

Copyright © 1978, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

NONDETERMINISM AND THE SIZE

OF TWO WAY FINITE AUTOMATA

by

William J. Sakoda and Michael Sipser

Memorandum No. UCB/ERL M78/34

May 1978

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Nondeterminism and the Size of Two Way Finite Automata

William J. Sakoda

and

Michael Sipser *

Computer Science Division
University of California

Berkeley, California 94720

Reprinted from: Conference
Record of the 10th Annual
ACM Symposium on Theory
of Computing, San Diego,
CA, May 1978; pp 275 -
286.

§1.1- INTRODUCTION

An important goal of the theory of computation is the
classification of languages according to computational
difficulty. Classes such as P, NP, and LOGSPACE provide a
natural framework for this, though it is a fundamental open
problem to demonstrate languages distinguishing them. The
complete languages of Cook, Karp, and others 11-7] are can-
didates for such languages in the sense that, if the classes are
in fact different, these languages witness the difference.

We consider two questions on regular languages resem
bling these open problems. One of these questions concerns
2-way non-deterministic (2n) and 2-way deterministic (2d)
finite automata:

For every 2nfa M, is there an equivalent 2dfa with only
pofynomialfy more states than M?

Let 52«—u(n) be lne least integer such that for every /r-state
2nfa there is an equivalent S2«-2</(/') state 2dfa. The ques
tion above can then be restated: Is s2/l—2An^ bounded above
by a polynomial /?(«)?

Here is a summary of our results. In section 2.2 we
present a sequence of languages <C\,C2, • • • > which is
complete in the sense that in order to settle the question of
polynomial boundedness of 52„—u* li suffices to determine
the size of 2dfa required by each language C„. s2„~2d(n) is
bounded above by a polynomial pin) iff the size of 2dfa
required by C„ is bounded above by some (other) polynomial
p'in).

In section 2.3 we present languages <B^,B2, • • • >
which are complete with respect to 1-way non-deterministic
(In) to 2-way deterministic conversion: B„ is an n-state In
language, and requires the largest 2dfa of any n-state In
language. We conjecture that the size of 2d acceptors for B„
is not bounded above by any polynomial pin). This conjec

Supportedby NSF gram MCS75-2J760-A01.

' Supported by NSF gram MCS75-21760-A01
andan IBM Graduate Fellowship.

ture is the starting point for the investigation described in sec
tion 4.

In section 4, we consider certain restricted forms of two
way automata. Techniques are developed which yield tight
lower bounds on the size of such acceptors of the complete
languages.

Section 3 presents a convenient notation for comparing
succinctness of description of different models of automata.
This notation, together with a reducibility, is used to state an
analogy between the problems studied in this paper and the
P=? NP question.

§1.2 A MAP

2: Completeness Results.

2.1: Definitions of the languages C„, B„, and remarks

about our models of finite automata.

2.2: Completeness of <C"!,C2. • • • > for 2n-~2d

2.3: Completeness of <BhB2, • • • > for \n—2d.

3: An analogy to P =» ? NP.

4: Lower Bounds.

4.1: One way automata.

4.2: Restricted two way automata (parallel machines).

4.3: Restricted two way automata (series machines).

5: Related Work

Presented at the Tenth Annual Symposium on
Theory of Computing, May 1978.

- 275 -

§2.1 DEFINITIONS OF LANGUAGES C„ and B„

In this section we present the languages <Ci,C2. • • • >
which are complete with respect to 2n-~2d conversion, and
the languages <BX,B2,...> which are complete for l/i—2d
conversion. Statements and proofsof the completeness of C„
and Bn follow in sections 2.2 and 2.3. A comment about the
models of finite automata we use appears at the end of this
section.

Definition of language C„:
(1) Let the alphabet T„ be the graphs consisting of n left
nodes and n right nodes. Directed arcs may join any distinct
pair of nodes. Figure 1 shows three members of T5.

o >o

o—y o

°) °
o o

o o

3 C

\
V

Figure 1

Given a sequence of graphs gxg2 • • • gk €r„\ the
catenated graph gx\g2\ • • • \gk is obtained by identifying
adjacent left and right nodes in the sequence. For example,
the graphs in Figure 1 catenate to yield the solid arcs in Fig
ure 2.

Figure 2

o -**

Solid arcs show the
catenated graph g\\g2\g3

(2) The language C„ consists of all sequences of graphs
8182 '--gu «rfl* such that gx\g2\ • • • \gk has a directed path
from a node in the first column to a node in the last column.
In Figure 2, the dotted path witnesses the fact that g{g2gz is
in Cs.

Definition (of language B„):
(1) The alphabet L„ is a subset of r„. A graph g from r„ is
in Z„ if every arc in g is directed left to right.

(2) The string gxg2 • • • gk is in B„ if the catenated graph
g\\g2\ '' ' 18k has a Path from the leftmost column to the
rightmost column.

Definition: A 2—way non—deterministic finite automaton M is
defined by a 7-tuple <Q,Z, \-.-\.B.QQ.F>. An input string
axa2 - • • ak from Z is presented delimited by left and right
endmarkers h and -\. The automaton is started on the sym
bol a i in one of the states from the initial state set QQ. The
transition function 8:(ZU(KH}) — P(Qx[L,R}) (Pdenot
ing power set) defines the moves of M; for example if
<q',L>c8(q,a) then M, scanning input symbol a in state q
may move left (right, if R appears instead of L) and transfer
to state q'. M accepts if from some initial configuration there
is a sequence of moves which causes it to move onto the
right endmarker into a final state fcE A 2—way deterministic
finite automaton (2dfa) is a 2nfa where the transition function
is never multiply defined; that is
8:(IU{KH))-(Cx(L.*})uM.

Definition: A I—way non—deterministic finite automaton
(Infa) is defined by a 5-tuple <Q,T..S,Qq,F>. Qq is the
set of initial states. 8:0x1 — P(Q) is the transition func
tion.

Definition: A 1—way deterministic finite automaton
(Idfa) is defined by a 5-tuple <Q,I.,8,qQ,F>. qQ is the ini
tial state. 8:QxI —» Q is the (everywhere defined) transition
function.

§2.2 2^—2D: <CVC2, • • > is COMPLETE

Theorem 2.2: The size of 2d acceptors for the languages Ca
grows polynomially iff state expansion for 2n-*2d conversion
is polynomial. More specifically: Let c(n) denote the size of
2dfa required by C„.

(i): c(n) < s2„-.2d(2n).

(ii): s2n~2d(n) < c(2n).

Proof of (i): C„ is accepted by a 2n-state 2nfa. D

Proof of (ii), Overview: An n-state non-deterministic machine
AMs given. We can assume that there is a c(2/i)-state 2dfa G
for the language C2n. We will show that there is a c(2n) -
state 2dfa D which is equivalent to N.

There are 2 parts to this proof. The first part shows a
way of encoding computations of the machine # as r2„—
graphs (i.e., graphs from r2„). Figure 3 illustrates this
encoding.

To each string x «* \-axa2 • • • ak-\ we associate a catenated
sequence of Y2„ — graphs
g(x) = g(\-)\ giaj | g(a2) | • • | g(ak) \ g(-\) in such
a way that x is accepted by # iff g(x)cC2„. A possible stra-

- 276 -

f~ al a2

9(H g(ax) g(a2)

Figure 3

<0

I
/

/

/

\
/
A

•k-i

q_ —>. q, ~-^(qy

o^o
°R1

0R2
0 lU

!i

^

0 r,

0 r.

0 r,

0 r\

9iak) g(H)

is initial
is final

o

o

0

tegy for recognizing L(N) is then: "On input x test the
catenated sequence of graphs g(x) for membership in C2n\
accept if and only if gix)eC2„.m The second part of the
proof shows how to obtain the required 2dfa D by using this
strategy.

Proof of (ii), Part 1: An n-state 2nfa N is given. We will give
a catenated sequence of T2lt — graphs
g - gih) | giax) j gia2) | • • • | giak) | sH) which
encodes the computation of M on input \~axa2 • • • ak-\.
The encoding we wish to establish is:

Lemma: There is a path from the leftmost to the rightmost
column in g (that is, £€02*) iff M accepts input
\-axa2- akA.

We now define g to satisfy the Lemma. Let qx,q2, • • • ,q„
enumerate the states of N.

Definition of g(b): With each symbol 6«(IU{ KH}), asso
ciate a graph gib)er2a. Let the nodes of gib) be named as
in Figure 4.

o R,

-> : from (l)(a)

-^ : from (l)(b)

-> : from U)(c)

-»• : from (l)(d)

Figure 4

77=4

(1): For real input symbols Z>eE, the arcs of gib) consist of:

(q/./0c8(ty.a)
ia) il^Rj)
ib) ir^Rj)

ic) (lj—Lj) . _w/ vid) irnLf\ ^LUZi^d)
(2): For the left endmarker, define gi h) by:

ia) irnRj)\ iqJtR)e8iqit h)

(c/Fig. 5)

ib) (/,-*,)[^/'s an initial
state of Ml

states q., q«

are initial

: from l2)(a)

: from (2}(bJ

Figure 5
Example: #(1-)

(3): For the right endmarker, define gi-{) by:

ia) il,-~Lj)

ib) (/,-/*,)

(c/Fig. 6)

(qj.LU8(q„-\)

q, is a final

state of N.

- 277 -

^oR,

are final

•from (3)(a)

^ : from (3)(b)

Figure 6
Example: gi-\)

This concludes the definition of g.

We now show that g satisfies the Lemma. Moves made
by N correspond to paths through the catenated graph
g •» gi\~) | giax) | • • • | giak) | sH), and conversely.
Figure 3 (at the beginning of this prooO shows an example of
this correspondence. The top level of Figure 3 shows a string
presented to M with endmarkers. The second level shows the
initial and final segments of an accepting computation of Mon
the input. The third level shows those arcs in the catenated
graph

sir-) | giax) | gia2) | • • • | giak) \ gi-\) which
correspond to steps in the computation. Let us discuss this
correspondence.

Ns first step is right from ax to a2. By (la) in the
definition of giax), arc 1 is present in the catenated graph.
Similarly, arc 2 is present by clause (lc), arc 3 by (Id), arc 4
by (2a), and arcs 5, 101, and 102 by (la). By pursuing this
correspondence it can be shown in general that:

Sublemma 1: There is a path in g<=*
gi\~) | giax) | ••• | giak) | *(H), from /, to Rj iff M,
starting on symbol ax of input Y-axa2 • • • ak-\ in state qh
reaches the right endmarker in state qj.

Now by (2b), arc 0 connects the leftmost column of g to
lx because qx is an initial state of Ml By (3b), arc 103 con
nects /?4 to the rightmost column of g because q4 is a final
state of Ml

In general, it follows from (2b) that:

Sublemma 2: There is an arc from the leftmost column of g
to /, iff q, is an initial state of M.

From (3b), we get:

Sublemma 3: There is an arc from Rj to the rightmost
column of g iff qj is a final state of Ml

The three sublemmas together yield the main lemma. This
concludes Part 1 of the proof.

Proof of (ii), Part 2:

In Part 1 of the proof we have shown how to encode the
computation of any given n-state non-deterministic machine

N=*<Q,I, \-,-\,8.q0,F> as 2/j-graphs. Now assume we
have a 2-way deterministic finite automaton
Ga<QG>r2n' r~.-\,8c,qc,FG> for the language C2n. G
will be used to construct a deterministic machine D which is
equivalent to N. On input x - Y-axa2 • • • ak-{t Z> will simu
late the computation of G on the input
h gi)r) giax) gia2) • • • giak) gi~]) -\. By the Lemma
above, this will cause D to accept x iff N accepts x. We now
indicate the correspondence between the computations of G
and D, and define the machine D by specifying its initial state,
final states, and transition function 8D. D will have the same
state set as G.

We will analyze the moves of G in 4 different situations,
arranging in each case to have D simulate the action of G.

(1) Main segment of the computation (cf. Fig. 7) .

9(8^ 9(b)

->q *S"q'

0:

-> q —»q'

-> = previous move

—» = current move

Figure 7

G*s previous move: Movesonto symbol gia,) into state q.
Possible next moves for G: Move one square left, or
right, or remain forever on this symbol, according to

/ys previous move: Move onto symbol a, into state q.
Z)'s simulation: imitate the move of G. We set
8Diq.a,) ~8Giq,giai)).

(2) Left endmarker (cf. Fig. 8).

Gs previous move: Move left onto the symbol gi\~) into
state q.

Consider Gs computation on the 2-symboI string
h gi\~) starting on g(h) in state q. Possible outcomes
of Gs subsequent moves:

Case (a): Falls off the right end of the 2-symbol string
h £(h) into state q'.

Case (b): Fails to do so, thereby rejecting the input.

- 278 -

6:

D:

Figure 8

Case (a)

/- g(/-) g(ax)

N,

h

q*-

X.

D's previous move: Moves left onto the symbol h into
state q.

JXs simulation:

Case (a): Compress the moves made by Ginto a single
move. Set 8Diq. r-)=<q'.R >•

Case (b): Ghas rejected its input. Dshould reject also.
Set hDiq, r-)-=<A-

(3) Right endmarker and final states (cf. Fig. 9).

9(aJ g(H) ±\

q2<0

-t

©

Make q a
final state of D

Case (a)
Figure 9

<7s previous move: Moves right onto gi-A) instate q.
Outcomes for G: Consider the ensuing computation of G
on the 2-symbol string gi-\) H. We distinguish three
possible results:

Case (a): Gpasses through a final state /, accepting the
input.

Case (b): G does not pass through a final state, and
(i) fallsoff the left end of g H) H into some state

(ii) does not fall off the left end of this string,
rejecting the input.

JXs previous move: Move right onto H in state ?.
D's simulation:

Case (a): Since G has accepted, D should accept also.
Make qa final state ofD, and set 8Diq,~\)•=<£.

Case (b):
(i): A in a single move, simulates (Ts eventual
move left into state q'. We set 8Diq,-\)3a<q'.L>.
(ii): Ghas rejected its input. D should reject also,
so we set 8Diq,-\)=<£•

(4) Initial states (cf. Fig. 10).

|— giH g(ai)
&

^1-*- qG

q3 -Wr-q2

«4

h

Make q' the

initial state of D

Figure 10

G: Begins on gi h) in state qG.
Outcome: Consider the computation of Gon the 2-symbol
string h gi\~) starting on gi\-) in state qG. If the
machine G is to ever accept anything, it must fall off the
right end of this string into a state q'. We want to arrange
the initial state of D to correspond to this situation.
D: Set the initial state of D to be q'. D begins on symbol
ax in state q'.

This completes our construction of the machine D. In
the course of the construction we have considered 4 different
kinds of moves made by (7, and have arranged in each case to
have D simulate the move. Using this correspondence, it is
straightforward to show that D executes the required simula
tion of G. This concludes Part 2 of the proof.

§2.2 1M—2D: <BX,B2, • • • > is COMPLETE

In this section we show that the languages B„ are com
plete for \n-~2dconversion.

- 279 -

Theorem 2.3:

(i): B„ is accepted by an w-state 1-way non-deterministic fa.

(ii): Among all languages accepted by n-state lnfa, B„
requires the largest 2-way deterministic fa.

Proof of (i): Easy. D

Proof of (ii): This proof is similar in structure to the proof of
part (ii) of Theorem 2.2. Let n-state lnfa
M=<(?.A,8,(?0./> be given. Let
G**<QG,Zn, \-,-\,qG,FG> be a 2dfa accepting B„. We will
demonstrate a 2dfa Z>=»<QG,A, \-,-\,8D,qD,FD> (with the
same state set as G) such that D accepts L (M).

To each acA we associate a graph g{a)fCLn. In addition,
we pick graphs s,f*Zn to be associated with the initial and
final states of M, respectively. We will choose the gia)y s,
and /to satisfy:

Lemma: M accepts input axa2 • • • ak iff the catenated graph
s I giax) I gia2) I • • • I giak) | /is in B„.

Let qx,q2 qn enumerate the states of M.

Definition (of gia), s, f):

(1) For flcA, gia)€2Z„ consists of the arcs

O-7) I qjc8iqita)

I ii-*j) indicating a directed arc from left node / to right
node j 1.

(2) The graph stZ„ consists of the arcs

(/—/) I q^Qfy

(3) The graph feZ„ consists of the arcs

(/-*/) I q,*F.

Let the nodes of the catenated graph
giax) I gia2) I • • • j giak) be named as in Figure 11.

It is easy to verify:

Sublemma: There is a path from /, to. J?, in the catenated
graph giax) \ gia2) | • • • | giak) iff M, started on the left
end of the string axa2 • • • ak in state q„ can reach symbol ak
in state q}.

The Lemma then follows from the Sublemma and (2) and
(3) in the definition above.

The proof now proceeds exactly as in Part 2 of the
theorem for C„ : On input h- ax a2 • • • ak -\, 2dfa D is con
structed to simulate the computation of G on input
h s giax) gia2) - • • giak) f -\. By the Sublemma, D will
be equivalent to M. D

§3 AN ANALOGY TO P =? NP

This section presents a convenient notation for compar
ing the succinctness of description of different models of
automata.

Define a language sequence L to be an infinite sequence
of languages <LX, L2,...>. We consider objects of this type
because we are interested in the rate of growth of the state
complexities of sequences of languages. Given any automata
model, say lnfa, we wish to classify those language sequences
which have succinct representations using this model. Define
IN to be the class of language sequences L s=<£t» L2,...>
with the property that some polynomial pii) bounds the size
of the smallest lnfa accepting the language Lh Analogously,
define the classes ID, 2D, and 2N corresponding to the
models ldfa, 2dfa, and 2nfa. The primary questions we
address can now be reformulated as: "Is 2N equal to 2D?"
and: "Is IN contained within 2D?"

It is interesting to consider closure properties of these
classes. For example, all four classes are closed under union
and intersection. By the union of two language sequences L
and L' we mean the pairwise union of the component
languages <LX\JL\. L2UL2,... >. Closure under comple
ment is another matter, however. The one way deterministic
class, ID, is clearly closed under complementation, but as we
show in the next section, IN is not closed. We do not know
the status of 2D or 2N.

We now consider closure under a certain reducibility.

Definition: For alphabets Aj and A2 and languages LXQ&X
and L2£A2, we say that Lx homomorphicalfy reduces to L2
(L, <hL2), if there is a map g\ Aj-^AJ and /./eA2 such that
for any string s~sxs2- • • sk (5,-eAi), sfLx iff
igisx)gis2) • • -gisk)fcL2.

Informally, this says that L xhomomorphically reduces to
L2 if by adding end-markers to LXi every string in Lx can be
homomorphically mapped to L2. We extend the notion of
homomorphic reduction to language sequences. Given two
language sequences L and L\ say that L<hL' if there is a
polynomial p such that each L, is h reducible to L'} for some
j<pii).

In this notation, it is the case that for regular languages
Lx and L2, if Lx <h^2» tnen ^1 requires a 2dfaat most twice
as large as that required by L2. This can be proved by a gen
eralization of Theorem 2.2 (ii), part 2. From this it follows
that 2D is closed under ^h, i.e., for any language sequence L
in 2D, if K <hL then K is in 2D. Similarly, we can show that
ID, IN, and 2N are closed under <h. The language

- 280 -

sequence C has the special property that for every L in 2N,
L^hC. This isa generalization of the lemma toTheorem 2.2
(ii), part 1 stating that if Lx is accepted by an n state 2nfa
then Lx <hc2*- The Proof S»ven supports the more general
statement.

This discussion indicates a close analogy between the
classes 2D and 2N and the classes P and NP. Here, <h plays
the role of polynomial time reducibility and the complete
sequence C corresponds to an NP complete set such as 3SAT.
Similarly, B is complete for the class IN with respect to the
<h reducibility.

§4 LOWER BOUNDS.

We now turn our attention to the state complexity of the
complete languages B„ and C„ under various machine
models. We will concentrate on Bn. All of our lower bounds
on the size of recognizers for B„ extend directly to C„,
because a recognizer for Cn can be converted to one for B„
by deleting transitions for symbols from r„—£„. In some
cases, we have tighter lower bounds for Cn.

Let 5 be a string over Z„. Say that 5 is live if it is a
member of /?„, i.e., if there is a path from any left node to
any right node. Otherwise, s is dead In addition, node m in s
is live idead) means that there is (is not) a path from any left
node to the m,h from the top right node in s. Given any ldfa,
M« <Q,Z„,8,q0,F> and arbitrary state q and input string 5,
we abbreviate Biq.s) by qis) and 8iq0,s) by Mis).

§4.1 One way automata

We begin by considering deterministic and nondeter-
ministic one way automata. The computations of these
machines are relatively easy to analyze and consequently our
results are fairly strong.

There is an n state In acceptor for B„. Thus by the sub
set construction there is a 2" state Id acceptor. The following
result shows this to be optimal.

Theorem 4.1.1: Any ldfa accepting B„ has at least 2" states.

Proof. By counting information. D

There is a 2("+,)J state Id acceptor for C„. This is close
to optimal.

Theorem 4.1.2: Any ldfa accepting C„ has at least 2(n_2)
states.

So we see that nondeterminism is extremely helpful to
machines accepting B„. Curiously, however, it is not of any
use at all to machines accepting the complement of fi„, B^.

Theorem 4.1.3: Any lnfa accepting B~n hasat least 2" states.

Proof: Assume to the contrary that A/is a lnfa accepting B„
with fewer than 2" states. For every state q we wish to let rq
be the set of nodes which M thinks are live when it is in state
q. Formally, let rq<=[m | for any y in £„ containing
im-*m), qiy) enters only reject states}. For each aQ[\,n]
we let xa be {(1—m) | mea).

Fact 1: For every aQ [1,n] and any qeMixa), aQrq.
Otherwise there would be a live string xay which would be

accepted by A/, a contradiction. °

Fact 2: For some aQ[l,n]> every qeMixa) has the
property that rq ** a.
Otherwise, each subset a would have a distinct state q associ
ated with it, implying that there are at least 2" slates in A/, a
contradiction. °

Let a be as in fact 2. Let zeZ„ be [im-*m) \ m{a\.
the string xaz is in B~n yet we claim that M rejects it. To see
this, note that for all qcMixa), there is an merq-a (by facts
1 and 2). For each such m, im-*m)ez and thus each
q€Mixa) is driven to reject states by z (by the definition of
rq). Hence all branches of the computation of Mon xaz ter
minate in reject states. D

A corollary to this theorem is that the class IN is not
closed under complement. This is indicated in the following
diagram.

This diagram presents the question of whether ID is
equal to the intersection of IN and co-lN. The languages
<(CH-1)*1(0-M)*' I N" 1. 2,... > witness a negative answer
to this.

We also have enough machinery to easily solve the prob
lem of whether 2D is contained within IN. Restrict the

graphs of Z„ to not have any right nodes with more than one
arc. The strings over this new alphabet our thus restricted to
be forests. Define T„ to be Bn restricted to such strings. It is
straightforward to accept fn with an Oin2) state 2dfa, and it is
not any harder to accept T„. However, as a corollary to the
above proof, we see that T„ requires 2" states on a 1nfa. In
fact, by taking the join of T„ and T„ in some reasonable way,
i.e., t„= [s I seT„ iff the length of s is even}, we obtain
languages with succinct 2d acceptors yet neither they nor their
complements have succinct In descriptions. Thus 2D is not
contained within IN U co-lN.

- 281 -

§4.2 Restricted two way automata (parallel machines)

Theorems 2.1 and 2.2 reduce the question of whether
2n—2d (In—2d) conversion is polynomially bounded to the
question of whether for some polynomial pin), C„ iB„) is
accepted by a pin) state 2dfa. We conjecture that polynomial
conversion is not possible. In order to gain insight into this
we consider 2d acceptors whose behavior has been restricted.

Restrictions that are placed on the 2d automata are of
two forms: limiting head behavior and limiting communica
tion. We limit the head behavior by permitting the machine
to only make a series of one-way passes over the input. The
communication is limited by restricting the exchange of infor
mation between sweeps. One version of this is the parallel
union finite automaton.

Definition: A parallel union finite automaton ipufa) P is a
set [Mx, Mk) of ldfa. The language accepted by P is the
union of the languages accepted by its component machines.

For some languages, pufa can be exponentially more
succinct than ldfa. For example [x#y | x,y€[0,\)" and
x?*y} is the union of n Oin) state ldfa, yet requires a 2"
state ldfa. However, we can show that pufa are not more
succinct than ldfa for B„.

Theorem 4.2.1: In any parallel union finite automaton accept
ing B„, one of the component machines must have at least 2"
states.

Proof sketch: Assume to the contrary that there is a
pufa accepting Bn% and containing component machines all
with fewer than 2" states. Choose any component machine.
Having too few states to distinguish all possible subsets of the
n nodes, it occasionally gets "confused" as to whether some
node is actually live. The key point is that whenever the
machine is uncertain as to the status of a particular node, it
must assume that it dead. Otherwise, if it were to wrongly
assume that the node was live and accepted the input based
upon that assumption, then the entire pufa would wrongly
accept. Knowing this, our procedure is to construct a string
in which some node is live yet which fools this component
machine into assuming that it is dead. We then extend the
string, continuing the path from that node in such a way as to
fool a second component machine. Ultimately we get a live
string which fools all of the component machines into believ
ing it is dead. This string causes the pufa to err.

A more formal proof follows.

Proof: We perform an induction on k, the number of
machines in P.

Basis, k~l:

This follows from theorem 4.1.1, since a pufa with only one
component machine is in fact a ldfa.

Induction, proving case it from case it—1:

Our induction hypothesis is that the theorem holds for pufa
having fewer than A: components. Suppose the theorem fails
for pufa P=>[MX, . . . ,Mk] all of whose components have
fewer than 2" states. In particular, component machine Mx

has fewer than 2"states. For every state q of Mx% we say that
q is dead if there is no string 5 which drives q to an accept
state, otherwise we say that q is live. Any string which drives
Mx to a dead state is said to kill Mx.

Fact 1: Any dead string s kills Mx.

Otherwise s drives Mx to a live state q which then can be
driven via some string / to an accept state. The string st is
dead yet Mx and therefore P accept it, a contradiction. °

Fact 2: There is a live string vwhich kills Mx.
Otherwise, all live strings drive Mx to live states. On the
other hand, fact 1 states that all dead strings drive Mx to dead
states. By then designating all the live states of Mx to be
accept states and all the dead states to be reject states, we
obtajn a ldfa accepting exactly the live strings. This machine
recognizes Bn with fewer than 2" states, contradicting theorem
4.1.1. °

Let r (reset) be the complete bipartite graph on 2"
nodes, i.e., r =• {(/—j) \ i,je[l,n]} and let u =» vr.

Example: r with n «= 4

For each component machine M{ define a new machine
A/) obtained by changing the start state of M, to be A/,(u).
Let R; and R] be the languages accepted respectively by the
machines Mt and A/J. By assumption P accepts Bn\ in other
words Bn~R\U • • • UR'k. Since . {/ | utcBa}~ B„y
B„~R'XU • • • UR'k. However, u kills Mx and thus R'x°-<j>.
This allows us to conclude that B„-='R'2U • • • UR'k.

Now we construct a pufa P'•« {M2,..., M'k) which
accepts B„ and yet has only k—\ machines, all with fewer
than 2"states. This contradicts the induction hypothesis. D

Remarks: The existing techniques for proving lower
bounds by counting information vs. crossing sequences are
insufficient to give this result, as it is possible for a large
number of small machines to have enough states among them
to carry the necessary information across. This result shows
that their inability to communicate prevents them from suc
cessfully doing so. Also, this proof provides a bound of
exactly 2" states. Thus we know that the best pufa is actually
the obvious single 2" state ldfa.

A similar proof shows:

Theorem 4.2.2: In any pufa accepting C„, one of the com
ponent machines must have at least 2(fl-2) states.

Definition: A parallel intersection finite automaton ipifd) P is
a set [Mx, . . . ,\fk) of ldfa. The language accepted by P is
the intersection of the languages accepted by its component
machines Mr

- 282 -

Theorem 4.2.3: If P«*[MX,. .. ,Mk) is a pifa accepting B„y
then one of its component machines has at least 2"states.

Proof: Assume that a pifa P exists which contradicts the
theorem. We further assume wlog that each component
machine has at least one reject state. Our goal is to construct
a string s4Bn which deceives P into accepting it. The con
struction is in stages, the /'*stage deceiving Mr This is done
by convincing M, that some node is live when in fact it isn't.
That node is then connected to the end of the string, causing
Mj to wrongly accept.

Three variables are used: / denotes the current live node,
d denotes the node which the current machine believes is live
but which actually is dead, and s denotes the current partial
string.

Stage 0: Let s0= {(1—1)}. /0= 1. and d0= 2.
Stage i: We are assuming from the previous stage that

in string s,_i, node /,_! is live and node rf,_i is dead. Our
goal for this stage is to preserve these properties for sit /,,
and dj. In addition, we must connect node d, to node dj_i of
the previous stage.

Consider Mj. For each state q of A/, we let rq be the set
of nodes which Mt believes are live when it is in state q. For
mally, rq —[m | all strings which contain a path from left
node m to any right node, drive q to an accept state}. For
every aQ[\,n] let xa(Z„ be the graph
{(4_,—m) | me(l,ff]}u{(/(.rw) | mea)

Example: xa with n= 4, dt-X = 2, /l-_1 = 4, and a ««{3,4}

Fact 1: For every aC[l,n), the set of live nodes of
s,-xxe is a.

This follows from the stated properties of s,_i, /,_i, and d,-X.
o

Fact 2: For every aQ[l,n]y if M,iSj-Xxa) = q then
aQrq.

Otherwise, suppose there is some m€a—rq. By fact 1 and the
definition of rqy there is some t such that M,is,_xxat) is
rejecting yet Sj-Xxat is in £„, a contradiction. °

Fact 3: There are distinct, nonempty subsets a,bC [\,n]
and a state qsuch that A/,(s,_|Xfl) = M,iSj„xx^ = q.
This is true because, for all nonempty subsets a, Si-Xxtt is live
(by fact 1) and therefore M,is,-Xxa) is accepting. There are
2"-l non empty subsets and at most 2"-2 accepting states,
thus by counting, the desired a and b exist. °

Let a, b, and q be as in fact 3. Since a and b are dis
tinct, we assume wlog that there is some meb-a. By fact 2
we know that a,bQrq and thus m*rq. Let s,= s,_ixa, d,** m,
and /,» any node in o.

Verifying the desired relationships between s„ dn and /,,
we see by fact 1 that node dj is dead because d,4a and /, is
live because l,ea. Furthermore, d, is connected to d,_x of the
previous stage. Subsequent stages will ensure that dt is con
nected to a right node of 5 and therefore, since dterqy M, will
accept s.

End of stage i.

Finally we let s = sky where y = [idk— 1)}- Straightfor
ward inductions show that for each stage the node at /, con
nects to the start but not the end of s, and the node at d, con
nects to the end but not the start. From this we conclude
that s4Bn and that each M, accepts s, a contradiction. D

A similar proof shows that:

Theorem 4.2.4: In any pifa accepting C„, one of the com
ponent machines must have at least 2(n_3) states.

§4.3 Restricted two way automata {series machines)

The automata considered in the previous section are
very limited in the sense that no communication is permitted
between the component machines. In the next model under
consideration, the ith component machine M, may pass infor
mation to the /+11', Mi+X. This done by using the result of
the computation of Mt to determine the starting state of Ml+X.

Definition: A series finite automaton isfa) S is an ordered
collection of ldfa, iMx,.... Mk) together with functions
ifx,... ,fk-x) where each /, is a mapping of the states of Mf
into the states of Ml+X. On input t, S runs these machines
one at a time, in order, over the input tape. The ending state
of Mj on / determines, via /, the starting state of Mi+X. The
final state of Mk determines the acceptance of l

These machines are more complex than parallel
machines and correspondingly, our results are weaker. Even
the case where the sfa has only two components appears
difficult to analyze. We conjecture that in this case, one of
the component machines must have at least 2" states in order
that the series fa accept B„. The main result of this section is
in support of this.

Theorem: Given S, a series automaton accepting B„ with only
two component machines Mx and M2. If either component
has fewer than V2""1 states, then the other one has at least
2" states. The square root function in our discussions always
rounds up to an integer.

The proof of this depends upon an analysis of the degree
to which a ldfa can be "confused*', as a function of the
number of states it contains. We formalize this notion of

confusion as follows.

Given any string s over £„, we define the accessibility set
of 5 to be the set of live nodes of s. Call the two strings
equivalent if their accessibility sets are equal. Let q be any
slate in a ldfa M which operates over Z„. We say that acces
sibility set a is associated with state q if there is some string

- 283 -

with accessibility set a which drives M to q. The state q is
called k confused if there are at. least k different accessibility
sets associated with it. Machine M is it confusable if it has a it
confused state. For example, the 2" state acceptor for B„ is
only 1 confusable, and it follows from lemma 1, that any
machine with fewer than 2" states is at least 2 confusable.
Trivially, the 1 state ldfa is 2" confusable. It seems reason
able to expect that the smaller a machine is, the more confus
able it must get. The following table summarizes or
knowledge of this phenomenon.

states degree of confusion

<n total (2*) confusion

>n < 2" confusion possible

<2"-2 > -J2"~l confusion
<2"-l ^ 2 confusion

^2" I confusion possible

Of the following four theorems, 4.3.1 through 4.3.4, only tht
last is requisite to the main result of this section. The others
present related aspects of confusion.

Theorem 4.3.1: There is a 2"-l state ldfa which is not more
than 2 confusable.

Proof: We construct M as follows. Each state of M is
assigned one of the 2"-l nonempty accessibility sets. As long
as the input string is live, M has no trouble staying in the
assigned state. However, there are no states left to assign to
the empty accessibility set and therefore the dead strings must
drive M into the same states as do the live ones. It follows
that there are two accessibility sets associated with each state,
namely one nonempty set and the empty set. Hence each
state is 2 confused and M is only 2 confusable. D

For the next theorem, it is useful to note that there is a
four element subset of Z„ which preserves all of the descrip
tive power. Let Z'n~[px,p2,xa,xd\ where

Pi-{(1-2),(2-1)}U{(/-/) | /e[3,nJ}
P2=*[ii—j) | y»/+l mod n)
*„ ={(/-/) | /e[l,n]}U{(l-2)}
xd-{(/—/) | ie[2,n]}

The languages obtained by restricting Bn to strings over i;
still possess the completeness property.

Theorem 4.3.2: There is an n state ldfa which is not 2"
confusable.

Proof: Let qx qa be the states of ldfa A/. M will be
constructed so that every accessibility set is associated with qf
except for the singleton {/}. We only need to define Mover
the restricted alphabet z;« \px.p2,xa,xd) discussed above.

Arbitrarily, we let Mstart in qx. If M is in qt and reads
input symbol px or p2 then Menters qt where j is the node
that / is carried to under the permutation. If M is in q, and
reads either xa or xd then Menters qx. O

Theorem 4.3.3: Any ldfa with fewer than n states is 2"
confusable.

Proof: The intuition behind this proof is that partial confu
sion can be used to induce greater confusion. We are given a
ldfa M with k states, where k < n. We will focus our atten
tion upon certain accessibility sets, namely the singletons:
{1}, {2} , . . ., [n). First, we show that M get confused on
the singletons alone.

Fact: There are k singletons which are all associated
with the same state.

We prove this fact inductively by showing that for every
/ < k, there is some set, At of / singletons and a state qt with
which all are associated.

Basis, / = 1:

Trivially true since the singleton {1} must be associated with
some state qx.

Induction, proving case /*+l from case r.

The induction hypothesis gives us a set A, containing / single
tons and a state q, such that every singleton in A, is associ
ated with q,. We first show that every set of / singletons can
be assigned a state q' such that each member of the set is
associated q'. Choose any set A' containing /'singletons. Say
Aj"{{mx) {m,}} and A'™{{m\),{mJ}}. Let xeZ„
be the graph {imj-*m'fl j jc[l,n]). It is not hard to see that
qtix) is the state q' that we wish to assign to A'. Thus every
set A' can be assigned a state q'.

Now we show that some state q is assigned to two dis
tinct sets, A' and A". This is because there are more sets

than states, i.e., there are ("j different sets of /singletons and
since 1< /<k < nwe know that \n\ ^ n> k=> the number
of states. Hence q exists.

Finally we construct Ai+X and q,+x. The sets A' and A"
each contain / singletons thus between them there must be at
least i+l singletons. Since both A' and A" were assigned to
qt each of these /+1 singletons is associated with q. Conse
quently, we let these singletons constitute v*/+1 and we let q
be qi+x.

Fact proved

Let mx, . . . ,mk and qk be the singletons and state
shown to exist by the above fact. If M is not 2" confusable
then for each state q} there is some accessibility set, bjy which
is not associated with qJm Let xeZ„ be
{(/«,—m) | mebj, je[l,k]}. Let q°qkix). Since each {/*,)
is associated with qk% each bj is associated with q. However,
bj is not associated with qj for every j, and so q is not equal
to any qjy a contradiction. Q

The following result is used in theorem 4.3.5.

Theorem 4.3.4: Any ldfa with fewer than 2"-l states is at
least v2fl_l confusable.

Proof: Given M with fewer than 2"-l states. As a first step
we demonstrate that there are two accessibility sets a and b
associated with the same state, where a ib and b&a. Since M

- 284 -

has fewer than 2*-l states and there are 2*-l nonempty
accessibility sets, there must be two distinct sets, a' and b\
which are associated with the same state q. If a' and b' meet
the desired conditions for a and b we are done, otherwise
assume wlog that aQb. Let / be a node in a and j a node in
b-a. For each pair of accessibility sets c and d where cQd,
we assign that pair to some state r with which they are both
associated, as follows. Let xeZ„ be
{(/—m) | mec)Kj\ij—m) \ med).

Example: xwith n = 5, /-2, y=4, c = {2.3}, */—{1,2,3,5}

It is not hard to see that q'ix) is the desired state r.

There are 3"-2" such pairs and fewer than 2" states.
Thus there must be a state to which at least

O"—2")/2',«« (3/2)"—1 pairs are assigned. From this we can
conclude that there must be at least V(3/2)"-l accessibility
sets associated with that state. For sufficiently large n (see
note following proof) V(3/2)fl—1 > n+1 and thus we. have at
least n+2 distinct sets associated with that state. However

there cannot exist a chain axCa2C • • • Ca„+2 of length n+2
if each of the at is a subset of [l.n]. Hence, there must be
two accessibility sets, a and 6, associated with the same state,
such that a<£b and b£a. This completes the first step of the
proof.

Now we essentially repeat this idea using the sets a and b
rather than a' and b'. Choose iea—b and jtb—a and define x
as before, except we now permit arbitrary pairs of sets c and
d Again, each pair is assigned a state with which each
member of the pair is associated. This time there are
2"(2"-l)/2 pairs. Since there are fewer than 2" states, at least
2"-1 pairs are assigned to the same state, implying that there
must be at least a/2"-1 accessibility sets associated with that
state, a

Note: We have assumed in the first step of this proof
that we are dealing with sufficiently large n. Nevertheless, the
theorem holds for all n by examining the small n individually
and applying more careful counting arguments. The details
are omitted.

Theorem 4.3.5: Given S, a series automaton accepting B„
with only 2 component machines Mx and A/2. If either com
ponent has fewer than V2n_1 slates, then the other one has
at least 2" states.

We will actually prove that the other component has at
least 2"—1 states, a slightly weaker result. The stronger result
holds by an additional argument, which we omit.

Proof: Suppose sfa S violates these conditions. Our plan is
construct a live string tL and a dead string tD, which are
jointly accepted or rejected by S. These strings will be con
structed in three parts; a common live beginning string sB, a
common live ending string s£, and middle strings sL and sD.
That is, tL will be sBsLsE and tD will be sBsDsE. The actual
deception of P occurs during the middle strings. The begin
ning and ending strings are merely to enable us to predict the
starting state of M2.

First we analyze the structure of Mx. Call a siring
q internal if for every live s there is a string / such that st is
live and qist)*=q. Let xeZ„ be the complete bipartite graph
{(/-;) I U*U,n)l .

Fact I: There is some live string s which drives Mx to
an internal state.

If the starting state qQ of Mx is internal then we are done,
otherwise there is some live string sx such that any live
extension of sx will not carry Mx back to ?r> Let
?ia?o(5ix)- Th's means that q0 is unreachable from qx via
live strings. If qx is not internal we can repeat the above to
obtain a new slate q2 from which it is impossible to reach
either q0 or qx via live strings. Since Mx is finite state this
process cannot go on forever and so eventually we will obtain
an internal state q,. The string s which drives M to q< is
SXXS2X • • • SjX. °

We let sB be the string s constructed in fact 1.

Our next step is to construct the strings sL and sD. For
this step we need to know the starting state of M2 which
depends upon the ending state of Mx on inputs tB and tL
which in turn depend upon the strings wje are currently con
structing. To get around this circularity we assume for this
step that MxitL)~MxitD)=*MxisB)% the internal state of fact
1. This determines r0, the starting state of M2. The con
struction of sE in the final step of our proof ensures that this
assumption is valid. We let qx and rx be MxisB) and rnisB)
respectively. We assume wlog that M2 has fewer than V2"-1
states, and thus Mx has fewer than 2"—1 states.

Consider the automaton A/j obtained by changing the
start state of Mx to be qx. Since Mx has fewer than 2"-l
states, A/J is y/2"~l confusable (by theorem 4.3.4). In other
words, there are y/2"~l pairwise inequivalent strings,
sx, . . . ,sk, where it= v2',_1, which all drive Mx from state
qx to the same state q. Now M2 has fewer than •n/2"-1 slates,
thus two of these strings, s, and Sj must drive M2 from rx to
the same state r. Since s, and s, are inequivalent, there is
some node m which is live in, say s,, and dead in s,. We
adjoin the symbol .v={(m—1)} to both strings obtaining a
live siring sL and a dead siring sD. Lei state q2 and r2 be
states qix) and rix). Note that both sL and sD drive Mx
from qx to q2 and M2 from rx to r2.

At this point, all that remains is to construct sE, a live
string which drives Mx from q2 back to qx. This is easy since
?i is an internal state and thus the live string sL can be
extended to a live string sLsE which drives qx to qx.

- 285 -

So, no matter whether S receives tL or tD as input, M2
will be driven into the same state, a contradiction. D

§5 RELATED WORK

Meyer and Fischer [8J first considered the relative suc
cinctness of various kinds of descriptions of regular sets.

Joel Seiferas {9} has investigated In—2d conversion. He
demonstrates lower bounds for a restricted 2dfa model and
considers several interesting regular languages. For example,
let alpahbet A„ be the power set of (l n) and let L„ be:

oeA„

We can show Ln to be complete for ln—2d conversion by
demonstrating that for any nstate ln language K, K <hLfl.

Acknowledgements

This research began with a study of the language B„.
We wish to thank Dana Angluin for posing the questions
which initiated this study.

We are deeply indebted to Manuel Blum for many valu
able suggestions.

REFERENCES

[1J Cook, S. A., The complexity of theorem proving
procedures, Third Annual ACM Symposium on Theory
ofComputing, May 1971, 151-158.

[2] Karp, R. M., Reducibility among combinatorial prob
lems, in, "Complexity of Computer Computations",
R. E. Miller and J. W. Thatcher, eds., Plenum Press,
N. Y. (1972), 85-104.

13] Savitch, W. J., Relationships between nondeterminis-
tic and deterministic tape complexities, J. Comput.
Syst. Sci. 4 (1970), 177-192.

[4} Cook, S. and R. Sethi, Storage Requirements for
Deterministic polynomial time recognizeable
languages, Sixth Annual ACMSymposium on Theory of
Computing, May 1974, 33-39.

{5} Jones, N. D. and W. T. Laaser, Complete problems
for deterministic polynomial time, Sixth AnnualACM
Symposium on Theory of Computing, May 1974, 40-46.

16] Even, S. and R. E. Tarjan, A combinatorial problem
which is complete in polynomial space, Seventh
Annual ACMSymposium on Theory of Computing, May
1975, 66-71.

[7J Schaeffer, T. J., Complexity of decision problems
based on finite two-person perfect-information
games, Eighth Annual ACM Symposium on Theory of
Computing, May 1976, 41-49.

{81 Meyer, A. R. and M. J. Fischer, Economy of descrip
tion by automata, grammers, and formal systems,
Twelfth Annual Symposium an Switching and Automata
Theory, October 1971, 188-191.

19} Seiferas, J., unpublished manuscript, (1973).

- 286 -

	Copyright notice 1978
	ERL-78-34

