begin{tabular}{lllllll}
\(S L\) & INPUT & INPUT & INPUT & INPUT & OUTPUT & TRACKING \\
& LOWER & UPPER & STEP & MIDDLE & LEUEL & ERROR \\
& LIMIT & LIMIT & SIZE & POINT & \\
& \((V)\) & \((V)\) & (MU) & (V) & (V) &
\end{tabular}

\section*{REFERENCES}
1. C. L. Dammann, L. D. McDaniel, and C. L. Madox, " D2 channel bank: Multiplexing and coding," Bell Syst. Tech. J. vol. 51, pp. 1675-1699, Oct. 1972
2. K. W. Cattermole, "Principles of Pulse Code Modulation", Iliffe, London, 1969
3. Y. P. Tsividis, "Nonuniform Pulse Code Modulation Encoding Using Integrated Circuit Techniques", Ph. D. Thesis, University of California, Berkeley, 1976
4. Precision Monolithic Inc. DAC-76 Datasheet
5. J. L. McCreary and P. R. Gray, "All-MOS charge redistribution analog-to-digital conversion techniques - Part I," IEEE J. of Solid-State Circuits, vol. SC-10, no. 6, pp. 371-379, December 1975
6. R. E. Suarez, P. R. Gray and D. A. Hodges, "All-MOS charge redistribution analog-to-digital conversion techniques Part II," IEEE J. of Solid-State Circuits, vol. SC-10, no. 6, pp. 379-385, December 1975
7. Y. D. Tsividis, "XCODEC - A codec simulation program" in Ph. D. Thesis (3).
3. J. L. McCreary, "Successive Approximation Analog-to-Digital Conversion Techniques in MOS Integrated Circuits," Ph. D. Thesis, University of California, Berkeley, 1975
9. F. H. Musa and R. C. Huntington, "A CMOS Monolithic 3 1/2 Digit A/D Converter," Int’l Solid State Circuits Conf. Digest of Tech. Papers, 1976, pp. 144-145
10. Y. P. Tsividis, P. R. Gray, D. A. Hodges, and J. Chacko Jr., " A segmented \(\mu-255\) law PCM voice encoder utilizing NMOS technology," IEEE Jour. of Solid State Circuits, vol. SC-11, Dec. 1976, pp. 740-753
11. G. F. Landsburg, " A charge-balancing monolithic A/D converter," IEEE Jour. of Solid State Circuits, vol. SC-12, Dec. 1977, pp. 662-673
12. J. L. McCreary, and P. R. Gray, "A High Speed, All-MOS, Successive Approximation, Weighted Capacitor A/D Conversion Technique," Intl Solid State Circuits Conference, Digest of Technical Papers, Feb. 1975, pp. 38-39
13. Y. P. Tsividis, P. R. Gray, D. A. Hodges, and J. Chacko Jr., "An All-MOS Companded PCM Voice Encoder", IntI Solid State Circuits Conf., Digest of Technical Papers Feb. 1976, pp. 24-25
14. A. S. Grove, "Physics and Technology of Semiconductor Devices," John Wiley and Sons, New York, 1967.
15. S. M. Sze, "Physics of Semiconductor Devices," WileyInterscience, New York, 1969
16. National CSS, "ISPICE user's manual," Norwalk, Connecticut
17. K. R. Stafford, P. R. Gray, and R. A. Blanchard, " A complete Monolithic Sample/Hold Amplifier," Jour. of Solid State Circuits, Dec. 1974, pp. 381-387
18. G. F. Landsburg, Private communication
19. G. L. Baldwin, and J. L. McCreary, "A CMOS digitallycontrolled analog attenuator for voice-band signals," 1977 IEEE Int́l. Symp. on Circuits and Systems Proc.,

Phoenix, Arizona, 25-27 April 1977, pp. 519-524
20. B. J. Hosticka, R. W. Broderson and P. R. Gray, "MOS sampled data recursive filters using state variable techniques," 1977 IEEE Int’l Symp. on Circuits and Systems Proc., Phoenix, Arizona, 25-27 April 1977, pp. 525-529
21. D. J. Allstot, R. W. Broderson and P. R. Gray, "Fully integrated high-order NMOS sampled-data ladder filters," Int’l Solid State Circuits Conference, Digest of Technical Papers, Feb. 1978, pp. 82-83, 268
22. A. Vladimirescu, " ANDREI - A Minicomputer Integrated Circuit Simulation Program," Third European Solid State Circuits Conference, Sept. 1977
23. L.W. Nagel and D.O. Pederson, "SPICE, Simulation Program with Integrated Circuit Emphasis", Univ. of California, Berkeley, Memo No. ERL-M382, April 1973```

[^0]: CMOS amplifier response to a negative 5V input step; $C_{L}=50 \mathrm{pF}$ and $R_{L}=.5 \mathrm{k}$.

[^1]: CMOS amplifier response to a negative 5 V
 input step (magnified); $C_{L}=50 \mathrm{pF}$ and $R_{L}=.5 \mathrm{k}$.

