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Introductiocn

This paper considers the problem of whether a
finite collection of finite automata can search all of
a 2= or 3-dimensional obstructed space. Such a space
gets gearched oy having every “accessible® cell visit-
ed at some time by an automaton. Techniques for solve-
ing search problems in 2 dimensions are presented. In
particular, a finite automaton with 4 pebbles can
search any finite 2-dimensional maze (of the sort that
angears in various game books), while one with 7 peb-
bles can search any jnfinite 2-dimensional maze. 1In
contrast, we show that no finite collection of finite
automata is capable finite

3-dipensiopal maze.

of searching every

A variety of interesting problems arise in the
study of finite automata that move about in a 2-dimen-
sional space. In such a space, especially one having
canplicated barriers, finite automata can perform in
an interesting sophisticated fashion.
different theoretical devices that operate in 2-dimen~
sional space have already been studied: M. Paterson
[Pat) has invented a class of finite automata called

"worms™ that move through space, leave a trail wherev-

A number of

er they go, and by restriction on the allowable pro-
. grams, never pass through their own trail. In a 2-di-
mensional Euclidean space, these worms can generate
rich and complex patterns, even though their programs
are simple. Conway's [Con] Game of Life provides
another example of how a few simple rules in 2-dimen-
sional space give rise to very complex activity and,
in this case, to a simplest known basis for self-
reproducing machines witﬁ Universal Turing Machine ca-
] pability.

* This research was supported in part by National Sci-
™ ence Foundation Grant MCST5-21760-A01.
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4n old but still very strong mathematical argu-
ment due to M. Minsky (Min) demonstrates the increased
power of automata in 2 compared with 1-dimensional
space., Consider a finite automaton that moves about
on an infinite 2-dimensional checkerboard. The cells
of the checkerboard are white except for those on the
An
represented by a circle in Figure 1, is a finite state
machine that moves about from cell to cell of the
checkerboard, able to see only the color of the cell
it occupies. It has a finite number of internal
states and a finite set of instructions which cause
it, depending on its state and the color (black or
white) of the cell it occupies, to move N, E, S, or'W
one cell and change state.

x and y axes which are black. automaton,
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This finite automaton actually has the power of a
Universal Turing Machine because the distance of the
automaton from each of the 2 axes may be viewed as the
contents of 2 counters x,y, and Minsky has shown that
2-counter machines are universal. This shows that
automaton's movements in 2-dimensional space can be

considerably more complex than in 1-dimensjonal space,

an

* since no finite automaton is univeral on a 1-dimen-
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sional tape, no matter how that tape is marked.
In section 1, we show that finite automata
search all of 2-dimensional obstructed space.

can
In this
case, we view the automata as ants traveling zbout on

of the 18th Annual Symposium



dry land. Water, be it finite (lakes) or infinite
(oceans), constitutes the obstructions. The land too
may be finite (island) or infinite (continent). This
land-search problem is trivial if the automata are re-
placed by Turing machines: A single Turing machine can
congtruct an internal map of its space, keep track of

each cell of the space that it visits, and schedule.

itself to visit increasingly larger portions of (ac-
cessible) land, Of course, this solution requires
mezory proportional to the amount of space to be

visited. Our solution by finite automata shows that

finite memory distributed among a finite number of.

machines 4is sufficient. The main difficulty in con-
structing such an algorithm 1lies with the obstruc-
tions. In fact, an ynobstructed everywhere infinite
2-dimensional checkerboard can easily be searched by 2
finite automata and a single pebble.
gests one simple algorithm.

Figure 2 sug-

£ 2 file nitomatn.

Figure 2

In fact, 2 tinite automata and 1 pebble can simulate a
universal z-counter automaton (Sipser [Sipl). This
yields a more powerful method for searching space
along 1lines first suggested by A. Meyer, whereby the
automata gompute a search path and move aleng it.
Cobham has shown and we have independently proved that
finite
automaton with 2 pebbles has not got the power to
gsearch all space: the finite automaton can use its 2

the slightly weaker collection consisting of 1

petbles to search any sector of an infinite 2-dimen-
sional checkerboard, if the sector’'s interior angle is
less than 180 degrees.
tomaton with just 2 pebbles can search a complete half

However, no single finite au-

plane (no less the whole plane). The proof of this
fact also shows that 1 finite automaton with 2 pebbles
cannot be universal. The above results (conceraing 2
finite automata with 1 pebble and 1 finite automaton
with 2 pebbles) completely summarize the minimum fin-
ite automaton power required to search an unobstructed
checkerboard.

The search algorithms for 2-dimensional space are
particularly interesting in view of the aifticulty of
gsearching more general graphs. In his groundbreaking

work of 1967, M. Rabin (unpublished] showed that a

_struction).

finite automaton with a finite éollechion of pebbles
cannot entirely search (thread) an arbitrary finite
graph. S. Cook [Coo)] and C. Rackhoff [Rac) have since
obtained upper ané lower bouﬂds on the number of peb-
bles needed to search a graph with n nodes. In sec-
tion 2 we show that a finite collection of finite au-
tomata cannot completely search a 3-dimensional check-
erboard space containing obstructions (the arcs and
nodes of Rabin's graph become the accessible region of
this space, the space between them becomes the ob-
This extension is interesting because 1In
chéckerboard space, unlike graph space, an automaton
has a ‘"compass" for determining direction, N, E, S, W,
U, D, and as we shall see in the search algorithms for
2-dimensional space,
useful information.

Bob Tarjan has informed us that he and Wolfgang
Paul tried unsuccessfully to prove that a finite col-
lection of finite automata cannot entirely search a

this can provide surprisingly

planar graph, one whose nodes are all of degree 3. (A
finite automaton moving into a mode of such a graph
may choose to go left, right, or back whence it came,
depending on its state and whether or not other auto-
mata appear at the same node.) We suspect, as Paul ar
Tarjan do, that a search procedure for this related
It would be in-
especially since (it

problem is impossible in general.
teresting to show this is 3o,
would illuminate the difference between graph space
and checkerboard space.

) Searching 2-Dimensional Scace
1.1 Querview.

In this section we show that obstructed

2-dimensional checkerboard space can be completely

' searched by one finite automaton with a finite nuamber
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of pebbles.
outlined below.

The search procedure uses several ideas,

First, suppose a finite automaton with 4 pebbles
is positioned on the south Sshore of a lake [the
(south) shore of a lake z4q¢ all land cells that are
adjacent at an (northern) edge to a cell of the lake].
That automaton can find its way to the nearest acces-
siole land, if any, that lies due north (on the other
side ot the lake) of the starting position, ef. Figure
3. The finite automaton does this by using shoreline
distance (shoreline distance between 2 land cells on
the shore of a body of water =4¢ number of land cells
between
Y,

on that shore that connect the given 2 cells)

a pebble, w , and each of 3 other pebbles, X ,

)



Z , to encode the contents of 3 finite counters, Cy,
Cy+ Cz. A simple proof shows that a finite automaton
can cross a lake when provided with 3 such counters,
each capable of holding a number no bigger than the
length of the lake's shoreline., Cy, Cy are used to
y distance from the initial position of the
automaton on the shore of the lake to successive posi-
tions ‘of the automaton along the shore. C, is used to
(eventually) store z, the y distance to the desired
goal position,

store x,

The number z is the least positive y
that occurs each time x = 0 as the autcmaton moves
along the shore, (The automaton uses the eampty
counter, Cy, to compare the contents of Cy with those
of C, and to update C;.)

the finite automaton may be
started with its pebbles on the southern shore of an
arbitrary body of water, be it finite or infinite, in
If the
shoreline is infinite, the automaton will move (with
its pebbles) If the shore-
line is finite, the automaton will move along that
shore Just until it returns to its original starting

More generally,

what we call a "try to cross the water" state.

forever along the shore.

position. The finite automaton will always recognize
when it returns to its starting position and this will
cause it to enter a predetermined “"back to the start-
ing position® state, If there is accessible land due
north of the starting position, the finite automaton
will recognize that fact (z, the contents of C,, will

be positive).

In that case, the automaton will wmove
along the shore to the other side of the lake (the
first cell where x =

0 and y = 2z) then enter a

predetermined "goal achieved" state.

Interestingly enough, it is Jjust the above
obstacle~crassing subroutine that fails in 3 dimen-
sions: no fixed number of finite automata can cross
the kinds of complicated obstacles that can occur
there (in 3 dimensions).

The (above) obstacle-crossing subroutine can be
used by a finite automaton with 4 pebbles in an algo-
rithn to completely search any island on which it and
its pebbles are placed. Basically, the automaton uses
its pebbles to search column after column of the is-
land from its original starting position to the
eastern end of the island and from there to its

western end.

The question is open whether 1 finite automaton

without pebbles or even whether 4 automata witnout
pebbles can search an arbitrary island. ‘

Next, additional pebbles are introduced to search
an arbitrary land whether it be (finite) island or
(intinite) continent. These additional pebbles serve
to define counters whose contents determine the size
of an artificial island that is seached,
then searched again (Figure 6).

enlarged,
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Figure 6

This process continues forever, if the accessible land
is infinite. Ir it is finite, the finite automaton
eventually realizes this and reverts back to the is-
land searching routine.

The problem of ecreating an artificial 1island
reduces to that of constructing a counter in obstruct-
ed space from a finite collection of pebbles. In such
a counter, an integer 1s stored as the "distance”
properly defined between a stationmary "origin” pebble
0 and a "count" pebble C . A squadron of 4 pebbles
under the control of 1 finite automaton moves between
the 2 pebbles O and C to increment or decrement
the comnt. A properly constructed counter is the most
subtle (it one may call it that) part of this algo-
rithm. This is because a surprisingly large collec-
tion of convincing constructions fail the test of
proof. The outline for a correct construction appears
in the next subsection of this paper.

Finally, a working counter must be "movable",
count included, from a given cell to an adjacent one.
This is easily done by introducing a second empty
counter into the adjacent cell, then successively de-
crementing the given counter while incrementing the
ad jacent one, This completes the outline of the argu-

ment.

The apove finite automaton with all its pebbles
moves in a sufficiently straightforward manner that
one can hope to visualize its movement in detail. The
approach, however, requires a large number of pebbles.
1here is another approach more frugal of pebbles that

dates back to Meyer's suggestion (to Rabin) for get-
ting universal Turing machines to thread unobstructed
space. That approach, though too abstract to visual-
ize in detail (because it requires computing paths),
can be used to prove that finite automata with just 7
pebples can search 2-dimensional oo0structed space.
The approach uses the tact that a finite automaton
with 2 counters is universal and can therefore gen-
erate instructions to search in turn all finite paths
extending trom its starting position. This works 1if
the accessible land is infinite for then each counter
can store an arbitrarily large integer. 1f the land
is finite, the automaton can revert back to the
island-searching routine. The 2 counters use one ori-
gin pebble O , two different count pebbles Cy , Cp ,
and 4 additional pebbles W, X, Y , 2 for shut-
tling between O and C3 , Cy . This collection

“consisting of 1 finite automaton and 7 pebbles can

search any obstructed 2-dimensional space.

1.2 Counter gonatruction.

In this section, we design a finite automaton
that uses 6 pebbles when placed in an infinite ob-
structed 2-dimensional space to simulate a (potential-
ly infinite) counter.
origin peoble G , a count pebble C , and 4 addition-
al pebbles W, X, ¥, Z.

The 6 pebbles consist of an

Probleq: Design a finite automaton to be started

in an "increment" state together with pebbles 0, C

, W, X, Y, Z ona single cell of land. Call
this initial configuration the beginning of stage 1.
In general, at the beginning or end of a stage, the
finite automaton i{s to occupy this starting land cell
with O, % ,X, Y, Z,while C may lle else-
where (storing the count). At the beginning of stage
n, the tinite automaton may be started in an “incre-
ment® state or else, provided C does not occupy the
sare land cell as 0 , in a "decrement™ state. In ei-
ther case, the finite automaton uses its pebbles W ,

X, ¥, Z tofind C , to move it, and to return
to 'Q either 1in a "mission accomplished™ state or a
n"pission impossible® state. 7The return to 0 consti-
tutes the end of stage n, If the finite automaton re-
turns to O in the mission impossible state, this is
to mean the accessible land is necessarily finite (is-
land). In this case, the finite automaton is aot to
be restarted. If the finite automaton returns to v
in a mission accomplished state, it may be restarted
in an increment or decrement state, and this constl-
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tutes the beginning of stage n+l.
stage,

At the end of a
C is to occupy the same pogsition as O if and
only if the finite automaton has been started as often
in the increment as the decrement state.

# The finite automaton with its 4 pebbles W, X ,
Y , Z is called the "shuttle" since it generally
shuttles from O to C , moves C appropriately, and

then shuttles back to O . Pebbles w, X, ¥, 2
are used by the finite automaton as previously ex-
plained to simulate 3 finite counters Cy, Cys Cz. AL
shuttle movements will be described in terms of these
scounters rather than the pebbdles that implement them.
Since these counters are used only to store values of
shoreside distance, the replacement of the pebbles by
these counters is legitimate, (Our description of the
shuttle movements is thereby simplified because the
finite automaton can update Cy, cy. Cz contents on the
spot and the corresponding movements to the various
pebbles need not be described.)

We now give instructions for the shuttle (i.e.
the finite automaton with counters Cy, Cy» Cz) to move
froma 0 to C.,.

ALGORITHM( indented):

The shuttle is to follow the instructions
below until C or O is reached: Initially, the
shuttle is to move due north until it reaches a
cell, call it X, of the south shore of a body of
water. From i, the shuttle is to move counter
clockwise along the shore, updating Cy, Cy, C; as

1f and when it returns to X, the shut-
tle shall know if there is reachable land due
north of X (yes if C; > 0, no if C, = 0). If
not, the shuttle is to return to O in the "mis-
sion impossible®™ state. I1f yes, it is to move
from X to the closest land cell due north of X
{i.e. to the other side of.Xx) (of Fig. 7).

it goes.

* -._;:_-_ /; \
-t 7a
el A
(4 P .'
X4 X"",{ {7 2
©
1G]
L4
Figure 7

From this other side of the lake, the shuttle is
- to continue its movement north following the

directions given above.
END OF ALGORITHM

181

The return of the shuttle from C to O follows the
same path in reverse taken by the preccding movemcnt
from 0 to C (cf Fig. ).

—4-

A I§ 4
T ¥
© ©
Figure 8

The Cy, cy. C, contents at any point in this reverse
movement, however, may be different from their con-
tents at the same point in the forward movement.

The count pebble C can be placed in more than
one position on a land cell, unlike pebbles W ,- X ,
Y, Z and O . 1n addition to the standard position
in the interior of a cell, C can also be placed on an
The latter
irregular position permits the shuttle to distinguish
when C is on a shoreline (cf Fig 9).

edge between a land cell and water cell.

Figure 9
The position of the count pebble C relative to the
origin pebble O , between stages when the shuttle has
returned to O , shall uniquely determine the contents
of the counter being constructed, This position «ill

be called the between-stazes positiop of C .
in figure 10 are the counter contents or numbers

Shown

represented by a succession of between-stages posi-
tions.

Figure 10

A single figure that supplies
the above information is provided by:



Note that the successive positicng of the shuttile
as it moves from O to a distant C are different
from the succesaive between-steges positions of € : €
can be placed on an edge, whereas the shuttle moves
only from cell interior to call interior. The shuttle
can pass through a cell repeatedly in one shuttle,
whereas successive between-stagea positions of C are
unique. For example, the suoccessive positions of the
shuttle as it moves from O to C are ocompared ip
figure 11 below with the succesaive betwaen-atages po-
sitions of C as it is incremented stage after stage.

G ‘ l‘/ 1l
13 ]
= 2
s st PGt P
TN [ AR
= 4 LA il 1 4
I 1
© o
PR

Figure 1V
Note the jump in figure 11 from C 's position 11 to
12: Thia jump is needed to insure that no poaition of
C will have doudble meaning. Another such example is
given in figwe 12.
As the shuttle moves from O to C,

it may visit a particular gell,

in gartienlar a lakeshore cell,

arbitrarily many tiwmes.

el G4

o

'y

Ir.

Pigure 12
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The sequence of C positions,
however, ape all different:
l.’. T2
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b
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Notice the 3umpa from 56 to 57
and 58 tc 59, Each integer represents
the conten{a of the counter when the
count pebble C is placed at that locatfon,
0f course, the shuttle does not have wings. It
cannot move the count pebble instantly from position
6b in figure 12 to position 57.
ly instead.
The procedure used by the

tha count pebble is a3 follows:

1t does this gradual-

shuttle to Angrement

ALGORITHM:

From O the shuttle moves toward C (north,
counterelockwise around water, etc.) until it "en-
counters® C . We say that the shuttle engounters
C Af and only if either [ C lies inside a cell and
the stuttle has just moved north or south, not fol-
lowing a snoreline, into the cell containing C ]
or [ C lies on an edge (between water and land)
and the shuttle has just followed the shoreside of

that water into the cell on whose edge C lies].

©©] ©

Figure 13
C inside a cell or on onc of {its

Figure 13 snows
2 edges, and tne movement of the shuttle until it

encounters C .

Arfter encountering C , the shuttle deternines
which of the 3 cases below holds, and moves C ac~-
cordingly:

r-



1. If C 1lies inside a cell (in which case
it opust lie in the same column as O and north of
it) and if the cell north of and adjacent to the
one containing C 4is also land, then the shuttle
moves C north to the interior of the above cell

« (fig 14), @

Figure 1&
2, If C 1lies inside a cell and if the cell

3 above is water, then the shuttle moves C u} to
the edge between the 2 cells (this position may get
changed before this stage ends: It will be final if
and only if C_ is not encountered by the shuttle
on its way back to 0 ).See fig 15.

Figure 15
3. If C 1lies on a lakeshore edge as in fig-
ure 16, then move it counterclockwise one edge to
the next position on the lakeshore. (This will be
the final position for C for this stage if and
only if C is not encountered by the shuttle on
its way back to 0.)

o] 5
!

Figure 16

After moving C the shuttle wends its way
back to O along exactly the same path whence it
came. If C is encountered on the way back, it
must be lying on the edge of a lakeshore cell (this
is because the shuttle can visit only lakeshore
cells more than once in moving from 0 to C or

*  back). This position must be in the column con-
taining O . The shuttle now checks if there is
accessible land due north of C . If not, it re-
turns to O in the "mission impossible®™ state, I1f
yes, it moves C to the interior of the nearest
land cell due north of its present posftion (fig
7).
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Figure 17
Now the shuttle continues its way back to 0. ( C
will not be encountered again since it can only be
encountered by the shuttle on its way back i{if 1t
lies on an edge.)
END OF ALGORITHM
Decrementation will next be defined so that the
counter's content (i.e. the total number of incremen-
tations minus the number of decrementations) uniquely
determines the positicn of C independently of the
order in which the incrementations and decrementations
were carried out.
ALGURITHM( indented):
To decrement the count, O and C may not
be in the same position. The shuttle leaves O
and moves in the usual way north, around lakes,
etc, until it encounters C . Either C is en-
countered in the interior of a cell or on an
edge,

Case 1. C is in the interior of a cell ana
_is reached by the shuttle from the interior of an
adjoint cell below:

In this case, the interior of the cell below
the one containing C 1is the desired decremented
position of C .

Qa§g‘2. C is on an edge (between water and
land) and 1is reached from the interior of tne
cell beneath it: Move C to the interijor of that
cell:



.@.-

C is on an edge and is reached

I

Case 3.
from an edge:

f

Move C to the edge that led to it.

gase 4. C is in the interior of a cell and
the southern edge of that cell is on a shore (fig
19).
the other side of the water (the shoreline must

in this case move C south to the edge on

pe finite) and then clockwise one edge. Drop C.
Then move counterclockwise one column (to the
land cell in the column containing O ) and start
the return trip to G . 1f C is not encoun-
tered on the way back, then its position is fi-
nal. If it is encountered, move C to the inte-
rior of the cell that lies counterclockwise 1in
the adjacent c¢olumn (column containing O ) and
return to U .

END OF ALGORIThM

or or

Figure 18 )
1t is easy to see that if the land accessible

froo O 4is finite, then the shuttle will discover
this before trying to move (€ to a nonexistent "other
side" of the water. If the land accessible from 0
is infinite, then there is an infinite sequeﬁce of
distinct positions for C , and the shuttle (properly)
increments and decrements C through these positions,
as we shall show in the remainder of this section.

At the start, C is in the interior of a cell,
the same that contains O . This is position 0 . In
C is either in the interior
It is easy to see that when-

general, between stages,
of a cell or on an edge.
ever it lies in the interior of a cell, it lies in the

same column as O .

1. Suppose that C is in the interior of a

cell, say at position i, and that the cell above o
is land. 1f the shuttle is required to increment c .,
then C will be moved to the interior of the cell

This will be position i+!
gecause the shuttle cannot encounter C again on its
to O, the shut-

above its present location.

return to O . (In moving from C
tle can encounter C a second time only if C ison

water's edge.)
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2. in
cell, say at position i, and that the cell above 1t iu
water. If the shuttle is required to increment C ,
then C will be moved up'to the edge between land and
The shuttle then returns to 0 . 1f it does
C on the way back, then since the
shuttle is returning along the same path whence it

Suppose that C is the interior of a

water.

not encounter

came, it follows that this position of C 13 a new
one. It is position i+1 . If the shuttle does en-
counter C on the way back then it moves C across

to the other side of the water to the interior of a
cell there. This position is a new one (because the
shuttle does not pass through it on the way back to O

). It is position i+l.

3.
this is position 1. By inductive assumption, this
land cell lies on the path of the shuttle (whether
placed there by incrementation or decrementation) and

Suppose that C 1lies on an edge and that

therefore the shuttle will encounter C . Suppose the

shuttle is required to increment C . Then it moves
C to the next edge in the counter clockwise wmotion
along the shoreside and then the shuttle starts its
[+

then since the shuttle is returning

return to O . If the shuttle does not encounter
on its return
along the same path it came, it follows that this po-
If the shut-
tle does encounter C on the way back then
C to the other side of the lake to the interior of a
cell there.

tion i+1.

sition of C is a new one, namely i+1.
it ooves

This position is a new one, namely posi-

The argument that the shuttle properly decrements
C is similar to the above increment argument.

This completes the proof that a finite automaton
witn 6 pebbles in infinite 2-dimensional obstructed
(A finite
automaton with 7 pebbles can simulate 2 counters and

space can simulate an unboundea counter.

use them to search the space.)

3-Dimensional Space is Unsearchable

In section ', we showed that a tinite state

machine with '7 peboles could search any connected

2-dimensional checkerboard graph, whether finite or
infinite. In 3 dimensions, the situation is dif-
ferent:



o

Iheorem: Let a collection of n s-state finite
state machines be given. Then there is a finite con-
‘nected 3-dimensional checkerboard graph G not searche
able by the n machines. If all of the machines are
&nitially placed on the same vertex of G, there will
be a vertex which is never visited by any of the
machines in the ensuing computation.

Some notation for manipulating graphs and a. com-
ment about the machine model follow.

Let U =
((0,0.1),(0,0,-1),(0,\,0),(0,-1 oo),(‘.ooo)v("‘ .0,0)}-
up Down N S E W

An arc i an unordered pair {v,v+u} where v ¢ Z3 (Z =
integers) and u € U. A 3-dimensional checkerboard
graph G is a set of such arcs. The set of vertices of
G, VI(G), is {v € 23} (there exists u ¢ U) {v,veu} ¢
G}. For v e V(G), the set of directions from v is
D(v) = {u e U}{{v,v+u} ¢ G}. (This is the set of
directions (N,t,S,W,0,D) along which an automaton can
move from v.)

Let us describe the computation of machines
My,Mo,...,M; on a graph G. The machines are designed
to cooperate together in the computation. At step ¢
each machine Mj is located at some vertex v in state
qs. One or many machines may occupy a vertex at a
time. Acting simultaneously, each M; applies its
transition function to its current state, the set of
directions (accessible) from its current vertex vy,
and the set of machines located at vy to obtain a
direction uj ¢ D{vy) and a state from its finite state
set. At time t+1, My will be found at vj + uj, in its
newly selected state.

Proof of the Theorem. The proof proceeds induc-
tively in n stages. The i-th stage produces i-traps,
which are graphs not searchable in a certain way by
any i of the given machines. '

Stage 1 constructs 1-traps. The plan is to gen-
erate a large collection of 1-traps (all are rotations
and translations of the same basic 1-trap) (Fig. 2.1),
which will later be used as the atomic units for the
construction of 2-traps. HWe will present the con-
struction for this 1-trap below, referring the reader
to the final version of the paper for the complete
proof.
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The 1-trap must satisfy certain physical require-

ments:
(1) The graph is connected.

(ii) (a) Every arc along the line between py and pp
must be present.

(ii) (b) Every arc along the line between p3 and py
must be present.

The sets of vertices connected by arcs in (a) and (b)
are called the wires of the trap.

(ii) (e) The wires are the only vertices which are not
properly in the interior of the cube.

The 1-trap must also satisfy:

J-trapping property: Let any one of the given a-
state machines be started anywhere on eilher of the
wires. In the subsequent computation, the machine
will never appear on the other wire.

A 1-trap will now be constructed. 1t will be
convenient to begin the construction at the point
(0,0,0) and add the wires later, so that the trap con-
structed will be a translation of the graph shown in
Figure 2.1.



Definjition. For x, y ¢ Z, let <x,y> denote the
point (1%*x,1%y,0) where 1 will henceforth denote

lem{2,...,8}). The <x,y> are the gonpector points.
Let C = {<x,y>ix,y ¢ Z}.

The 0 connector graph is constructed by Joining
adjacent connector points with x and y connectors.

Definition. The pair of points vy, Vv € z3 lie
along a Mne if v,
For such vy and vy,

vy + au for some a ¢IN and u e U.
each are in the set

vy+(b+1)u}iOgb<al is betyeen vq and vy.

{{vy+bu,

Detinjtion. (1) Let ¢y,c2,...,09 be defined as
in Figure 2.2. Cx((0,0,0)), the x-gconpector at
(0,0,0), consists of all arcs which lie between a pair
of points ¢y, ¢4,1 for some 1 i ¢ 8.

(11) For p e 23,
Cx(p) = {{vep,v'+p}i{v,v'} ¢ C,((0,0,0))}. Thus Cx(p)
is the translation of C.((0,0,0)) to p.

C.: (\,o, 51")

¢ * (2,1, 8¢2)

vy

.3

Cy Coey, o, Sw)

ey Cory,, 8e2)

82 3

™
7|L_.,

q s (2,1, 0)
. _/c1 1|.

!
f <g® L2,0,0)

V.4 "
C‘ = (2)0,6) 5
Cz‘l( l'O,o) ‘-‘-\‘W\ 13,.",5}
e~ (o,0,0) F\suhc 2.2

C, (€0,0,0)) § e % comnecter oY Co0,0,0)

pefinition. (1) Let dy,dp,...,dg be defined as
in Figure 2.3. Cy((0,0,0)), the y-connector at
(0,0,0), consists of all arcs lying between a pair of
points dy, dy,q for some 1 £ i ¢ 8.

(i1) For p ¢ 23,
Cylp) = Livep,v'+piilv,v'} € cy((0.0.0))l.

Detinition. The % gonnector graph is
Goo = pyc(cx(p) U Cylp)).
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The behavior of one machine on the OO0 connector
graph is characterized by the 00 Ribbon Theorem. The
desired 1-trap will be obtained from a finite approxi-
mation of the 00 connector graph. The ©© Ribbon Theorem
will be useful for ahalyzing the behavior of machines
on the finite space.

The distance
and

between connector
<XZ,Yz>,

d((x,,y1>,<x2,y2>), is :X‘—X2= + {y1-y23.

Refinitien.

points <x4,¥9> denoted

It is straighttorward to verify that d is a
metric on the space of connector points.

% Rivbon Iheorem: Let one of
machines M be started on the O connector graph at

the given s-state
<x1,¥1>. Then every connector point visited by M 1s
within distance s-1 (with respect to metric d) of some
point in R(<xy,y9>) = {<na+xy,nd+y1>in ¢ and a,b e Z
and jal+ib} § sl.

The proof of the theorem uses the following pro-
perty of connector space, which is easily verified.

Lemma: Let G denote the 00 connector graph.
Z, G
(Thus all connector points look the same to a finite

Then
Livecx, 7>, v'+<x,y> i iv,v'} ¢ G).

for x,y €

state machine.)

Proof of the Theorem. Call the i-th connector
point visited by M, <xj,yj>, and let q; be the state

of M at this visit. Pick the least i < j such that q;

= qy. Since M has only s states, j  s+1. For any k
2 1 the points <xi,¥,> and <Xy,1,Y¥x1> are at distance
at most 1, sc by the triangle inequality



<x2,92>3 44 +1<X4a1,¥3-1> are at distance at most s-1
from <xq,¥92.
bl = d(<x1.y1>.<xj,y3>) § s. Because all connector
points look the same to the machine, the ccmputation
fsetueen steps i1 and j can be extrapolated, so that for
any 1 { k< Jand n2 1:

Set @ 3 xy=xg, b = yy~ys. Then {al +

-

xn(d‘i)‘k = XR + na ;

Yn(J-1)+k 2 Y + b .

Now d(<xq+na,y+nb>,<x+na,y,+nb>) = d(<xqy,¥1>,<X,¥>)
which latter quantity has been shown above to be at

most s-1. Q.E.D.

A finite approximzation of ©0 connector space,
called the parked torus, is constructed next..

Refinition. h = 4s2; w = nel,

The construction of the marked torus uses the
rectangle of connector points <x,y> such that 0 § x <
wand 0 y < h, AdjJacent connector points are to be
Joined by x and y connectors. Bridges will join pairs
of connector points at opposite edges of the rectan-
gle.

Definition. (1) "Let €1,824+.¢,89 be defined as
in Figure 2.4 The x bridge of span w at (0,0,9),
denoted By(w,(0,0,0)), consists of all arcs lying
between a pair of points ey, €4, for some 1 i ¢ 8.

(11) For p €X3, Bylw,p)

{{vep,v'+plilv,v'} ¢
By(w,(0,0,0))). ‘

ey 3 dw-yy 0>
“ (844, 1, £as42)
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Definition. (i) Let fy,...,fy be as in Figure

2.5. The y bridge of span h at (0,9,0), denoted

(1)
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By(n,(0,0,0)), consists of all arcs lying between a
pair of points £y, fy,q for some 1 S 4 ¢ 8.

(11) For p e 23, By(h,p) = {lvep,v'eplilv,v') ¢
B,(h,(o,o,o’”.
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Refinition. The garked torus T is the union of
the following five sets:

0 sagu-z"x“" b>)
0<bsh~1

(11) ‘Cy(<a,b>)

8§§§§:z
(111)0$b2b_1nx(w,§o.§>)

(1) Ey(h,<a,03)

ogadu-1
(v) {1(0,0,0),(0,0,=1)},{my,m5+(0,0,~1)}} where m; =
<s+1,252y,

Connector points <0,0> and mpy are said to be
parked; all other connector points are ugmarked. The
wires of the trap will be attached to the points
(0,0,-1) and my + (0,0,-1).

It will now be shown that the marked torus satis-
fies:

Isolation Theorep: Let M, one of the given 3-
state wmachines, be started at one of the connector
points <0,0> or my of T. M will never appear at the
otner point during the subsequent computation.



Tnis treorem shows that a l;trap may be con-:
structed from the marked torus, as tollows. The torus
t‘i&s properly inside a cube of side length 12 (we2) =
4s212 4 21, Lead wires into this cube as in Figure
2.1. Attach a wire. to each of the points (0,0,-1) and

my; + (0,0,-1) via a sequence of ares not passing

through any vertex that is part of the torus. Let us

verify that this construction will trap any one of the
glv=n cachines. Suppose machine M, starting on the
wire ar.t.ached to (0 ,0,=1), arrives at the or.her wire.
There will te a segment. of the computat.ion where M,
starting at <0,0>, later arrives at my, having visited
no marked connector points in the interim. This seg-

ment  is also a valid computation of M:on the marked

torus (without -wires), .contradicting  the: Isolation
Theorea. A similar argument shows that M cannot move

from the my wire to the <0,0> wire.

Here is the plan for proving the Isolation
'Firstb:' prove the ProJéction Theorem, which
relates the behavior of s-state machines on 0 connec-
The Projection
Theoren and ®© fibbon 'rheorem togetner give the Finite
kiobon
pachines on the torus.

Theorenm.
tor space and: the :marked ' torus.

characterizing = the behavior of
The Marked Finite Ribbon
Theorem ' and Ribbon Analysisfpbovide‘-a‘.refined~chana‘c-
terization, which is tnen used to obtain the Isolation

Theorem N

‘Theoren.

Definition.

(1) Forme Z* and a ¢ Z, [aly 1is the least non-

negative integer such that (aly - a is divisible by m.
(i1) For x,y € 2, f(<x,y>) = <[x]y,{ylp>s

Projection Iheoren: Let s-state machine M begin a
computation in state q at pq ¢ C on the torus. .Sup~

.pose that after some number of steps of computation

. the sequence of connector points M has visited is, in

order, Py,P2se-«yPp with p1y2se-esPpat unmarked. Then

My started in state q at py on the 00 connector graph,
-will visit  the,

P1sP3:PYs 0 -sPpe

sequence of conneetor' points
- The relation between the two se-

quences is: p; = f(pj') for 2 S i1gr.

froof. Both graphs can be viewed geometrically
as irtersecting straight line segmenf.s. Call a point

-

where ¢ or xore lines meet. a corner. Assocxate each
corner g in ©0 oonnector space with a corner T(s) on

the torus.

(1) (a) Fora, b ¢ Z such that a # -1(w) and
141¢8, ’

T((a,b)oci) = f(<a,bd) + Ci
(cy as specified in Figure 2.2).

(1) (b) Fora, b ¢ Z such that a = -1(w) and
VS1gs, ‘ . ‘ I
'r(<a',b>+c1) = 'f(<a,b>) + e

(of Figure 2.4).

(i) (a) Fora, b e 2 such that b # -1(h) and

16149, ‘ ‘ ‘
T(<a, b>)+d1)

(ct Figure 2.3).

t‘((a b>) + di

‘=¥(h) and

(11) (b) Fora, b € T such that b

118,
 T(<a,bo+dy) = fl<a,bd) + £y

(cf Figure 2.5).

In connector space M visits a sequence or o corners,
being in state qy when the k-th corner gy is visl.t.ed.
On the torus, M visits a sequence of @ corners, being
in state Gy when the k-l:h corner g is visited.

Glaja. B =5, and for 1S K m = G B =
T(gk)‘ by

The claim is verified by induction. on k. The in-
teresting cases arisg when H moves between a pair of
corners in ©0 connect.or space, both rallmg into cases
(1)(b) or (11)(b). 'For‘example, suppose g = <-1,0> +
07, Byet = <=1 40> + cg. By induction hypothesis B =
<-1,0> + e and G = Q- To show: Bke1 = <=1,0> + eg
ana §y,q = Qysi- Let us interpret the situation in
terns of Figures 2.2 and 2.4,
starts at the cq corner of an x-connector in st.af,e QA

In connector space M

and proceeds upuard to the °6 corner, arriving there
in state Qp.q. On the torus, M begins at the eg
corner of an x-bridge, in state q. To show: M

reaches the eg corner of the x-bridge in state qp.1.

For 1 § 1 & s+2, let vj = 8k + (0,0,1). Let py
be ‘the state of M on the connectér graph the first
time vy is visited during the passage from g) Lo Byt~
Since M has only s states, there exist 1 < i < §J < s+l
such that Py = Py The computation then repeats 'ac-
cording to the pattern p, = p[b"ﬂj—i*i for S b3S

s+2.

for 1 {.r & l+s+2 let Vp = 8 + (0,0,r). Siace
§k is unmarked, M's camputation on the connector graph
can be. extrapolated on the torus. According to this
extrapolation, M will visit each ¥y on the torus. The
first visit to ¥, on the torus will be in state Prs

where:

/]



>

Pr=pp for VS <i;
Pp = Plr-1)j.ges for 1< r < lese2 .
In particular,
Bo = Plese2 “P[lese2-1) jitd

© =D[3...2_1]J_1.,1 (since (j-i)il1 = 1emf{2,...,8})

S Qket - Q.k.D.
Definition. For 0 ¢ x4,x < wand 0 § yy,y2 < h:

A1) dglxq,xz) = min(lxy-xp)y,(xa-x41,).

(11)  dglyy,¥2) = minllyy=y2ln, [y2-y1ln).

k4
(411) d'(<xq1,¥1>,<x2,¥2>) = di(xq,x2) + dylyq,¥y2).
Lepma.

(1) d' is a metric on the space {<x,y>{0 { x < w, 0 ¢

(i1) For connector points py and pp, 4'(f(pq),f(pp)) £
d(P1.D2).

Einite fiibbon Theorem: Let s-state machine M be-
gin at py ¢ C on the torus. After some number of
steps of computation, suppose the connector points M
has visited are, in order, Py,Pp,...,Pp, Where the
first r-1 of these points are unmarked. Then each py
is within distance s-1 (with respect to metric d') of
some point in R'(pq) = {f(v)iv € R(pqyll.

Proof. Let q be the state in which M was start-
ed. By the Projection Theorem, M, started at py in
state q on the 0 connector graph will visit a sequence
of r connector. points, say p,,pé,pé....,p,'.. By the ®©
Ribbon Theorem, for each py' (2 { i S r), there is a
vy € R(py) such that d(ps',vy) £ s-1. By (i1) of the
preceding lemma, d'(f(p;’),f(vy))  d(ps*,vy). By the
Projection Theorem pjy = f(py*), so d'{(py,f(vy)) s-1
with f(v4) e R'(py). Q.E.D.

v Marked Finite Ribbon Theorem: Let s-state machine
M begin at py € C on the torus. After some number of
steps of computation, suppose the connector points M

. visited

P2:P3s..+yPp-1 are unmarked.

» has are, in order, where

P1sP2s e« yPpy
Then each pj is within

distance s (with respect to metric d') of some point

in K'(py).

g froof. The Finite Ribbon Theorem,
P2y---,Pps Shows that for each py (2 ¢ i £ r) there is
v§ € R'(pp) suwh that d*(pj,v;) § s-1. By definition
of k', v4 + (py=p2) € R'(py). Then d'{(p;,vi+(P1-p2))
< a'(pg,vy) + d'(vj,vi+(py,p2)) = d'(pg,vs) + 1§ 3.

applied to
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fibbon Apalysis: For 0 { x<wand0 & y < h,
each of the following sets is equal to R'(<x,y>):

(1) {<[na+x],,[nbey)p>in e, a,b € 2, lal+lb) S s)
(11) {<(ndex]y,[Abeyl>in,8 e N, B € 2, 13i4i6) ¢ s}

(111) h(y) U V(x) U R3(<x,y>), where

h(y) = {<a,y>i0 § a < w); V(x) = {<x,b>i0 ¢ b <
h}l; ER3(Kx,y>) = N, bo¢
2~-{0), a+ibi € s}.

{<(na+x],,Lnb+y];>in,a €

(iv) H(y) U V(x) U F(<x,y>), where

F(<x,y>) = {<[fa+x),,[Absy)>in,a ¢ N*, b e 2-10), O ¢
na < w, a+ibi < sl.

Proof. R' = (i): 7This is a restatement of the
definition of R' given in the Finite Ribbon Theorem.

(i1} equals (i): An arbitrary <[naex],,[nb+yl);> from
set (i) with a < 0 must be expressed in the form
<(ha+x)y,[AB+y]lp> of set (ii) where & is required to
be non-negative. n

The values n = n{wh-1), 8@ = -a, b =

-b are appropriate:
<lna+xl,,[nbsy]>
= <{na+x],,(nb+y)y> + <{nwh(-a)],,[nwh(-b)]p>

(since the second term is <0,0>)

<(n(wh-1)(-a)+x],,, [n(wh=1) (~b)+y)y>

<(hdex]y,, [H6+ylp> .

(i11) equals (ii): H(y) and V(x) separate out the
cases where, in (ii), b = 0 and fa = 0, respectively.

(iv) equals (iii):
the other cont.ainment
<inasx]y,[nbrylp> € RH(<x,¥>).

To show: R',(<x,y>) ¢ F(<x,y),
being Let

Pick q € IN* such that

easy.

na = q®w + [na),. Since 0 < a ¢ s, ajw =
h*len{2,3,...,s), and this implies aiinaly,. Therefore
na =z q"w + na with i ¢ N and ha < w. Then
([na+x]",[nb+y]h)
= KLq*weiarx]y,[((q*wsha)/a)b + y]p>
= <[ha+x],, (Ab+y]y,>
(equality holding in the second coordinate because

a*hiw).

Isolation Lgmﬁa 1: Let s-state machine M be
started at <0,0> on the marked torus. Suppose M
visits the sequences of connector points
<0,0>,p2,...,pr.

P24:¢+yPp-1 are unmarked.

P =
are marked, ang

<0,0>.

where py and pp

Then pp =



Proof.. By the Marked Finite Ribbon Theorem, each
Pj 1s witnin aistance' s of R'(<0,0>). Therefore it
suffices to show:

Sublemma 1: Marked vertex my = <s+1,2sz> is not
within distance' s of R'(<0,0>).

Proof of Sublemma: By characterization (iv) of
the Ribbon Analysis,

R'(<0,0>) = H(0) U Vv{0) U F(<0,0>)

where F(<0,0>) = {<na,{nbly>in,a e N*, b ¢ Z-{0},
0 ¢ na < w, a+ib} § s}.

s+«1 from V(0)

It remains to show:

@, is easily shown to be at distance'
252 fram HR(0).
d'(mp,p) > s tor p € F(<0,0>). Suppose, to the con-
trary, that there is <na,(nbly> e F(<0,0>) such that

and distance'

(*) d'(<s+1,252>,<na,(ndbly>)
= dg(s+1,na) + dj(2s2,(nbly) < s

Since d}(s+1,na) £ 3, 1 € na g 2s+1.
£ 23+1,

Therefore 0 < n
There are now 2 cases.

Case 1:
But this means that

d§(282,[nb]h) = oin((2s2-(nblylp,((nb)y-2521p)
(where h = 4a2)

2 min([2s2-(2s2-8-1)1,[(232-5-1)-252]})

(2s2-(232-3-1) I,
= s+l

{since the first tera is always smaller), contradict-

ing (7).

Case 2: b < 0, Therefore 0 < -b £ s-1, which implies
0 § -nb § 232-5-1. Then

day(2s2,(ndlp) = min((2s2-(nblplp, [ (nb)y-2521p)

n

2 [-usz¢a#1]h s+1

(since the second term is always smaller), contradict-
ing (*).
lemma, and Isolation Lemma 1.

This concludes the proof of Case 2, the Sub-

Corollary.
the marked connector point <0,0>.

Let s-state machine M be started at
M will never appeer
at marked connector point m; during the ensuing compu-
tation.

Proof: 1f M were to appear at M,, there would be
a segment of the computation where M starts at <0,0>,
visiting no other marked connected points until my 1is

b>0.Since 0 < b s=1, 0<nb § 2s2-3-1.
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reached. This violates Isolation Lemma 1.

Isolation Lemma 2: Let s-state

started at my on the marked torus.

machine M be
Suppose M visits
the sequence of connector points py = @2,P2,.-«sPps
where py and p, are marked and p2,...,Pp-q are un-

marked. Then pp = @3,

Proof. By the Marked Finite Ribbon Theorem each
py ia within distance' s of R'(mz). Therefore it suf-
fices to show:

Sublempa 2: Marked vertex <0,0> {s not within
distance' 3 of R'(mp).

Sublemma 2 follows from Sublemma 1, together with:

Symmetry Lenma: Let 0 § xq,xp < w and 0 £ ¥y,¥2 ¢
h. Suppose <xq,y9> is at distance' d from sode pp ¢
R'(<x5,y2>). Then <x2,y2”> is at distance' d fronm some
Py € R'(<xq,¥¢2).

Proof of Svmpetry Lemma: By characterization (1)
of the Ribbon Analysis, there are n ¢ N, a,b ¢ Z with

faleib} S s such that p; = <[na+xply,(nbeyp)p>. By
hypothesis,

d = d'(<xq,¥y>,<[naex3]y, (no+yo 1 1>)

z min((xy - (na+xa)ydy,((naexply-xq1y)

+ nin(lyy - [nbeyalpp, ({nbry2)p=y1in)
(definition of d')

= min(Lixyen(=a) J=xa )y, [xp=[xy+n(-a) ] ]y)

+ ain({{y+n(=0) I -y2Ip,(y2=-(y +n(~0) 1, 1p)

= d'(pq,<xp,¥2>)

wnere Py 3z <lxy+n(-a))y(yi+n(-d)ip>. Since

1(-a)i+i(-b)} = lal+ib} & s, pq € R'(<xy,yy>) by char-
acterization (1) of the Ribbon Analysis. Q.E.D.

Corollary to Isolation Lemma 2: Let s-state
pachine M be started at the marked connector point mj.
™ will never appear at the marked point <0,0> during

the ensuing computation.
Proof: As for the Corollary to Isolation Lemma 1.

The Corollaries to lsolation Lemmas 1 and 2 are
clearly equivalent to the Isolation Theorem. The

proof of the lsolation Theorem is now complete.
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