
 

 

 

 

 

 

 

 

 

Copyright © 1978, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



J

-,/

APPLICATIONS OF AUTOMATA THEORY

TO THE DESIGN OF INTELLIGENT MACHINES

by

William John Sakoda

Memorandum No. UCB/ERL M78/33

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



>

*

Applications of Automata Theory
to the Design of Intelligent Machines

By

William John Sakoda

A.B. (Harvard University) 1972

DISSERTATION

Submitted in -Dartial satisfaction of the requirements for the decree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Approved:

<f

Committee in Charge



-r>. a'

Applications of Automata Theory

~*£ to the Design of Intelligent Machines

*

Copyright 0 1978

by

William John Sakoda



* a
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to the Design of Intelligent Machines

William. John Sakoda

Abstract

The computational complexity of inferring grammars for

various classes of languages from finite samples from the languages

is considered in the two papers comprising section 1. Section 2

discusses the capability of cooperating finite state machines moving

on 2- and 3-diraensional obstructed checkerboards. Each paper is

self contained and may be read independently.

Section 1.1 develops a class of inductive inference machines

called adaptive recognizers. An adaptive recognizer R is pre

sented a sequence of facts about a language L. Each fact is of the

form "string x is ( or is not ) in L". R reads this information,

maintaining a conjecture as to the language being presented. A

finite sequence of facts which causes R to settle upon a correct

conjecture is called an R-primer for L. R is said to learn L if

such a primer exists.

Theorem 1 characterizes the language families Z which

can be learned by adaptive recognizers: The languages learned

by an adaptive recognizer are always a subset of some language

family &having an effectively enumerable sequence of decidable

grammars. Conversely, if there is an effective enumeration of



decidable grammars for X, then there is an adaptive recognizer

which learns every language in «£.

Hence, there is an adaptive recognizer which learns every

context-free language.

The length of a shortest R-primer for the language L is

a measure of how much information R needs to identify L.

Theorem 2: Let G., G„> ... be an r.e. sequence of decidable

grammars, and R any adaptive recognizer learning every G.. The

size of R-primer for G. is bounded above by a recursive function

f(i) iff it is effectively decidable, given i and j, whether

LCG^ =L^).

Since this equivalence problem is undecidable for the linear

context-free languages, the size of R-primer for linear context-

free language L(G) is not bounded above by any recursive function

of G.

Section 1.2 considers a model of grammatical inference

where the sample strings are generated during a dialog between

learning and teaching machines. Teacher t is given a grammar G as

an input. The learner can pose to the teacher questions of the

form "Is string x in L(G)?" . The teacher answers such questions.

The teacher may also select strings x , x_, ..., x , informing the

learner whether or not each x. is in L(G). Teacher t is said to have
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conveyed L(G) to learner %when % correctly hypothesises a grammar

generating L(G) and never changes the hypothesis thereafter. A

pair of theorems shows that regular languages can be conveyed

*•"' more quickly than linear context-free languages.

Theorem 1: The number of steps of computation required for a

teacher to convey to a learner an arbitrary linear context-

free language L(G) is not bounded above by any recursive function

of G.

Theorem 4: There is a teacher t which, given an n-state deter-

T ministic finite automaton M, conveys L(M) to a certain learner %.

The number of steps of computation required to convey L(M) is

bounded above by a polynomial p(n).

Section 2 considers cooperating finite automata moving on

2- and 3-dimensional obstructed checkerboards. In 2 dimensions,

1 machine with 4 pebbles can search every finite 2-dimensional

obstructed checkerboard. One machine Xvrith 7 pebbles suffices

to search infinite 2-dimensional space. In contrast, no finite

number of finite automata can search every finite ^-dimensional

obstructed checkerboard.
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§1.1 ADAPTIVE LANGUAGE RECOGNITION

* Introduction

There are numerous interesting families of formal languages

(e.g. regular, context-free) for which the problem of identi

fication in the limit admits a solution by enumeration. In this

report we ask whether the task of identifying such families may

be accomplished more efficiently.

A class of inductive inference machines, the adaptive

recognizers, is developed and used to analyze the complexity

of inferring grammars for languages. The classes of languages

which can be inferred by adaptive recognizers are characterized

in Theorem 1. Theorem 2 shows that if the equivalence problem for

a sequence L., L.,... of languages is undecidable, then the amount

of data consumed by an adaptive recognizer before correctly

identifying the language L. is not bounded above by any recursive

function of i.



if

1.1.1. Preliminary Notation

We will use the symbol 3N to denote the set of natural numbers;

that is, IS = {0,1,2,.,.}. An object will be said to be an integer

if and only if it is a member of IN. A language is a subset of M.

We assume familiarity with some concepts from elementary recursive

function theory. Our notation for recursive functions will follow that

in [6].

1.1.2. Definition of the Model

Adaptive recognizers are machines \>rtiich attempt to identify lan

guages on the basis of finite samples from the languages. They differ

from the usual rule inference models [1,4] in their mode of identifi

cation: an adaptive recognizer demonstrates its identification of a

language by performing as a recognizer for that language.

Before proceeding, some notation for manipuating sequences will

be useful.

1.1.2.1. Definition

(1) Let x.,x2,...,xn be .integers, with n > 0. Then

<x„,xrt,...,x > denotes an integer which encodes the ordered sequence
12 n

with elements x.,x2 x , according to some fixed encoding.

We will usually use vectored variables to range over such sequence

numbers. For

s = <x1,..-»xn>

and



t-<yr....yB>

we let

•«•

s
*

I

s-t = <x1,...,xn,y1,...,ym>

(2) Let n£3N. Let x-,... ,xn EU. Let b^ . .. ,bn E{0,1}.
Then "s = «xjL,b1>,<x2,b2>,.. . ,<xn>bn» is a ^arnple from language L

if and only if, for each 1 <_ i £ n,

bi = 11 if bjL e L .

0 if x ±*l

The set {x I 1< i<n} is the base of the sample s. The size of
i' — —

sample s, denoted sz(s), is defined to be max({0}u{x.| l<i<n}).

The length of sample s is the cardinality of the base of s.

(3) 5 = (s| (3 language L) such that s is a sample from L>. S is

the set of all samples. Note that S is recursive.

We can now indicate the difference between adaptive recognizers

and the usual rule-inference machines. Let s be a sample from language

L . A rule-inference machine would use s to attempt to produce a name
o

(say, a partial recursive index) for Lq. An adaptive recognizer uses

s to attempt to function as a recognizer for Lq. Thus, given s and

an integer x, an adaptive recognizer generates a guess as to whether

x is in the language L .

1.1.2.2. Definition

An adaptive recognizer is a function r: Sx3N -> {0,1} such that:

(a) r is partial recursive, with dom(r) = S x]N;
-v -* ->

and (b) (permutation independence): If s, t are samples and s is



a permutation of t, then r(s,x) = r(t,x), for all xel.

The restriction ot permutation independence is made to force r to

base its guesses entirely on the membership information contained in

sample s, and not on the order in which this information appears in s.

1.1.2.3. Definition

seS is an r-primer for language L if, for any sample e from

the language L and any xel,

.-*• ->•
0 if x i L

r(s»e,x) -
"1 if x e L .

r is said to recognize (equivalently, identify) L if there exists an

r-primer for L. R is by definition the set of languages recognized

by r.

Since primers are samples, they inherit the notion of size defined

for samples in 1.1.2.1(2). The size of asmallest r-primer for a parti

cular language L is a useful measure of the amount of data required

by r to identify L.

1.1.3. Recursively Indexed Families of Languages

Our interest in adaptive recognizers arises from their close

connection with recursively indexed families of languages. Intuitively,

we want the recursively indexed families to encompass exactly the

classes of languages which can be identified in the limit by enumeration.



1.1.3.1. Definition

A family F of languages is said to be recursively indexed if there

is a recursive ty: IN -> 3N which enumerates at least one index for the

characteristic function of each language in F, and only such indices.

Whenever t|j is a recursive indexing, we let L = {x e3N| $. ^ =l}.

Thus, 1% is that language for which ^r±\ is the characteristic

function.

1.1.3.2. Examples of Recursively Indexed Families

(i) The class of languages having primitive recursive characteristic

functions is recursively indexed.

(ii) By establishing a suitable identification between IN and

(0,1)*, the notion of recursive indexing may be extended to families

of subsets of (0,1)*.(2)

Assuming that such an identification has been established, we can

then say that the families of regular, context-free, and context-sensi

tive subsets of (0,1)* are each recursively indexed. In each of

these families, a recursive indexing can be obtained by using the fact

that there is a recursive enumeration G ,G.,G2>... of Godel numbers

for the class of grammars in question, such that the predicate x e h(G/)

is decidable uniformly in x and i.

(iii) More generally, if L is a recursive subset of (0,1) , the

family of subsets of (0,1)* in the principal AFL generated by L can

be recursively indexed.



1.1.4. Summary of Results
»

Our first result is a characterization of the families of languages

f which can be identified by an adaptive recognizer.

Theorem 1. Let F be a family of languages. Then the following
«

9 are equivalent.
I

! 1) There is an adaptive recognizer which can identify at least

every language in F.

2) F is contained in a recursively indexed family.

/ (3)3) Every language in F is h-easy for some fixed recursive

h: U ->)N,

z The second result yields a condition on a recursively indexed family

F which is sufficient to rule out the existence of an efficient adaptive

recognizer Identifying every language in F. Some notation is necessary

before proceeding.

1.1.4.1. Definition

Let ij> be a recursive indexing. The equivalence problem for ip

is that function e: ixu -*• {0,1} which is defined by

k jo, i**i*
^ I ' i j

i-

The equivalence problem for ty is decidable just in case e is

recursive;.

Theorem 2f. Let ty: IN •* 3N recursively index family F, and

suppose the equivalence problem for ^ is undecidable. Let r be any
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adaptive recognizer which identifies at least the language in F. Let

1L*B be the size of asmallest r-primer for L^. Then DLjI is not
bounded above any any recursive function ra(i).

Note that if the restriction that adaptive recognizers be permu

tation independent is removed, the theorem fails rather dramatically:

for any recursive indexing $, there is a non-permutation-independent

r such that IlL^ll = 1 for every i! An algorithm for such an r is:

"On input («x.,b >,.. .>,x), output 1 if x£L^ , 0 otherwise."
ij> 1Then «i»({>1i;(i)(i)>> is an r-primer for L±.

Corollary - Application to the Context-Free Languages

We remarked in 1.1.3.2 that the notion of recursive indexing could

be extended to languages which are subsets of (0,1) by establishing

an identification between (0,1)* and W; note (2) indicates a suitable

bijection A: (0,1)* <>—» 3N. This identification also allows results

about adaptive recognizers to be extended to such languages. We will

outline this technique.

The following conventions are useful. For x £ (0,1) , we let x

denote the image of x under the map A. For A C (0,1) ,

A«* {x| x£A}. Finally, CFL ={£| Lis acontext free subset of (0,1)*}
We can now restate the preceding definitions using this notation.

It should be emphasized that we are literally repeating what was said

before, using a slightly different notation.

Let n>0; let x^...^ £(0,1)*; and let t^,...^ £{0,lL
Then t =«^vb1>9<^z,b2>i...t<inybn» is asample from language

L C (0,1)* if for each l<i£n,
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4

e

0 , x. $ L

hi m 1 , x± £ L

r">l **•

5, the set of all samples, is by definition {s| s is a sample from

some L C (0,1)*}.

Sample s is an r-primer for L C (0,1)* if for every sample, e

from L and every x £ (0,1) ,

,0 , x $ L
r(s*e,x) =

'1 , x£L

8

One modification is in order. If s = <<x.,b->,...,<x ,b >> is a

, -»-

sample from L C (0,1) , it is more natural to define the size of s

-> ~ .-*•

to be the length of the longest string appearing in s. Thus, sz(s)

is by definition max({0} U{length(x^|l£i£n}).

We are now prepared to apply Theorem 2? to the context-free languages

Let l|> be that recursive indexing of CFL which is induced by the stan

dard Godel numbering of the context-free grammars over the terminal

if. /\ th
alphabet {0,1}; i.e. L\ =L(G.), where G. is the i standard

context-free grammar. Since it is undecidable, given CFG's G and G ,

whether L(G.) = L(G.), it follows that the equivalence problem for $

is undecidable. Theorem 2' then supports the following result: Let r

be any adaptive recognizer which can identify at least CFL. Let HG.H

denote the smallest r-primer (in the sense of sz) for L(G ). Then

there is no algorithm which, given an arbitrary G , will compute an

upper bound on tlG.iT. •



1.1.5. Proofs

1.1.5.1. Characterization Theorem for Adaptive Recognizers

The following lemma records an important property of recursively

indexed families. Indeed, the definition of recursive indexing was

chosen specifically to ensure that this property held.

1.1.5.1.1. Lemma

Let i|J be a recursive indexing. Then there exists, uniformly

effectively in i|/, a recursive characteristic function for the relation

Ax,i[x£LU.

Proof. By definition of L?, <j>. ,.. is the characteristic function

for L?. Therefore Ax,i[<J>, ,.s (x)] is the required characteristic

function.

This lemma will be used implicitly in subsequent constructions.

Theorem 1. Let F be a family of languages. Then the following

are equivalent.

(1) FCr for some adaptive recognizer r.

(2) FCG for some recursively indexed family G.

(3) Every language in F is h-easy for some fixed recursive

The: proof- that (2) -*• (1) involves a construction which will be of

use later. We record it below.
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1.1.5.1.2. Lemma

Let family F of languages be recursively indexed by ip. Then

there exists, uniformly effectively in iJj, an adaptive recognizer r

with the following properties:

(1) r recognizes exactly F.

(2) For each j E 3N, the following non-effective procedure leads

to a primer, p(j), for L..

(i) Pick i least such that L? = L;.
i J

(ii) For each k < i, pick an x, such that x. £l£«->x. £L..

(iii) Let p(j) be a sample from L. with base {x, | l<_k<i}.

Proof. We will construct the required r.

On input (s,m), r will try to find an s-consistent hypothesis

L £ F, and output 0 if m £ L, 1 otherwise. Since F is recur

sively indexed, this search may be carried out in an orderly fashion by

testing L^,L^,... for s-consistency. The danger of never finding an

s-consistent L. may be handled by bounding the number of Ljj tested

by the length & of the sample s.

Thus, if L ,...,LjJ - are all s-inconsistent, we set

Jo, m*L*
r(s,m) = < ^

11 , m £ LY .

^ \|; . -> .
If, on the other hand, one of L ,...,LJ_ is s-consistent, we

il) •* .
pick the least n such that Lr is s-consistent, setting

n

{0 , di([lJ
1 . » e L* .

0
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It's clear that r is defined on all of SxU and satisfies permu-

tation independence. Since for any s, (Ax[r(s,x)]) - XL ^or some

L £ F, we have R C F. Finally, to verify property (2) of the lemma,

let j EH, and let p(j) be a sample from L. with base

{x, | l£k<i} supplied by the construction indicated in (2). We need
-*• -*• tf>

to show that (Ax[r(p(j)-e,x)]) - X ,i for any sample e from LT. To
Lj 3

do this, it will certainly suffice to show that, when given p(j)*e

as input, r selects L. as its hypothesis. But the information con

tained in p(j) is sufficient to cause all L^, k<j to be rejected;
the length of p(j) is sufficient to allow the search to reach at least

to h\i and L; cannot be rejected, since it is certainly consistent
j J

with p(j)*e. Thus p(j) is a primer for LT, and (2) has been

verified. (2) now implies that R 2 ^> which fact, combined with the

reverse containment proved earlier, yields R - F.

Proof of Theorem 1. The equivalence of (2) and (3) is easily veri

fied. We will shox* that (1) and (2) are equivalent.

(1) •» (2). Let r be an arbitrary adaptive recognizer. We will

construct a \p which recursively indexes a superset of R .

Roughly speaking, what we are trying to do is establish an effec

tive correspondence between the integers and the languages in R . This

can be accomplished by exploiting a natural correspondence between S

and R . The latter correspondence is the following. To each s £ S,

associate X-> = {m £]N| r(s,m)=l}. This association is sufficiently

effective since, given s, we can find an algorithm for xx_v: otl input
s

y, the algorithm simply evaluates r(s,y). To see that this scheme

does indeed manage to assign some s £ S to every L £ R , note that
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if L £ R , there is an r-primer, p, for L. Then clearly L - X+.
r P

We may end up indexing a proper superset of F, as unless s is a

primer, there is no reason to expect that X-g £ R .

To finish up, let s: WV—» S , be a recursive bijection between IN

and S. Then an appropriate algorithm for t|> is: "On input x, output

the index of an algorithm which computes Ay[r(s(x) ,y)3". Then ip is

a recursive indexing, since r is 0-1 valued and convergent on S xjj.

Tb indexes at least R , since if L £ R and p is an r-primer for
r ^r r

L, then $(s (p)) is an index for the characteristic function of L.

(2) •* (1). If G is recursively indexed, Lemma 1.1.5.1.2 supplies

an r which recognizes exactly G.

1.1.5.2. The Role of the Equivalence Problem

We now turn to a proof of the second result. Roughly stated, this

result is that undecidability of the equivalence problem for a recursive

indexing ty implies that for any adaptive recognizer, r, which iden

tifies at least all the l|, it is difficult to generate r-primers
for ij>. Our method for measuring said difficulty will be to test for

the existence of an effective procedure which, given an arbitrary

integer i, will produce an r-primer for L^,.

1.1.5.2.1. Definition

Let ty be a recursive indexing of family F, and let r be an

adaptive recognizer identifying at least F. Then p: jN -> IN is a

generator of r-primers for IJJ if, for all i £IN, •p(i) is an

lb
r-primer for L..
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We will prove a slightly stronger version of Theorem 2? of Section 1. .4,

namely:

Theorem 2. Let i|> be a recursive indexing of F.

(a) Let r be an adaptive recognizer identifying at least F,

and let p: M -^3N be a generator of r-primers for ij>. Then the equiva-

(4)
lence problem for ij> is recursive in p.

(b) There is an adaptive recognizer, r, such that

(i) r recognizes exactly F; and

(ii) there is a generator of r-primers for ty which is recur

sive in the equivalence problem for ij>.

The following lemma is the basis for our proof of part (a) of the

theorem.

1.1.5.2.2. Lemma

Primers for distinct languages are inconsistent. That is, let L,

L* be languages recognized by adaptive recognizer r. Let q be an

r-primer for L. Let q1 be an r-primer for L*. If L ± L', then

either

-> .

(*) q is not a sample from L ; or

(*f) q1 is not a sample from L.

Proof. Suppose the lemma is false. Then for some L ^ L1, both

(*) and (*f) fail. We will use this to get a contradiction.

Pick an x £ IN witnessing the fact that L ^ L* (say, x £ L

x 4 L'; ^the other case will follow by symmetry). Then
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(1) 1 = r(q»q',x) (q1 is a sample from L since (*') is false;

therefore guess r(q»q',x) must be correct,

->

since q is a primer for L.)

(2) - r(q'*q,x) (permutation independence)

(3) « 0 (Argue as in line 1, exchanging primed and

unprimed variables everywhere.)

Contradiction, as required.

Corollary to Lemma (criterion for language equivalence). Let the

notation be as in the lemma. Then

L = L* <-> (q is a sample from Lf and q* is a sample from L) .

Proof of Corollary. •*• is obvious.

•*• is the contrapositive of the implication of the lemma.

Armed with this corollary, its now easy to prove the theorem.

Proof of Theorem 2.

(a) To decide recursively in p, given integers i, j, whether

L. = L., proceed as follows: .
i 3

(1) Using the oracle for p, compute

-»-

q = P(i)

q' = P(j) •

(2) By the corollary to the lemma,

jY = l^ <-» (q is a sample from L: and q' is a sample from LI) .
i j i 3

Thus, if we could effectively test whether the right-hand side of the



equivalence held, we would be done. It is clear that if we had a method

for evaluating the characteristic functions of L^ and L , this test

could be performed. Such a method is indeed available, since

Ax[r(q,x)] « X to

and

Xx[r(q*,x)] = X ri,

15

(b) Let r be the adaptive recognizer supplied by Lemma 1.1.5.1.2.

Property (1) of the lemma implies that requirement (i) of the theorem is

satisfied. Given an oracle for the equivalence problem for \J>, the

non-effective procedure (2) of the lemma for generating r-primers for

ty becomes effective, thus establishing claim (ii) of the theorem.

Corollary to Theorem 2 (Theorem V of Section 1.1.3) . Let t/;: 3N -*3N

recursively index family F, and suppose the equivalence problem for ty

is undecidable. Let r be any adaptive recognizer which identifies at

least the languages in F. Let IIlTII be the size of a smallest r-primer

for L^. Then flLTII is not bounded above by any recursive function
i i

m(i).

Proof of Corollary. Suppose, to the contrary, that there is a

recursive m(i) which bounds llL.il from above. We will use this to

get a"contradiction.

The point is that using m, we can construct a recursive generator,

p, of r-primers for ty: On input i, p simply outputs a sample from

L1? with base {xl x<m(i)}. We must verify that p(i) is a primer for
i * —



1 w

16

L.. Since m(i) is an upper bound on the integers appearing in the base

lb -*• ib
of some r-primer for h\9 there is an r-primer q. for LT and a

sample f from Lj such that p(i) is a permutation of q.of . Then

r(p(i)°e,x) = r(q.°(f.°e),x) (permutation independence)

. (since q. is an r-primer for L\) .
1 , x £ uf

This being true for arbitrary i £ IN, p is a recursive generator of

r-primers for i|J.

Now by part (a) of Theorem 2, the equivalence problem for l|> is

recursive in p. But as p is recursive, this means that the equiva

lence problem for \|; is recursive outright, contradicting the undeci-

bability of the equivalence problem for \|).
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1.1.6. Connections with Other Models of Inductive Inference

We will conclude by indicating a connection with a rule-inference

model.

1.1.6.1. Definition

(1) A rule inference machine is a function M: S -*1N such that

(i) M is partial recursive with dom(M) = S; and

(ii) for all s £ S, <J>M/-*x is O"*1 valued and defined everywhere.

Thus, <J> is always the characteristic function of some subset

of 2*.

(2) Rule inference machine M is permutation-independent if for

any s, t £S such that s is a permutation of t, 4>M^) = ^(t)*

(3) Let LCI and let s be a sample from L. s is an

M-primer for matching L^ if for every sample e from L, $M(£.£) =XL-
M is said to match L if and only if there is an M-primer for matching

L. The notion of a generator of M-primers is defined in the obvious

way.

The following proposition establishes the connection between adap

tive recognizers and permutation-independent rule-inference machines.

1.1.6.2. Proposition

(a) Let M be a permutation independent rule-inference machine.

Then there is an adaptive recognizer r such that for any L Cu and

any sample s from L, s is an M-primer for matching L if and only

if s is an r-primer for L.



(b) Conversely, let r be any adaptive recognizer. Then there is

a permutation independent rule inference machine M such that for any

L C3N and any sample s from L, s is an r-primer for L if and

only if s is an M-primer for matching L.

Proof, (a) r(s,x) = <f>M(g)<x> is suitable.

(b) On input s, M outputs the index of the following program:

"On input x, output the value r(s,x)."

Thus, Theorems 1 and 2 may be applied to permutation-independent

rule-inference machines by replacing:

"adaptive recognizer" by "permutation-independent
rule-inference machine"

"r-primer"

by "M"

by "M-primer" .

18
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Footnotes

(1) For example, the following is suitable. Let p denote the
n (x +1)

ith prime. Let <>=1 and, for n> 1, let <x1,...,xn> = II p±

(2) The following map a: (0,1)*i>-» 3N works. Let < be a

total ordering of (0,1)* in order of increasing length of strings,

ties between strings of equal length being broken by a lexicographic

ordering. For x e (0,1)*, let A(x) be the number of strings preced

ing x in the < ordering.

(3) Total recursive function <J> is h-easy if $±(x) £ h(x) for

almost all x e H, where $. (x) denotes the running time of <j> on
i *•

input x. See [2,5] for details.

(4) For f, g: 3N ->3N, f is recursive in g if, given an "oracle"

for computing the function g, f may be computed effectively. See [6]

for details.

(5) The notion of matching is due to Feldman [3].
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§1.2. AN APPLICATION OF THE THEORY COMPLEXITY

TO INDUCTIVE INFERENCE

1.2.1 Introduction

This section considers the computational complexity of the gramma

tical inference problem. Previous theoretical work [2,3] has concen

trated on characterizing those classes of formal languages which are

inferable, without regard to the computational complexity of the

inference algorithms used. Some of the more concrete work [4,7] has

in fact focused on constructing efficient inference programs; however,

efficiency has generally been obtained through use of complicated

heuristics, which are not particularly amenable to analysis. Our goal

is to narrow the gap between such efforts.

Our plan is as follows. In section 1.2.2 we will define our model

of inference; as the model is new, we will give a careful sketch of it.

Section 1.2.3 presents some general properties of the model. Section

1.2.4 describes a polynomial-time algorithm for the class of Regular

languages, and indicates how the method may be extended to the class of

recognizable trees. Finally, in section 1.2.5 we consider an operation

on languages which may be used to expand the class of languages which

can be recognized by inference algorithms for the class of Regular sets

The impact of our results on the possibility of efficiently inferring

various families of languages in the Chomsky hierarchy is summarized

below.



Language

Class

Regular

R (any k)

Even linear

context-free

Linear

context-free

Representation of
Language L

state graph of a
deterministic Moore

automaton accepting

L

state graph of a
deterministic Moore

automaton accepting

restricted even

linear grammar
generating L

linear CFG

generating L

Size Measure

number of

states

number of

states

number of

non-terminals

total length of
right hand sides
of rules

Time required
for stable

convergence as

a function of

size measure

polynomial

polynomial

polynomial

no recursive

upper bound

M
w
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1.2.2 An Interactive Model of Inductive Inference

In investigations of inferability where the complexity of the

algorithms used for inference is not at issue, results tend to be rela

tively insensitive to the order in which the language is presented to

the learner. Such is no longer the case when we are interested in the

running times of the learning algorithms: the time required for learning

will depend critically on the order in which data about the language

are presented. In a sense, efficient learning rests on the learner's

ability to cause the presentation of data in a useful order.

This leads us to consider a system consisting of a learner which is

attempting to generate a grammar for a language, together with a teacher,

which is the source of information for that language. The learner receives

information about the language by presenting particular strings to the

teacher and asking whether or not the strings are in the language. The

teacher answers all such questions and in addition may supply information

about other strings which it thinks will be helpful to the learner. Thus,

both teacher and learner take an active role in attempting to speed the

learning process by influencing the order of presentation of data. We

feel that this characteristic is an important feature of the model, as

such interaction appears to be a factor in the acquisition of natural

languages, and in other learning situations relevant to work in artificial

intelligence.

Before proceeding, we define the families of languages to be

considered.

Definition. Let £ be a finite alphabet, F a family of languages

over £ , and G a countable collection of finitary objects. A map



l: g -M- F .(-»-*• denoting onto) is said to be a recursive indexing of F

by G if it is recursively decidable, given G e G and x e L ,

whether x e 1(G).

In order to assess the difficulty of inferring a particular recur

sively indexed family L: G -»-»• F, we consider systems of the sort

depicted below.

reset

button

answer tape:

1-way read only

guess tape:

1-way write only

learner %

answer tape:

1-way write only

grammar tape

teacher t
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Both learner I and teacher t are multi-tape Turing machines

equipped with a feature called a restart button. A restart button on

a machine M may be used as follows. When M halts, we may replace

any number of M's tapes with other tapes, possibly with non-blank symbols

written on them. Pressing the restart button on M then causes M to

resume operation at its initial control state. Any tapes not replaced
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retain their former contents and positioning upon restarting. The restart

feature will allow teacher and learner to communicate by having an operator

shuffle tapes between the two machines.

To start things off we pick a G G G and place an encoding on

t's grammar tape. &then attempts to learn L(G) from t by addressing

questions to t. The dialogue proceeds in stages, as follows:

Stage n (Vn j> 0)

In) %picks a string from I* (call it q^) and asks: "Is qR

in L(G)?" The question is asked by writing q onto the question tape.

% then halts.

2n) We now remove the question tape from &, install it as the ques

tion tape on t, and restart t.

3n) t must now read the question asked of it and respond by printing

an encoding of the answer "q is (or is not, as is appropriate) in L(G)"

on its answer tape, t may, in addition, choose other strings and inform

I of whether or not they are in L(G) by printing the appropriate infor

mation on the answer tape. Upon completion, t halts.

4n) t's answer tape is removed and installed as the answer tape

on %. A blank question tape is installed on &, and a blank answer tape

is installed on t. I is then restarted.

5n) I reads the answer and, after a period of computation, prints

on its guess tape G , its current guess at the grammar being presented

to it. Stage 5n is defined as ending when the last symbol of G^ is

printed.

Note that in general the answers generated by t will depend not only

on the question posed, but also on the preceding sequence of questions.
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We let AG(<q ,....q >) denote the set of answers generated by twhen

question a is asked in the context of preceding questions q<)»q1» •••>\-i

and grammar G. If t and t' are two teachers, tf is said to extend

t if, for every G e G and any sequence of questions <qQ»---»qn>»

At« (<v ••-V0 2 At(<v••-v}•

Definitions

(i) The system (fc,t) conveys G in q questions (with respect

to the indexing L, when this is not understood) if, in the presentation

of G described above, all guesses G for n>q are identical, and

L(G ) - KG).
q

(ii) (£,t) stably conveys G in q questions (with respect to L)

if, for every t' extending t, (£,t') conveys G in q questions.

(iii) Define Q(jl t): G->3NU{«>} by

[the least integer qsuch that (£,t) stably
q (g) = < conveys G in q questions, if such a q exists;
vk»W loo.

(iv) Define S„ t): G+3NU{«) by

{the number of atomic steps executed by the
machines t and %during the first Q,0 ..\(G)

stages of dialogue, if Q^ (̂G) <~;

The restriction of stability is made to rule out the following sort

of collaboration. Consider a teacher t which, when given a grammar G

and asked whether a string x is in L(G), answers the question and in

addition, volunteers information about exactly one other string, that

string being an encoding of G. Then by asking a single question, a
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learner can obtain this encoding and converge to the correct grammar.

1.2.3. General Properties of the Model

Our method for assessing the difficulty of inferring a recursively

indexed family will be to consider the rate of growth of the function

S v for various systems (£,t). This section establishes two general
(*» »t)

results concerning this rate of growth.

Definition. Let L: G -»-»• F be a recursive indexing. The equiva

lence problem for L is said to be decidable if and only if there is an

effective procedure for deciding, given G, G' e G, whether L(G) = L(G').

Theorem 1. Suppose that L: G •*+ F is a recursive indexing with

an undecidable equivalence problem, and that (&,t) is a system which

stably conveys every grammar in G. Then S.& t)(G) is not bounded

above by any effective computable function R: G ->3N.

Our interest in this theorem arises from the fact that many well-

known families of languages have an undecidable equivalence problem with

respect to their natural indexings. For example, in examining the Chomsky

hierarchy for simple families of languages extending the class of regular

sets, we are led to the linear context-free languages and the deterministic

context-free languages. However, the equivalence problem for the linear

context free languages is undecidable, so that Theorem 1 rules out the

existence of an efficient inference procedure. Similarly, construction

of a recutsively bounded inference system for the deterministic context-

free languages would imply decidability of their equivalence problem, which

is a long-standing open problem.
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Theorem 2. Suppose that G is recursively enumerable, and that

L: G -*-> F is a recursive indexing. Then there is a system (£,t) which

conveys every grammar in G. If in addition the equivalence problem for

L is decidable, then S,- *(G) is bounded above by an effectively

computable function R: G ->H. •

Theorems 1 and 2 direct our search for easily inferable families of

languages to the class of recursive indexings having a decidable equiva

lence problem. This leads us to ask whether this class enjoys any useful

closure properties. For example, we observe that for any recursive index

ings L°: IN •** F and L:3N -*-»• F_, we may recursively index ^i^F

by "interleaving" L° and L; that is, define 1:H -»-*- FqUF1 by

l2(2n) - L°(n) (Vn eW);

L2(2n+1) = ^(n) (Vn en) .

We would like to know whether decidability of the equivalence problems
1 o

for L° and L implies decidability for L . The following theorem

indicates that this need not be the case.

Definition. .Let F, F' be families of languages with F C F', and

let L: G -*-»• F, I': G' ->-»• F' be recursive indexings. L is recursively

embeddable in L' if there is an effectively computable map e: G + G'

such that (VG £ G)l(G) = Lf(e(G)).

Theorem 3. There exist recursive indexings L : G -» F and

L : G •*-> F having decidable equivalence problems such that any L

into which both 1° and L are recursively embeddable must have an

undecidable equivalence problem.
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1.2.4. A Polynomial-Time Inference Algorithm for the Regular Languages

Notation. For simplicity, we restrict attention to the alphabet

{0,1,2}. Let A be the set of all state graphs of complete, deterministic

finite state (Moore) machines over this alphabet, R the class of regular

subsets of {0,1,2}*, and let T: A •*-* R denote the map taking an auto

maton A to the set of tapes accepted by A. For A £ A, HAD Is to

denote the number of states in the automaton A.

Definition. Let (&,t) be a system which stably conveys every

A £ A. (il, t) is said to be polynomial bounded if there is a polynomial

p(x) such that (VA e A) S„ t)(A) < p(||A||).

Theorem 4. There is a set L of learners and a set T of teachers

such that for any A £ L and t £ T:

(i) (&,t) stably conveys every A £ A;

(ii) the guess to which 2, converges when presented A is the

minimal automaton accepting T(A);

(iii) (&,t) is polynomial bounded.



Proof. Moore's minimization procedure for finite state machines

5, p. demonstrates an explicit construction for the minimal ac

ceptor for a regular language L in terms of the equivalence classes

of the relation:

def

x = y < > (Vz e{0,l,2} *) xz £ L++ yz £L

The learner of Theorem 4 will use this construction, given only

partial knowledge about L.

In order to apply the construction, the learner I must be

able to do two things efficiently. First, representatives must

be found for each of the equivalence classes. Second, by using

these representatives together with certain other data about the

language, the transitions between the equivalence classes must be

established. Exactly which additional data are required will not

be apparent to the learner. The teacher t (which, being equipped

with the state graph, is in a position to determine which strings

are of interest) will offer an appropriate set of strings to the

learner. This set will depend on the representatives chosen by £.

t maintains a superset of the representatives by remembering the

questions asked by &.

Algorithm for learner &

%maintains a partially completed state graph of the minimal

automaton for the language being presented, making incremental

changes to the graph by adding new states and filling in transi

tions as the appropriate information is supplied by t.

30
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Stage 0: Ask: "Is the empty string in L?". Make the empty string

a representative.

Stage n ( n 2. 1 ); Pick an undefined transition for some input

symbol b from a state with representative x. (If no such transition

exists, the learner knows that its construction is complete.)

Ask: "Is xb in L?" .

t will answer this question by returning a set of strings Sr,

indicating for each y in S whether or not y is in L.

Call strings x and y ineguivalent with respect to S^ if there is

a string z such that xz, yz £ S and xz £ L •*+ yz t L. Otherwise,

x and y are equivalent wrt S . There are 3 possible cases for £:

(i) xb is not equivalent (wrt S ) to any current repre

sentative r. £ makes xb a representative.

(ii) xb is equivalent to exactly one current representative

r. H adds the transition: [x]$ [r] to its state graph.

(iii)xb is equivalent to more than one current representative,

2, and t will be designed to prevent this case from occurring.

End of stage n.

End of learner algorithm.



Algorithm for teacher t

t is supplied with an n-state finite state machine M accepting

language L. A set Q is maintained, consisting of all questions

asked thus far by £'.

In response to the question "Is x in L?", t constructs a set of

strings S, indicating to £ whether or not each string is in L.

1. Construction of S:

Begin by placing x in S. For each q in Q such that x £ q,

pick a string z such that xz£L«->-qz£L . Place xz

• and qz in S. (z may be chosen to be of length at most n-1) .

2. Indicate to £ whether or not each string in S is in L.

End of Algorithm for t.

Correctness of algorithms: £ continues to add transitions to its

state graph. When £ is attempting to define the b-transition from

the state represented by x, the answers returned by t guarantee

that either this arc points to the unique representative r which

is equivalent to xb (case (ii) for £); or that a new state [xb]

is created (case (ii) for £). It follows that after n+1 steps of

dialog, £ has built a subset of the minimal automaton for L having

n arcs. If the minimal automaton has k arcs, the first k+1 stages

of dialog constitute stable conveyance of L, and in fact

this can be accomplished in a number of steps polynomial in n.

32



The classes L and T alluded to in the statement of the theorem

arise because of the wide variety of choices available to the learner,

in picking representatives, and to the teacher, in picking interesting

strings to present to the learner. One of the strengths of this theorem

is that choosing any_ £ € L and t ET yields a polynomial bounded

system. Thus, learners and teachers succeed in their respective tasks

by depending only on rather general assumptions about the strategy being
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used by their dual, without knowledge of the specific algorithms involved.

The strategies sketched above depend crucially on close interaction

between learner and teacher. In fact, a result due to Moore [5] indi

cates that such interaction is necessary.

Definition. An oracle is a teacher which always answers only the

question asked of it.

Theorem 5 (Moore). For no oracle 0 and learner £ is the system

(£,0) polynomial bounded.

Theorem 5, when viewed in light of Theorem 4, lends a good deal of

insight into the situation faced by the learner. Namely, there is a

relatively small number of strings from a language which is sufficient

to allow that language to be identified efficiently. The problem lies

in finding those strings.

We remark in passing that applying analogous techniques to the family

of recognizable tree languages [6] yields an efficient system for conveying

this family. This is important because the recognizable tree languages

possess much of the structural richness of the context-free languages.

k

1.2.5. The R Hierarchy

ge now consider an infinite hierarchy of language families
1 2

a c c
R « R C R C R C. ••• . These languages are of interest because the

technique outlined in the proceeding section may be modified to yield an

efficient system to convey all the languages at any particular level of

the hierarchy.
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Definitions

(i) Let x = a,a •••a cb b -••*b. be a string, where n > 0;
J. 2. n n n-J. i

a,, b. £ I (VI < i < n); and c £ £U{A}. Then x (read x folded)
i i

is by definition the string aik.,a2b *•*a b c.
. C *

(ii) For x £ Z , x (x unfolded) is the unique y £ E such

that y = x.
k k

(iii) For k > 0 define C and 3 by induction on k via:

0 k+1 k
C C C C
x - x ; x b (x ) ;
0 k+1 k

x *= x ; x «=(x).

k k

(iv) If L is a language, define L = {x | x e L}. For F a
k k k

family of languages, define F « {L |L £ F}. L and F are defined

similarly.

Proposition

(i) If F is a family of languages, F*" = {l| L £ F}.

(ii) If L is regular, L is also. Hence, R 3 R .
k k+1

(iii) RCCRC.
k k+1 k k k+1

(iv) {wwR| w£{0,1}*}C £RC-R ; hence (Vk £U) RC £RC.

Proof. (i) follows from the fact that C and O are inverse

operations, (ii) can be proved by using a finite automaton for L to

D
construct one for L . (iii) then follows by induction on k, using

(i) and (ii). (iv) is clear from the preceding, thus establishing that
k

the R 's form a strictly increasing hierarchy.

k k £
RC may be indexed by Tfc: A-*-> R, where \(A) =T(A) (VA eA)

Theorem 4 then generalizes to arbitrary levels of the R - hierarchy.
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Theorem 6. There is a set L of learners and a set T of teachers

such that for any £ £ L and t £ T:

(i) (£,t) stably conveys every A £ A with respect to the index

ing Tk.

(ii) The guess to which £ converges when presented A is the

minimal automaton A' such that T.(A') = Tir(A)"

(iii) There is a polynomial p(x) such that (VA £ A) S.^ .(A) <_

p(BAl).

Proof. The idea behind the proof is that any (£,t) which stably

conveys every A £ A with respect to the indexing T: A -»-*• R may be

modified, without much loss of efficiency, to yield a system (£',t')

which stably conveys every A £ A with respect to T . The modification

consists of k-folding and k-unfolding questions and answers at stra

tegic points.

1

There is a simple grammatical characterization of R .

Defi.nition

(i) A context-free grammar G = <V,{0,1,2},P,S> is said to be

(2)
restricted even linear if it satisfies the following conditions:

a) All rules are of the form

where a, b £ {0,1,2};

A, B E V- {0,1,2}

b) For no a, b £ {0,1,2} and A, B, C £ V-{0,1,2} such

that B ^ C it is the case that A -* aBb and A -> aCb are both in P,

(ii) Let E denote the class of restricted even linear grammars.



(iii) EL will denote the class of languages generated by grammars

in E.

(iv) Define a recursive indexing E: E •>> EL by mapping each G £ E

to the language generated by G.

1

Proposition. EL - R

Theorem 7. There is a system (£,t) which stably conveys every

G £ E with respect to the indexing E. Moreover, S.« t\(G) is bounded

above by a polynomial in the number of non-terminals in G.

k

Finally, we indicate the relationship between the R 's and some of

the standard classes of languages.

Definition. R « U RC .
kSN

Theorem 8. {0nln| n>l}°{2}* $. IT .

Corollary
CD

(i) R 2 linear context free

(ii) R 7> deterministic context free

Proposition
1

(i) {wwR| w £ {0,1}*} £ RC - (deterministic context free)
2

(ii) {(wwR)2| w E{0,1}*} £ RC- (context free)
2n C(iii) {0 | n>l} E (context sensitive) - R .

These relationship appear in the following diagram.
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Footnotes

(1) As our results deal only with the existence of polynomial and recur

sive time bounds, the exact encoding chosen is not important.

(2) Even linear languages have been studied by Amar and Putzol [1].

Our notion of restricted even linear grammars constitutes a normal

form for general even linear grammars.
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it

§2. FINITE AUTOMATA IN 2- AND 3-DIMENSIONAL SPACE

Introduction

This chapter considers the problem of whether a finite collection

of finite automata can search all.of a 2- or 3-dimensional obstructed

space. Such a space gets searched by having every "accessible" cell

visited at some time by an automaton. Techniques for solving search

problems in 2 dimensions are presented. In particular, a finite auto

maton with 4 pebbles can search any finite 2-dimensional maze (of the

sort that appears in various game books), while one with 7 pebbles can

search any infinite 2-dimensional maze. In contrast, we show that no

finite collection of finite automata is capable of searching every

finite 3-dimensional maze.

A variety of interesting problems arise in the study of finite

automata that move about in a 2-dimensional space. In such a space,

especially one having complicated barriers, finite automata can perform

in an interesting sophisticated fashion. A number of different theo

retical devices that operate in 2-dimensional space have already been

studied: M. Paterson [1 ] has invented a class of finite automata

called "worms" that move through space, leave a trail wherever they go,

and by restriction on the allowable programs, never pass through their

own trail. In a 2-dimensional Euclidean space, these worms can

generate rich and complex patterns, even though their programs are

simple. Conway's [4 ] Game of Life provides another example of how a

few simple rules in 2-dimensional space give rise to very complex

activity and, in this case, to a simplest known basis for self-repro

ducing machines with Universal Turing Machine capability.

This chapter discusses work done jointly by Manuel Blum and William
Sakoda.
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An old but still very strong mathematical argument due to M. Minsky

[6] demonstrates the increased power of automata in 2- compared with

1-dimensional space. Consider a finite automaton that moves about on

an infinite 2-dimensional checkerboard. The cells of the checkerboard

are white except for those on the x and y axes which are black. An

automaton, represented by a circle in Figure 2.1, is a finite state

machine that moves about from cell to cell of the checkerboard, able

to see only the color of the cell it occupies. It has a finite number

of internal states and a finite set of instructions which cause it,

depending on its state and the color (black or white) of the cell it

occupies, to move N, E, S, or W one cell and change state. This

finite automaton actually has the power of a Universal Turing Machine

because the distance of the automaton from each of the 2 axes may be

viewed as the contents of 2 counters x, y, and Minsky has shown that

2-counter machines are universal. This shows that an automaton's

movements in 2-dimensional space can be considerably more complex than

in 1-dimensional space, since no finite automaton is universal on a

1-dimensional tape, no matter how that tape is marked.

In Section 2.1, we show that finite automata can search all of

2-diraensional obstructed space. In this case, we view the automata as

ants traveling about on dry land. Water, be it finite (lakes) or

infinite (oceans) constitutes the obstructions. The land too may be

finite (island) or infinite (continent). This land-search problem is

trivial if the automata are replaced by Turing machines: A single

Turing machine can construct an internal map of its space, keep track

of each cell of the space that it visits, and schedule itself to visit

increasingly larger portions of (accessible) land. Of course, this
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solution requires memory proportional to the amount of space to be

visited. Our solution by finite automata shows that finite memory

distributed among a finite number of machines is sufficient. The main

difficulty in constructing such an algorithm lies with the obstructions.

In fact, an unobstructed everywhere infinite 2-dimensional checkerboard

can easily be searched by 2 finite automata and a single pebble.

Figure 2.2 suggests one simple algorithm. In fact, 2 finite automata

and 1 pebble can simulate a universal 2-counter automaton (Sipser [8 ]).

This yields a more powerful method for searching space along lines

first suggested by A. Meyer, whereby the automata compute a search path

and move along it. Cobham has shown and we have independently proved

that the slightly weaker collection consisting of 1 finite automaton

with 2 pebbles has not got the power to search all space: the finite

automaton can use its 2 pebbles to search any sector of an infinite

2-dimensional checkerboard, if the sector's interior angle is less than

180 degrees. However, no single finite automaton with just 2 pebbles

can search a complete half plane (no less the whole plane). The proof

of this fact also shows that 1 finite automaton with 2 pebbles cannot

be universal. The above results (concerning 2 finite automata with

1 pebble and 1 finite automaton with 2 pebbles) completely summarize

the minimum finite automaton power required to search an unobstructed

checkerboard.

The search algorithms for 2-dimensional space are particularly

interesting in view of the difficulty of searching more general graphs.

In his groundbreaking work of 1967, M. Rabin showed that a finite

automaton with a finite collection of pebbles cannot entirely search

(thread) an arbitrary finite graph. S. Cook [5 ] and C. Rackhoff [7 ]
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have since obtained upper and lower bounds on the number of pebbles

needed to search a graph with n nodes. In Section 2.2 we show that

a finite collection of finite automata cannot completely search a

3-dimensional checkerboard space containing obstructions (the arcs and

nodes of Rabin's graph become the accessible region of this space, the

space between them becomes the obstruction). This extension is

interesting because in checkerboard space, unlike graph space, an auto

maton has a "compass" for determining direction, N, E, S, W, U, D, and

as we shall see in the search algorithms for 2-dimensional space, this

can provide surprisingly useful information.

Bob Tarjan has informed us that he and Wolfgang Paul tried

unsuccessfully to prove that a finite collection of finite automata

cannot entirely search a planar graph, one whose nodes are all of

degree 3. (A finite automaton moving into a node of such a graph may

choose to go left, right, or back whence it came, depending on its

state and whether or not other automata appear at the same node.) We

suspect, as Paul and Tarjan do, that a search procedure for this

related problem is impossible in general. It would be interesting to

siiow this is so, especially since it would illuminate the difference

between graph space and checkerboard space.

2.1 Searching 2-Dimensional Space

2.1.1 Overview

In this section we show that obstructed 2-dimensional checkerboard

space can be completely searched by one finite automaton with a finite

number of pebbles. The search procedure uses several ideas, outlined

below.
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First, suppose a finite automaton with 4 pebbles is positioned on

the south shore of a lake [the (south) shore of a lake =df all land

cells that are adjacent at an (northern) edge to a cell of the lake].

That automaton can find its way to the nearest accessible land, if any,

that lies .due north (on the other side of the lake) of the starting

position, cf. Figure 2.3. The finite automaton does this by using

shoreline distance [shoreline distance between 2 land cells on the

shore of a body of water == number of land cells on that shore that
df

connect the given 2 cells] between a pebble, W, and each of 3 other

pebbles, X, Y, Z, to encode the contents of 2 finite counters, Cx, C ,

C . A simple proof shows that a finite automaton can cross a lake
z

when provided with 3 such counters, each capable of holding a number

no bigger than the length of the lake's shoreline. C^9 C are used to

store x, y distance from the initial position of the automaton on the

shore of the lake to successive positions of the automaton along the

shore. C is used to (eventually) store z, the y distance to the
z

desired goal position. The number z is the least positive y that

occurs each time x = 0 as the automaton moves along the shore. (The

a'.;LG.;iaton uses the empty counter, Cx, to compare the contents of C

with those of C and to update C .)
z z

More generally, the finite automaton may be started with its

pebbles on the souLhern shore of an arbitrary body of water, be it

finite or infinite, in what we call a "try to cross the water" state.

If the shoreline is infinite, the automaton will move (with its pebbles)

forever along the shore. If the shoreline is finite, the automaton

will move along that si.orc just until it returns to its original start

ing position. The finite automaton will always recognize when it
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returns to its starting position and this will cause it to enter a

predetermined "back to the starting position" state. If there is

accessible land due north of the starting position, the finite auto

maton will recognize that fact (z, the contents of C , will be posi

tive). In that case, the automaton will move along the shore to the

other side of the lake (the first cell where x = 0 and y = z) then

enter a predetermined "goal achieved" state.

Interestingly enough, it is just the above obstacle-crossing

subroutine that fails in 3 dimensions: no fixed number of finite

automata can cross the kinds of complicated obstacles that can occur

there (in 3 dimensions).

The (above) obstacle-crossing subroutine can be used by a finite

automaton with 4 pebbles in an algorithm to completely search any

island on which it and its pebbles are placed. Basically, the auto

maton uses its pebbles to search column after column of the island

from its original starting position to the eastern end of the island

and from there to its western end.

The question is open whether 1 finite automaton without pebbles

oi even whether 4 automata without pebbles can search an arbitrary

island.

Next, additional pebbles are introduced to search an arbitrary

land whether it be (finite) island or (infinite) continent. These

additional pebbles serve to define counters whose contents determine

the size of an artificial island that is searched, enlarged, then

searched again (Figure 2.4). This process continues forever, if the

accessible land is infinite. If it is finite, the finite automaton

eventually realizes this and reverts back to the island searching routine.
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The problem of creating an artificial island reduces to that of

constructing a counter in obstructed space from a finite collection of

pebbles. In such a counter, an integer is stored as the "distance"

properly defined between a stationary "origin" pebble 0 and a "count"

pebble C. A squadron of 4 pebbles under the control of 1 finite auto

maton moves between the 2 pebbles 0 and C to increment or decrement

the count. A properly constructed counter is the most subtle (if one

may call it that) part of this algorithm. This is because a surprisingly

large collection of convincing constructions fail the test of proof.

The outline for a correct construction appears in the next subsection

of this paper.

Finally, a working counter must be "movable", count included,

from a given cell to an adjacent one. This is easily done by intro

ducing a second empty counter into the adjacent cell, then successively

decrementing the given counter while incrementing the adjacent one.

This completes the outline of the argument.

The above finite automaton with all its pebbles moves in a suffi

ciently straightforward manner that one can hope to visualize its

movement in detail. The approach, however, requires a large number of

pebbles. There is another approach more frugal of pebbles that dates

back to Meyer's suggestion (to Rabin) for getting Universal Turing

machines to thread unobstructed space. That approach, though too

abstract to visualize in detail (because it requires computing paths),

can be used to prove that finite automata with just _7 pebbles can

search 2-dimensional obstructed space. The approach uses the fact

that a finite automaton with 2 counters is universal and can therefore

generate instructions to search in turn all finite paths extending
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from its starting position. This works if the accessible land is

infinite for then each counter can store an arbitrarily large integer.

If the land is finite, the automaton can revert back to the island-

searching routine. The 2 counters use one origin pebble 0, two

different count pebbles C ,C2> and 4 additional pebbles W, X, Y, Z

for shuttling between 0 and C , Cy. This collection consisting of 1

finite automaton and 7 pebbles can search an obstructed 2-dimensional

space.

2.1.2 Counter Construction

In this section, we design a finite automaton that uses 6 pebbles

when placed in an infinite obstructed 2-dimensional space to simulate

a (potentially infinite) counter. The 6 pebbles consist of an origin

pebble 0, a count pebble C, and 4 additional pebbles W, X, Y, Z.

Problem: Design a finite automaton to be started in an "incre

ment" state together with pebbles 0, C,W, X,Y, Zona single cell of

land. Call this initial configuration the beginning of stage 1. In

general, at the beginning or end of a stage, the finLte automaton is

to occupy this starting land cell with 0, W, X, Y, Z, while C may lie

elsewhere (storing the count). At the beginning of stage n, the*finite

automaton may be started in an "increment" state or else, provided C

does not occupy the same land cell as 0, in a "decrement" state. In

either case, the finite automaton uses its pebbles W, X, Y, Z to find

C, to move it, and to return to 0 either in a "mission accomplished"

state or a "mission impossible" state. The return to 0 constitutes

the end of stage n. If the finite automaton returns to 0 in the

mission impossible state, this is to mean the accessible land is
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necessarily finite (island). In this case, the finite automaton is

not to be restarted. If the finite automaton returns to 0 in a

mission accomplished state, it may be restarted in an increment or

decrement state, and this constitutes the beginning of stage n+1. At

the end of a stage, C is to occupy the same position as 0 if and only

if the finite automaton has been started as often in the increment as

the decrement state.

The finite automaton with its 4 pebbles W, X, Y, Z is called the

"shuttle" since it generally shuttles from 0 to C, moves C appropriately,

and then shuttles back to 0. Pebbles W, X, Y, Z are used by the

finite automaton as previously explained to simulate 3 finite counters

C . C . C • All shuttle movements will be described in terms of these
x y z

counters rather than the pebbles that implement them. Since these

counters are used only to store values of shoreside distance, the

replacement of the pebbles by these counters is legitimate. (Our

description of the shuttle movements is thereby simplified because the

finite automaton can update C , C , C contents on the spot and the
x y z

corresponding movements to the various pebbles need not be described.)

We now give instructions for the shuttle (i.e. the finite automa

ton with counters C , C , C ) to move from 0 to C.
x y z

Algorithm: The shuttle is to follow the instructions below until

C or 0 is reached: Initially, the shuttle is to move due north until

it reaches a cell, call it X, of the south shore of a body of water.

From X, the shuttle is to move counter clockwise along the shore,

updating C , C , C as it goes. If and when it returns to X, the
x y z

shuttle shall know if there is reachable land due north of X (yes if
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C > 0, no if C =0). If not, the shuttle is to return to 0 in the
z z

"mission impossible" state. If yes, it is to move from X to the

closest land cell due north of X (i.e. to the other side of X) (cf.

Figure 2.5). From this other side of the lake, the shuttle is to

continued its movement north following the directions given above.

The return of the shuttle from C to 0 follows the same path in

reverse taken by the preceding movement from 0 to C (cf. Figure 2.6).

The C , C , C contents at any point in this reverse movement, however,
x y z

may be different from their contents at the same point in the forward

movement.

The count pebble C can be placed in more than one position on a

land cell, unlike pebbles W, X, Y, Z and 0. In addition to the stan

dard position in the interior of a cell, C can also be placed on an

edge between a land cell and water cell. The latter irregular posi

tion permits the shuttle to distinguish when C is on a shoreline (cf.

Figure 2.7). The position of the count pebble C relative to the origin

pebble 0, between stages when the shuttle has returned to 0, shall

uniquely determine the contents of the counter being constructed.

This position will be called the between-stages position of C. Shown

in Figure 2.8 are the counter contents or numbers represented by a

succession of between-stages positions.

Note that the successive positions of the shuttle as it moves

from 0 to a distant C are different from the successive between-stages

positions of C: C can be placed on an edge, whereas the shuttle moves '

only from cell interior to coll interior. The shuttle can pass through

a cell repeatedly in one shuttle, whereas successive between-stages
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positions of C are unique. For example, the successive positions of

the shuttle as it moves from 0 to C are compared in Figure 2.9 below

with the successive between-stages positions of C as it is incremented

stage after stage. Note the jump in Figure 2.9 from C's position 11 to

12: This .jump is needed to insure that no position of C will have

double meaning. Another such example is given in Figure 2.10.

Of course, the shuttle does not have wings. It cannot move the

count pebble instantly from position 56 in Figure 2.10 to position 57.

It does this gradually instead.

The procedure used by the shuttle to increment the count pebble

is as follows:

Algorithm: From 0 the shuttle moves toward C (north, counter

clockwise around water, etc.) until it "encounters" C. We say that

the shuttle encounters C if and only if either [C lies inside a cell

and the shuttle has just moved north or south, not following a shore

line, into the cell containing C] or [C lies on an edge (between water

and land) and the shuttle has just followed the shoreside of that

water into the cell on whose edge C lies]. Figure 2.11 shows C inside

a cell or on one of its 2 edges, and the movement of the shuttle until

it encounters C.

After encountering C, the shuttle determines which of the 3 cases

below holds, and moves C accordingly:

1. If C lies inside a cell (in which case it must lie in the same

column as 0 and north of it) and if the cell north of and adjacent to

the one containing C is also land, then the shuttle moves C north to

the interior of the above cell (Figure 2.12).
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2. If C lies inside a cell and if the cell above is water, then

the shuttle moves C up to the edge between the 2 cells (this position

may get changed before this stage ends: It will be final if and only

if C is not encountered by the shuttle on its way back to 0). See

Figure 2.13.

3. If C lies on a lakeshore. edge as in Figure 2.14, then move it

counterclockwise one edge to the next position on the lakeshore. (This

will be the final position for C for this stage if and only if C is

not encountered by the shuttle on its way back to 0.)

After moving C the shuttle wends its way back to 0 along exactly

the same path whence it came. If C is encountered on the way back, it

must be lying on the edge of a lakeshore cell (this is because the

shuttle can visit only lakeshore cells more than once in moving from 0

to C or back). This position must be in the column containing 0. The

shuttle now checks if there is accessible land due north of C. If not,

it returns to 0 in the "mission impossible" state. If yes, it moves C

to the interior of the nearest land cell due north of its present

position (Figure 2.15).

Now the shuttle continues its way back to 0. (C will not be

encountered again since it can only be encountered by the shuttle on

its way back if it lies on an edge.)

Decrementation will next be defined so that the counter's content

(i.e. the total number of incrementations minus the number of decre

mentations) uniquely determines the position of C independently of the

order in which the incrementations and decrementations were carried out
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Algorithm. To decrement the count, 0 and C may not be in the

same position. The shuttle leaves 0 and moves in the usual way north>

around lakes, etc. until it encounters C. Either C is encountered in

the interior of a cell or on an edge.

Case '1; C is in the interior of a cell and is reached by the

shuttle from the interior of an adjoint coll below.

In this case, the interior of the cell below the one containing C

is the desired decremented position of C.

Case 2: C is on an edge (between water and land) and is reached

from the interior of the cell beneath: Move C to the interior of that:

cell. (See Figure 2.16a.)

Case 3: C is on an edge and is reached from an edge. Move C to

the edge that led to it. (See Figure 2.16b.)

Case 4: C is in the interior of a cell and the southern edge of

that cell is on a shore (Figure 2.17). In this case move C south to

the edge on the other side of the water (the shoreline must be finite)

and then clockwise one edge. Drop C. Then move counterclockwise one

column (r.o the land cell in the column containing 0) and start the

return trip to 0. Tf C is not encountered on the way back, then its

position ir> i inal. If it is encountered, move C to the interior of the

cell that lies counterclockwise in the adjacent column (column contain

ing 0) and return to 0.

It is easy to see that if the land accessible from 0 is finite,

then the shuttle wi31 discover thin before trying to move C to a non

existent "other side" of the water. If the land accessible from 0 is

infinite, then there is an infinite sequence of distinct positions for
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C, and the shuttle (properly) increments and decrements C through

these positions, as we shall show in the remainder of this section.

At the start, C is in the interior of a cell, the same that con

tains 0. This is position 0. In general, between stages, C is either

in the interior of a cell or on an edge. It is easy to see that when

ever it lies in the interior of a cell, it lies in the same column

as 0.

1. Suppose that C is in the interior of a cell, say at position

i, and that the cell above C is land. If the shuttle is required to

increment C, then C will be moved to the interior of the cell above

its present location. This will be position i+1 because the shuttle

cannot encounter C again on its return to 0. (In moving from C to 0,

the shuttle can encounter C a second time only if C is on water*s

edge.)

2. Suppose that C is in the interior of a cell, say at position

i, and that the cell above it is water. If the shuttle is required to

increment C, then C will be moved up to the edge between land and water.

Th'? shuttle then returns to 0. If it does not encounter C on the way

backj then since the shuttle is returning along the same path whence

it came, it follows that this position of C is a new one. It is posi

tion i+1. If the shuttle does encounter C on the way back then it

moves C across to the other side of the water to the Interior of a

cell there. This position is a new one (because the shuttle does rot

pass through it on the way back to 0). It is position i+1.

3. Suppose that C lies on an edge and that this is position i.

By inductive assumption, this land cell lies on the path of the shuttle

(whether placed there by incrementation or decrementation) and
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therefore the shuttle will encounter C. Suppose the shuttle is

required to increment C. Then it moves C to the next edge in the

counterclockwise motion along the shoreside and then the shuttle

starts its return to 0. If the shuttle does not encounter C on its

return then since the shuttle is returning along the same path it came,

it follows that this position of C is a new one, namely i+1. If the

shuttle does encounter C on the way back then it moves C to the oth'»r

side of the lake to the interior of a cell there. This position is a

new one, namely position i+1.

The argument that the shuttle properly decrements C is similar to

the above increment argument.

This completes the proof that a finite automaton with 6 pebbles

in infinite 2-dimensional obstructed space can simulate an unbounded

counter. (A finite automaton with 7 pebbles can simulate 2 counters

and use them to search the space.)

2.2 3-Dimensional Space is Unsearchable

In Section 2.1, we showed that a finite state machine with 7

pebbles could search any connected 2-dimensional checkerboard graph,

whether finite or infinite. In 3 dimensions, the situation is

different:

Theorem. Let a collection of n s-state finite state machines

be given. Then there is a finite connected 3-dimensional checkerboard

graph G not searchable by the n machines. If all of the machines

are initially placed on the same vertex of G, there will be a vertex

which is never visited by any of the machines In the ensuing computation



Some notation for manipulating graphs and a comment about the

machine model follow.

Let U = {(0,0,1),(0,0,-1),(0,1,0),(0,-1,0),(1,0,0),(-1,0,0)}.
Up Down N S E W

An arc is an unordered pair {v,v+u} where v G Z (Z = integers) and

u 6 U. A 3-dimensional checkerboard graph G is a set of such circs.

The set of vertices of G, V(G), is {v£Z |(there exists u^U)

[v,v+u]€=G}. For v € V(G), the set of directions from v is

D(v) = {uGu|{v,v+u}GG}. (This is the set of directions (N,E,S ,W,U,D)

along which an automaton can move from v.)

Let us describe the computation of machines M ,M_,...,M on a

graph G. The machines are designed to cooperate together in ttv» com

putation. At step t each machine M is located at some vertex v.

in state q.. One or many machines may occupy a vertex at a tim^.

Acting simultaneously, each M applies its transition function to

its current state, the set of directions (accessible) from its current

vertex v , and the set of machines located at v to obtain a

direction u. £ D(v.) and a state from its finite state set. At time
a. i

t+1, M. will be found at vJ +u.. in its newly selected state.
3 i i

Proof of the Theorem. The proof proceeds inductively in n stages.

The i-th stage produces i-traps, which are graphs not searchable in a

certain way by any i of the given machines.

Stage 1 constructs 1-traps. The plan is to generate a large

collection of 1-traps (all are rotations and translations of the same

basic 1-trap) (Figure. 2.18), which will later be used as the atc.Tiic

units for the construction of 2-traps. We will present the construc

tion for this 1-trap below.
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The 1-trap must satisfy certain physical requirements:

(i) The graph is connected.

(ii) (a) Every arc along the line between p and p„ must be

present.

(b) Every arc along the line between p and p, must be

present.

The sets of vertices connected by arcs in (a) and (b) are called the

wires of the trap.

(c) The wires are the only vertices which are not properly

in the interior of the cube.

The 1-trap must also satisfy:

1-trapping property: Let any one of the given s-state machines be

started anywhere on either of the wires. In the subsequent computation,

the machine will never appear on the other wire.

A 1-trap will now be constructed. It will be convenient to begin

the construction at the point (0,0,0) and add the. wires later, so

that. Lhe trap constructed will be a translation of the graph shown in

Figure 2.18.

Definition. For x, y E Z, let <x,y> denote the point

(t*x, 'ixy,0) where 1 will henceforth denote lcm{2,... ,s} . The

<x,y> are the connector points. Let C = {<x,y>|x,yGz}.

The °° connector graph is constructed by joining adjacent

connector points with x and y connectors.
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Definition. The pair of points v , v. G Z lie along a line if

v„ = v_ +au for some a GH and u E U. For such v. and v~,
2 1 L £

each arc in the set {{v +bu,v +(b+l)u}|0£b<a} is between v and

v

Definition, (i) Let c. ,c2,... ,cq be defined as in Figure 2.19.

C ((0,0,0)), the x-connector at (0,0,0), consists of all arcs which
X

lie between a pair of points c , c. _ for some 1 < i £ 8.

(ii) For peZ3, Cx(p) ={{v+p,v,+p}|{v,v,}€Cx((0,0,0))}.
Thus C (p) is the translation of C ((0,0,0)) to p.

X X

Definition. (i) Let d.,d ,...,d be defined as in Figure 2.20.
__———— j_ ^ y

C ((0,0,0)), the y-connector at (0,0,0), consists of all arcs lying

between a pair of points d., d. ,, for some 1 < i < d.
i i+1 — —

(ii) For p e Z3, C (p) = {{v+p.v'^llWyjGC ((0,0,0))}.

Definition. The <» connector graph is G^ = U (Cr(p) UC (p)).
pec X y

The. behavior of one machine on the <*> connector graph is charac

terized hy the <» Ribbon Theorem. Tho desired 1-trap will be obtained

from a finite approximation of the «» connector graph. The °° Ribbon

Theorem will be useful for analyzing the behavior of machines on the

finite space.

Definition. The distance between connector points <x ,y > and

<3Vy2>' denotcd d(<x1,y1>,<x2,y2>), is ix^-xj +ly^y^l .

It is straightforward to verify that d is a metric on the space

of connector Doints.
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d7=(-l,2,0)

d(.=(-l,2,st2)// /
+2 *y ^03:10,1,8+2)

d8= (0,2,0)
>d2=(0,l,0)

*d, =(0,0,0)

Figure 2.20
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«> Ribbon Theorem. Let one of the given s-state machines M be

started on the «> connector graph at <x.,y >. Then every connector

point visited by M is within distance s-1 (with respect to metric

d) of some point in R(<x1>y1>) «{<na+x1>nb+y]L>|nen and a,b£Z and

|a| + |b| <s}.

The proof of the theorem uses the following property of connector

space, which is easily verified.

Lemma. Let G denote the « connector graph. Then for x, y^Z,

G = {{v+<x,y>,v,+<x,y>}|{v,v,}eG}. (Thus all connector points look

the same to a finite state machine.)

Proof of the Theorem. Call the i-th connector point visited by M,

<x ,y >, and let q., be the state of M at this visit. Pick the
i i i

least i < j such that q = q . Since M has only s states,

j<s+l. For any k>l the points <xk.yk> and <xk+1»yk+1> are

at distance at most 1, so by the triangle inequality <x2,y2>,...,

<x. 1,y. ..> are at distance at most s-1 from <x^9y^>. Set

a=x.-x , b»y,-y±. Then |a| +|b| «d(<xj,,yi>,<xj ,y^>) < s.

Because all connector points look the same to the machine, the computa

tion between steps i and j can be extrapolated, so that for any

i < k < j and n j> 1:

xn(j-i)+k = Xk+na ;
y /a -\.l.i = y, +nb .•7n(j-i)+k 'k

Now d(<x +na,y +nb>,<xk+na,yk+nb>) = d(<x1,y]L>,<xk,yk>) which latter

quantity has been shown above to be at most s-1. Q.E.D.



A finite approximation of °° connector space, called the marked

torus, is constructed next.

2
Definition, h « 4s ; w «= hxj,.

The construction of the marked torus uses the rectangle of

connector "points <x,y> such that 0 £ x < w and 0 <_ y < h. Adja

cent connector points are to be joined by x and y connectors. Bridges

will join pairs of connector points at opposite edges of the rectangle.

Definition, (i) Let e ,e ,...,eQ be defined as in Figure 2.21.
1 Z 7

The xbridge of span w at (0,0,0), denoted B (w,(0,0,0)), consists of
X

all arcs lying between a pair of points e , e for some 1 £ i £ 8.
i i+1

(ii) For p€ Z3, B (w,p) = {{v+p.v'+p}|{v,v»} ^B (w, (0,0,0))}.
X X

Definition, (i) Let f_,..., f be as in Figure 2.22. The

y bridge of span h at (0,0,0), denoted B (h,(0,0,0)), consists of all

arcs lying between a pair of points f., f. . for some 1 £ i < 8.

(ii) For pe Z3, B (h,p) = {{v+p.v'+pJKv.v'jGB (h,(0,0,0))}.

Definition. The marked torus T is the union of the following

live sets:

(i) U C (<a,b>)
0<a<w-2 x
0<b<h-l

(ii) U C (<a,b>)
0£a£w-l y
0<b<h-2

(iii) U B (w,<0,b>)
0<b<h-l X
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e5 =<w-l,0>
e6=(2-t,l,t+s*2) ♦(s+4,l,l*s*2)

V<aH,0> P^=<«-l,0>
+(l,0,t*s+2)/ ♦ (s+4,0,{*s*2)

,e7 =(2-t,l,0)
x^ ' —k *4e? =<aH,0>
/ e9=(0,0,0) * +(|,0,0)
e8=(2-t,p,0) *Z/ l=<aH,0>/y

♦x

Figure 2.21
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f5 =<0,h-l>
♦ H,s+4,2t*s*2) f4-.<0|h-|>

f3 =<0, h-I> AS +(0,s+4,2t*s+2)
+(0,s+4,2{+s+2)7^ \

/ lf2 =<0,h-l> +(0>l,0)
f,= <0,h-l>

16=(-l,2-t,2t+s+2)

\ f9 =(0,0,0) ♦z

♦ x

f7=(-l,2-{,0)
f8 =(0,2-1,0)

Figure 2.22



(iv) U B (h,<a,0>)
0<a<w-l y

(v) {{(0,0,0),(0,0,-l)},{m2,m2+(0,0,-l)}} where m2 =<s+l,2s2>.
Connector points <0,0> and m2 are said to be marked; all

other connector points are unmarked. The wires of the trap will be

attached to the points (0,0,-1) and m +(0,0,-1).

It will now be shown that the marked torus satisfies:

Isolation Theorem. Let M, one of the given s-state machines,

be started at one of the connector points <0,0> or m of T. M

will never appear at the other point during the subsequent computation.

This theorem shows that a 1-trap may be constructed from the marked

torus, as follows. The torus fits properly inside a cube of side length

2 2
l*(w+2) = 4s 1 +21. Lead wires into this cube as in Figure 2.18.

Attach a wire to each of the points (0,0,-1) and nu +(0,0,-1) via

a sequence of arcs not passing through any vertex that is part of the

torus. Let us verify that this construction will trap any one of the

given machines. Suppose machine M, starting on the wire attached to

(0,0,-1), arrives at the other wire. There will be a segment of the

computation where M, starting at <0,0>, later arrives at m , having

visited no marked connector points in the interim. This segment is

also a valid computation of M on the marked torus (without wires),

contradicting the Isolation Theorem. A similar argument shows that M

cannot move from the m wire to the <0,0> wire.

Here is the plan for proving the Isolation Theorem. First prove

the Projection Theorem, which relates the behavior of s-state machines

on » connector space and the marked torus. The Projection Theorem and
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«> Ribbon Theorem together give the Finite Ribbon Theorem, characteriz

ing the behavior of machines on the torus. The Marked Finite Ribbon

Theorem and Ribbon Analysis provide a refined characterization, which

is then used to obtain the Isolation Theorem.

Definition. (i) For m £ Z and a € Z, [a] is the least
: m

nonnegative integer such that [a] -a is divisible by m.
m

(ii) For x, y e Z, f(<x,y>) = <[xl,[y] >.
w n

Projection Theorem. Let s-state machine M begin a computation in

state q at p £ C on the torus. Suppose that after some number of

steps of computation the sequence of connector points M has visited is,

in order, p ,p«,...,p with P1,P«,...,P , unmarked. Then M

started in state q at p on the » connector graph, will visit the

sequence of connector points p_,p«,pl,...,p*• The relation between

the two sequences is: p. = f(p!) for 2 < i <_ r.

Proof. Both graphs can be viewed geometrically as intersecting

straight line segments. Call a point where 2 or more lines meet a

corner. Associate each corner g in °° connector space with a corner

T(g) on the torus.

(i) (a) For a, b E Z such that a ^ -l(w) and 1 < i < 8,

T(<a,b>+c ) = f(<a,b>)+ei

(c. as specified in Figure 2.19).

(b) For a, b E Z such that a E -l(w) and 1 < i < 8,

T(<a,b>+c.) = f(<a,b>)+c.

(cf. Figure 2.21).
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(ii) (a) For a, b G Z such that b $ -1(h) and 1 < i < 8,

T(<a,b>+d ) « f(<a,b>)+d±

(cf. Figure 2.20).

(b) For a, b G Z such that b = -1(h) and 1 < i < 8,

T(<a,b>+d ) « f(<a,b>)+fj[

(cf. Figure 2.22).

In connector space M visits a sequence of m corners, being in state

q when the k-th corner g, is visited. On the torus, M visits a

sequence of m corners, being in state q, when the k-th corner gk

is visited.

Claim, m = m, and for 1£ k < m: q. — q. , §k - T(8k) •

The claim is verified by induction on k. The interesting cases

arise when M moves between a pair of corners in °° connector space,

both falling into cases (i)(b) or (ii)(b). For example, suppose

g « <-l,0> + c_, g. . = <-l,0> + c,. By induction hypothesis
k / k+1 o

gk = <-l,0> +e? and qfc = qR. To show: g^ = <-l,0>+e6 and

q « q, ,. Let us interpret the situation in terms of Figures 2.19
k+1 k+1

and 2.21. In connector space M starts at the c? corner of an x-con-

nector in state q and proceeds upward to the cfi corner, arriving there

in state q, . On the torus, M begins at the e_ corner of an x-bridge,

in state q, . To show: M reaches the e. corner of the x-bridge in
k o

state qfc+1.

For 1 < i < s+2, let v = g +(0,0,i). Let p. be the state

of M on the connector graph the first time v. is visited during the
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passage from g, to g .. Since M has only s states, there exist

1 £ i < j £ s+1 such that p = p . The computation then repeats

according to the pattern p, = p,, .. for j £ b £ s+2.

For 1 £ r £ il+s+2 let v « g +(0,0,r). Since g is unmarked,
r r k

M's computation on the connector graph can be extrapolated on the torus.

According' to this extrapolation, M will visit each v on the torus.

The first visit to v on the torus will be in state p , where:
r rr

P » p for 1 < r < i ;
r r .—

P = Pr .,1 ±. for Kr< Jl+s+2 .*r K[r-i] +± - -

In particular,

\+i " P£+s+2 " p[Jt+s+2-i] +i

= P[s+2-i] +i ^since CJ—i> | *. = lcm{2,...,s})
- qk+1 . Q.E.D.

Definition. For 0 £ x ,x„ < w and 0 £ yn»y9 < h:

(i) d^Xl*X2^ = min([x1-x2]w,[x2-x1]w).

(ii) dy(y1»y2) = roin^yi^Jh'^^iV*
(iii) d,(<x1,y1>,<x2,y2>) =dUx1,x2)+d^(y1,y2).

Lemma, (i) d' is a metric on the space {<x,y>|0£x <w,

0£y <h}.

(ii) For connector points p.. and p9, d* (f(p.) ,f(p«)) £

d(p1,P2).

Finite Ribbon Theorem. Let s-state machine M begin at p GC

on the torus. After some number of steps of computation, suppose the

connector points M has visited are, in order, P,»P«>...,P > where the
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* -*

78

first r-1 of these points are unmarked. Then each p. is within

distance s-1 (with respect to metric d*) of some point in R'(p.) =

{f(v)|vGR(P]L)}.

Proof. Let q be the state in which M was started. By the

Projection Theorem, M, started at p in state q on the » connector

graph will visit a sequence of r connector points, say p.,p',p',...,pV

By the «> Ribbon Theorem, for each p! (2£i£r), there is a

v. S R(p ) such that d(p!,v ) £ s-1. By (ii) of the preceding

lemma, d? (f(p*) ,f(v )) £d(p',v ). By the Projection Theorem

?± « f(pp, so d,(p1,f(vi)) £s-l with f(v±) eR'(Pl). Q.E.D.

Marked Finite Ribbon Theorem. Let s-state machine M begin at

p1 6C on the torus. After some number of steps of computation,

suppose the connector points M has visited are, in order, p-^p.,...^ ,

where p«,P~,...,p , are unmarked. Then each p. is within distance

s (with respect to metric d') of some point in Rf(p ).

Proof. The Finite Ribbon Theorem, applied to p ,...,p , shows

that for each p (2 £ i £ r) there is v. G Rf (p ) such that

dt(Pi,v.) £ s-1. By definition of Rf, v± +(Pj^) G R? (p,) • Then

dt(pi,vi+(p1-p2)) £ d'(pi,vi) +d,(vi,vi+(p1,p2)) = dl(pi,vi) +1 £ s.

Ribbon Analysis. For 0 £ x < w and 0 £ y < h, each of the

following sets is equal to Rf(<x,y>):

(i) {<[na+x]w,[nb+y]h>|nE]N, a,bGZ, |a|+|b|£s}

(ii) {<[na+x]w,[n6+y]h>|n,ae]N,6ez, |a|+|b| £s}
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(iii) H(y) UV(x) UR^(<x,y>) , where

H(y) = {<a,y>|0£a<w} ;

V(x) = {<x,b>|0£b<h} ;

R!(<x,y>) = {<[na+x] ,[nb+y], >|n,a6]N+, b6z-{0}, a+|b|<s} .
L w n —

(iv) H(y) UV(x) UF(<x,y>) , where

F(<x,y>) - {<[na+x] ,[nb+y]h>|n,aGN+, b£Z-{0}, 0£iia<w,
a+|b|£s} .

Proof. R1 = (i): This is a restatement of the definition of R'

given in the Finite Ribbon Theorem.

(ii) equals (i): An arbitrary <[na+x] ,[nb+y]h> from set (i)

with a < 0 must be expressed in the form <[na+x] ,[nb+y]-> of set

(ii) where a is required to be non-negative. The values n = n(wh-l),

a = -a, £ = -b are appropriate:

<[na+x] ,[nb+yl, > = <[na+x] ,[nb+y], > + <[nwh(-a)] ,[nwh(-b)] >
w n w n w n

(since the second term is <0,0>)

= <[n(wh-l)(-a)+x] ,[n(wh-l)(-b)+y] >
w n

=<[fia+x]w,[n6+y]h> .

(iii) equals (ii): H(y) and V(x) separate out the cases where,

in (ii), nS = 0 and na = 0, respectively.

(iv) equals (iii): To show: R^(<x,y>) CF(<x,y>), the other

containment being easy. Let <[na+x] ,[nb+y], > G R'(<x,y>). Pick

q GU such that na = q*w+[na] . Since 0 < a£ s, a|w =

h*lcm{2,3,...,s}, and this implies a| [na] . Therefore na = q*w +fia

with nGU and na < w. Then



<[na+x] ,[nb+y] > = <[q*w+na+x] ,[((q*w+na)/a)b + y],>
w n w n

= <[na+x] ,[nb+y]u>
w J h

(equality holding in the second coordinate because a*h|w).

t

Isolation Lemma 1. Let s-state machine M be started at <0,0>
v;l ——————————

on the marked torus. Suppose M visits the sequence of connector

'V points p =<0,0>,p9,... ,p , where p and p are marked, and

P«,...,p - are unmarked. Then p = <0,0>.
r2 rr-l r

Proof. By the Marked Finite Ribbon Theorem, each p is within

distance s of Rt(<0,0>). Therefore it suffices to show:

2
Sublemma 1. Marked vertex m« = <s+l,2s > is not within distance

s of R*(<0,0>).

Proof of Sublemma. By characterization (iv) of the Ribbon

Analysis,
Rf(<0,0>) = H(0) UV(0)UF(<0,0>)

where F(<0,0>) = {<na,[nb] >|n,a£BI+, bez-{0}, 0£na<w, a+|b|£s}.

m« is easily shown to be at distance s+1 from V(0) and distance

2
2s from H(0). It remains to show: d'(m2,p) > s for p G F(<0,0>).

Suppose, to the contrary, that there is <na,[nb] > €E F(<0,0>) such

that

c

(*) d,(<s+l,2s?*>,<na,[nb]h>) ^d^(s+l,na)+d* (2s2, [nb]h) £s .

Since df (s+l,na) £ s, 1 £ na £ 2s+l. Therefore 0 < n £ 2s+l.

There are now two cases.
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2
Case 1: b > 0. Since 0 < b £ s-1, 0 < nb £ 2s -s-1. But this

means that

d^(2s2,[nb]h) =min([2s2-[nb]h]h,[[nb]h-2s2y
2

(where h « 4s )

>min[(2s2-(2s2-s-l)]h,[(2s2-s-l)-2s2]h)
« [2s2-[2s2-s-l)]h
» s+1

81

(since the first term is always smaller), contradicting (*).

Case 2: b < 0. Therefore 0 < -b £ s-1, which implies

2
0 £ -nb £ 2s -s-1. Then

d^(2s2,[nb]h) =min([2s2-[nb]hlh,[[nb]h-2s2]h)
2

_> [-4s +S+1L = s+1

(since the second term is always smaller), contradicting (*). This

concludes the proof of Case 2, the Sublemma, and Isolation Lemma 1.

Corollary, let s-state machine M be started at the marked

conuector point <0,0>. M will never appear at marked connector point

itk during the ensuing computation.

Proof. If M were to appear at m?, there would be a segment of

the computation where M starts at <0,0>, visiting no other marked

connected points until m„ is reached. This violates Isolation Lemma 1,

Isolation Lemma 2. Let s-state machine M be started at m« on the

marked torus. Suppose M visits the sequence of connector points

p = m2,p«,...,p , where p and p are marked and p_,...,p

are unmarked. Then p = m„.
r 2



l*roof. By the Marked Finite Ribbon Theorem each p. is within

disranr.e s of R'Oiu). Therefore it suffices to show:

Sublemma 2. Marked vertex <0,0> is not within distance s of

U'(m,2).

SubLemma 2 follows from Sublerama 1, together with:

Symmetry Lemma. Let 0 £ x ,x9 < w and 0 £ y ,y„ < h. Suppose

•.\ ,y > is at distance d from some p_ G R'(<x«,y9>). Then <x„,y«>

Ls at distance d from some p G RT(<x.,y_>).

Proof of Symmetry Lemma. By characterization (i) of the Ribbon

Analysis, there are n G]N, a,b G Z with |a| + |b| £ s such that

P2 - <[na+x2]w,[nb+y2lh>. By hypothesis,

d = d,(<x1,y1>,<[na+x2lw,[nb+y2]h>)

- min([x1- [na+x2]w]w,[[na+x2]w-x1]w)

+ min([yi- tnbty2]h3h,llnb+y2]h-y;1]h)

(definition of d1)

« mln([[x +n(-a)] -x9] ,[x9 - [x +n(-a)] 1 )
JL W £. W i. X WW

+ min([[yi+n(-b)]h-y2]h,[y2- \y^ +n(-b) 3^)

« d'(p1,<x2,y2>)

where ?L = <[x1+n(-a)]w,[y1+n(-b)Jh>. Since |(-a)| +|(-b)| =

|a| +|b| £ s, p G Rf(<x.,y >) I/ characterization (i) of the Ribbon

Analysis. Q.E.D.
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Corollary to Isolation Lemma 2. Let s-state machine M be started

at the marked connector point m?. M will never appear at the marked

point <0,0> during the ensuing computation.

Proof. As for the Corollary to Isolation Lemma 1.

The "Corollaries to Isolation Lemmas 1 and 2 are clearly equivalent

to the Isolation Theorem. The proof of the Isolation Theorem is now

complete.
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