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Abstract

The study "Intractability Proofs and the Computational Complexity

of Binary Quadratics" is concerned with determination of computational

tractability or intractability of problems in NP, i.e. solvable in

nondeterministic polynomial time. This comprises a large variety of

"almost" tractable decision problems, often important in applied areas

such as Operations Research.

It is proposed to broaden the customary definition of computa

tional tractability, solvability in deterministic polynomial time, to

random-co-random recognisability in polynomial time. New methods are

given for showing problems intractable, regardless of the definition

used. These methods are potentially more easily ar.d more broadly

applicable than the sole previously available method, that of NP-com-

pleteness. They involve showing that any problem in NP can be reduced

to the problem A being shown intractable by a nondeterministic

polynomial time computation (showing, e.g. that AG NPHNP *>

NP = NPC); previously, only deterministic reductions were considered.

*Supported in part by Office of Naval Research Contract N00014-67-0204-
0063.

Supported by National Science Foundation Grant DCR72-03725-A02.



The methods are applied to prove intractable the problem of deter

mining solvability in integers for equations of any of the forms:

(1) ax + by = c

(2) x2 -a2y2 =c

(3) x + axy = c

(4) (ax +b)y = c

Only for (1) can this be shown by NP-completeness. The analysis of the

other problems depends on detailed knowledge of the distribution of

primes in arithmetic progressions.



Introduction

There is considerable practical interest to methods for determining

whether a given problem is computationally tractable. Research

strategy in developing a solution method for a problem will depend

critically on one's assessment of tractability. The way to deal with a

tractable problem is to find a good algorithm for solving the problem; to

deal with a computationally intractable problem, one must return to the

intended application and determine whether an approximate solution is

adequate, or whether a heuristic method is likely to yield an accept

able solution with acceptable use of computational resources, for at

least most instances of the problem which arise in the application.

These are very different activities, and efficient allocation of

research effort requires determination at an early stage of the strategy

to be followed.

The first chapter of this study is devoted to the development of

methods for intractability proofs which are applicable to problems on

the verge of tractability — problems about which one might genuninely

be in doubt whether or not they are tractable. We motivate the theory

of computational complexity in terms of which we define tractability.

We then discuss methods for providing evidence for intractability; first

the now "classical" method of NP-completeness, and then new methods

based on generalized notions of polynomial time interreducibility of

computational problems. The development is self-contained, but

reference is made to proofs elsewhere that specific problems are indeed

intractable in the senses defined.

The second chapter is devoted to application of the methods we have

developed to the complexity classification of number theoretic problems.



Complexity classification of number theoretic problems is of interest

both because of the insight it gives into number theoretic issues and

because it provides complexity theory with insight from a deeply

developed area of classical mathematics. This is especially important

because of the present state of abstract complexity theory — the

apparent inadequacy of present techniques for proving lower bounds on

complexity, as exemplified by the problem of showing that NP f P. For

in the present situation, all we can show about intractability of a

problem in NP is that it is about as hard as a large class of other

problems in many different areas, none of which are known or believed

to have feasible solutions. By including number theoretic problems in

the classification, we provide significant evidence that the problems in

the other areas which are believed intractable really are intractable;

for we thereby show that even the deep results of centuries of number

theoretic inquiry have not yielded feasible algorithms for computa

tionally "equivalent" or related number theoretic problems.

The problems we classify are solvability problems for binary

quadratic equations. Integer solvability problems for equations encom

pass equivalents of all decidable (and r.e.) problems, and hence are a

universal normal form representation of such problems. The binary

quadratics are of very special interest for our enterprise because

their solvability problems cover the range of complexity levels to

which our methods are relevant, and their solution is intimately

related to the most fundamental and deeply studied number theoretic

computational problems, such as prime factorization of numbers and

determination of properties of quadratic number fields.



We will use the following notation: w will denote the set of

natural numbers 0,1,2,...; Z the integers ...-2,-1,0,1,2,... .

Sequences of natural numbers will be written as <•,...,•>, and this

same notation will be used for the number encoding the sequence which

is obtained by repeated use of a standard pairing function wxu^w.

Similarly, all combinatorial objects which may serve as inputs for

computation will be regarded as coded by natural numbers; thus every

decision problem will be viewed as the problem of deciding membership

in a subset of w. The complement of a set ACU in w will be

denoted by Ac; but for a class K of subsets of w, such as NP, K

will denote the class of complements of the sets in K.



1. Methods for Intractability Proofs

1.1 Conventions of Complexity Theory and Their Motivation

The initial problem of a theory of inherent computational

complexity is to find a framework for classification of problems

according to computational complexity which is at the same time inde

pendent enough of choice of computational model to be of general theoret

ical significance and sensitive enough to make the discriminations

between complexity levels which are required in a given context. This

requires a compromise. The most machine-independent theory of complexity

in the literature is perhaps that of Blum [7], [13]. This theory gives

general insights of considerable significance, but for practical evalua

tion of algorithms in common use considerably more attention must be

paid to the influence of implementation, even down to the level of the

study of time lags in individual hardware realizations [16]; this area

is generally called concrete complexity.

The choice of conventions used in this study is intermediate

between these extremes; it is based on the empirical observation that

the running time requirements for "reasonable" models of computation

in the literature are polynomially related; i.e. for any two such models

M,, Mp there are polynomials p(0* q(-) such that

(i) M, requires less than t steps => M2 requires less than

p(t) steps,

(ii) M? requires less than t steps => M-j requires less than

q(t) steps,

for any given input. This entails that as long as we classify all

problems with polynomially related complexity bounds together, the

resulting complexity classification will be independent of the choice



of any "reasonable" model. The resulting loss of resolution, while too

great for certain practical applications, is much less than that in the

Blum theory and yields an interesting complexity theory for many simple

and important concrete problems.

The preceding discussion presupposes that we have resolved a

difficulty: Any reasonable machine model can be programmed to deal

with any (sufficiently small, in practice) finite set of inputs, for

example by storing a table of relevant outputs in memory. This effi

ciency has little to do with the inherent complexity of "figuring out

the answer" to a problem, and the conventions of our complexity theory

must be chosen so that this phenomenon does not influence the complexity

classification. The by now classical solution to this difficulty is to

define a problem as a function on an infinite set of inputs, each of

which is a finite combinatorial object (such as numbers in binary

representation); then we classify all problems together whose resource

requirements differ on only a finite set of inputs.

This can be achieved by defining a running time bound as a function

of input size, rather than of the input itself, and using only the

asymptotic behavior of the bounds in complexity classification. The

choice of input size as argument for complexity bounds has an important

further methodological advantage. The resulting complexity theory

deals uniformly with many types of inputs (numbers, graphs, polynomials);

complexity expressed in terms of inputs or characteristic parameters of

inputs (numbers, number of nodes, degree and coefficient size, ...)

may be natural for a given type of input, but does not allow direct

comparison of complexity with problems of other types. This univer

sality will play an important role in our methods. We will use the
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symbol |x| in this section to denote the length (size) of the input

x. We thus arrive at the following classical definitions, which are

given in terms of a Turing machine model, for the sake of rigor; by the

above remarks the resulting complexity classification will not depend

on this choice of model. For definitions and motivation of the notion

of Turing machine, see Turing [31] or Minsky [26].

Definition. A Turing machine M runs in time t: oj -»• w if and

only if for any input x (of length |x|) M halts within t(|x|)

steps. M runs in polynomial time if and only if for some polynomial

p(*)> M runs in time p(.)» The class of sets decidable (by a

Turing machine which runs) in polynomial time will be denoted by P.

1.2 Intractability

A theory of intractability requires a definition of tractability.

We will consider two proposed definitions in this thesis, without

deciding among them. Before doing so, we define the class of problems

which will serve as the scope of our methods and focus them on problems

"on the verge of" tractability.

Definition. A nondeterministic Turing machine (NDTM) is a Turing

machine which may have more than one quintuple with any given state-

input symbol pair. Thus on a given input to the machine, a number of

computation paths are possible (one corresponding to each sequence of

choices between quintuples with relevant state-input symbol pair), and

these form a tree. The machine accepts an input x if and only if

some computation path on that input terminates in a designated state,

called the accepting state. A NDTM M accepts a set S if and only
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if S is exactly the set of inputs accepted by M. M runs in time

t: a) -> a) if and only if for every input x, all computation paths

halt within t(|x|) steps; M runs in polynomial time if M runs in

time p(-) for some polynomial p(-); the class of sets accepted by

an NDTM in polynomial time will be denoted by NP.

Our methods and results will be primarily concerned with problems

in NP, and, derivatively, with problems in MP (i.e. with sets

whose complement is in NP). This class contains a wide variety of

concrete problems in many areas of application. It is a natural class

in the sense that it is usually easy to recognize whether a problem is

in NP. Problems in NP are indeed on the verge of intractability in that

it is a priori conceivable that nontrivial methods might yield a

feasible solution, even though a naive approach (such as deterministic

simulation of all branches in the computation tree) leads to exponential

explosion of resource requirements.

We next describe a more constrained version of nondeterministic

computation which will serve in one of our definitions of tractability.

If T is a finitely branching tree, an assignment of weights to T is

a map T: (0,1] from the nodes of T to real numbers, such that the

root of T is assigned 1; the uniform assignment of weights is the

assignment of weights such that if a node has weight w and has n

distinct immediate successors, each successor node has weight w/n.

The weight of a branch of T is the weight assigned to the lowest node

in the branch.
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Definition. An NDTM M accepts a set S randomly if and only if

(i) M accepts S, and

(ii) the accepting paths for any accepted input x (in the sense

of (i)) have weight together of at least j in the uniform assignment of

weights to the computation tree of M on input x.

An NDTM runs in random time t: w -* w if and only if it accepts

randomly and runs in time t. We denote by R the class of sets

accepted in random polynomial time.

Remarks. 1. Another formulation of accepting randomly is that

any input for which there is some accepting computation path (in the

NDTM sense) has in fact "at least half" of the paths in its computation

tree accepting. Here "at least half" is expressed more precisely by

the weight of accepting paths in uniform weighting as described above.

The expression "at least half the paths" is literally accurate if all

paths are of the same length and every path involves the same amount of

branching at each level. In proving that algorithms are random we will

often make use of this formulation.

2. The class random polynomial time (R) is not affected if we

change the weight requirement from •> \l to •> e', for e >0, or even
to '> —U:' for finite k, and |x| the length of the input x. This

is shown by an easy simulation argument, comparable to the argument for

the following proposition:

Proposition. Assume Se RHRC, Rc the class of sets whose com

plements are accepted in random polynomial time. Then for any e >0

there is a polynomial running time p(*) and a deterministic algorithm

M with a random element such that
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(i) M runs in time p;

(ii) for all but 1-- of the possible histories of the random

element of length p(|x|), x any input,

M outputs '0' on input x if x e S ,

M outputs 'V on input x if x^S ;

(iii) for at most - of the possible histories of the random element

of length p(|x|), x any input, M outputs '?'.

Proof. Let M, be a random polynomial time acceptor of S and

M« be a random polynomial time acceptor of S . Consider the algorithm

"On input x, simulate both M1 and M2, using the

random element to choose a computational path of each. If

both halt in a nonaccepting state, we start over, and repeat

n times, where — < e. If we still have not reached an
2n

accepting state, output *?'; otherwise output 0 if M-j

halted or 1 if M2 halted."

This assignment is consistent because the sets accepted by M^

and M2 are disjoint. It is clear that for n repetitions of the

simulation, i.e. each history tries out n paths in the trees of

M,(x) and M9(x), at most ^- of the histories fail to locate an
accepting path of either M1 or M0. The entire simulation requires

essentially p= n-(p,+p2) steps, where p,, P2 are the polynomial

running times of M, and Mp.

We are now in a position to define tractability. A classical

proposal is that
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(Ti) a problem is tractable if and only if it is solvable in deter

ministic polynomial time, i.e. Sep.

We wish to propose as an alternative explication:

(Tii) S is tractable if and only if Se RORc.

The argument for this proposal rests on the Proposition and its proof.

For assuming, for example on the basis of (Ti), that we can afford to

spend polynomial time on problems of interest, we argue that we can also

afford to risk a very small probability that we fail to come up with a

solution in the given time. After all, we can keep trying if we really

wish to find a solution. Note that the probability of failure does not

depend on the input; that is, failure does nojt result because the

algorithm is unable to deal with a particular, difficult, input in the

given time.

There is a classical objection to (Ti), which is equally valid

against (Tii): It is not obvious that one can afford polynomial time if

the polynomial has large coefficients or large exponents. This is a

genuine difficulty, which however has not become acute in practice:

most concrete problems which have been found solvable in deterministic

polynomial time have been found to have reasonably well-behaved running

time bounds. A further advantage of (Ti) and (Tii) over modified ver

sions restricting the size of running time polynomials is the theoretical

convenience of implementation independence obtained by the polynomial

closure of P and RHRC, as explained at the beginning of this section

We will not consider further arguments for, against, or between (Ti)

and (Tii) here, but rather develop the theory of intractability on the

basis of both proposals.
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In order to expose the theoretical problems underlying determination

of (in-)tractability we consider the relationship between the complexity

classes introduced so far:

Diagram 1.1

All the inclucions indicated in the diagram are easily proved from the

definitions given above. On the other hand, it is a classical, appa

rently difficult

Open Problem. Is P distinct from NP (or equivalently, from

r ?
MP )? (NP = P)-problem.

It will be important to the argument below that it is generally

conjectured in complexity theory that all the inclusions indicated as

strict in the diagram are indeed strict; e.g. NP 2 P, and all inter

sections of classes depicted as nonempty are indeed nonempty.

We observe that on the one hand, proving that a tractable problem

is tractable is in principle theoretically unproblematic, though in



14

some cases perhaps formidable: one must produce (Ti) a deterministic

algorithm, or (Tii) a pair of random algorithms; show the algorithm(s)

correct, and prove polynomial running time bound(s). On the other hand,

to show that there is a problem S e NP which is not tractable, i.e.

either S $ P or S $ RHRU, entails solving the open (NP =P) problem.

This problem is worth solving, but it is hardly fair to suggest that

one's preliminary assessment of research strategy concerning an applied

computational problem should include determination of a solution to

this redoubtable theoretical issue. The theoretical challenge of

intractability proofs then is to provide a methodology for demonstrat

ing intractability in some weaker sense, not requiring solution of the

NP-P problem.

1.3 Evidence for Intractability

The first method for providing evidence of intractability for

problems in NP, and until the methods of this study the only available

method, was provided by work of Cook [10] and Karp [15] and,-indepen

dently, Levin [20]. Their now classical method, that of NP-complete

ness, will serve as a model for the other methods to be developed. We

therefore present and analyze the method in some detail.

Let S and T be two sets. S is said to be polynomial time

reducible to T if there is a (deterministic) polynomial time algo

rithm computing a function fs such that for any x: xG S *>

f (x) e T. This condition clearly entails reducibility of the problem

of accepting or determining membership in S to the analogous problem

for T: to find out about the relationship between x and S,

compute fs(x) and ask about the relationship between f$(x) and T.
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Moreover, the restriction of the reduction algorithm to polynomial

times guarantees that if solution of the problem S to be reduced

requires much more than polynomial time, solution of the problem T

must be essentially as hard as solution of the problem S; if all

problems in a class are polynomial time reducible to a given problem,

that problem must be essentially as hard as any problem in the class.

In this spirit, we say that (the problem of accepting) the set S is

NP-hard if every set in NP is polynomial time reducible to S. If S

is NP-hard and S e NP, then S is NP-complete.

NP-complete sets do in fact exist. Let a literal be a proposi-

tional (i.e. Boolean) variable or the negation of a propositional

variable. Consider the propositional formulas <j> of the form

4> = Cj ACpA ••• ACk; C^ = Ai i vA2i vA3i; *ii a literal for 1 - i - k»
1 1 J ± 3. The C's are called 3-clauses and <J> is called a 3-formula.

A 3-formula is satisfiable if there is an assignment of truth values

(i.e. 'true* and 'false') to the propositional variables occurring in

the 3-formula under which the 3-formula is true, i.e. at least one

literal in each clause is true. Let 3-Sat be the set of satisfiable

3-formulas. The fundamental existence result for NP-complete sets is

the

Theorem 1.3 (Cook [10]). 3-Sat is NP-complete.

As a further example, we show below in section 2.1 that

2
Theorem 1.3.1. The set {<a,b,c>: ax +by = c solvable in w} is

NP-complete.
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For intractability proofs, the relevance of NP-completeness proofs

is that NP-complete problems are the "hardest" problems in NP, or more

formally:

Proposition 1.3.2. Let S be NP-complete. Then

(i) Sep o NP = P (+)

(it) S G RORG <=> NP = R = RC * NPC (++)

Proof: (i) If NP = P, SGP is trivial; if Sep, any

T G NP has a deterministic polynomial time algorithm: "On input x,

reduce T to S by computing fT(x), and then use the deterministic

polynomial time algorithm for S to see if fj(x) e S. Output

accordingly."

(ii) Again, S G NP = R = Rc => S G RORc is trivial; and if •

Se RORc then by fT for arbitrary TGNP we have a reduction show
ing as in (i) that NP c R so NP =R; but also that NP C Rc, so

c c c
RC R , and, by taking complements of members of R and R , R c R

so NP = R= Rc. By taking complements again NPC = R = R. Q
•

The process by which the method of NP-completeness provides evidence

for intractability of a problem S can now be analyzed in two parts:

1. The proof that S is NP-complete. It is sufficient to reduce

some known NP-complete problem to S; doing this requires insight into

the particular nature of the problem S. For example, what may be

required is knowledge of graph theory, if S belongs to that domain,

or in the case of the examples in this study, of number theory.

2. We use insights of general complexity theory, namely the

conjecture that the relevant inclusions in Diagram 1.1 are strict, to
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conclude from Proposition 1.3.2 that S$ P or S$ RHRC. These

insights (which one hopes will eventually be superceded by rigorous

proof) are based on experience in searching for efficient algorithms

for problems in NP not known to be in P; thus the inference we make

about S is based on insight gathered by research on algorithms in

many areas besides the area of S. For example, the conjecture that

NPnNPc ? P is based in part on the frustration of the search of

several centuries for a method for determining the prime factorization

of numbers, which has failed to yield anything better than exponential

time methods (as we note in section 2.1 below, prime factorization is

deterministic polynomial time computationally equivalent to a problem

in NPHNPC).

This unification — the facility to bring insights from deeply

developed areas of mathematics such as number theory to bear upon the

complexity of problems in new or undeveloped areas — is one of the

principal strengths of complexity theory. The new methods for intrac

tability proofs to be presented below are analogous to that of NP-

completeness, and the analysis of 1. and 2. remains valid for these

methods; the differences will be in the notions of reduction used and

in different choices of inclusions in diagram II.1 for which the con

jecture of strictness is relevant.

Before introducing the new methods, it is well to explain why

there is a need for further methods. The method of NP-completeness has

been used very widely and has been extremely successful. On the other

hand, Ladner [17] has shown that if NP + P, there are problems in NP

which are neither in P (or in fact in NPONP ) nor NP-complete. Thus

it is in principle quite possible that some practical problems may be
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intractable but not NP-complete, and for these the method would not

succeed in showing NP-completeness. A second motivation for stronger

methods is to shift the burden of part 1 of the intractability proof,

i.e., the part which must be done separately, to part 2. By allowing

resources superior to deterministic polynomial time computation for

reduction of. problems, and hence broadening the class of complete

problems, we will obtain potentially more general and more easily

applicable methods.

The first new method, that of y-completeness or nondeterministic

NP-completeness, allows nondeterminism in the reduction algorithm. It

may seem surprising that nondeterministic polynomial time reduction

(as defined below) is not so powerful as to collapse all of NP into a

single interreducibility class; that this is not so is due to the

contrast of the (conjectured) nonclosure of NP under complementation

with the symmetry of the condition (*) on reduction under complemen

tation, given in the definition below:

Definition 1.3.1.

1) A nondeterministic transducer F is a nondeterministic

Turing machine such that on every input x, at least one path halts

with an output on its tape. Distinct computational paths on a given

input may produce different outputs; we denote the set of outputs

produced on input x by F(x).

2) Let A and B be sets. A is y-reducible to B (notation

A < B) if and only if there is a nondeterministic transducer F

which runs in polynomial time such that

VxVy G F(x)[xGA <*yGB] . (*)
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3) A set A is y-hard if every set in NP is y-reducible to A,

and y-complete if and only if it is y-hard and in NP.

The utility of showing that a set is y-complete for assessment of

intractability can be expressed in a proposition analogous to

Proposition 1.3.2.

Proposition 1.3.3. Let A be a y-complete set. Then

AG NPHNPC o NP = NPHNPC = NPC . (+++)

Proof. The implication from right to left follows directly

because A G NP. To show the converse, assume A y-complete and

AG NPHNPC. Let S be an arbitrary set in NP, reducible to A by trans

ducer F. To show S G NPC, consider the following nondeterministic

polynomial time acceptor for Sc: "On input x,

compute a value y of F(x). As A G NPC, there is a nondeterministic

polynomial time acceptor Mfor Ac. Run Mon y, and accept x if M

accepts y." Clearly this works. Hence NP £ NPC, and by taking

complements, NPC c NP so NP = NPHNPC = NPC.

From this proposition we conclude that once we have understood a

problem A sufficiently to show that A is y-complete, the evidence

gathered from other areas for the conjecture that the right hand side

of (+++) is false is evidence that A$ NPnNPc. Thus A is

bounded away from the classes of problems which are candidates for

being tractable.

We give some applications of the new methods to problems not

known to be NP-complete.
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Theorem 1.3.4. The following sets are y-complete.

1) {<a,c>: (ax+l)y =c solvable in Z}

2 2 2
2) (<a,c>: x -a y =c solvable in Z}

3) {<p,q-,,... ,qk>: p prime number, q, --'^k inte9er coefficient
i

polynomials in sparse representation; such that, for some nGw
k

It q.(n) | 0 modulo p} (Plaisted [29]).
1=1 1

The proofs of 1) and 2) are given in sections 2.4 and 2.3; 3) is

shown in [29].

The next method we present, that of random completeness, is

intermediate betv/een that of y-completeness and that of NP-completeness;

it is obtained by requiring the nondeterministic reduction of

Definition 1.3.1 to be a random nondeterministic computation.

Definition 1.3.2. 1) Let A and B be sets. A is random

reducible to B (notation: A <« B) if A is y-reducible to B by a

nondeterministic polynomial time transducer F such that for every

input x, the computation paths of F on x which produce outputs

have total weight >_j in the uniform weighting of the computation

tree of F on X.

2) A set A is random hard if every set in NP is random reduci

ble to A, and,random complete if A G NP and A is random hard.

The characteristic property of random complete sets is:

Proposition 1.3.5. Let A be a random complete set. Then

(i) A G R o R = NP

(ii) AG Rc <* NP = R = RC = NPC
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Hence:

A G RORc o NP * R = RC = NPC . (++)

Proof. If A G R, a random algorithm for any set S G NP is

obtained by composing the random reduction of S to A with a random

c c
polynomial time acceptor for A. If AG R , i.e., A G R, a

random polynomial time algorithm for any set S G NP is obtained by

c c
composing the random reduction of S to A with a random acceptor

for Ac. Hence NPC c R C NP so NP = NPC so NP = R.

As an application of this method, we show in section 2.3 the

following result, which depends on an unproved conjecture from number

theory, the Extended Riemann Hypothesis [25] (ERH):

Theorem 1.3.6 (ERH). The sets

{<3k,c>: x2-(3k)2y2 =c solvable in Z}

{<p,c>: (px+l)y =c solvable in Z; p prime}

are random complete.

Finally, we present two new methods using a weaker notion of

reduction instead of the many-one reduction of the form (*), unfaithful

y-completeness and unfaithful random completeness. This appears to be

the first place in the literature that use is made of the type of

reduction, unfaithful reduction, defined here. The key to these new,

stronger methods is that weaker forms of reduction may not yield an

efficient method for solving one problem using a solution of another,

but still relate the complexity of the problems involved in a signifi

cant v/ay.
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Definition 1.3.3. Let A and B be sets. A is unfaithfully

y-reducible to B (notation: A < B) if and only if there is a

polynomial time nondeterministic transducer F such that

(i) VxVy G F(x) xGA=>yGB

(ii) Vx3yGF(x) xGA<=>yGB

A set AG NP is unfaithfully y-complete if and only if every set in

NP is unfaithfully y-reducible to A.

The characteristic proposition in this case is

Proposition 1.3.7. If A is unfaithfully y-complete, then

A G NPONPC o NP = NPONPC = NPC (+++)

Proof. As in the proof of Proposition 1.3.3, we have NPC c MP,

by composing the y-reduction of the complement S of an arbitrary

set S G NPC with a nondeterministic polynomial time acceptor for A .

Definition 1.3.4. Let A and B be sets. A is unfaithfully

random reducible to B (A <RB) if and only if A is unfaithfully

y-reducible to B by a transducer F such that for any input x,

the computation paths of F on x which produce outputs y satisfying

x G A <* y G B

have total weight < j in the uniform weighting of the computation

tree. A G NP is unfaithfully random complete if and only if every

set in NP is unfaithfully random reducible to A.
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We obtain the

Proposition 1.3.8. Let A be an unfaithfully random complete

set. Then

AG RHRC o NP = R = RC = NPC . (++)

Proof. Assume AG Rc, Sg NPC arbitrary. Composing the

random reduction of Sc to Ac with a random acceptor for A , we

have NPC CR, i.e. the result follows as in Proposition 1.3.5.

It is a remarkable fact about unfaithful reductions that complete

ness in the unfaithful sense gives us the same information about intrac

tability as completeness in the corresponding faithful sense: the

conclusions of Propositions 1.3.7 and 1.3.8 are the same as those of

1.3.3 and 1.3.5.

As an application, we will show in sections 2.3 and 2.4:

Theorem 1.3.9.

1) {<3k,c>: x2-(3k)2y2 =csolvable in Z} is unfaithfully

random complete.

2) {<p,c>: (px+l)y =c nonzero solution in Z; p prime} is

unfaithfully random complete.

Theorem 1.3.9 illustrates the types of advantages to be gained

from use of the unfaithful reductions: We are able to dispense with

the unproved hypothesis ERH used to show random completeness as well

as with Ankeny's elaborate analysis of the least quadratic nonresidue

[3] .which underlies Miller's primality testing algorithm [25], used

in the proof of Theorem 1.3.6. In other circumstances we may perhaps
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show unfaithful random completeness of a problem which even under the

assumption of ERH we cannot show random complete. Thus the advantages

are — simplification of proofs, elimination of hypotheses, and more

powerful intractability results than can be shown otherwise.

1.4 Conclusion and Open Problems

Four new methods for intractability proofs have been introduced.

All of these methods are potentially of broader applicability than

that of NP-completeness, as well as potentially easier to apply. Even

problems which are NP-complete might more easily be shown unfaithfully

y-complete. It is thus with the binary quadratic solvability problems

presented as examples: We cannot be really sure at this point that

these problems are not NP-complete, but at present the only way known

to show them intractable is to use our new methods. From a practical

point of view, the intractability is what one wants to show, and

preferably as efficiently as possible.

What can we say about the question whether (assuming NP f NP )

NP-completeness and y-completeness are really distinct? One has intui

tive grounds to believe that nondeterministic reduction could indeed

be properly more powerful than deterministic reduction (both in

polynomial time): Nondeterministically one can "guess" a configura

tion related to the problem to which one is reducing, which is special

in that it is a relatively small configuration with special properties,

but such that no polynomial time method can deterministically locate

such a configuration. For example, a small prime p in a given

residue class (k modulo h) forms such a configuration, and this is a

key fact used in the proofs of the theorems in this section. One can
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afford to write out the prime, and a proof of its primality, but no

method is known to efficiently determine such a prime.

Avariety of open problems are suggested by the methods of this

section; we list some with most direct theoretical appeal:

Open Problem 1. Is every unfaithfully random hard set y-hard?

If not, does this at least hold for sets in NP (the complete sets)?

Open Problem 2. Assuming NP J R, extend the methods of Ladner

[17] to show that there are sets in NP which are not NP-complete nor

in R.

/»

Open Problem 3. Similarly, assuming NP ^ NP , show that there

are sets in NP which are neither y-complete nor in NP.ONP .

Open Problem 4. If NP c R, then there is no random complete

set in R. But is there a y-complete set in R? an unfaithfully

y-complete set? an unfaithfully random complete set?

Open Problem 5. One clearly has the inclusions

c unfaithfully random hard
NP-hard c random-hard £ unfaithfully y-hard .

c y-hard

Are all these inclusions strict? Are they strict for the corresponding

complete sets? (Assume of course the relevant conjectures in Diagram I.l.)

None of the methods developed here applies directly to classifica

tion of complexity of problems in classes closed under complement such

as NPHNPC, in the sense that complete problems never lie in this

class.
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Open Problem 6. Is there an interesting sense in which problems

in NPONPc can be complete for NPONPc?

Another problem is suggested by the examples given, all of which

are rather number theoretic.

Open Problem 7. Find natural non-number theoretic combinatorial

problems which are unfaithfully y-complete but not NP-complete.

The present authors have not looked in depth for such non-number-

theoretic examples; it is conceivable that the graph isomorphism

problem is a candidate.
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2. The Solvability Problem for Binary Quadratics

2.1 Introduction

Many number theoretical questions are formulated or can be formu

lated as questions about the solvability of Diophantine equations

(i.e., p(x.,"-x ) =0 for a multivariate polynomial p(x-j"-xn)

with integer coefficients) in natural numbers or integers. This

becomes clear upon examination of the section on Diophantine problems

in any standard number theory text; it is in fact made mathematically

precise by Matijasevic's theorem [22] that all recursively enumerable

sets are Diophantine (i.e., the elements of the set S correspond to

the parameter values a for which an appropriate Diophantine equation

Pe(a>x, '.'X ) = 0 has a solution). It is therefore of fundamental
rS in

importance to consider algorithms for deciding the solvability of

Diophantine equations, as Hilbert stressed in asking for such algo-

rithms in the 10 of his famous set of mathematical problems in 1900

[14]. One wishes to know (a) the complexity of deciding solvability

for various classes of Diophantine equations, and especially (b) for

which subclasses of Diophantine equations a feasible (i.e., deter

ministic polynomial time) algorithmic procedure to decide solvability

exists.

It follows from Matijasevic's theorem that for some fixed n,

the set of solvable n-variable Diophantine equations is nonrecursive.

Much effort has been devoted to determining the minimum n for which

this is true. The best published result is n _< 13 [23]; Matijasevic

has improved this to n^9 [24]. In [23], it is conjectured that

n = 3 may be possible, though this cannot be shown by present methods
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Diophantine equations in two variables form a classical topic in

number theory. For degree 3 or greater, the solvability problem is

generally quite difficult to approach; recent work of A. Baker [4] [5],

based on his fundamental results on linear forms in logarithms, gives

the first rather broadly applicable decision procedures for the solva

bility problem for some such types of equations. On the other hand,

the solvability problem for binary quadratics encompasses a number of

fundamental problems of number theory, such as primality testing,

factorisation, and quadratic residuacity. Thus these equations have

been intensively studied for the past several centuries, especially

starting with Lagrange and Gauss [12]. We give an overview of complex

ity results for solvability problems for binary quadratics. (All

coefficients are assumed positive.)

(a) ax +bx +c = dy

Can be simplified to the question of quadratic residuacity, i.e.
2

(a)' x = a' modulo b'

In P, using the quadratic reciprocity theorem for the Jacobi

symbol.

(b) (x+2)(y+2) = a (compositeness of a)

Clearly in NP; in NPC by Pratt [30]; if ERH (see below) is true,

in P by Miller [25].

(c) (x+2)(y-(a+l)(b-x-3)) = a

This equation is solvable if a has a nontrivial divisor (/ 1, /a)

below b; it is in NPONPc and deterministic polynomial time equiva

lent to the problem of prime factorisation of numbers. See Miller

[25].
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(d) x2-ay2 =1

The Pell equation, known to be solvable if and only if a is not

a square (in P). See [28].

(e) x2-ay2 = -1

By significant forthcoming work of Lagurias [18], this problem is

in NPHNPC. Neither membership in NP nor in NPC is easily shown

(f) x2 -a2y2 =c

Clearly in NP; in P if restricted to c with less than log logc

prime factors. Unfaithfully random complete, even for a = 3 .

Given ERH, random complete. See section 2.3.

(g) x«(ax + by) = c

Unfaithfully random complete, with ERH random complete, by same

proof as for (f). See section 2.3.

(h) (ax + b)y = c

as (f). The intractability results hold even for

(i) a: power of 3; b = 2

(ii) a: prime; b = 1.

See section 2.4

(i) ax +by = c

NP-complete by Manders-Adleman [21]. See section 2.2.

(j) ax2 +by2 =c

Clearly in NP. Otherwise: Open Problem. In P, if c prime.

See Mordell [27].

(k) x - dy = m

Pell equation, more general from. Not even known to be in NP!

This equation has considerable significance in algebraic number
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theory (see Borevich and Shafarevich [8]); its complexity consti

tutes the major open problem concerning binary quadratics.

Before proceeding to the proofs, we note the following conventions:

(a,b) denotes the greatest common divisor of a and b; thus

(a,b) = 1 means that a and b are relatively prime,

a|b abbreviates 'a divides b'; ajb abbreviates 'a does not divide b'

[a] abbreviates the greatest integer less than b.

ERH refers to the Extended Riemann Hypothesis, e.g. as defined in

[25]. This is an as yet unproved numbertheoretic conjecture.

We indicate that ERH is used in the proof of a statement by

adding '(ERH)' to the statement.

|x| denotes the absolute value of x.

2
2.2 The Complexity of ax +by = c

If integer values for x and y are allowed, the solvability

problem for this equation is equivalent to the question: "Is a*c a

quadratic residue modulo b?" where a* is the inverse of a modulo b:

2 2 *
ax = c ** x = a c (modulo b) .

This problem is easily decided in polynomial time, using the quadratic

reciprocity law for the Jacobi symbol [28]. Moreover, Adleman,

Manders, and Miller [2] have shown, using ERH, that if b is prime or

presented fully factored, some positive solution x of x = a*c mod b

(if any exists) can be found in deterministic polynomial time. On the

other hand, v/e shall see directly that for arbitrary b, even presented

fully factored, and regardless of the assumption of ERH, the problem



31

of finding the least positive solution to this congruence is NP-hard

(in the sense that given an oracle for this problem, we can construct

a deterministic polynomial time solution to an NP-complete problem.

If we consider only nonnegative integer solutions for x and y,

then the size of x and y will play a role, over and above the

quadratic residuacity of a*c modulo b: a solution x must be a
l /p

square root of a*c modulo b satisfying 0 <x < (c/a) ' . Thus the

"naive" approach to this solvability problem is perhaps, given the

factorisation of b, to determine (ERH) the square roots of a*c

modulo each maximal prime power factor of b, and use the Chinese

Remainder Theorem to reconstruct all square roots of a*c modulo b

to accept the input <a,b,c> if one is encountered which is below the

size bound. Unfortunately, b may have almost log c distinct

prime factors, giving 2 9 = b solutions; hence this method may be

expected to require exponential time on infinitely many inputs. More

over, no efficient method is known to choose a set of residues modulo

prime power factors of b which will yield a small square root modulo

b after the Chinese Remainder process.

Vie will show below that this solvability problem is indeed

intractable:

Theorem 2.2.1. The following sets are NP-complete:

o

(i) {<a,b,c>: ax +by =c solvable in u}
2

(ii) {<a,b,c>: x Ea modulo b, 0<x<c solvable in to}

This theorem was shown in Manders and Adleman [21]. We now give a

shorter proof which more clearly exposes the crucial step in the con

struction. This theorem is the only known NP-completeness result for
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a class of binary quadratics. From the analysis given above, it is

clear that the ability to find the least positive square root modulo a

number will yield a polynomial time solution to the NP-complete problem

(ii), as was promised above.

Proof. The proof is by reduction of the set partition problem:

Proposition (Karp [15]). The set partition problem: "Given a

finite list of positive integers a,,...,a , not necessarily distinct,

is there a binary partition of the list such that the two classes have

equal sum?" is NP-complete.

Notation. The sums over the two classes of a binary partition of

the list will be written as £a., I'a.; i.e. we suppress reference to

the index sets in order to simplify notation.

We first give the reduction algorithm:

(A) "On input a,,...,a , compute:

p,,...,p first n odd primes;

k 1 nk minimal such that 2 > J. , a.;

0., i=l,...,n minimal positive integers such that

k-1
6. = a. modulo 2 ,

k
6. = 0 modulo n p.,

9. | 0 modulo p.;

k-1
u: inverse of 2 modulo K

Output:

(i) 2

(ii) x2 =u2H2 modulo K, 0<x<H/2k_1, i.e. <u2H2,K,[H2Tkl"1]>."

(i) 22k"2x2 +Ky =H2, i.e. <22k"2,K,H2>;
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A runs in polynomial time: We can afford to sieve for the first n

odd primes. For each i, a minimal positive solution X to the

first two conditions on 0. can be found by the Chinese Remainder

Theorem; then at least one of X and X+2k_1 np. will not be divi-
tf1sible by p. (as the difference between the two is not divisible by p^

and thus will satisfy the third condition on 0.. as well as the first

two. All other computation is routinely polynomial time.

The crucial point in the reduction is the use of the 0^, K, and

H as explained in the following key lemma:

Lemma 2.2.2 (Manders-Adleman [21]). Let 0^, i= 1,...,n, K,

and H be as defined in the algorithm. The general solution in

integers of the system

(1) 0< |z| <H ,

(2) (H+z)(H-z) = 0 modulo K,

is given by

(3) z=£"=1 a.0., a.G{-1,+l}, i=l,...,n.

Proof. First assume that z is of the form (3). Then

n+1|z| < J0. = H. By definition of H and 0., H = 6.. modulo p.. , so

H = 8. = z modulo p? , a- = 1 ;
n4»l

H = S. = -z modulo p. , a. = -1 ;

so that z also satisfies (2).

Next assume that z satisfies (1), (2). Then for each i

p^1 |(H+z)(H-z) .
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On the other hand, for each i, p. divides at most one of H+z,

H-z. For otherwise p. |(H+z) +(H-z) = 2H, and p prime > 2, so

p|H= Je.. But by definition of 8., p. |0^ for all i' i i. Then

also p. |0., contradicting the definition of 0..

Thus for each i, p"+1 |H+z or p"+1 |H-z, but not both.

Defi ne n+1
a1 =1 , if p" IH-z ;
a. =-1 , if p"+1 |H+z ;

z' = Ja1e1 .

n4-l

Then for each j, z' = o.J&\ = a..H = z modulo p.. , so

z' = z modulo K, and

" -H <z' <H
=> |z'-z| <2H < K,

-H < z < H

where 2H < K because

0<0. <2.2k_1-K/pk ,

2H <4nK(2k"1/3k"1)-npT1 <K, as 4n <npi .

Thus z = z' and hence z is of the form (3). Q

We now prove correctness of the algorithm:

la. =I'a. - f.^ ct.a. =0, a. G {-!,+!}
(since 2M >1^-, xa^)

<* ln. . a,a, e0modulo 2k-1
^1=1 i l

o ln. . o.s. = 0 modulo 2 (by the lemma)
£*i = l l l

o (I) z GZ, 0 < |z| < H

(II) (z+H)(z-H) = 0 mod K

(III) z=0 modulo 2k~1
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<*. (requiring z G w without loss of generality, as (I)-(III) is symmetric

k-1
in z; and converting (III) into z = 2 x, x 6 u)

(I)' xG w> 0<2k"]x <H

(II)' 22k"2x2-H2 =0 modulo K

(i) x, y Goj; 22k~2x2+yK =H2

for clearly (i) => (I)-'(II)'; conversely, if (II)' is satis

fied, the equation has a solution with integral y and

x G or, but any such solution with negative y must have x

violating (I)', and any such solution with yGu must have

x satisfying (I)'. Hence the restriction y G uj is equiva

lent to (I)',

(ii) x2 =H2-(22k"2)-1 modulo K, 0<x<H/2k"1. D

2 2 2 2
2.3 The Complexity of x -a y =c and x +axy = c

Rewriting the equation as (x+ay)(x-ay) = c, we see that it is

solvable if and only if c can be written as a product of two factors

congruent modulo 2a. Thus this solvability problem is in NP -- "Guess"

factors f,, f2 and check that f, = f« modulo 2a and f-i'fo = c.

Deterministically, we can solve the problem of prime factorisation of

c and testing all binary partitions of the factors of c; the diffi

culty is that infinitely many c have about log c/loglogc = |c|

Icl
distinct prime factors, so that v/e get about 2' • distinct partitions,

requiring almost exponential time for the complete test. The intracta

bility proof given below provides evidence that non-trivial methods

of solution would not be expected to improve this to polynomial time.
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The proofs are by reduction of the set partition problem (defined in

section 2.2).

Theorem 2.3.1. The set {<3k,c>: x2-(3k)2y2 =csolvable in Z} is

(i) unfaithfully random complete,

(ii) (ERH) random complete.

Proof (in five parts).

(I) Consider the following chain of equivalences, for an arbitrary

list of integers a,,...,a :

•* (i)

la. sJ'a, modulo 3k, 3k >Ha^l +X'|a1-I
(2)O

n4 1= n'4? modulo 3k+1

o (3)
a_.

,k+1 __ u _,_ u - Si «^ ok+1nh. =n*h. modulo 3 , where h. prime, ^ =41mod 3

o (4)

(x+3k+1y)(x-3k+1y) =c, for x, y, c given by

c = (nh.).(n'h.)

x+3k+1y =nhi$ x-3k+1y =n'h.

The equivalence (1) follows because the modulus 3 is chosen so

large as to exceed the largest possible difference between £a. and

pa.. (2) follows by a technical lemma.

k a b k+1
Lemma. For k > 0, a = b modulo 3 <> 4 = 4 modulo 3
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Proof. We have 4a =4b modulo 3k+1 <* 4a~ =1 modulo 3+;

the latter congruence holds if and only if the order ok(4) of

4modulo 3k+1 divided a-b, i.e. a=bmodulo ok(4). To show that
0 (4) s3k for k> 0, we show by induction for k> 0 that

43 »i+yk-3k+1 ; 3|yk (*)

For from this clearly 43 =1modulo 3k+1, so ok(4) |3 ; but also
for k>l

43 =1+yk-1-3k \ 1modulo 3k+1, as 3{yk-1 .

This gives ok(4) =3k for k>l; but also the order oQ(4) of
4 modulo 3 is clearly 3 =1.

3°Now to show (*), for k =0 we have 4 = 1+yQ*3, yQ =1

satisfying (*). Assuming (*) for n = k>0, we find for n+1:

43"+1 . {43n)3 . (1+yn.3n^)3 . 1+3yn.3n+1+3y2n-32"+2+y3n-33"+3
= 1+VT3 '

where

, 2 0n+l , .3 02n+l _ „ /i.owi\
VrW +yn*3 -yn(1+3y)

so that indeed 3\ yn+1 because 3fyn. • (Lemma)
The equivalence (3) is direct from the congruence condition on the

k+1h.; for (4) note that if nhi = n,hi modulo 3 ', then nhi and

n'h. differ by twice 3 because all hi are prime >3 and

hence nh., n'h. are both odd. Thus these can indeed be written in

terms of integers x, y as desired. Conversely, any two factors of

c solving the equation are products of h.'s because the h. are the

prime factors of c; the factorisation is thus of the form nh^, n'h..
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as desired to show the existence of an equal sum partition of the

a..

(II) We see from the equivalences that, given any finite list of

integers a., the list has an equal sum partition if and only if the

associated equation for suitable c, k has a solution in integers;

moreover, c and k depend on the list of a. as a whole rather than

on the partition considered in the equivalences. To obtain our reduc

tions, we must thus find a method for computing c and k within the

allowed resource bounds. For the unfaithful reduction, we use the

following nondeterministic algorithm:

(Al) "On input <a..,...,a>, set k minimal with 3 > E|a.| +J*|a.|

(and also exceeding a constant kQ as explained in the proof;

this non-asymptotic effect is irrelevant to the running time).

Choose, for each i, 6kn distinct x congruent to

ai k+1 3k+3
4 modulo 3 , each less than 3 ; from these, set

x.-l

h. = the least x. such that 2 =1 modulo x., or, if no

such x. is found, halt without output. Set c = n h.;

k+1 a11 1'
output <3 ,c>."

For the random reduction, we use the algorithm (A2) obtained from (Al)
x.-l

by replacing the Fermat test "2 = 1 modulo x." by a test for

primality of x., using Miller's algorithm [25]. Vie now show that

these algorithms have the desired properties. It is directly clear

from the programs of (Al) and (A2), and, respectively, the time analy

sis for evaluating a modulo m (see Lehmer [19]) and the analysis of

Miller's algorithm (see Miller [25]) given (ERH), that the algorithms
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run in nondeterministic polynomial time. It remains to analyze the

density of successful paths in the algorithms. This requires number

theoretic analysis of the density of primes in short initial segments

of arithmetic progressions.

(Ill) In the following, (j>(D) is the number of positive integers

less than D and relatively prime to D; for il relatively prime to

D, tt(x,D,£) is the number of primes congruent to I modulo D and

less than x, lg(x) is the logarithm base e of x, and

The major number-theoretic result needed in the proof is

Proposition (Barban, Linnik, and Tshudakov [6]). Let p>3 be

prime, D = pn (n =l,2,...), e>0 arbitrarily small, M arbi

trarily large, and I relatively prime to D. Then, for any

x>D8/3 +e

w(x,D,A) =̂ *1(x)(l +0(log(x))"M)

where the constant implied in 0(0 depends only on e and M.

Applying this we find

Lemma 2.3.2. There are absolute positive constants c, nQ such

that for pprime > 3, n> nQ, D=pn, U,D) =1, the density of
3

primes in the class up to D satisfies

*(o3.,p.*) - i
^7 61gD •
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Proof. In the proposition, choose M = 1, e = j. Let c be

the constant then implied in O(-). Choose nQ minimal such that

D = p >max{u,e }, where u is the solution to £i(u) = u/lg(u).

(This is unique and for x > u, £i(x) > x/lg(x)). Thus we find for

n>nQ, D=pn, x=D:

tt(D3,D,&) ^ Ai(D3) 1^1, 1 n

(IV) At this point we first conclude the proof that (A2) is a

correct random reduction algorithm. Correctness is in this case clear

from the program of (A2) and the equivalences considered above; we can

be sure that at least half of the paths pick a prime congruent to
a. j-.-j
4 modulo 3 (for each i) if for each i, the proportion of fail

ing guess sequences is at most l/2n (n is the number of a^'s). Thus

we want to choose the length f of test sequences for each a.,

minimal such that

(1-<n?/<2'n
-mg2>f igO-ei^j)

f >
n1g2

^-(TiL-d)

and for D=3k+1, the right hand side is monotone increasing asymp

totic to 6nklg3 1g2. As Ig31g2>l, asymptotically f > 6nk

suffices, and one can verify that this suffices for k > 3. Thus (A2)

does indeed give a random reduction.
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(V) To show that (Al) gives an unfaithful random reduction (ERH),

we must verify that (a) (Al) gives an unfaithful y-reduction, in which

(b) "at least i" of the paths are faithful. To show (a), note that the

only condition in the construction of the equivalences of part (I) of

the proof which might fail to be realized by (Al) is the primality of

h. for one or more h. on a given output-producing path. But if some

of the h. are not prime, the equivalences (l)-(3) still hold, as well

as the implication from left to right in (4). This shows that condi

tion (i) in the definition of unfaithful y-reduction is satisfied;

condition (ii) is also clearly satisfied as certainly (by the argument

of part (4) for (A2), for example) some paths on any input produce

prime h. for each i.

To show that at least half the paths of (Al) on any given input are

faithful, we show that at least half the paths produce prime h.. for

each i. Clearly the number of sequences (for fixed i) of length f

for which the Fermat test base 2 yields a positive result for a non-

prime is to the number of such sequences for which the test produces a

prime as the number of pseudoprimes (nonprime solutions to the Fermat

test base 2) is to the number of primes, in the set from which the

choices are made. The number of primes is at least that given by

Lemma 2.3.2; for the total number of pseudoprimes (and a fortiori the

number of pseudoprimes in the residue class in question) we have

Proposition (Erdos [11]). Let p(x) be the number of pseudoprimes

less than x.

l f?
p(x) < x exp(-c(lg x-lglgx) ' ) ,

for some positive constant c.
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This result is to be compared to (x = D )

ir(D3,D,£) >xexp -(lglgx +c')

1/2
and as even exp(-c(lg x) ' ) is eventually vanishing compared to

exp-lglgx, it is clear that there are essentially no pseudoprimes,

and that the estimate of f given above in (4) again shows that the

choice of f made in (Al) is asymptotically adequate. Vie regard the

algorithm as modified to have larger f for the small values of k for

which the asymptotic situation is not realised (if any); this does not

affect the asymptotic running time. This completes the proof. •

In the equation x -ay * c, we choose a = 3 in Theorem

2.3.1 for two reasons. By choosing 'a' a power of a fixed prime, we

found an easily computable (namely constant 4) element of large order

modulo a by the construction of Lemma 2.3.2. This allowed us to make

the crucial exponentiation transition of equivalence (2), from an

additive partition problem to a multiplicative partition problem, with

out the resulting modulus being too large. The second reason was in

order to apply the result of Barban, Linnik, and Tshudakov. For

arbitrary moduli the same result can be shown, but only assuming (ERH).

From Theorem 2.3.1 we of course directly have the

Corollary 2.3.3. The set

2 2 2{<a,c>: x -a y =c solvable in integers}

is (i) unfaithfully random complete;

(ii) (ERH) random complete.
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The arguments used above give us results about a slightly different

form of binary quadratic as well. Consider the line from our sequence

of equivalences in the proof of Theorem 2.3.1:

k+1
nh. = n'h. modulo 3

k+1 nClearly we can also set x= nh-j, n'hi =x+3 y, c = ni=1 h.., to

get

Corollary 2.3.4. The set

{<a,c>: x(x+ay)=c solvable in Z}

is (i) unfaithfully random complete;

(ii) (ERH) random complete;

even if we restrict a to be of the form 3 , k > 1.

2.4 The Complexity of (ax + b)y = c

The solvability problem for (ax + b)y = c is again a multiplica

tive partition problem with a congruence constraint: "Does c have a

factor congruent to b modulo a?" Naive analysis yields an algorithm

requiring exponential running time for infinitely many c, namely the

c which are highly composite. Below we demonstrate the intractability

of the problem. In fact our analysis of a number of special cases,

all intractable, will pinpoint origins of the complexity of the problem;

the results suggest that compositeness of c is indeed by itself

sufficient to make the problem hard. On the other hand the naive

analysis shows that compositeness of c is necessary to make the

problem hard. Clearly the problem restricted to c with no more than
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k log log c prime factors (not necessarily distinct), for any fixed k,

is in P.

As in the preceding section, the reduction involves exponentiation,

to convert an additive partition problem to the desired multiplicative

one. This time we reduce knapsack:

Proposition (Karp [15]). The knapsack problem: "Given a list

a,---a , b GZ, not necessarily distinct, is there S c {a,---an}:
In -in

I a. = b?" is NP-complete. (In fact the proof in [15] shows NP-
S '1
completeness for the problem restricted to ^••*an > 0; we will use

knapsack in this form.)

In this section, we shall prove:

Theorem 2.4.1. The set

{<3k,c>: (3kx +2)y =csolvable in 1}

is (i) unfaithfully random complete,

(ii) (ERH) random complete.

k k
Remark. The method of the proof works for p instead of 3 ,

for any prime p > 3.

Theorem 2.4.2. The set

{<p,c>: p prime, (px+l)y =c has nonzero solution in Z}

is (i) unfaithfully random complete,

(ii) (ERH) random complete.



45

Proof of Theorem 2.4.1. First note that we can reduce the knap

sack problem to the case where b = 1, for

Ya. = b o Y2a.+2b-l = 1 (summation over some subset

°fVan>
so we set a. «- 2a., n «- n+1, a «- 2b-1. Now we have a series of

ii n

equivalences similar to those given before:

Ya. = 1 (summation over a subset of a,---a )
u i in

- (D

,k o .k$>.. =1modulo 2-3*, 2-3k >1+X"=1|a.|
o (2)

ai k+1
n2 1 = 2 modulo 3 '

a.

o (3) setting h. = 2 1, h. prime, i = l,...,n

nhi =2modulo 3k+1
<* (4) setting c = IT? , h.

x=(nhi -2)/3k+1
y = c/nhi

(3k+1x +2)y =c

It will now be clear how the reduction algorithms are to be chosen; the

analysis is parallel to that in the proof of Theorem 2.3.1 and will be

omitted. Q

Proof of Theorem 2.4.2. We first reduce the knapsack problem to

the multisack problem: "Given integers a.j---an, b; a^ > 0; does a

nonempty subset of a,---a sum to an integer multiple of b?" In

fact we show that the special case: b = 3 , k > 0, is NP-complete.

For the reduction, given knapsack input a,--*an» b, find
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k minimal > 0 such that .

3k> |b|+I?=1|a.| .
k kOutput the multisack problem a^ —an+i» 3 » where aR+1 =3 -b. It

is easily verified that this is a valid (and obviously deterministic

polynomial time) reduction.
kWe next give a random reduction of 3 -multisack to the following

problem: "Given a1"-anez, p prime, a of order (exactly)
a.

3k modulo p; does a subset S of a1"-af| satisfy na 1=1modulo p?"
As na 1 = a , it is clear that if we can find p, a as specified,

S

then

3xez as c (a^'-a^ S f 0, I$ai = X-3

a.

3S c {a,—aJ S f 0, na 1 =1 modulo p .
-in s

Our algorithm generating p, a will be justified by the following:

Proposition (Brillhart, Lehmer, and Selfridge [9]). Let

N=F1R1 +1, 2|Fr (F1,R1) =1, R1=2F]s +r, 1<r <2F]. Assume
that (i) N<(F1+l)(2F^ +(r-l)F1+l),

(ii) for each prime p. |F, 3a.: a?" = 1 modulo N,
(N-D/p. * ' 1 n

(a. '-I, N) = 1.
2

Then N is prime if and only if s = 0 or r -8s is not a square.

Consider the following nondeterministic algorithm computing values

of p, a:
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(B) "On input 3k, guess 0< i < 2k and 1<f such that

(3*-f) <(3k)2, 3{f. Set

p=1+2f3*+k,

F =2-3£+k, Ry =f=2F]s +r, 1<r<2F,
if s = 0 and r -8s is a square, halt without output;

guess 1 < g < p; verify that

gp~ = 1 modulo p

(^'/2-i,p) =ig(H)/3-i,P) =i
o

Set a = g modulo p, 0 < a < p.

Output p, a."

Correctness and running time of (B): It is clear by inspection

that we can implement the algorithm (B) in nondeterministic polynomial

time. It will follow that any output p, a has p a prime once we

verify condition (i) of the Proposition. We have indeed

p=l+2f-3k+* <l+2-33k <16-33k <(2-3k +l)(8-32k-2-3k +l)

where the last term is the minimum possible value (for r = 0, I = 0)

of the bound in (i) of the Proposition. So any p output is prime.

Let o( ) represent the order modulo p. By gp~ = 1mod p,

o(g) |p-1. By (g(p-1)/3-l,p) =1. o(g)j3k+£-\ so o(g) -h-3k+\
?+"3 k3jh. As 3|2f, o(a) = o(g^TO )= 3N, as desired.

To determine the density of successful paths of (B), we note that
3kevery prime congruent to 1 modulo 3k and less than 3 is of the

form v 9 9 h o
1+2-3 -3 -f , 3*f < (3Kr -

Moreover, for any such prime p, "almost all" g with 1 < g < p
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(namely f-2-3k+A~1 =(p-D/3 out of p-2) will have 2-3k+jl |o(g),
and hence satisfy all the Fermat conditions, that is, for any such

prime, 1/3 of all paths will be successful. As there is a 1-1 corres

pondence between p and <f,3*>, each number will be guessed exactly

once as a candidate for p.

It follows that the successful paths will have at least 1/3 of

the weight given by the density bound of Lemma 2.3.2; thus (B) is not

strictly random according to our definition, but by polynomial repeated

application as analyzed in the proof of Theorem 2.3.1, an algorithm

with weight > 1/2 of successful paths will be obtained. D

To complete the reductions of Theorem 2.4.2, one must now compute

aih. prime, h. = a modulo p, for each i,

c = nhi

and output <p,c>. The analysis of this nondeterministic random-

computation (without ERH merely unfaithful) is entirely analogous to

earlier proofs and will be omitted here. We merely note that the

difficulty in the application of Lemma 2.3.2, that D = p must exceed
k n0

a constant minimum value, is here resolved by choosing 3 > 3 for

sufficiently large nQ, in the reduction to 3k-multisack. As before,
this does not affect the asymptotic behavior of our reduction. D
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