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Introduction

This paper considers the problem of whether a

finite collection of finite automata can search all of

a 2- or 3-dimensional obstructed space. Such a space

gets searched oy having every "accessible" cell visit

ed at some time by an automaton. Techniques for solv

ing search problems in 2 dimensions are presented. In

particular, a finite automaton with 4 pebbles can

search any finite 2-dimensional maze (of the sort that

appears in various game books), while one with 7 peb

bles can search any infinite 2-dimensional maze. In

contrast, we show that no finite collection of finite

automata is capable of searching every finite

l-tiltrenslgn??, maze.

A variety of interesting problems arise in the

study of finite automata that move about in a 2-dimen

sional space. In such a space, especially one having

complicated barriers, finite automata can perform in

an interesting sophisticated fashion. A number of

different theoretical devices that operate in 2-dimen

sional space have already been studied: M. Paterson

[Pat] has invented a class of finite automata called

"worms" that move through space, leave a trail wherev

er they go, and by restriction on the allowable pro

grams, never pass through their own trail. In a 2-di

mensional Euclidean space, these worms can generate

rich and complex patterns, even though their programs

are simple. Conway's [Con] Game of Life provides

another example of how a few simple rules in 2-dimen

sional space give rise to very oomplex activity and,

in this case, to a simplest known basis for self-

reproducing machines with Universal Turing Machine ca

pability.

* This research was supported in part by National Sci

ence Foundation Grant MCS75-2176O-A01.

An old but still very strong mathematical argu

ment due to M. Minsky [Mln] demonstrates the increased

power of automata in 2 compared with 1-dimensional
space. Consider a finite automaton that moves about
on an infinite 2-dimensional checkerboard. The cells

of the checkerboard are white except for those on the

x and y axes which are black. An automaton,

represented by a circle in Figure 1, is a finite state

machine that moves about from cell to cell of the

checkerboard, able to see only the color of the cell

it occupies. It has a finite number of internal

states and a finite set of instructions which cause

it, depending on its state and the color (black or

white) of the cell it occupies, to move N, E, S, or W

one cell and change state.

This finite automaton actually has the power of a

Universal Turing Machine because the distance of the

automaton from each of the 2 axes may be viewed as the

contents of 2 counters x,y, and Minsky has shown that

2-counter machines are universal. This rhour* that an

automaton's movements in 2-dimensional space can be

considerably more complex than in 1-dimensional space,

since no finite automaton is univeral on a 1-dimen

sional tape, no matter how that tape is marked.

In section 1, we show that finite automata can

search all of 2-dimensional obstructed space. In this

case, we view the automata as ants traveling about on
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dry land. Water, be it finite (lakes) or infinite

(oceans), constitutes the obstructions. The land too

may be finite (island) or Infinite (continent). This

land-search problem is trivial if the automata are re

placed by Turing machines: A single Turing machine can

construct an Internal map of its space, keep track of

each cell of the space that it visits, and schedule

itself to visit increasingly larger portions of (ac

cessible) land. Of course, this solution requires

memory proportional to the amount of space to be

visited. Our solution by finite automata shows that

finite memory distributed among a finite number of

machines is sufficient. The main difficulty in con

structing such an algorithm lies with the obstruc

tions. In fact, an unobstructed everywhere infinite

2-dimensional checkerboard can easily be searched by 2

finite automata and a single pebble. Figure 2 sug

gests one simple algorithm.

•fitoltt ~»uiamato

Figure 2

In fact, 2 finite automata and 1 pebble can simulate a

universal 2-counter automaton (Sipser [Sip]). This

yields a more powerful method for searching space

along lines first suggested by A. Meyer, whereby the

automata compute a search path and move along it.

Cobham has shown and we have independently proved that

the slightly weaker collection consisting of 1 finite

automaton with 2 pebbles has not got the power to

search all space: the finite automaton can use its 2

pebbles to search any sector of an infinite 2-dimen

sional checkerboard, if the sector's interior angle is

less than 180 degrees. However, no single finite au

tomaton with just 2 pebbles can search a complete half

plane (no less the whole plane). The proof of this
fact also shows that 1 finite automaton with 2 pebbles

cannot oe universal. The above results (concerning 2

finite automata with 1 pebble and 1 finite automaton

with 2 pebbles) completely summarize the minimum fin

ite automaton power required to search an unobstructed

checkerboard.

The search algorithms for 2-dimensional space are

particularly interesting in view of the difficulty of
searching more general graphs. In his groundbreaking

work or 1967, M. Rabin (unpubliahcdl showed that a

finite automaton with a finite collection of pebbles

cannot entirely search (thread) an arbitrary finite

graph. S. Cook [Coo] and C. Rackhoff [Rac] have since

obtained upper and lower bounds on the number of peb

bles needed to search a graph with n nodes. In sec

tion 2 we show that a finite collection of finite au

tomata cannot completely search a 3-dimenslonal check

erboard space containing obstructions (the arcs and

nodes of Rabin's graph become the accessible region of

this space, the space between them becomes the ob

struction). This extension is interesting because in

checkerboard space, unlike graph space, an automaton

has a "compass" for determining direction, N, E, S, W,

U, D, and as we shall see in the search algorithms for

2-dimensional space, this can provide surprisingly

useful information.

Bob Tarjan has informed us that he and Wolfgang

Paul tried unsuccessfully to prove that a finite col

lection of finite automata cannot entirely search a

planar graph, one whose nodes are all of degree 3« (A

finite automaton moving into a node of such a graph

may choose to go left, right, or back whence it came,

depending on its state and whether or not other auto

mata appear at the same node.) We suspect, as Paul ?^i

Tarjan do, that a search procedure for this related

problem is impossible in general. It would be In

teresting to show this is so, especially since it

would illuminate the difference between graph space

and checkerboard space.

1 Searching 2-Dimenslonal Sj&gfl.

±.1 Overview.

In this section we show that obstructed

2-dimensional checkerboard space can be completely

'searched by one finite automaton with a finite number

of pebbles. The search procedure uses several ideas,

outlined below.

First, suppose a finite automaton with 4 pebbles

is positioned on the south shore of a lake [the

(south) shore of a lake =df all land cells that are

adjacent at an (northern) edge to a cell of the lake].

That automaton can find its way to the nearest acces

sible land, if any, that lies due north (on the other

side oi the lake) of the starting position, cf. Figure

3. The finite automaton does this by using shoreline

distance Cshoreline distance between 2 land cells on

the shore of a body of water s^r number of land cells

on that shore that connect the given 2 cells J between

a pebble, W , and each of 3 other pebbles, X , Y ,
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Figure 3

Z , to encode the contents of 3 finite counters, Cx,

Cy, Cz. A simple proof shows that a finite automaton

can cross a lake when provided with 3 such counters,

each capable of holding a number no bigger than the

length of the lake's shoreline. C^, Cy are used to
store x, y distance from the initial position of the

automaton on the shore of the lake to successive posi

tions of the automaton along the shore. Cz is used to

(eventually) store z, the y distance to the desired

goal position. The number z is the least positive y

that occurs each time x = 0 as the automaton moves

along the shore. (The automaton uses the empty

counter, Cx, to compare the contents of Cy with those

of Cs and to update Cz.)

More generally, the finite automaton may be

started with its pebbles on the southern shore of an

arbitrary body of water, be it finite or infinite, in

what we call a "try to cross the water" state. If the

shoreline is infinite, the automaton will move (with

its pebbles) forever along the shore. If the shore

line is finite, the automaton will move along that

shore Just until it returns to its original starting

position. The finite automaton will always recognize

when it returns to its starting position and this will

cause it to enter a predetermined "back to the start

ing position" state. If there is accessible land due

north of the starting position, the finite automaton

will recognize that fact (z, the contents of C2, will

be positive). In that case, the automaton will move

along the shore to the other side of the lake (the

first cell where x = 0 and y = z) then enter a

predetermined "goal aohieved" state.

Interestingly enough, it is Just the above

obstacle-crossing subroutine that fails in 3 dimen

sions: no fixed number of finite automata can cross

the kinds of complicated obstacles that can occur

there (in 3 dimensions).

The (above) obstacle-crossing subroutine can be

used by a finite automaton with 4 pebbles In an algo

rithm to completely search any island on which it and

its pebbles are placed. Basically, the automaton uses

its pebbles to search column after column of the is

land from its original starting position to the

eastern end of the island and from there to its

western end.

The question is open whether 1 finite automaton

without pebbles or even whether 4 automata witnout

peboles can search an arbitrary island.

Next, additional pebbles are introduced to search

an arbitrary land whether it be (finite) island or

(infinite) continent. These additional pebbles serve

to define counters whose contents determine the size

of an artificial island that is seached, enlarged,

then searched again (Figure 6).
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This process continues forever, if the accessible land

is infinite. If it is finite, the finite automaton

eventually realizes this and reverts back to the is

land searching routine.

The problem of creating an artificial island

reduces to that of constructing a counter in obstruct

ed space from a finite collection of pebbles. In such

a counter, an Integer is stored as the "distance"

properly defined between a stationary "origin" pebble

0 and a "count" pebble C . A squadron of 4 pebbles

under the control of 1 finite automaton moves between

the 2 pebbles 0 and C to increment or decrement

the count. A properly constructed counter is the most

subtle (if one may call it that) part of this algo

rithm. This is because a surprisingly large collec

tion of convincing constructions fail the test of

proof. The outline for a correct construction appears

in the next subsection of this paper.

Finally, a working counter must be "movable",

count included, from a given cell to an adjacent one.

This is easily done by introducing a second empty

counter into the adjacent cell, then successively de

crementing the given counter while incrementing the

adjacent one. This completes the outline of the argu

ment.

The aDOve finite automaton with all its pebbles

moves in a sufficiently straightforward manner that

one can hope to visualize its movement la detail* Tne

approach, however, requires a large number of pebbles,
lhere is another approach more frugal of pebbles that

dates back to Meyer's suggestion (to Rabin) for get

ting universal Turing machines to thread unobstructed

space. That approach, though too abstract to visual

ize in detail (because it requires computing paths),

can be used to prove that finite automata with Just X

peboles can search 2-dimensional obstructed space.

The approach uses the fact that a finite automaton

with 2 counters is universal and can therefore gen

erate instructions to search in turn all finite paths

extending from its starting position. This works if

the accessible land is infinite for then each counter

can store an arbitrarily large integer. If the land

is finite, the automaton can revert back to the

island-searching routine. The 2 counters use one ori

gin pebble 0 , two different count pebbles C« , C2 ,

and 4 additional pebbles W , X , 1 , Z for shut

tling between 0 and C« , C2 . This collection

consisting of 1 finite automaton and 7 pebbles can

search any obstructed 2-dimensional space.

1.2 Counter construction.

In this section, we design a finite automaton

that uses 6 pebbles when placed In an infinite ob

structed 2-dimensional space to simulate a (potential

ly infinite) counter. The 6 pebbles consist of an

origin pebble 0 , a count pebble C , and 4 addition

al pebbles W , X , Y. , Z .

problem: Design a finite automaton to be started

in an "increment" state together with pebbles 0 , C

, W , X , Y , Z on a single cell of land. Call

this initial configuration the beginning of stage 1.

In general, at the beginning or end of a stage, the

finite automaton is to occupy this starting land cell

with 0 , W , X , Y. , Z , while C may lie else

where (storing the count). At the beginning of stage

n, the finite automaton may be started in an "incre

ment" state or else, provided C does not occupy the

same land cell as 0 , in a "decrement" state. In ei

ther case, the finite automaton uses its pebbles W ,

X , I , Z to find C , to move it, and to return

to 0 either in a "mission accomplished1* state or a

"mission impossible" state. The return to 0 consti

tutes the end of stage n. If the finite automaton re

turns to 0 in the mission impossible state, this is

to mean the accessible land is necessarily finite (is

land). In this case, the finite automaton is not to

be restarted. If the finite automaton returns to u

in a mission accomplished state, it may be restarted

in an increment or decrement state, and this constl-
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tutes the beginning of stage n+1. At the end of a

stage, C is to occupy the same position as 0 if and

only if tne finite automaton has been started as often

in the increment as the decrement state.

• The finite automaton with its 4 pebbles W , X ,

1 , Z is called the "shuttle" since it generally

shuttles from 0 to C , moves C appropriately, and

then shuttles back to 0 . Pebbles h , X , Y , Z

are used by the finite automaton as previously ex

plained to simulate 3 finite counters Cx, Cy, Cz. All
shuttle movements will be described in terms of these

*counters rather than the pebbles that implement them.

Since these counters are used only to store values of

shoreslde distance, the replacement of the pebbles by
«

these counters is legitimate. (Our description of the

shuttle movements is thereby simplified because the

finite automaton can update Cx, Cy, Cz contents on the

spot and the corresponding movements to the various

pebbles need not be described.)

We now give instructions for the shuttle (i.e.

the finite automaton with counters Cx, Cy, Cz) to move
from 0 to C ..

ALGORITHM(indented):

The shuttle is to follow the instructions

below until C or 0 is reached: Initially, the

shuttle is to move due north until it reaches a

cell, call it X, of the south shore of a body of

water. From X, the shuttle is to move counter

clockwise along the shore, updating Cx, Cy, Cz as

it goes. If and when it returns to X, the shut

tle shall know if there is reachable land due

north of X (yes if Cz > 0, no if Cz = 0). If
not, the shuttle is to return to 0 in the "mis

sion impossible" state. If yes, it is to move

from X to the closest land cell due north of X

(i.e. to the other side of X) (cf Fig. 7).
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Figure 7

From this other side of the lake, the shuttle is

" to continue its movement north following the

directions given above.

END OF ALGOfilThM

The return of the shuttle from C to 0 follows the

same path in reverse taken by the preceding movement

from 0 to C (cf Fig. b).

- m ^ ©
\Ct—=7 \i)—^

*—' *,-, -tt •-
,_ ip L-t_p—sr # -

© ©

Figure 8

The Cx, Cy, Cz contents at any point in this reverse
movement, however, may be different from their con

tents at the same point in the forward movement.

The count pebble C can be placed in more than

one position on a land cell, unlike pebbles W ,- X ,

Y , Z and 0 . In addition to the standard position

in the interior of a cell, C can also be placed on an

edge between a land cell and water cell. The latter

irregular position permits the shuttle to distinguish

when C is on a shoreline (cf Fig 9).

m
m

m
M s

m Stttt

Figure 9

The position of the count pebble C relative to the

origin pebble 0 , between stages when the shuttle has

returned to 0 , shall uniquely determine the contents

of the counter being constructed. This position will

be called the ££iH££Il-\aliJ££2. position of C . Shown

in figure 10 are the counter contents or numbers

represented by a succession of between-stages posi

tions.
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A single figure that supplies
the above information is provided by:



Note that the successive positions of the shuttle

as it moves from 0 to a distant C are different

from the successive between-stages positions of C : 6

can be placed on an edge, whereas the shuttle moves

only from cell interior to eell interior. The shuttle

can pass through a cell repeatedly in one shuttle,

whereas successive between-stages positions of C are

unique. For example, the auocessive positions of the

shuttle as it moves from 0 to C are eompared in

figure 11 below with the successive between-stages po

sitions of C as It is incremented stage after stage.

© 1

'3

t
<§>

3
S*. dUb ri2*a*Sttt

Figure 11.
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Note the jump in figure 11 from C 's position 11 to

12: This Jump is needed to insure that no position of

C will have double aeanlng. Another ouch example is

given in figure 12.

As the shuttle moves from 0 to C,
it may visit a particular cell,
in particular a lakeshore cell,
arbitrarily many times.

Pigure .11

The sequence of C positions,
however, are ail different:

Notice the jumps from 56 to 57
and 58 to 59. Each integer represents
the contents of the counter when the
count pebble C is placed at that location.

Of course, the shuttle does not have wings. It

cannot move the count pebble instantly from position

5b in figure 12 to position 57. It does this gradual

ly Instead.

The procedure used by the shuttle to Increment

the count pebble is as follows:

ALGORITHM:

From 0 the shuttle moves toward C (north,

counterclockwise around water, etc.) until it "en

counters" c . We say that ja& ^ut^ie ensountera

£ if and only if either [ C lies inside a cell and

the shuttle has Just moved north or south, not fol

lowing a snoreline, into the cell containing C ]

or [ C lies on an edge (between water and land)

and the shuttle has just followed the shoreside of

that water into the cell on whose edge C lies).
0-1
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Figure 13 snows C inside a cell or on ono ol its

2 edges, and the movement of the shuttle until it

encounters C .

After encountering C , the shuttle determines

which of the 3 cases below holds, and moves C ac

cordingly:



1. If C lies inside a cell (in which case

it must lie In the same column as 0 and north of

^ it) and if the cell north of and adjacent to the
one containing C is also land, then the shuttle

moves C north to the interior of the above cell

• (fig 14).

I
Figure 14

2. If C lies inside a cell and if the cell

above is water, then the shuttle moves C up to

the edge between the 2 cells (this position may get

changed before this stage ends: It will be final if

and only If C. is not encountered by the shuttle

on its way back to 0 ).See fig 15.

©

35H
m 1

Figure 15

3. If C lies on a lakeshore edge as in fig

ure 16, then move it counterclockwise one edge to

the next position on the lakeshore. (This will be

the final position for C for this stage if and

only if C is not encountered by the shuttle on

its way back to 0.)

i-
®

Figure 16

After moving C the shuttle wends its way

back to 0 along exactly the same path whence it

came. If C is encountered on the way back, it

must be lying on the edge of a lakeshore cell (this

is because the shuttle can visit only lakeshore

cells more than once in moving from 0 to C or

back). This position must be in the column con

taining 0 . The shuttle now checks if there is

accessible land due north of C . If not, it re

turns to 0 in the "mission impossible" state. If

yes, it moves C to the interior of the nearest

land cell due north of its present position (fig

17).
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Figure 17

Now the shuttle continues its way back to 0 . ( C

will not be encountered again since It can only be

encountered by the shuttle on its way back if it

lies on an edge.)

END OF ALGORITHM

Decrementation will next be defined so that the

counter's content (i.e. the total number of incremen

tations minus the number of decrementations) uniquely

determines the position of C independently of the

order in which the incrementations and decrementations

were carried out.

AL60RlThM(indented):

To decrement the count, 0 and C may not

be in the same position. The shuttle leaves 0

and moves in the usual way north, around lakes,

etc. until it encounters C . Either C is en

countered in the Interior of a cell or on an

edge.

Case l» C is in the interior of a cell ana

is reached by the shuttle from the interior of an

adjoint cell below:

In this case, the interior of the cell below

the one containing C is the desired decremented

position of C .

Case 2. C is on an edge (between water .*nd

land) and is reached from the interior of tne

cell beneatn it: Move C to the interior of that

cell:

153



T
/v*-»til

Case 3. C is on an edge and is reached

from an edge:

Move C to the edge that led to it.

Case, 4. C is in the interior of a cell and

tne southern edge of that cell is on a shore (fig

1d). In this case move C south to the edge on

the other side of the water (the shoreline must

be finite) and then clockwise one edge. Drop C.

Then move counterclockwise one column (to the

land cell in the column containing 0 ) and start

the return trip to 0 . If C is not encoun

tered on the way back, then its position is fi

nal. If it is encountered, move C to the inte

rior of the cell that lies counterclockwise in

the adjacent column (column containing 0 ) and

return to 0 .

END OF ALGORITHM

£> © ©

^m or •Klft or Wi
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Figure 18

It is easy to see that if the land accessible

from 0 is finite, then the shuttle will discover

this before trying to move C to a nonexistent "other

side" of the water. If the land accessible from 0

is infinite, then there is an infinite sequence of

distinct positions for C ,and the shuttle (properly)
increments and decrements C through these positions,

as we shall show in the remainder of this section.

At the start, C is in the interior of a cell,

the same that contains 0 . This is position 0 . In

general, between stages, C is either in the interior
of a cell or on an edge. It is easy to see that when

ever it lies in the interior of a cell, it lies in the

same column as 0 .

1. Suppose that C is in the interior of a

cell, say at position i, and that the cell above C

is land. If the shuttle Is required to increment C .

then C will be moved to the interior of the cell

above its present location. This will be position i+i
pecause tne shuttle cannot encounter C again on its
return to 0 . (In moving from C to 0 , the shut

tle can encounter C a second time only if C is on

water's edge.)

2. Suppose that C is in the interior of a

cell, say at position i, and that the cell above it la

water. If the shuttle is required to increment C ,

then C will be moved up to the edge between land and

water. The shuttle then returns to 0 . If it does

not encounter C on the way back, then since the

shuttle is returning along the same path whence it

came, it follows that this position of C is a new

one. It is position i+1 . If the shuttle does en

counter C on the way back then it moves C across

to the other side of the water to the interior of a

cell there. This position is a new one (because the

shuttle does not pass through it on the way back to 0

). It is position i+1.

3. Suppose that C lies on an edge and that

this is position i. By inductive assumption, this

land cell lies on the path of the shuttle (whether

placed there by incrementation or decrementation) and

therefore the shuttle will encounter C . Suppose the

shuttle is required to increment C . Then it moves

C to the next edge in the counter clockwise motion

along the shoreside and then the shuttle starts its

return to 0 . If the shuttle does not encounter C

on its return then since the shuttle is returning

along the same path it came, it follows that this po

sition of C is a new one, namely i+1. If the shut

tle does encounter C on the way back then it moves

C to the other side of the lake to the interior of a

cell there. This position is a new one, namely posi

tion i+1.

The argument that the shuttle properly decrements

C is similar to the above Increment argument.

This completes the proof that a finite automaton

witn 6 pebbles in infinite 2-dimensional obstructed

space can simulate an unbounded counter. (A finite

automaton with 7 pebbles can simulate 2 counters and

use them to search the space.)

Z-. ypimensional Space la Unsearchable

In section 1, we showed that a finite state

machine with 7 pebbles could search any connected

2-dimensional checkerboard graph, whether finite or

infinite. In 3 dimensions, the situation is dif

ferent:
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Theorem: Let a collection of n s-state finite

state machines be given. Then there is a finite con

nected 3-dimensional checkerboard graph G not search

able by the n machines. If all of the machines are

initially placed on the same vertex of U, there will

be a vertex which is never visited by any of the

machines in the ensuing computation.

Some notation for manipulating graphs and a com

ment about the machine model follow.

Let U s

4 1(0,0,1),(0,0,-1),(0,1,0),(0,-1,0),(1,0,0),(-1,0,0)}.

Up Down N S E W

An arc Is an unordered pair (v,v+u) where v t z3 (Z =
integers) and u t U. A 3-dimensional checkerboard

graph G is a set of such arcs. The set of vertices of

G, VIG)., is lv e z3| (there exists u t U) {v,v+u} *

0}. For v e V(G), the set of directions from v is

D(v) = tut U!(v,v+uJ t G). (This is the set of

directions (N,£,S,W,u,D) along which an automaton can

move from v.)

Let us describe the computation of machines

M1,M2,...,Mn on a graph G. The machines are designed

to cooperate together in the computation. At step t

each machine M^ is located at some vertex v± in state

q^. One or many machines may occupy a vertex at a

time. Acting simultaneously, each MA applies its

transition function to its current state, the set of

directions (accessible) from its current vertex vif

and the set of machines located at v^ to obtain a

direction u^ t Dlv^ and a state from its finite state

set. At time t+1, M± will be found at vt ♦ uj, in its

newly selected state.

Proof of the Theorem. The proof proceeds induc

tively in n stages. The i-th stage produces i-traps,

which are graphs not searchable in a certain way by

any i of the given machines.

Stage 1 constructs 1-traps. The plan is to gen-

* erate a large collection of 1-traps (all are rotations

and translations of the same basic 1-trap) (Fig. 2.1),

which will later be used as the atomic units for the

construction of 2-traps. We will present the con

struction for this 1-trap below, referring the reader

to the final version of the paper for the complete

proof.

«A,= ****** 14
£c Urn !»,...,<$

<**.M.,M.)

£U,-U,*4.)

pi

tU;u;U)

ft. * C^J,* 1,0,0)

£^u»e 2.1 *- Ov+l^e, «$ «~ l -*/xp

The 1-trap must satisfy certain physical require

ments:

(i) The graph is connected.

(ii) (a) Every arc along the line between p-\ and p2

must be present.

(ii) (b) Every arc along the line between P3 and pii

must be present.

The sets of vertices connected by arcs in la) and (b)

are called the wires of the trap.

(ii) (c) The wires are the only vertices which are not

properly in the interior of the cube.

The 1-trap must also satisfy:

^-trapping property: Let any one of the given 3-

state machines be started anywhere on either of the

wires. In the subsequent computation, the machine

will never appear on the other wire.

A 1-trap will now be constructed. It will be

convenient to begin the construction at the point

(0,0,0) and add the wires later, so that the inp con

structed will be a translation of the graph shown in

Figure 2.1.
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Definition. For x, ye 2, let <x,y> denote the

point (l"x,l*y,0) where 1 will henceforth denote

lcm(2,...,s}. The <x,y> are the connector points.

Let C = t<x,y>!x,y e 2}.

The oo connector graph is constructed by joining

adjacent connector points with x and y connectors.

Definition. The pair of points vj, v2 e Z^ lie
along a line if v2 = v^ + au for some a e li and u e U.

For such v1 and v2, each arc in the set {{vj+bu,

v1+(b+1)u}!0^b<a) is between v-j and v2.

Definition, (i) Let c-|,c2,...,cg be defined as

in Figure 2.2. Cx((0,0,0)), the x-connector &t

(ji,0_,0.), consists of all arcs which lie between a pair

of points cA, ci+i for some i £ i £ 8.

(ii) For p e z3,
Cx(p) = {{v+p,v»+p)J{v,vf} e Cx((0,0,0))). Thus Cx(p)
is the translation of Cx((0,0,0)) to p.

c « C*+«\, i, ««*)

Cj, • C*tsf ot s**)

r\*utc> i.2

C» CC°;0>o)^ ) %.< % Cov»n*cV#>\ »-V Co,o,o)

Definition, (1) Let d1td2,...,dg be defined as

in Figure 2.3. Cy((0,0,0)), the v-connector &t
(itii»fl.)i consists of all arcs lying between a pair of

points dif di+1 for some 1 £ 1 £ 6.

(ii) for p e z3,
Cy(p) = tlv+p,V+p>Slv,vM e Cy((0,0,0))}.

PetinUV?n- The co

Goo 3 yc^Cx(p) 0 Cy(p)).
graph is

«1 =Co,/, #)

<U« c-».*,»**)

^1* <.-l,»,o)-*-

/
F. y»t«. 2. .3

C-^ CC*,©,©)*) "tfc.«. m- c««*n«c-T*\ «cT C»/o,o)

The behavior of one machine on the oo connector

graph is characterized by the oo Ribbon Theorem. The

desired 1-trap will be obtained from a finite approxi

mation of the oo connector graph. The oo Ribbon Theorem

will be useful for analyzing the behavior of machines

on the finite space.

Definition. The distance between connector

points <x-|,yi> and <x2,y2>, denoted

d(<x1,y1>,<x2,y2». is Jxi-x2S + ly1-y2S.

It Is straightforward to verify that d is a

metric on the space of connector points.

oo Ribbon Theorem: Let one of the given s-state

machines M be started on the oo connector graph at

<xi»yi>« Then every connector point visited by M is

within distance s-1 (with respect to metric d) of some

point in R(<xltyi» = Hna+x^nb+y^ln eJN and a,b c 2

and Sal+SbS £ s).

The proof of the theorem uses the following pro

perty of connector space, which is easily verified.

Lemma: Let G denote the oo connector graph. Then

for x,y e 2, G = ltv+<x,y>,v,+<x,y>l!Iv.v'} t G).
(Thus all connector points look the same to a finite

state machine.)

proof of the Theorem. Call the i-th connector

point visited by M, <xi,yi>, and let qA be the state

of M at this visit. Pick the least 1 < J such that qA

s qj. Since Mhas only s states, j £ s+1. For any k
> 1 the points <xk,yk> and <xk+i,yk+i> are at distance

at most 1, so by the triangle Inequality
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<x2,y2>,...,<x«..i,yj_i> are at distance at most s-1
from <x-j,y-j>. Set a a Xi-*i» b s yj-y^. Then lal +
ibl * d(<xi,yi>,<Xj,yj» £ s. Because all connector
points look the same to the machine, the computation

between steps i and j can be extrapolated, so that for

any i £ k < J and n i 1:

xn(J-i)+k = xk ♦ na ;

vn(j-i)+k 3 vk ♦ nb •

How d(<x-j+na,y^+nb>,<xk+na,ylc+nb>) a d(<xi,yi>,<xk,yk>)

which latter quantity has been shown above to be at

most s-1. Q.E.D.

A finite approximation of oo connector space,

called the marked torua. is constructed next..

Definition, n a is2; w a h*i.

The construction of the marked torus uses the

rectangle of connector points <x,y> such that 0 £ x <

w and 0 £ y < h. Adjacent connector points are to be

joined by x and y oonnectors. Bridges will join pairs

of connector points at opposite edges of the reotan

gle.

Definition, (i) Let ei,e2,...,eg be defined as

in Figure 2.4 The £ Juld&e. sL 2B3IL & £& (JMMDt

denoted Bx(w,(0,0,0)), consists of all arcs lying

between a pair of points e^, e^ for some 1 £ i £ 8.

(ii) For p el3, Bjt(w,p) = Uv+p,v•♦p)!{v,v,} e
Bx(w,(0,0,0))).

1

tf 9 <tt»-\, ©>

)
1.

•♦a /

Definition, (i) Let f,,...,^ be as in Figure
2.5. The i bridge of scan Jl ai (0,p_,0_), denoted

By(h,(0,0,0)), consists of all arcs lying between a
pair of points fA, f1<fl for some 1 £ i £ 8.

(ii) For p e l3f By(h,p) a {{v+p,v»+p)J(v,v') e
By(h,(0,0,0))).

»w4c « C-», *--^, X*«***«•)

iUe »a V*^* 6^ «d«k *> *.*Y Ce>o,&)

Definition. The fiaxKel torus T is the union of

the following five sets:

(i) 0*&-2C*(<a'b>)
0Sbih-1

(li) o^w-icy(<a'b>)
OibZh-2

(iii)0ib!!b-1Bx(w»<0»b>)

(iv) 0ia8w-1Eylh'<a'0>)
(v) 11(0,0,0),(0,0,-1)),{m2,m2+(0,0,-1))} where m2 a
<s+1,2s2>.

Connector points <0,0> and m2 are said to be

marked: all other connector points are unmarked. The

wires of the trap will be attached to the points

(0,0,-1) and m2 + (0,0,-1).

It will now be shown that the marked torus satis

fies:

Isolation Theorem: Let M, one of the given s-

state machines, be started at one of the connector

points <0,0> or m2 of T. M will never appear at the

otner point during the subsequent computation.
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This theorem shows that a 1-trap may be con

structed from the marked torus, as follows. The torus

fits properly inside a cube of side length l*(w+2) =

4s2l'i + 21. Lead wires into this cube as in Figure

2.1. Attach a wire to each of the points (0,0,-1) and

m2 + 10,0,-1) via a sequence of arcs not passing
through any vertex that is part of the torus. Let us

verify that this construction will trap any one of the

giv-n machines. Suppose machine M, starting on the
wire attached to (0,0,-1), arrives at the other wire.

There will be a segment of the computation where M,

starting at <0,0>, later arrives at m2, having visited
no marked connector points in the interim. This seg

ment is also a valid computation of M on the marked

torus (without wires), contradicting the Isolation

Theorem. A similar argument shows that M cannot move

from the m2 wire to the <0,0> wire.

here is the plan for proving the Isolation

Theorem. First prove the Projection Theorem, which

relates the behavior of s-state machines on oo connec

tor space and- the marked torus. The Projection
Theorem and oo Ribbon Theorem togetner give the Finite

Riobon Theorem, characterizing the behavior of

machines on the torus. The Marked Finite Ribbon

Theorem and Ribbon Analysis provide a refined-charac

terization, which is then used to obtain the Isolation

Theorem.

E<?fMttal.

11) For m e Z* and a e 2, [a]m is the least non-

negative integer such that [a]0 - a is divisible by m.

(ii) For x,y t 2, f(<x,y» a <[x]w,[y)h>.

projection Theorem: Let s-state machine M begin a

computation in state q at pt « C on the torus. Sup-
.pose that after some number of steps of computation
the sequence of connector points M has visited is, in

.order, p1fp2 pr with Pl,2 pr.i unmarked. Then
Mi started in state q at Pi on the oo connector graph,
will visit the. sequence of connector points

Pl,P2>P§i-..fPr' The relation between the two se
quences is: p± = f(Pi') for 2 £ 1 £ r.

Proof. Both graphs can be viewed geometrically

as intersecting straight line segments. Call a point

where 2 or more lines meet a corner. Associate each

corner g in oo connector space with a corner T(g) on

the torus.

(i) (a) For a, b t 2 such that a a£ -1(w) and

1 £i £ a,

T(<a,b>+Cj,) = f(<a,b>) + q±

(ct as specified in Figure 2.2).

U) (b) For a, b e 2 such that a h -Hw) and

1 S i i b,

T(<a,b>+ct) a f(<a,b>) + e^

Icf Figure 2.4).

(ii) (a) For a, b e 2 such that b £ -1(h) and

1 ii i »,

T(<a,b»+di) = f(<a,b» + dt

(cf Figure 2.3).

(ii) (b) For a, b t 2 such that b = -1(h) and

i£ii«,

T(<a,b>+di) a f(<a,b» + tt

(cf Figure 2.5).

In connector space Mvisits a sequence of m corners,

being in state qk when the k-th corner gk is visited.
On the torus, Mvisits a sequence of m corners, being
in state qk when the k-th corner gk is visited.

Claim. ,m a mf and for 1 £ k £ m: qk =qk, 2k 3
T(gk). ,

The claim is verified by induction on k. The in
teresting cases arise when Mmoves between a pair of
comers in oo connector space, both falling into cases

(1Mb) or (ii)(b). For example, suppose gk = <-1,0> ♦

o7, gjc<(p1 z <-1,0>.♦%. By induction hypothesis gk a
<-1,0> ♦ e7 and qk a qk. To show: gk+1 =<-1,0> ♦ e6
and qk+1 =qk+i. Let us interpret the situation in
terms of Figures, 2.2 and 2.4. In connector space M
starts at the cy corner of an x-connector In state qk
and proceeds upward to the eg corner, arriving there
in state qk+1. On the torus, M begins at the e7
corner of an x-bridge, in state qk. To show: M
reaches the e6 corner of the x-bridge in state qk+1.

For 1 £ i £ s+2, let vt a gk ♦ (0,0,i). Let pt
be the state of Mon the connector graph the first
time vt is visited during the passage from gk to gk+i.
Since Mhas only sstates, there exist 1 < i < J £ s+1
such that pj =Pi- The computation then repeats ac
cording to the pattern p„ a Ptb-ilj.i+i fo«* J i b i
s+2.

For 1 £ r £ l+s+2 let vr = gr ♦ (0,0,r). Since
gk is unmarked, M's computation on the connector graph
can be extrapolated on the torus. According to this
extrapolation, Mwill visit each vr on the torus. The
first visit to vr on the torus will be in state pr,

where:
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pr a pr for Mr< 1;

Pr » P[r-i)j„i+i for i i r i l+s+2 .

In particular,
i

^k+1 r Pl+s+2 =P[l+s+2-i]j_i+i
»' sP[s+2-iJj.i+i <sinoe (j-i)!l a lcm{2,... ,s})

= qk+1 . Q.E.D.

Definition. For 0 < x1fx2 < w and 0 £ yi,y2 < h:

>(i) 0x(x^,X2) = min(Lx1-x2)u,[x2-x1jw).

(ii) dy(y1ty2) = min([y1-y2]n, [y2-yi)n).

*(iii) d,«x1,yl>,<x2,y2» =dx(x1tx2) +dy(y1fy2).

(i) d* is a metric on the space (<x,y>!0 £ x < w, 0 £

y < h).

(ii) For connector points p-) and p2, d'(f(p-|),f(p2)) £

<1(P1»P2^«

Finite Ribbon Theorem: Let s-state machine M be

gin at p1 t C on the torus. After some number of

steps of computation, suppose the connector points M

has visited are, in order, P-|,P2,.. .,Pr, where the

first r-1 of these points are unmarked. Then each pA

is within distance s-1 (with respect to metric d') of

some point in R'(pj) a lf(v)|v t R(p1)l.

Proof. Let q be the state in which M was start

ed. By the Projection Theorem, M, started at py in

Ribbon Analysis: For 0 £ x < w and 0 £ y < h,

each of the following sets is equal to R'(<x,y>):

(i) (<[na+x]u,[nb+y]n>!n elN, a,b e 2, !a|+!b| £ s)

(il) {<tna+x]w,[nS+y]n>!n,a elN, 6 e 2, !a!+!B! £ s)

(ill) h(y) U V(x) U R^(<x,y>), where

h(y) a {<a,y>!0 £ a < w}; V(x) a l<x,b>!0 £ b <

h); R^(<x,y>) a |<lna+x]w,Lnb+y]h>!n,a e H**, t c
2-10), a+!b{ £ s).

(iv) h(y) U V(x) U F(<x,y>), where

F(<x,y>) a {<[na+x)w,[nb+y]h>!n,a tIN+, b c Z-10), 0 £
na < w, a+!bS £ s).

Proof. R' a' (i): This is a restatement of the

definition of R' given in the Finite Ribbon Theorem.

(ii) equals (i): An arbitrary <[na+x]w,[nb+y)n> from

set (i) with a < 0 must be expressed in the form

<[na+x]w,[n6+y)n> of set (ii) where a is required to

be non-negative. The values n a n(wh-1), a = -a, 6 =

-b are appropriate:

<[na+x)M,[nb+y]n>

a <[na+x)H,[nb+y]n> + <[nwh(-a))M,[nwh(-b))n>

(since the second term is <0,0>)

a <tn(wh-1)(-a)+x]w,[n(wh-1)(-b)+y)h>

a <[na+x]w,[n6+yjh> .

(ill) equals (ii): My) and V(x) separate out the

state q on the oo connector graph will visit a sequence cases where, in (ii), B6 = 0 and na a 0, respectively,

of r connector, points, say p^,P^,P§i...,Pr. By the oo
Ribbon Theorem, for each p±' (2 £ i £ r), there is a
v± e R^) such that dtpj/.v^ £ s-1. By (ii) of the
preceding lemma, d,(f(Pi'),f(vA)) £ dtpj/.v^. By the

Projection Theorem pA a f(Pi'), so d'(Pi,f(vi)) £ s-1

with f(vt) e R'(pi). Q.E.D.

> Mapked Ffrqlte Ribbon Theorem: Let s-state machine

M begin at p-| e C on the torus. After some number of

steps of computation, suppose the connector points M

has visited are, in order, Pi,p2,...,Pr, where

P2»P3»"-»Pr-1 are unmarked. Then each p^ is within
distance s (with respect to metric d') of some point

in h'ipy).

Proof. The Finite Ribbon Theorem, applied to

p2,...,pr, snows that for each pA (2 £ i £ r) there is
Vi * R'(p2) such that dMpi.v^ £ s-1. By definition

of R', v± + (p!-p2) t RMpt). Then d,(pi,vi+(p1-p2))
£ d'lPi.Vi) + d,(vi,vi+(p1,p2)) = d'Cp^Vj.) + 1 £ a.

(iv) equals (iii): To show: R»2(<x,y>) £ F(<x,y>),

the other containment being easy. Let

<Lna+x)H,[nb+y'Jn> t R^(<x,y>). Pick q « JN* such that

na a q«w + [na]u. Since 0 < a £ s, a|w =

h"lcm{2,3,...,s), and this implies a!ina)w. Therefore

na a q«w + na with n eIN and na < w. Then

<tna+x]w,[nb+y)n>

a <[q*w+na+x)w,[((q*w+na)/a)b + y]n>

a <[na+x)w,[f)b+y]n>

(equality holding in the second coordinate because

a*h!w).

Isolation Lemma ±: Let s-state machine M be

started at <0,0> on the marked torus. Suppose M

visits the sequences of connector points pj =

<0,0>,p2,.. ,,pr, where Pi and pr are marked, an-J

P2>'**iPr-1 are unmarked. Then pr = <0,0>.
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proof. By the Marked Finite Ribbon Theorem, each

pi is within distance' s of R'(<0,0>). Therefore it

suffices to show:

Sublemma ±: Marked vertex m2 a <a+1,2s2> is not
within distance* s of R'(<0,0>).

Proof of Sublemma: By characterization (iv) of

the Ribbon Analysis,

R'(<0,0>) = H(0) U V(0) U F(<0,0>)

where F(<0,0>) a (<na,{nb]h>jn,a «3N+, be 2-(0),

0 £ na < w, a+|b| £ s}.

m2 is easily shown to be at distance' s+1 from V(0)
and distance' 2s2 from H(0). It remains to show:

d'(m2,p) > s for p e F(<0,0>). Suppose, to the con
trary, that there is <na,[nb]h> e F(<0,0>) such that

(•) d'(<s+1,2s2>,<na,[nb]n»

a dx(s+1,na) +dy(2s2,[nb]n) £ s

Since dx(s+1,na) £ s, 1 £ na £ 2s+1. Therefore 0 < n

£ 2s+1. There are now 2 cases.

Case 1: b > 0. Since 0 < b £ s-1, 0 < nb £ 2s2-s-1.
but this means that

dy(2s2,[nb]h) amin([2s2-[nb]h]h,t[nb]n-2s2]ft)

(where h a 4s2)

I min([2s2-(2s2-s-1)]n,[(2s2-s-1)-2s2]n)

= [2s2-(2s2-s-1)Jh,

a S+1

(since the first term is always smaller), contradict

ing (").

Case 2: b < 0. Therefore 0 < -b £ s-1, which implies

0 £ -nb £ 2s2-s-1. Then

dy(2s2,[nb)n) amin([232-[nb]n]n,[[nb)h-2s2]n)

I [-4s2+S+1]n a 3+1

(since the second term is always smaller), contradict
ing (*). This ooncludes the proof of Case 2, the Sub-

lemma, and Isolation Lemma 1.

Corollary. Let s-state machine M be started at

the marked connector point <0,0>. M will never appear

at marked connector point m2 during the ensuing compu

tation.

proof: If Mwere to appear at M2, there would be
a segment of the computation where Mstarts at <0,0>,
visiting no other marked connected points until m2 is

reached. This violates Isolation Lemma 1.

Isolation Lemma £: Let s-state machine M be

started at m2 on the marked torus. Suppose Mvisits

the sequence of connector points p<| a m2,p2, ...,pr,

where p^ and pr are marked and p2,...,pr_i are un

marked. Then pr a m2.

proof. By the Marked Finite Ribbon Theorem each

Pi is within distance' s of R'(m2). Therefore it suf
fices to show:

gublemma 2: Marked vertex <0,0> is not within

distance' s of R'(m2).

Sublemma 2 follows from Sublemma 1, together with:

Symmetry Lemma: Let 0 £ x<j,x2 < w and 0 £ yi,y2 <

h. Suppose <xi,y-|> is at distance* d from some p2 e

R'(<x2,y2». Ihen <x2»y2> ia at dlatance* d fron 3°me
PT € R'(<x1,y1».

proof of Symmetry Lemma: By characterization (1)
of the Ribbon Analysis, there are nd, a,b e 2 with

la|+Sb| £ s suoh that p2 a <[na+x2JM,[nb+y2)h>. By
hypothesis,

d a d'(<x1,y1>,<[na+x2]w,[nb+y2)n)»

a min([xj - [na+x2)MJw,[[na+x2)H-x1]w)

♦ min([y1 - inb+y23h)n,[[nb+y2)n-yijn)

(definition of d')

a min(L[x1+n(-a)Jw-x2]w,[x2-[x1+n(-a)]w]H)

♦ min(tCy1+n(-o))h-y2]n,[y2-[y1+n(-b)in]n)

» d'(p!,<x2,y2»

where p1 a <Lx1+n(-a))w,[yi+n(-b)Jn>. Since
|(-a)l+|(-b)} a iai+ib! £ s, pt e R'(<x1,y1» by char

acterization (i) of the Ribbon Analysis. Q.E.D.

Corollary £o Isolation Lemma £i Let s-state

machine M be started at the marked connector point m2.

rt will never appear at the marked point <0,0> during

the ensuing computation.

Proof: As for the Corollary to Isolation Lemma 1.

The Corollaries to Isolation Lemmas 1 and 2 are

clearly equivalent to the Isolation Theorem. The
proof of the Isolation Theorem is now complete.
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