Copyright © 1978, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

COVERT COMMUNICATION CHANNELS

IN TIMESHARING SYSTEMS

by

J. C. Huskamp

Memorandum No. UCB/ERL M78/37

May 1978

COMPUTER SCIENCE

UNIVERSITY OF CALIFORNIA

BERKELEY

Covert Communication Channels in Timesharing Systems

by

Jeffrey Craig Huskamp
May 1978

TECHNICAL REPORT

No. UCB—-CS—-78—02
and
Electronics Research Laboratory
Memorandum No. ERL—M78/37

ABSTRACT

In many timesharing systems, the subsystems executed to perform a job are written
by several different people.. For example, the system 1/0 routines written by the system
group are frequently invoked by other users. This type of usage is found in computer
utilities in which *‘building on the work of others™ is commonplace. To provide securi-
ty in this case, the operating system must not only prevent unauthorized direct access to
data, but must also provide confinement for subsystems in a job (senders) that might
leak information through covert channels. In covert channels, information is transmit-
ted from the sender subsystem to a cooperating spy subsystem by the spy observing the
performance of the system. One typical covert channel that is present in virtually all
timesharing systems makes use of the CPU scheduling algorithm. The purpose of this
thesis is to study the CPU scheduling covert channel to determine whether the amount
of covert information leakage is significant, to explore the factors that influence the
amount of leakage, and to determine the feasibility of partial confinement, which trades
off leakage for computation cost.

To analyze the scheduling covert channel, a simulator of the CTSS system
developed at the Massachusetts Institute of Technology is used. By obtaining the user’s
response time and CPU time used from the simulator, the cost of confinement can be
computed. The amount of information leakage through the covert channel is the usual
information theoretic definition of channel capacity. The computation of the channel
capacity is broken into three steps. The first step derives a semi-Markov model of the
timesharing system from the simulator measurements. The states of the model
represent the state of the scheduler and the transition times represent the channel out-
puts seen by the spy process. The second step constructs a channel transition probabili-
ty matrix from the semi-Markov model which gives the probability of each channel out-
put for each channel input. The third step is to compute the channel capacity from the
channel transition probability matrix using computer iteration. This analysis technique
allows different confinement techniques to be compared based on cost and the amount
of leakage.

The results of this investigation show that the amount of leakage that must be as-
sumed for a sender can be very large in some cases. Thus covert channel leakage can
not be ignored. The major factor in the capacity value is the number of users on the
system. This factor is much more significant than even the scheduling algorithm used.
For timesharing systems with a heavy workload, the difference in cost between zero-
leakage scheduling and non-zero leakage scheduling is small which indicates that non-
zero leakage scheduling would not be used for this workload. For light workloads,
there is a large difference in the cost of zero leakage and non-zero leakage schedulers so
that a trade-off of capacity and cost does exist. Even though the non-zero leakage case
costs less than the zero leakage case, the cost of providing confinement can be as large
as a factor of six over unconfined execution. Thus using confinement can be very cost-
ly, which is in agreement with earlier conjectures. These results are useful to the sys-
tem designer and the potential confinement users in making the decision of whether
confinement (and if so what type of confinement) should be implemented in a particu-
lar system.

e

‘e

ACKNOWLEDGMENTS

1 wish to thank Robert S. Fabry for his patience in sorting through the many iterations
of the ideas in this thesis, for his guidance in navigating the many pitfalls encountered
along the way, and for his careful scrutiny of the final product. The ideas presented
here are also greatly influenced by Ronald W. Wolff and Aram J. Thomasian who gave
generously of their time and expertise. A large measure of appreciation goes to my
wife, Beth, who provided much needed encouragement when it was needed the most. I
also wish to thank Janet S. Chin, Robert M. Long, and Mary E. Zosel for their help
and encouragement. This research was partially supported by the Electronics Research
Laboratory of the University of California, Berkeley (under the Joint Services Electron-
ics Program contract number F44620-76-C-0100), by Lawrence Livermore Laboratory
(under the U.S. Department of Energy contract number W-7405-Eng-48), and by the
Institute for Defense Analyses.

This is a reproduction of a PhD thesis submitted to the Computer Science Divi-
sion, Electrical Engineering and Computer Sciences Department, University of
California, Berkeley, May 1978. Reproduction was partially supported by NSF
grant number (NSF) MCS75-23739.

Copyright © 1978 by Jeffrey Craig Huskamp.

Author’s current address: Institute for Defense Analysis, Princeton, New Jer-
sey, 08510.

ne

1,

#

e

Huskamp: Covert Communication Channels in Timesharing Systems

Covert Communication Channels in Timesharing Systems
Jeffrey Craig Huskamp

1. INTRODUCTION

1.1 Confinement

Within the past decade, an increasing amount of infor-
mation has been stored in computerized data banks. The
types of information available in these data systems range in
sensitivity from classified military intelligence to company
payroll information. For these systems, a major concern is
the theft of the information from the data bases. In spite of
the protection problems involved, data base sysiems are
becoming more widespread, even in smaller companies, to do
routine data management tasks in a more cost-effective
manner. With the cost of the hardware investment needed
for data systems decreasing and with the increasing availabili-
ty of software packages tailored for specific business applica-
tions, the future outlook for an increasing number of data
processing systems in business applications is very bright
[Lettieri76].

One of the common environments for data base systems
(in particular large data base systems) is the computer utility
[Corbato72]. In a computer utility, many different types of
users and applications can be supported in a general manner
by one computer system. This type of system support en-
courages many applications to share the same computer facili-
ty. The consolidation of the computer needs of many users
is, in many cases, more cost effective than providing an in-

‘dependent computer facility for each, since the fixed system

cost is shared.

One advantage of using a computer utility is that the
protection mechanism facilitates sharing information between
users. The protection mechanism allows one user, A, 10 ex-
press his amount of trust in another user, B, by the access A
gives B to A’s objects. This regulation of the degree of ac-
cess makes A more willing to share objects with B (for exam-
ple a program) by knowing that B can only modify the pro-
gram if given the appropriate access by A. For example,
users of a computer system routinely use standard subroutine
libraries provided by the systems group. It is rare that a
higher-level language user would write his own set of these
routines. This ‘‘building on the work of others™ is a good
method for decreasing the cost of program development for
new application subsystems, and for decreasing the length of
time needed to get a new application running. Thus, each
user comes to rely on software subsystems written by (possi-
bly) unknown authors which execute on the user’s behalf.
Since the interaction between a user (or his process) and a
foreign subsystem is common in a computer utility, special
names are given to the participants. The user that invokes
the foreign subsystem is called the cusromer, since he invokes
the subsystem to perform a task. The foreign subsystem is
called the service.

As an example of a typical customer-service interaction,
suppose user B, a very successful electronics manufacturer,
decides that one of his circuit analysis subsystems is
sufficiently well designed that other users might want to use
it. Thus, user B makes the subsystem available to any user
willing to pay a usage fee. User A, a competitor of B whose
company has a very small programming staff, decides to use
B’s subsystem rather than expend the manpower to develop a
similar package. To initiate the interaction, user A provides a
description of the circuit to be analyzed (along with an 10U
for payment) to the analysis subsystem. On completion of
the service, A may expect the voltages between every pair of
nodes and the current in each wire to be returned as shown

Service

(Circuit Analysis
Subsystem Written
by User B)

Circuit Description

Customer
(User A)
Voltages, Currents

Figure 1.1
Circuit Analysis Service

in Figure 1.1. Since A and B are both competitors in the
electronics market, it may be important to A that his circuit
designs will not be leaked to B by invoking the circuit
analysis service. One possible way this could be done is for
A or a trusted intermediary to examine the program listing of
B’s subsystem to see if it will attempt to injure A. The prob-
lem with this approach is that it is difficult to prove that a
subsystem performs correctly with no unacceptable side
effects, such as leaking information to B. This problem is
similar to the operating system verification problem in which
the presence of protection flaws can be demonstrated but the
absence can not. This is a consequence of the current state
of program verification.

The same problems inherent in a customer-service rela-
tionship are also present in military applications where jobs of
different security classifications are to be executed. The
current practice is to execute jobs of only one classification
level at a time on a machine. Before jobs of another
classification . level are introduced, ..the machine must be
‘scrubbed’ to eliminate any residue from previous
executions—a process requiring about an hour of real time.
A more cost effective approach is to be able to. execute_ jobs
of different security classifications at the same time on the
same machine. Recent efforts by Belady [Belady74] and
Weissman [Weissman75] have concentrated on ‘‘hardening”
the security mechanisms of a virtual machine implementation
to permit simultaneous execution of jobs with different secu-
rity levels. To provide a complete solution to this problem,
not only must processes be denied direct access to unauthor-
ized data, but also indirect access through any available
means. A typical type of indirect access occurs when an
unclassified subsystem is executed on classified inputs. Steps
must be taken to insure the unclassified subsystem does not
leak any of the classified inputs. One example is the ‘‘copy
file>* utility that is present on most timesharing systems.

1.2 Previous Research

An early development in protection mechanisms
designed to protect more privileged subsystems from less
privileged subsystems was the implementation of the ring ar-
chitecture in the MULTICS system. The MULTICS protec-
tion architecture described by Schroeder in [Schroeder72B] is
composed of eight concentric rings numbered from 0 for the
innermost (most privileged) ring to 7 for the outermost (least
privileged) ring. The access rights to segments that a process
can exercise are a function of the user that owns the process
(the principal) and of the ring in which the process is execut-
ing. The access list mechanism ([Saltzer74] enumerates for
each principal the type of access allowed and the rings in
which the access can be exercised (denoted by the ring brack-
ets). There is one ring bracket for read access, one for write
access and one for execute access. For this discussion, only
the read and write brackets need be considered. The lowest
bracket numbers for read access and write access are fixed at

o

Huskamp: Covert Communication Channels i Timesharing Systems

zero and the highest bracket numbers may be any number
from zero to seven. In MULTICS, by convention, rings 0
through 3 contain supervisor and administrative subsystems
while rings 4 through 7 are reserved for user subsystems.
Proprietary subsystems are considered to be more trustworthy
than user subsystems but less trustworthy than the supervisor
and are executed in ring 3.

The ring architecture outlined above can partially solve
the problem of preventing the called subsystem from reading
or writing the caller subsystem and vice-versa (the--mutually
suspicious subsystem problem). To see this, suppose a MUL-
TICS customer executing in the most privileged user ring
(ring 4) invokes the proprietary circuit analysis subsystem
which executes in ring 3. When the incarnation of the sub-
system is created and the ring change (from ring 4 to ring 3)
occurs, all the read/write privileges enjoyed by the customer
can be exercised by the service due to the lower ring number
of the service (remember that the read and write ring brack-
ets have a fixed lower bound of zero). However, the ring
mechanism prevents the customer from reading or modifying
any of the proprietary subsystem’s files. The ring mechanism
can only solve one half of the mutually suspicious subsystem
problem. That is, either the customer can be protected from
the service (the customer executes in a more privileged ring)
or the service can be protected from the customer (the ser-
vice executes in a more privileged ring), but not both at the
same time.

The MULTICS ring architecture can be generalized to
solve the problem of protecting both the customer and the
service. The solution is to provide a separate domain for each
party as described by Lampson [Lampson69] for the BCC
Model 1. Each domain provides a complete protection en-
vironment. that is independent of any other domain in the
process. Thus the customer can regulate the type of access
the service can exercise on the passed parameters, and the
service can regulate the access permitted by the customer by
restricting his access to execute-only. A typical customer-
service interaction would be initiated by the customer invok-
ing the circuit analysis service which causes a domain change
to occur. When the service is incarnated, the only access the
service has to the customer’s objects is through the passed
parameters. Thus the customer is protected from the service.
Likewise, the service is protected from the customer. In ad-
dition, the customer can not access any of the service’s ob-
jects unless access to the objects is passed back to the custo-
mer as one of the outputs from the service. Thus the protec-
tion aspect of the mutually suspicious subsystem problem
that could not be adequately solved by MULTICS (see
[Schroeder72A] for an extension of MULTICS to provide
domains) is solved. But the domain mechanism still does not
solve all the problems inherent in a customer-service interac-
tion. The remaining problem is that the service may either
retain the input parameters passed by the customer after end-
ing execution, or transmit the parameters to another user
during execution. A simple realization of this would be for
the service to copy the inputs to a new file and to save this
file in the file system under another user’s name. The prob-

lem of insuring that the service does not leak any informa- -

tion to unauthorized subsystems or users while executing on
behalf of the customer is termed-the-confinement problem.
The general problem of information confinement is not
peculiar to computer systems. A real-world example in which
information confinement is necessary is during bidding in an
international bridge tournament. Information is legitimately
passed among the players by each player in turn announcing
a legitimate bid describing his hand to the other players.
When one player bids, the process may be described as the
player encoding his hand and the previous bids (inputs) into

a new legitimate bid (output). Measures must be taken 10
insure that the announced bid is the only method by which
partners communicate. One illegal method of communication
is for the bidder to announce his bid in either a loud voice or
a quiet voice to convey some extra information about his
hand. Another (illegal) method for transmitting information
is for one partner to write information on a scrap of paper
and to pass the paper to his partner without attracting the at-
tention of the opponents. Another technique would be for

- the partners to engage in toe-nudging under the table, or to

encode information in facial expressions, coughing, or chair
scraping. The number and implementation of these illegal in-
formation channels is limited only by the imagination.

In a computer system, the same types of information
leakage as in the bidding example are present. These illegal
methods for leaking information can be classified into three
categories [Lampson73]: storage channels, legitimate chan-
nels, and covert channels. These channels are discussed
next.

1.2.1 Storage Channels

Storage channels are communication channels imple-
mented by the service writing information into some form of
memory which a cooperating confederate (spy) can read.
Here the spy is assumed to be written by the service author
and to receive full cooperation from the service - i.e. the ser-
vice is actively trying to pass information to the spy. The
operating system is assumed to be trusted in the sense that it
does not knowingly aid in the leakage of information. In the
bidding example, passing scraps of paper with written infor-
mation is an example of this type of channel. The strategy
used during bridge tournaments to block this information
leakage is to employ officials to watch the- players and-to in-
sure no written information is passed. A computer system
implementation of this channel would be for the service to
write the information-in a file shared with the spy, or for the
service to send the spy a message through the interprocess
communication facility.

Three methods have been explored for blocking storage
channels. The least general method is to impose stringent
restrictions that can be tested with a simple static check on
how the service is written as is implemented for ‘‘message
confinement” in COPS [Andrews74]. Here storage channel
confinement is implemented by insuring that the service can
not modify any object inherited when incarnation of the sub-
system occurs and does not call another procedure. This in-
sures that the service will be memoryless so that no
confidential information is retained. There are two problems
with this approach. The first problem is that certification of
message confinement involves auditing the service. As noted
before, auditing can only prove the existence of errors and
not their absence. The second problem with message
confinement is that denying the service the ability to call
another subsystem nullifies the major advantage of a comput-
er utility, which is the ability to build on the work of others
[Dennis68). This is a high price to pay for confinement since
each subsystem must utilize only absolutely trusted programs.
This could mean that some functions would have to be reim-
plemented rather than using existing versions of the func-
tions which could involve an appreciable software cost.

The second method for closing storage channels is the
all-or-nothing strategy implemented by HYDRA [Cohen75).
In this mechanism, a confined call causes all capabilities con-
tained in the service’s LNS (capability list) and its transitive
closure to lose the right to modify the object named, and all
capabilities which may be used to invoke another subsystem
add the condition that the call must be made confined. The
only objects that can be modified by the service are newly

‘e

)

Huskamp: Covert Communication Channels in Timesharing Systems

created objects and objects passed by the customer with
modify rights enabled. Transitivity of confinement when the
service invokes another procedure [Lampson73]) is
guaranteed since capabilities from the incarnation segment
can only be used to make confined calls. Unconfined calls
may be made only by using capabilities passed by the custo-
mer as arguments, in which case the customer has vouched
for their safety. This mechanism provides total confinement
for storage channels in the sense that leakage of both

confidential and non-confidential information is confined. -

However, in some applications, all of the information pro-
cessed by the service does not need to be suppressed. Allow-
ing the unclassified information in the arguments to be distri-
buted by the service while confining sensitive information is
called the selective confinement problem, which is addressed by
the third method.

The third method for storage channel confinement pro-
vides selective confinement of the information given to the
service. Two mechanisms for implementing this have been
investigated by Lipner [Lipner75] and Denning [Denning76]
[Denning77]. Lipner’s approach is a static method of
enumerating all storage channels by analyzing the effects sec-
tion of a Parnas function specification [Parnas72] of an
operating system as in [Schiller75]. A Parnas function
specification details the implementation of a program using
two types of functions: o-functions (operation functions that
can change the state of the operating system) and v-functions
(viewing functions that only can observe the state variables
of the operating system). The method is to demonstrate that
there does not exist an o-function that uses a v-function of a
certain classification (e.g. top secret) and modifies a v-
function of a lower classification (e.g. unclassified). For ex-

ample in the military classification:system, this:analysis.would....

detect an instance where a top secret file is copied to another
top secret file with a side effect that some of the information
is also written in an unclassified file. Here, the
declassification of information must be prohibited. In this
case the unclassified file read v-function is altered by the top
secret file write o-function. Since the unclassified v-
functionis altered by an o-function which uses a top secret v-
function, a storage channel is present.

Denning’s approach is to continuously monitor (e.g. by
hardware) or analyze the information flow in a subsystem to
insure that only permissible flows are allowed. This monitor-
ing prevents confidential information from being disclosed
but permits non-sensitive information to be distributed. See
[Fenton74] and [Gat76] for other implementations. To make
the monitoring possible, each word of information is
identified with its information classification. In a static
compile-time implementation, the identification is done by
marking each variable with its information classification in an
internal compiler table. In a dynamic run-time implementa-
tion, the identification is done with a tagged architecture.
The classification of a result computed from information of
different classifications is given by a rule in the model. The
set of rules for combining information in different security
classes can provide different selective confinement policies in-
cluding the high-water-mark policy [Weissman69] and the
military security classifications with need-to-know categories
[Bell73).

The disadvantage of both selective confinement ap-
proaches is that when the number of security classes becomes
large, the mode! and implementation become unwieldy. For
example, in the military classification scheme, each word of
information must be tagged with the Cartesian product of the
security category (e.g. unclassified, confidential, secret, top
secret) and the need-to-know category. For a small number
of need-to-know categories (e.g. 15), the Cartesian product

can be represented by a few bits. But in a general computer
utility where each user needs to protect his information from
all other users, the number of classifications may rise dramati-
ically. In the mutually suspicious electronics firm example,
the customer wants to insure that no information can be
leaked to his competitor, the service author, even if the au-
thor has been cleared to the highest classification level
available in the system. This amounts to creating a new
need-to-know category for the customer which will govern
the flow of information for his interaction with the service.
It is also conceivable that the customer would want to selec-
tively share this information with other users. This amounts
to creating additional need-to-know categories for each shar-
ing arrangement. Since these considerations are common in
a computer utility, the number of information classifications
needed is potentially very large. This rules out a dynamic
mechanism for selective confinement implemented by a
tagged architecture. For this reason, the most practical
method for providing storage channel confinement in a com-
puter utility appears to be the total confinement approach tak-
en by HYDRA. In HYDRA, the sharing requirement is easi-
ly implemented by the capability mechanism.

1.2.2 Legitimate Channels

Another type of information channel through which
leakage occurs is the legitimate channel [Lampson73). For
the bidding example, this channel is represented by the bid
announced to all players. In order to make the bridge game
more compelitive, the legal bids at any time are tightly con-
trolled. If there were no restrictions, each partnership could
devise their own system of bids which could convey a large
amount of information to the bidder’s partner. One such
system would. be to encode every card in the bidder’s hand
into a single number (e.g. bidding 1.7329849 hearts). The
computer system counterpart for this channel is the bill for
services which is specified by the service and passed through
the accounting system to the service author and the custo-
mer. The amount charged for the resources used could be an
encoding used to transmit a large amount of information
from the service to the service author as in the bidding ex-
ample. These channels can be enumerated and blocked by
using either Lipner’s approach [Lipner75] or Denning’s ap-
proach [Denning76] since the bill can be viewed as a storage
channel when the resource usage information is passed to the
accounting system. In HYDRA, because selective
confinement is not available, the bill must be handled
separately from the other system objects. Rotenberg [Roten-
berg74] investigated blocking the billing channel by charging
a fixed sum (e.g. per invocation, per month) for the service.
If this approach is too restrictive, Rotenberg suggests limiting
the amount of information contained in the bill to a fixed
number of digits or rounding the amount charged (throttling
the channel) which is analogous to restricting the permissible
bids in the bidding example. In this case the amount of in-
formation passed is not zero but is some ‘‘small”” amount.
Thus the legitimate channels can be blocked either totally or
partially depending on the system policy for handling the bill.

Another scheme, which is due to Lampson, involves
publishing the charging algorithm, and having the customer
compute the charge in advance. The service can then accept
or reject the customer’s amount of payment if it is incorrect.
If, however, the service makes invalid rejections after observ-
ing the input parameters, then another covert channel is pos-
sible which is composed of acceptances (the service contri-
butes to the workload) and rejections (the service does not
contribute to the workload). Under this scheme, all rejec-
tions must be valid.

Huskamp: Covert Communication Channels w: Tunesharing Systems

1.2.3 Covert Channels

The last type of information channel used to transmit in-
formation, and the most difficult to analyze, is the covert
channel [Lampson73]. Covert channels can be thought of as
sending information from the service to the spy through the
computing environment rather than directly through some
type of storage. For the covert channels analyzed here, the
supervisor is trusted to not knowingly leak information from
the service to the spy. This is a different perspective than in

-the Morse-code problem [Popek74] in which the supervisor

actively aids in the leakage. In the bidding example, covert
channels are implemented by chair scraping, facial expres-
sions, toe-touching, or any noise made by one partner. For
example, a cough could mean *‘I hold three aces™ and a
sneeze could mean *‘I have no trump support.”’ To help com-
bat this type of information leakage, bridge tournaments em-
ploy bidding screens reaching to the floor to insure that
partners don’t see or touch each other during bidding. How-
ever, noises can still be used to transmit information.

In computer systems, covert channels are implemented
by the service requesting resources in a pattern that could be
noticed by the spy. For example, consider a user program
that calls an untrusted output program to write data into a
file. If the output program wants to leak the data contained
in the program arguments to a cooperating spy program by
using the CPU resource, the output program would first en-
code the arguments into a sequence of CPU times that would
be used to satisfy the calling program’s request. For exam-
ple, a typical encoding of the number 10 might be for the
output program to use Q, Q/2 and Q CPU seconds for the
next- three CPU allocations (Q is the maximum quantum
length that can be allocated). The output program would

- then perform its normal function of writing the data into.the

file during the non-zero quantum allocations. The spy pro-
cess, which is executing at the same time as the output pro-
gram, would have its queueing time affected by the amount
of CPU time used by the output program. A larger CPU
usage by the output program would mean a longer queueing
delay experienced by the spy process and vice-versa. Since
the output program and the spy process are cooperating, the
spy process knows the encoding algorithm used by the output
program. With this information, the queueing delays experi-
enced by the spy would then give information about the se-
quence of CPU times used by the output program, which in
turn would provide information about the data that the out-
put program is trying to transmit. By this method, the argu-
ment value given to the output program could be leaked to
another process. The channels implemented by the spy pro-
cess observing system performance variations do not always
send perfect information due to the possibility of other
processes making resource requests during the channel opera-
tion. However, as observed by Lampson [Lampson73], by
using information theory, a non-zero amount of information
can be reliably sent through these channels.

To block these channels, Lampson proposed the concept
of masking in which the inputs to all covert channels must be
specified by the customer.” This solution will completely close
the channel but at a possibly-large cost due to the ignorance
of the customer concerning the dynamic resource needs of

- the service. In general, the resource needs will vary over the

execution of the service and the customer has no method for
specifying the optimal resource allocation. Another proposal
for blocking covert channels [Popek74] [Lipner75] is to elim-
inate the perception of real time by the service and the spy in
order to prevent the spy from evaluating the performance of
the system. The suggestion is to associate a virtual clock
with each process which runs only while the associated pro-
cess is executing. Thus, for example, page fault delays can

not be measured directly by the spy. This solution would
work in a completely batch system where the turnaround
time can be made constant. However, in a limesharing en-
vironment, this solution would not eliminate ail covert infor-
mation leakage. As observed in [Lipner75], the spy could
correlate virtual time with real time by the service author
constantly entering the time-of-day through the terminal.
The grain-of-time is usually much larger than that of the
hardware real-time clock with this method but is still small
enough for non-zero information leakage to occur.

1.3 Thesis Content and Result Summary

Of the three types of information channels, covert chan-
nels appear to be the hardest to analyze and the most costly
to block. The problem with analyzing covert channels is that
a suitable model of the timesharing system must be found
that allows the effect of one process (the service) to be meas-
ured. The cost results from the constraints that must be
placed on the operating system to make the amount of leak-
age analyzable. The objective of this research is to explore
the trade-off between the cost of implementing different
confinement mechanisms and the rate of information leakage
for the CPU scheduling covert channel in an interactive
timesharing system. Mechanisms that permit zero informa-
tion leakage as well as mechanisms that allow some (measur-
able) positive amount of leakage are studied. The conse-
quences of providing a confinement option on the operating
system design will also be discussed.

Chapter 2 defines the terminology from information
theory that will be needed to discuss information leakage.
The concepts of a discrete memoryless information channel,
an information channel with memory, and channel capacity
are introduced..-The specific channel models. used in the later
analysis are also introduced. Chapter 3 explains in detail
what a covert channel is in a timesharing system. The con-
cepts of absolute confinement and partial confinement are in-
troduced and their effects on the operating system design are
discussed. Chapter 4 discusses the covert channel imple-
mented by the system scheduler which is to be analyzed in
the remaining chapters. The implementation of the schedul-
ing covert channel in each of the scheduling algorithms to be
analyzed is explained. Chapter 5 contains the semi-Markov
model to be used in the analysis. The technique used for the
model validation and the wvalidation results are given.
Chapter 6 has the analysis results for the scheduling covert
channel using both the discrete memoryless channel model
and the channel with memory model. Chapter 7 summarizes
the results in the previous chapters.

The major accomplishments of this thesis are: 1) An
analyzable model has been developed from which the capaci-
ty of covert channels can be determined. This model is appli-
cable to all covert channels that can be characterized by a
semi-Markov model. 2) The analysis results show that a
significant amount of information can be leaked through the
system scheduler. Since virtually all timesharing systems
have a system scheduler, covert channels are a widespread
problem. 3) The simulations of an -interactive timesharing
system with a scheduler that limits the amount of informa-
tion leakage shows that allowing. no .information leakage is
indeed expensive, but that by allowing some small known
amount of leakage, the cost can be reduced in some <ases.
4) The development of a model to analyze the information
leakage provides a firm theoretical foundation for timesharing
system designers to state an upper bound on the average
amount of information leakage resulting from use of the sys-
tem. This is an important consideration when comparing

timesharing systems.
,

3

Huskamp: Covert Communication Channels in Timesharing Systems

2. INFORMATION THEORY PRELIMINARIES

2.1 Introduction

The purpose of this chapter is to introduce the informa-
tion theory-related terms that will be used extensively in the
remainder of the thesis. The intent is to provide only a brief
discussion here since there are several good texts on the sub-
ject (e.g. [Gallager68], [Ash65], and [Wolfowitz64]) that can
be consulted for the necessary proofs and background details.

This chapter covers the concept of information, the dis-

tinction between a memoryless channel and a channel with

memory, and the calculation of channel capacity. These con-
cepts permit an upper bound to be calculated on the amount
of information that can be sent through a covert channel.
Also, three types of synthesized channels (i.e. cascaded,
compound, and cascaded compound channels) are discussed
for modifying the characteristics of a given channel. These
synthesized channels are used to modify covert channels so
that the channel capacity is less, or the cost of confinement is
less, or both. The reader who is familiar with these ideas can
skip this chapter without loss of continuity.

2.2 The Concept of Information

One favorite party game for small children is the “‘tele-
phone game.”” This game is started by assembling a group of
children in a straight line between two game coordinators.
the first game coordinator whispers a message to the child
next to him. Each child in turn whispers the message to the
next child until the message reaches the second game coordi-
nator. The original message and the received message are
then compared to determine how well the communication
line worked. Usually, the two messages differ greatly due to
transmission errors. Parts of this human communication link
have special names which describe their function in the com-
munication process. The first game coordinator is called the
sender, since the information to be transmitted originates
with him. The children represent the channel, or the method
by which the information is moved from one place to anoth-
er. The second game coordinator is the receiver, since he is
the destination for the information. This simple description
can be complicated by adding a message encoder between the
sender and the channel and a decoder between the channel
and the receiver. The function of the encoder and decoder is
to transmit over the channel only information well-suited to
the channel. For example, if the channel can transmit only
the letters 0 and 1 and the sender generates messages con-
taining the letters 0, 1 and 2, the message must be encoded
into 0’s and 1’s before transmission. The decoder will then
take the 0’s and 1’s received and produce the original mes-
sage with the 0’s, 1’s and 2’s. In this thesis, the sender
specifies the message that is to be sent. The message is then
encoded into a series of letters which are sent through the
channel, one at a time. The letters are decoded by the re-
ceiver to form the original input message. Thus the actual
channel inputs and outputs are letters.

A major problem of real channels is that the transmis-
sion may not be error-free, as in the telephone game exam-
ple. ' In this case, when the receiver obtains the channel out-
put, he is uncertain of the input sent. More formally, uncer-
tainty occurs when two or more distinct channel inputs can
cause the same channel output to be received with non-zero
probability. A measure of this uncertainty is the average en-
tropy, H, computed by the function:

HX) = 3 [-P(x)+log;(P(x))]

where X is an ensemble, the Xx; are the members of X, P
stands for probability, and the logarithm is base 2 for the

[

result to be in units of bits. (An ensemble is composed of a
set of events and the associated probability of occurrence for
each event). This uncertainty function has the intuitively ap-
pealing result that if the input letter sent is known (the pro-
bability of x; for some value of i is one), then the average en-
tropy is zero (assuming that 0 log 0 is zero). Otherwise the
entropy value is greater than zero.

The concept of entropy can be extended to define the
notion of mutual information between two ensembles. Mu-
tual information can be thought of as the amount of uncer-
tainty resolved about the element transmitted from one en-
semble, given an observation in the other ensemble. In an
information channel, the ensemble representing the channel
outputs, Y, does give information about the element from
the channel input ensemble, X, that was transmitted. In
terms of uncertainty, the mutual information of the input
and output ensembles, 1(X;Y), is computed by the formula:

I(X;Y) = HX) - HX|Y)

where H(X) is the original uncertainty about the channel in-
put and H(XIY) (read the entropy of the X ensemble given
the Y ensemble) is the remaining uncertainty about the chan-
nel input after the channel output is observed:

HX|[Y)=X [P(x;,y;) *log, (P (x]ly))]
1)

Mutual information is then interpreted as the amount of un-
certainty resolved about the channel input given the channel
output observed. Note that the mutual information function
is an average as is the entropy function. Thus when certain
elements of Y are observed, more or less information than
1(X;Y) may be obtained from the observation.- :Another in- -
teresting feature of the mutual information function is that
the value 0 occurs only when H(X) equals H(XIY). This oc-
curs if the X and Y ensembles are independent. Thus zero
information is transmitted through a channel only if the
channel outputs are independent of the channel inputs.

The concept of mutual information is used to determine
how much information can be transmitted through a channel.
The maximum of the mutual information function (obtained
by varying the input letter probabilities) gives the channel
capacity which is the largest average amount of information
that is able to be transmitted through a channel. The notion
of channel capacity will be used extensively in the remainder
of this thesis for analyzing covert channels in scheduling al-
gorithms. For covert channels, the channel capacity gives
the largest average amount of information that can be leaked
from a confined subsystem.

Channel capacity is more rigorously defined in the Noisy
Channel Coding Theorem and its converse. The Noisy
Channel Coding Theorem states that if binary data is to be
transmitted at rate R < C, for C the channel capacity, then
by appropriate encoding and decoding strategies, the error at
the decoder output can be made as small as desired. In other
words, all information rates up to capacity can be transmitted
over the channel with zero error. The converse to the

. theorem states that if the entropy of the data to be transmit-

ted is greater than C, then with even the best encoder and
decoder, the error probability at the decoder output can not
be less than some positive number which depends on the in-
formation being sent and on C. This says that information
rates greater than the channel capacity can not be sent with
zero error. A more formal statement and proof of these two
theorems can be found in [Gallager68). Since this thesis will
be concerned only with transmission rates which have a zero
error probability, the channel capacity is the highest transmis-
sion rate with this property. This does not mean that this

Huskamp: Covert Communication Channels in Timesharing Systems

rate is achievable in practice since the cost of the encoder and
decoder needed to achieve capacity may be prohibitively ex-
pensive.

In the above context, the term channel does not refer to
any specific type of channel but rather to any method of in-
formation transmission that can be formally defined in terms
of probabilities. In this thesis, two general types of channels
will be used for the covert channel analysis: the discrete
memoryless channel (DMC) and the discrete channel with

“ memory (DCWM). Both of these channel types will be used

to model interactions between two processes in a computer
system through a covert channel. However, the channel
characteristics and the method for computing the channel
capacity are different. The details are presented in the next
two sections.

2.3 The Discrete Memoryless Channel

The discrete memoryless channel (DMC) is character-
ized by both the input ensemble, X, and the output ensem-
ble, Y, containing discrete values, and by the channel being
in the same state before each input letter (element of the X
ensemble) is transmitted (i.e. the channel is memoryless).
The discrete channel inputs and outputs mean that channel
capacity is calculated by a summation procedure involving the
inputs and outputs rather than by the integration procedure
which would be necessary if the inputs and outputs were con-
tinuous. The memoryless characteristic means that the chan-
nel operation can be described by a single channel transition
probability matrix (CTPM) which gives, for each input letter,
the probability of each output letter being received by the re-
ceiver. If the channel characteristics change in response to
the inputs transmitted through the channel, the channel is
said.to have memory and more than one CTPM .is. necessary
to describe the channel as discussed in the next section. A

M y2 y3 b

x1 al a2 a3 alb
x2 | @ t2 b3 bh

x3 cl c2 LX] ch

!
!
!
Figure 2.1 !
A Sample CTFM '
sample CTPM is shown in Figure 2.1 in which each row
corresponds to the probability density of the output letters
given that the input letter for the row is transmitted. Due to
the definition of the CTPM, all rows must sum to 1.0. For
all the CTPM’s in this thesis, the channel encoder and the
channel decoder, if present, are not included in the CTPM.
Thus the CTPM. is not necessarily square since the channel
input and output ensembles are not generally the same size.
Given the CTPM for a DMC, the channel capacity is
computed by adjusting the input letter probabilities in the
messages to be transmitted to give the largest value of mutu-
al information. The usual channel.capacity computation is

“done by a computer iteration on the input probabilities which

terminates when the channel capacity is computed to within a
certain tolerance. The specific algorithm used in this analysis
to control the iteration is the one developed by R. Blahut and
explained in [Blahut72]. The algorithm starts with an initial
guess of the input letter probabilities supplied by the user.
This is usually the uniform probability weighting of all the in-
puts. The algorithm then computes the mutual information
for each row of the CTPM. On the next iteration, a row hav-

ing a larger mutual information than the average is assigned a
larger probability, while a row having a smaller mutual infor-
mation than the average is assigned a smaller probability.
The input letter probabilities are then adjusted so that the
average mutual information for the channel is always increas-
ing. When the difference between the upper bound capacity
(the largest mutual information for any row) and the lower
bound capacity (the average mutual information for all rows)
becomes smaller than the allowable error tolerance, the algo-
rithm terminates.

2.4 The Discrete Channel with Memory

As for the DMC, the discrete channel with memory
(DCWM) also has a discrete ensemble of channel inputs, X,
and a discrete ensemble of channel outputs, Y. However,
the two channels differ because the DMC is in the same state
before each input letter is sent (only one CTPM is required),
while the DCWM may be in one of several states when an
input letter is transmitted. Each state is represented by one
CTPM. The CTPM that governs the transmission of any in-
put letter is dependent on the current state of the channel.
An example of a channel with memory would be a burst
noise channel which is typical of telephone line transmis-
sions. The operation of the burst noise channel is error-free
a majority of the time. However, when errors do occur, they
occur in clusters. This type of channel can be modeled by

0.1
State 1 > State 2 ::]
0'9[: No error |l - Error 0.8
0.2
CTPM for State 1 CTPM for State 2
Figure 2.2

A Burst Noise Channel Model

two states [Gilbert60] as in Figure 2.2. One state (state 1)
represents errorless transmission and the other state (state 2)
represents totally erroneous transmission. The burst noise
channel and the DCWM modeled in this thesis are represent-
ed by a Markov model. This means that the next channel
state is dependent only on the current channel state and the
input letter transmitted. From the state transition probabili-
ties in Figure 2.2, the channel tends to persist in its current
state with a high probability, which is characteristic of the
burst noise effect.

The capacity of the general DCWM with many states is
dependent on the number of consecutive channel inputs
transmitted. - The usual interpretation is that the number of
input letters goes to infinity, but this may yield a capacity that
is greater than or less than the capacity when only a finite
number of letters are sent. For example, the first ten chan-
nel inputs should have one probability distribution, the next
ten another, etc. However, although the simple two state
model for the burst noise (or burst error) channel has been
successfully solved [Gilbert60], the method can not be ap-
plied to models with more than two states, since the two state
assumption is used in the analysis. Attempts have been
made to develop algorithms to compute the capacity of the
general channel with memory models (e.g. [Wolfowitz63]),

.
T

Huskamp: Covert Communication Channels in Timesharing Systems

but no practical methods have yet been developed. Since the
models in this thesis consist of a minimum of six states to
provide sufficient” accuracy, the channel capacity of these
models can not be computed. Further restrictions on the
channel must be made to permit computation of the DCWM
capacity.

To circumvent the problem of computing the capacity of
the DCWM, the channel operation is restricted to transmit-
ting n input lettérs, then letting the channel return to some
equilibrium state before transmitting the next n input letters.
The equilibrium state attained before transmission of the
next n input letters must always be the same. Of course, as
n approaches infinity, the capacity for this method approaches
the capacity for the generalized DCWM model. For the
analysis in this thesis, n will be less than or equal to three.
The computation time needed for the n=4 case is prohibitive
and is measured in tens of hours of computer time.

This restricted channel operation can be modeled as a
DMC with all possible channel input letter n-tuples compos-
ing the X ensemble as input letters and all possible channel
output letter n-tuples composing the Y ensemble as output
letters. The CTPM is obtained by iterating through all possi-
ble state sequences in the Markov channel model to obtain
the necessary probabilities. A statement of the algorithm
used to construct the CTPM is postponed until Chapter 5, at
which time it is discussed in connection with the semi-
Markov channel model used in this thesis. Once the CTPM
for the restricced DCWM is found, the channel capacity can
be found by using the DMC capacity algorithm in [Blahut72].
This algorithm was discussed in the previous section for the
discrete memoryless channel.

Since the DCWM will be modeled as a DMC, the follow-
ing sections.on channel.synthesis will discuss only the DMC
case. The discussions are equally applicable. to.the restricted
DCWM as defined above.

2.5 Cascaded Channels

When a channel does not have suitable characteristics for
a certain application, one method of changing the characteris-
tics is to add a channel in cascade with the original channel.
The CTPM’s for both the channels can be combined into one
CTPM for the equivalent channel by using straightforward
probability operations. For example, the cascaded channels

(o) ——Channel 1 ——————>—Channel 2 —>

I o 1 | o 1

o | 0.2 o.8 o | 0.6 o.% :

1 0.7 0.3 1 0.9 0. 'l

;

(B) ~————3— Channel 3 ——————p]
l o 1

0 0.8% 0.16 1

1 0.69 0.31 ;

é
Figure 2.3

Cascading Channel 1 and Channel 2 to Form Channel 3

in Figure 2.3A can be represented by the single channel in
Figure 2.3B. If P;(ylx) is the probability of the output y be-
ing observed given that the input is x in the i'® channel, then
the CTPM for the equivalent channel (channe! 3) is comput-
ed by the formulas:

P3(010) = (P1(010) P2(010)) + (P1(110) P2(0i1))

P3(011) = (P1(011) P2(010)) + (P1(111) P2(0I1))
P3(110) = (P1(010) P2(110)) + (P1(110) P2(1I1))
P3(111) = (P1(011) P2(110)) + (P1(111) P2(111))

For the study of covert communication channels, cascad-
ed channels have the property that the capacity of the two
channels together is less than or equal to the capacity of ei-
ther one separately. This is formally proved in the Data Pro-

. cessing Theorem in [Gallager68]. Briefly stated, the Data

Processing Theorem says that post-processing the channel
outputs can only decrease the channel capacity. In the cas-
caded channel example of Figure 2.3A, channel 2 can be
viewed as post-processing the outputs of channel 1. Thus the
equivalent channel capacity is less than or equal to the capaci-
ty of channel 1. If channel 1 and channel 2 are switched, the
equivalent channel is the same but the above argument says
that the equivalent channel capacity is less than or equal to
the capacity of channel 2. Since the objective in computer
systems is to limit the capacity of covert channels, cascading
channels may produce a more desirable channel.

2.6 Compound Channels

A compound channel, as defined in [Wolfowitz64], is a
DMC with more than one state and with one CTPM per state
in which the state governing each input letter transmission is
chosen according to a probability density function. For each
input letter sent, the state of the channel is independent of
any previous inputs or chosen states. For this thesis, only 2-
state compound channels will be used. The 2-state com- .
pound channel formulation is an alternative to cascading for
combining two channels into one channel. The resulting
channel characteristics are a combination of the two channels

Pl p2
State 1 State 2
I o] 1 | (o] 1
(o] 0.7 0.3 o] 0.6 0.b4
1 0.2 0.8 1 0.6 0.4
Figure 2.4

Compound Channel Model

used. Figure 2.4 shows an example of the compound chan-
nel considered here. When an input letter is to be sent, a p,
biased coin is flipped to determine the channel state and
hence the CTPM governing the transmission. Notice that the

. rows of the CTPM are different for state 1 (capacity greater

than zero) while the rows of the CTPM are the same for
state 2 (capacity equals zero). The capacity of the compound
channel would then be expected to be less than or equal to
state 1, with the amount of decrease depending on the value
of p,. In the analysis of covert channels, state 1 represents

- sending a channel input through the normal covert channel

and state 2 represents refusing to transmit an input letter
when one can be transmitted. Since nothing is actually
transmitted in state 2, the rows for state 2 are the same re-
gardless of the input letter to be sent. This concept of chan-
nel synthesis will be explained in more detail in Chapter 6.
The DMC with the same capacity as the compound chan-
nel depends on whether the sender, the receiver, both the
sender and the receiver, or neither the sender nor the re-
ceiver know which state governs the transmission of the in-
put letter, as outlined in [Wolfowitz64]). For reasons that will

L

A T3 IES ATIee i

M 2ar .

Huskamp: Coverr Communication Channels in Timesharing Systems

be made clear in later chapters, the sender knows which state
governs the transmission but the receiver does not. Howev-
er, due to the special form of state 2 (i.e. the state has all
rows equal), knowing which state governs the transmission
does not enable the sender to increase the capacity above the
case where neither the sender nor the receiver know the state
governing transmission. This can be proved by straightfor-
ward mathematical computation using the equations for both
cases in [Wolfowitz64] and is not done here. To compute

- the CTPM for the DMC with the same capacity as the com-
-pound channel for the case in which neither the sender nor

the receiver know the state of the channel, the CTPM of
each state is weighted by the appropriate state probability (i.e.
p; or py). For the compound channel in Figure 2.4, the
capacity-equivalent DMC CTPM is given by:

P(010) = (0.7)p, + (0.6)(1-p))
P(0l1) = (0.2)p, + (0.6)(1-py)
P(110) = (0.3)p, + (0.4)(1-p))
P(111) = (0.8)p; + (0.4)(1-p,)

The channel capacity of this DMC is then calculated using
the algorithm in [Blahut74].

2.7 Cascaded Compound Channels

The last method for altering the characteristics of a chan-
nel to be considered here is to combine the cascaded channel
with the compound channel. This involves first finding the
capacity-equivalent CTPM for the cascaded channel represen-
tation, then using that channel as input to the compound
channel synthesis. The final CTPM for the equivalent DMC
channel is the equivalent CTPM from the compound channel

. synthesis operation. 'An. example .of a cascaded compound

Pl p2
State 1 State 2
CTPM for the CTPM for Zero

Cascaded Channels CPU Time Allocated

| o

o 0.5 0.5 o 0.6 0.4
1 0.1 0.9 1 0.6 0.%
Figure 2.5

Cascaded Compound Channel Model

channel is shown in Figure 2.5. The channel capacity for the
cascaded compound channel can be found from the final
CTPM by using the algorithm in [Blahut74]. The capacity for
the cascaded compound channel can not be greater than the
original channel and thus may be useful in partial
confinement.

2.8 Summary

This section introduced the concepts of information,
channels, and channel capacity which will be used often in
the remaining chapters. The two different types of channels
to be analyzed, the DMC and the DCWM, are introduced.
The computation of the channel capacity for the DMC is
done by using the algorithm in [Blahut74]. However, the
capacity of the DCWM is not computable in general. Conse-
quently a restricted form of the DCWM is used in this thesis.
The particular restricted form chosen can be analyzed as a
DMC from the standpoint of channel capacity and the algo-

rithm in [Blahut72] can be used.

The three channel models that will be used extensively
in Chapter 6 (the cascaded model, the compound model, and
the cascaded compound model) are presented and the
method used to find the capacity equivalent DMC CTPM is
explained. All three of these channel models can be used
with either the DMC or the DCWM channel types since both
types can be reduced to a single CTPM. The difference
between these channels is that in the case of the DMC, the
channel inputs are 1-tuples of . channel input letters while for
the DCWM they are n-tuples (n less than or equal to three
for this analysis). The results of this chapter will be used ex-
tensively in Chapters 5 and 6 when the semi-Markov model
is explained and the analysis of covert channel capacity is
done.

Huskamp: Covert Communication Channels in Timesharing Systems

3. SYSTEM DESIGN CONSIDERATIONS
FOR COVERT CHANNEL CONFINEMENT

3.1 Characterization of Covert Channels

An executing process can usually detect more informa-
tion about the state of the system than is volunteered by
status-type system calls. Information about various system
resources can be inferred by the process making a request for
part of the resource and observing the system’s response.
- ~The elapsed real time until the request is honored may be in-
dicative of the present request load for the resource, the allo-
cated portion may be indicative of previous requests, and the
error responses (e.g. resource reserved by another user) may
be indicative of the status. Thus from the perspective of an
executing process, the computer system can be described by
an n-tuple (n large) with components describing the current
resource allocations and the state of the system resources. In
this discussion, resources include both hardware entities (e.g.
170 controllers) and software entities (e.g. allocation of sys-
tem table entries) that can be detected by an executing pro-
cess through any means available. Typical components of
this n-tuple include the process currently assigned the CPU,
the resources reserved by active and inactive users, the
amount and location of unassigned secondary storage, the
head position of each movable head disk, and the system
overlay currently resident in primary memory (assuming the
operating system is arranged in overlays). All of these state
components are potentially observable by the spy, though
perhaps not with absolute certainty, and perhaps not all the
time. For example, an observation of the disk head position
may be taken at any time by timing an 1/0 request for a file
on a known cylinder, but the number of unused file index
entries. may.be.observed only: when .the file index table. is full
and requests tocreate a new file are denied.

During the execution of a process, most components of

this state description can be altered. For example, if the.

‘confined subsystem makes a system call to create a secondary
storage file, the currently resident system overlay may be
changed, a previously unassigned space on secondary storage
is reserved, and an empty file index table entry is assigned to
contain the description of the file. If the spy also issues the
file create system call when he becomes eligible for execu-
tion, the presence of the file create overlay of the operating
system may be detected by observing the system call process-
ing time. By observing the placement of the spy’s disk file
and knowing the file placement policy, an educated guess
about the length or other attributes of the secondary storage
file created by the confined subsystem may sometimes be ob-
tained. A file placement policy that tries to spread the disk
files among the available disks by allocating each newly creat-
ed file in a cyclic manner among the n physical disks is one
example. That is, the first file would be created on disk 1,
the second on disk 2, ... , the n ¥ on disk n, the (n+1) *.
on disk 1, etc. The information channel would then be the
disk number on which the spy’s newly created file resides.
Subtracting this number from the disk number for the spy’s
previous newly created file is the channel output received by
" the 'spy. As another example, if the system has only.a very
few file index table entries left, the confined subsystem and
the spy may also try to communicate by creating and deleting
files much like the reader/writer channel in [Lampson73].

As a generalization of the above examples, a covert
channel occurs when the spy is able to observe a change in
the system resource state caused by the confined subsystem.
But in some cases, the distinction between covert channels
and storage channels is not always clear. For example, if the
confined subsystem and spy are using the physical head loca-
tion on a movable-head disk to send information, the

confined subsystem positions the head at cylinder 1 (by read-
ing or writing a disk file on the first cylinder) to send a zero
bit, and positions the head at cylinder 20 to send a one bit.
Assuming the spy also has a disk file on cylinder 1, then by
reading or writing the spy’s file and observing how long the
1/0 operation takes, the spy can receive a bit stream of infor-
mation. In this instance, the disk head channel can be

- classified as a storage channel [Lampson73] since the head

position could be viewed as a variable that is written by the
operating system (at the request of the confined subsystem)
and is read by the spy. However, other users also share the
disk with the confined subsystem and the spy and may cause
erroneous information to be received by the spy. The er-
roneous information is due to this channel not being intend-
ed for information transfer, which is Lampson’s definition of
a covert channel.

To avoid this ambiguity, covert channels will be defined
as those channels which are a result of resource allocation
policies and the resource management implementation. This
is different from the usual storage channels which are imple-
mented by a process observing the contents of a resource
(e.g. a shared file). It is characteristic of such channels that
if a process other than the confined subsystem and spy is ex-
ecuting, then perfect transmission through the channel may
not be possible due to the resource requests of the other pro-
cess. Using this definition, the disk head channel is a covert
channel since it is a result of the implementation of resource
management (i.e. disk reads or writes). This interpretation is
consistent with the interpretation of storage channels in
[Denning76] and [Lipner75], and classifies all the usual in-
terpretations of covert channels correctly. This definition of
a covert channel is used throughout the rest of this thesis.

It-is--worthwhile to note .at. this ‘point: that the outputs
from covert channels do not- always involve time as the
parameter .observed by the spy for information transmission.
In the case of the disk file placement .channel above, the spy
only needs to know on which disk his newly created file re-
sides for information to be passed. This information may be
readily available from the operating system to enable optim-
ized programs to better utilize the I/0 configuration when
multiple files are being read or written simultaneously. Since
real time is not the only method for sending information
through covert channels, any solution for the covert channel
problem must do more than prevent the spy from observing
real time as suggested in [Lipner75].

3.2 Absolute vs. Partial Confinement

The major drawback in providing confinement of covert
channels in a system design is the cost to both the confiner
and the other users of the system. The cost to the confiner is
the amount of extra resources necessary for execution and
the cost to the other users is the system degradation caused
by the confined subsystem. There are two types of
confinement which can be provided. The most expensive
type is absolute confinement which insures that no information
is leaked through any covert channel. The other type is par-
tial confinement which permits some non-zero amount of in-

. formation leakage at a reduced confined subsystem execution

cost to the confiner. The more leakage allowed, the lower
the resultant cost.

3.2.1 Consequences of Absolute Confinement

The reason for the large cost of absolute confinement is
that system decisions for an absolutely confined subsystem
must not be based on the confined subsystem’s status or re-
quests. In the case of memory management in a paged en-
vironment, the working set size assigned to the confined sub-
system can not depend on the page fault history of the

s

"\

w. wn -

o oo

Huskamp: Covert Communication Channels in Timesharing Systems

confined subsystem. This usually causes either too large a
working set size to be allocated, which denies other processes
the memory pages, or too small a working set size to be allo-
cated, which causes the confined subsystem to thrash.
Another consideration is that even read-only pages brought
into memory may be utilized as a covert channel if memory
pages are shared between processes. This means that the
confined subsystem must not affect the page sharing mechan-
ism used by the unconfined processes. Another aspect of ab-

- solute confinement is that.the maximum amount of resources

needed for the confined subsystem execution must be made
available to the confined subsystem for its entire execution.
The reason is that once execution begins, additional
resources can not be requested by the confined subsystem
without potential information leakage. Of course, additional
resources can be allocated during execution but based only
on an algorithm that is independent of the input parameters
and the confined subsystem’s status. This requires the
confiner (or the confined subsystem before the input parame-
ters are read) to know what the resource requirements for
the invocation will be in order to execute the confined sub-
system in an efficient manner. However, this violates the
concept of programming generality [Dennis68], since it re-
quires the confiner to have more detailed information about
the confined subsystem than just its calling sequence.

In addition to enforcing confined subsystem-independent

resource allocation, the operating system must be sure that -

there is no flow of information from the confined subsystem
to any subsystem other than the confiner. This includes
prohibiting information flow from one instance (or incarna-
tion as defined in [Spier73]) of the confined subsystem to
another. However, information flow from any unconfined
subsystem to the confined subsystem.does. not need to be re-

gulated.. As observed in.[Lampson73], these restrictions also

apply to any subsystem in the subsystem-call subtree with the
confined subsystem as the root. This is called transitivity of
confinement.

One consequence of the information flow restrictions is
that the confined subsystem can not synchronize with any
subsystem that is not invoked directly or indirectly by the
confined subsystem unless specifically authorized to do so by
the confiner. The ability to synchronize can leak information
through a storage channel as shown in [Lampson73]. How-
ever, a confined proprietary subsystem might need to read a
proprietary data base in order to perform its task. If the data
base may be updated during the confined subsystem execu-
tion so as to render the entire data base inconsistent during
the update, there is no general method for allowing a
confined subsystem to always read a consistent data base
representation. A scheme that time-stamps each record (or
the entire data base) before and after it is updated so the
confined subsystem knows that the record (or data base) has
been updated can be used for cases in which the updates oc-
cur infrequently. The confined subsystem would be required
to verify that the record (or data base) was not modified
while the information was read. If the record was modified,
the operation should be repeated. If the data base is updated

frequently, this method of reading may not be a viable ap--

proach. -In this case, the data base can be reserved at times
and for durations that are independent of the confined sub-
system execution. When the confined subsystem must read
the data base, no more useful CPU time is allocated until one
of the reservation times occurs.

The resource allocation and synchronization problems
are typical of the restrictions inherent in absolute
confinement. To permit synchronization or resource alloca-
tion in response to a request from the confined subsystem,
some information may be leaked. In certain circumstances,

10

the trade-off of information leakage versus increased program
efficiency might be acceptable. This issue will be discussed in
great detail in Chapter 6 at which time the possible trade-offs
will be discussed. It is interesting to note that even though
synchronization represents a storage channel, it can be
analyzed by using the methods developed for covert chan-
nels, as will be seen in the next section.

There are several implementations of absolute

- confinement for covert channels. The simplest implementa-

tion is to deny the. confined subsystem the use of the
resource on which the channel is based. However, in the
case of the CPU resource, denial of usage will prevent execu-
tion and can not be used. Another implementation is to pro-
vide the confined subsystem access to the covert channel
based on some probability density function that is indepen-
dent of the confined subsystem’s execution. If it is known
that the confined subsystem needs more secondary storage as
execution proceeds, an additional unit could be allocated with
probability x every y real seconds until the confined subsys-
tem completes. This scheme does allow more resources to be
allocated, but at a potential cost of allocated but not used
resources.

Lampson [Lampson73] proposes implementing
confinement by having the covert channel input be confiner
specified (masking). This is permissible as long as the
confiner realizes that information may be inadvertently
leaked through the specification. For example, if the confiner
follows the advice of the confined subsystem author as to
how resources should be allocated for certain input parameter
combinations, then some inputs may be leaked by the spy
observing the confiner-specified resource allocations. An ex-
ample is a tax program where the specifications state that a
memory size of 100,000 ~words-'should be :requested if the

-confiner’s income is less.than $20,000, and: 200,000. words

otherwise. The extra space is purported to be necessary for
the tax computation to handle an expected larger number of
deductions. However, following these specifications may leak
one bit of information on the confiner’s income.

Another implementation of absolute confinement con-
sists of partitioning the resources so that two subsystems
which must not communicate (e.g. the confined subsystem
and its confederate spy) do not draw resources from the
same partition. This strategy prevents the spy from observ-
ing the resource allocation patterns of the confined subsys-
tem. For example, the resources for the confined subsystem
would be in one partition and the resources for unconfined
users in another. The confined subsystem can vary his actual
resource usage only up to the maximum amount in the parti-
tion. This implementation is also a form of masking if the
partition is created by the confiner before invocation of the
confined subsystem. One system implemented with this
resource allocation policy is Hansen’s RC4000 multiprogram-
ming system [Hansen70] in which the confined subsystem’s
resources are a subset of those allocated to the confiner. The
partitioning method violates the objectives of programming
generality, as noted before.

Another implementation of absolute confinement is to
allocate resources to the confined subsystem based on a func-
tion of the resource usage by unconfined subsystems. This
does not violate confinement since the unconfined processes
can transmit information freely to the confined subsystem.
This implementation permits the system to discriminate
against confined subsystems in order to provide better service
to the unconfined subsystems. Such a policy would be useful
in CPU scheduling where the amount of CPU time allocated
to confined subsystems could be decreased as the percentage
of unconfined subsystems increases. When the workload is
light, the system can afford CPU time to be possibly wasted

LML FRi I

T . L

Huskamp: Covert Communication Channels in Timesharing Systems

by confined subsystems and still provide an adequate
response time for unconfined processes.

The last implementation of absolute confinement is the
standard state approach. In this method, all system state
variables potentially used by the confined subsystem must be
reset to a standard state after the confined subsystem exe-
cutes and before the next process is executed. For movable
head disks, the head must be positioned at whatever cylinder
is designated-as the standard cylinder. The contents and allo-

purged). If this implementation is used, the spy may be able
to detect when the confined subsystem executes by observing
that some of the state variables are in the standard state.
However, this does not convey any information since the
standard state is independent of the service execution and the
times at which the confined subsystem executes are chosen
independently of the requirements of the confined subsys-
tem. The detection of the confined subsystem execution will
be a factor under partial confinement and a discussion of this
factor is deferred until then.

3.2.2 Consequences of Partial Confinement

The most significant component of the extra cost for
providing absolute confinement results from the inability of
the operating system to dynamically respond to the resource
requests of the confined subsystem without leaking informa-
tion. To decrease this cost, partial confinement allows the
resource allocation decisions for the confined subsystem to be
partially dependent on the needs of the confined subsystem.
As the dependence increases, the amount of information
transmitted reliably through the covert channel (channel
capacity) increases. . This leads to a trade-off between channel
capacity.and.cost........ .. o

Partial confinement can be usefully applied in two situa-

- tions as long: as the amount of ‘information leakage can be

measured. The first occurs when the confidential information
given to the confined subsystem will become public
knowledge after a certain period of time. Confinement is
used in this case to ensure that no significant information is
leaked in the interim. One example is a stock market appli-

Computer System

| stock Market-¢——>»| Data Base'}j<«——> Stock Broker 1
Transaction Accessing s
Data Base Service ~€—— Stock Broker n
Spy -¢———>-Confined Subsystem
Author
Figure 3.1

stock Market Application for Partial Confinement

cation (Figure 3.1) in which stock brokers enter their pending
stock transfer requests into a transaction data base by in-
teracting with a partially confined data base access subsystem.
The data base is used to record the transfers, to keep track of
- the requests as they are being filled, and to perform the bil-
ling for handling the transaction. However, the in-house au-
thor of the data base accessing subsystem quickly realizes
that the information in the transaction data base can be used
to enlarge the profit from his own portfolio of stocks. Ad-
vance information on large stock transfers enables the author
to sell a stock at a higher price just before a client sells a
large block of the same stock, and to buy the stock at a lower
price after the large block is offered for sale. The price
change is due to supply-and demand. A similar scenario ap-

- cation of the cache memory, if any, must be reset (e.g. -

11

plies to a large sell request by a client. If the subsystem au-
thor can execute programs on the same machine as the stock
market application when the stock market is open (i.e. the
machine has too much capacity for just the stock market ap-
plication and the excess is used for debugging new software),
leakage may result from the stock market subsystem to the
author’s other program since they are executed concurrently.
In this case, if the covert channel capacity is small enough,
the information can not be transmitted quickly enough for
the confined subsystem author to take advantage of pending
stock transfers.

The second situation where partial confinement is useful
occurs when the total amount of leakage by the confined sub-
system is ‘‘small’’ for the particular application. As the sen-
sitivity of the application increases, the number of bits that
can be leaked decreases. In the most sensitive applications,
no bits can be leaked. For example, the cost to the confiner
of the information leaked by partial confinement may be bal-
anced by the system performance gain. In this approach a
value is placed on the information provided as input to the
confined subsystem [Turn72]. If the lowered computing cost
from partial confinement compares favorably with this value,
then partial confinement is advantageous.

Partial confinement is implemented by adding noise to
covert channels to reduce the capacity to a permissible level.
A typical representation of a covert channel is shown in Fig-

Continer Prograp g onTinea | System
SOURCE Parameters Sudbsystem State
: ENCODER

A

. _lOther .Usersl -NOISE
System

DECODER STATE

Figure 3.2
Typical Representation of a Covert Channel

ure 3.2. In covert channels, the confiner (information
source) provides inputs to the confined subsystem (encoder)
which encodes them into a sequence of system states (of
length n for example) that will be transmitted by the confined
subsystem during his next n executions. The spy will attempt
to deduce the system state left by the confined subsystem.
However, when the spy executes next, the system state seen
by the spy may be modified by other users of the system
which executed between the confined subsystem and the spy.
Thus the system state actually seen by the spy is STATE' in
Figure 3.2 which may or may not be the system state left by
the confined subsystem. The spy observes STATE and
decodes the observation into a guess of the system state im-

- mediately after the confined subsystem execution. If there

are no other users and the operating system does not try to
limit the information passed between the confined subsystem
and the spy, then a transmission stream containing no decod-
ing errors may be received by the spy. As the number of
other users in the system increases, the noise injected into
the channel increases and the channel capacity should de-
crease. Under partial confinement, it is desirable for the
operating system to insure that as the number of users fluc-
tuates, the channel capacity becomes no greater than the
value specified as acceptable by the confiner. This is accom-
plished by the operating system effectively adding another

i

onlincy Subsystem

Huskamp: Covert Communication Channels in Timesharing Systems

System

E Faramecier Statle

SOuxC ENCODER

b

[other li_sers NOISE
Y

[system Introducea Noise|noIsE

System

Spy J—

DECODER STATE

Figure 3.3

Covert Chamnel Representation for a
System Offering Partial Confinement

stage to the channel as shown in Figure 3.3. Here, the
operating system-generated noise (NOISE2) is cascaded with
the noise generated by other users (NOISE1). By the Data
Processing Theorem given in Chapter 2, this new channel
(Figure 3.3) has a capacity less than or equal to the channel
with either NOISE] or NOISE2 alone. As the capacity of the
system noise component ranges from zero to one, the entire
channe! capacity can be adjusted from zero to a maximum of
the capacity of the channel when the given number of users
is present.

The cascaded - channel representation - of partial
confinement:in Figure 3.3 is the basis for the method to be
used to. allocate the confined subsystem more resources dur-
ing execution and to determine the maximum amount of in-
formation leakage possible. As an example of the analysis
that can be done, assume that the working set size of the
confined subsystem varies over a large range during execu-
tion. This characteristic would be a motivation for the
confiner to optimize the working set size allocated to the
confined subsystem to permit efficient execution. In this si-
tuation, the channel transition probability matrix for the sys-
tem noise component of the covert channel can be represent-

Qutputs Increase Decrease No
Inputs working set working set change
Larger working Al A2 A3
set size needed
Smaller working B1 B2 B3
set size needed -
No change needed Cc1 c2 C3
Figure 3.h

Channel Transition Probability Matrix for the
System Noise in the VWorking Set Size Channel

ed as in Figure 3.4. The inputs to the matrix are obtained
from the executing confined subsystem. If excessive thrash-
ing occurs, the input to the matrix is that a larger working set
size is needed. If very few page faults occur, the input is that
the working set size can be decreased. Otherwise the input is
that no change necessary. The channel operates by the sys-
tem questioning the confined subsystem at specific times (e.g.
after every.n seconds of allocated CPU time) and determin-

12

ing the confined subsystem’s input to the working set size
channel. A random number generator is used to choose the
channel output based on the probabilities in the channel tran-
sition probability matrix and the input. The memory
manager will then modify the working set size of the service
according to the channel output. The channel capacity is ob-
tained from the channel transition probability matrix (CTPM)
in Figure 3.4 (the sysiem noise channel component) and an
experimentally observed CTPM which models the effects of
the other users. As.the values of Al, B2, and C3 in Figure
3.4 approach 1.0 (perfect response of the working set size to

~ the wishes of the confined subsystem), errorless transmission
" through the system noise channel component is approached

and the covert channel as a whole approaches the capacity of
the CTPM representing the other system users. As the con-
dition A1 = Bl = C1, A2 = B2 = C2, and A3 = B3 = C3
is approached, the capacity of the system noise channel ap-
proaches zero (as noted in Chapter 2) as does the covert
channel as a whole. This demonstrates the approach to be
used for limiting the capacity of the CPU scheduling channel
in Chapter 6.

3.3 Designing a System Offering Confinement

A typical operating system has an extremely large
number of possible covert channels. The large number is
due to the number of components in the n-tuple describing
the state of the system resources. For each component,
there are generally many different ways of encoding informa-
tion in the resource state. It is also a simple matter for the
confined subsystem to manipulate many different channels at
once. For example, in some systems when a process issues
an 170 request then blocks, the 1/0 subsystem-is notified of

. the operation- to be performed;-the- memory manager is told

not to-swap the process out while the 170 is in progress, and
the CPU scheduler is told not-to allocate any more CPU- time

- until the I/0 completes. Thus one -system call may change

the state of more than one operating system subsystem.
Each of these changes may be independently observed by the
spy. In this example, the spy may be prevented from in-
creasing his working set size during the 1/0 operation since
some primary memory is reserved by the confined subsystem
for the duration of the I/0 request, the spy is able to receive
more CPU cycles since the confined subsystem has blocked,
and the I/0 channel servicing the confined subsystem’s re-
quest can not honor another request until the confined
subsystem’s request completes.

One approach to the system design problem is to limit
the number and types of covert channels by enforcing rigid
interaction rules between the confined subsystem and the
operating system. This limits the amount of information ori-
ginating from the confined subsystem that is used in operat-
ing system decisions. This ‘“‘confined subsystem interface” is
much like the interface for a virtual machine implementation
[Buzen73] since all but the most important confined subsys-
tem inputs have been omitted. This interface is the only
method by which the confined subsystem can communicate
with the operating system. The specific interface to be imple-

- mented depends on which covert channels are the most im-

portant in optimizing the system performance, or in lowering
the cost of confined execution. One important covert chan-
nel is implemented by the CPU scheduling algorithm, since
the CPU is essential for processes to make execution head-
way. If the CPU is allocated to the confined subsystem fre-
quently when the confined subsystem can not use it, the
response time of all other processes is adversely affected,
with no increase in the amount of total useful work done.
Other covert channel choices might be the memory manage-
ment channel or the disk I/0 scheduling strategy. The exact

“a

PR

Huskamp: Covert Communication Channels in Timesharing Systems

choice depends on the type of workload being processed and
the resources available. Any information about the confined
subsystem that is not included in the interface can not be
used by the operating system in making resource allocation
decisions. This necessitates using one of the absolute
confinement resource allocation methods (e.g. masking or
partitioning) to allocate resources for which insufficient infor-
mation is available in the interface.

The methods used to absolutely confine the non-critical
channels can make a difference in the capacity of the partially
confined- channels since different channel models represent
different absolute confinement strategies. If the confined
subsystem and spy can synchronize (i.e. if the spy knows
whether the confined subsystem executed between two suc-
cessive spy quantum allocations), then the channel capacity is
generally greater than if no synchronization occurs. An ex-
ample of a channel model where synchronization is not
guaranteed will be discussed in Chapter 6 and its capacity
contrasted with the synchronized case. Synchronization ob-
servations by themselves do not leak information if the time
between confined subsystem executions is absolutely
confined, but they do enable the spy to better decode the ob-
served outputs. Of the absolute confinement strategies previ-
ously discussed, only partitioning and masking (depending on
the algorithm specified by the confiner) do not provide syn-
chronization. The reason is that the state of the objects
manipulated by the confined subsystem in these cases can not
be observed by the spy since the spy’s resource allocations do
not change. In the other strategies, there is a possibility that
the absolute confinement implementation would tell the spy
whether the confined subsystem executed. For example,

suppose ‘the standard- state: method- is used for absolutely-

confining the cache-memory covert channel-on a system hav-
ing a cache memory. - Here it is :assumed that several

different processes can hold parts of the cache at one time-

based on their storage references, and that the cache is not
purged after a process has finished its quantum. Instead, the
cache memory pages slowly age out of the cache using a
least-recently-used policy. Information is transmitted over
this channel by the confined subsystem reserving as much of
the cache as possible during execution (large program locali-
ty) to send a one bit and as little of the cache as possible
(small program locality) to send a zero bit. One standard
state confining strategy would be to zero the cache after every
confined subsystem execution so that the amount of the
cache used by the confined subsystem can not be observed by
the spy. But by observing its headway, the spy process would
be able to detect a difference in execution speed depending
on whether or not any of his memory pages are in the cache
when his quantum begins. When the spy notices that none
of his pages are in the cache at the beginning of a quantum,
then the spy assumes that the confined subsystem has exe-
cuted since the spy’s last quantum allocation. This method
of synchronization may not be completely accurate since the
number of spy pages in the cache is affected by other user
executions, but it may be unlikely that all of the spy’s

.memory pages would age out of a large cache between two

successive Spy executions on a particular system; on such a
system, synchronization would be possible.

3.4 Covert Channels Outside the System

With the above mechanism for partial confinement,
there are still channels through which information may be
covertly passed. These channels occur at the boundary of the
machine and its outside environment and may not be able to
be blocked by the operating system. The existence of these
channels .is due to the confined subsystem affecting the out-
side environment during execution. The most common ex-

13

ample of these channels is covert leakage through elec-
tromagnetic radiation [Ware67]. Instead of the spy being a
concurrently executing process, the spy is a radiation scanner
which records the emanations from the computer. Informa-
tion is transmitted by the confined subsystem performing a
set of operations that have a low probability in the normal
workload as a start signal, with the message immediately fol-
lowing. This channel can be blocked by using screens to
block all radiations from the machine.

A more subtle channel is implemented by the spy taking
advantage of some computer center policy to observe outputs
from the confined subsystem. For example, suppose the nor-
mal computer center policy is to write the date and time on a
tape when it is mounted to provide tape usage information.
The covert channel in this case is implemented by the
confined subsystem requesting a certain tape to be mounted
to send a one bit and not requesting the tape to send a zero
bit. If the spy has access to the tape vault where the tape is
stored and can read the date last mounted, information can
be leaked. A larger bandwidth channel occurs if any one of a
large number of tapes can be requested. In general, informa-
tion could be obtained by the spy merely standing in the
computer room while the confined subsystem executes. Such
channels can only be blocked by instituting physical protec-
tion procedures so that unauthorized persons can not enter or
see into the computer room. In addition, the interface of the
computer room with the user community (e.g. entry to the
tape vault) must be strictly controlled.

3.5 Summary
Covert channels are implemented by the confined sub-

-system altering the state of the system.resources. For any

one resource there may be-many covert channels.- An exam-
ple is a physical disk where the disk-head placement, . the file
placement policy and the controller contention.are all possible
covert channels. To provide confinement, all these channels
must be blocked with either an absolute or a partial
confinement mechanism. In designing a system offering par-
tial confinement, a small number of the channels with the
greatest impact on system performance should be partially
confined with the remainder being absolutely confined. How-
ever, it is not enough to just block the channels observable
by an executing spy process. Physical security is necessary to
prevent the spy from observing anything in the computer
room that could be a result of the confined subsystem’s exe-
cution.

.

Huskamp: Covert Communication Channels in Timesharing Sysiems

4. THE COVERT CPU SCHEDULING CHANNEL

4.1 Transmitting Information Through the Scheduler

One important covert channel in timesharing sysiems is
the channel implemented by the CPU scheduling policy.
Effective CPU scheduling is usually necessary for good sys-
tem performance. However, absolute confinement obtained
by masking requires allocating the CPU to a confined subsys-
tem even though the CPU is not needed and other processes

are waiting for the CPU. Wasting CPU time on the confined -

subsystem degrades the system response time, which is an
important part of the productivity of the system as seen by
the user. It may often be an important objective in a system
design to minimize the impact of the confined subsystem on
the response time of the non-confined users and at the same
time to provide an acceptable response time to the confined
subsystem. This chapter discusses how information is
transmitted through the CPU scheduler and outlines the CPU
scheduling algorithms to be analyzed in subsequent chapters.
A model of the information channel implemented by the

Channel input = Scheduler Channel output =
state information (decides Quantum lengtih
for all subsystems order of and interquantum
including the execution) time seen by
confined suosystem the spy

Figure %.1

The CPU Scheduling Channel

CPU .scheduler is shown. in. Figure 4.1.. In-this model, the
CPU. scheduler is viewed as accepting input in the form of
process state information from the confined subsystem and
the other jobs in the system, and deciding on the order in
which all jobs will execute. For example, a pure priority
scheduler uses only the priority of the jobs and their status
(i.e. whether a job is waiting for the CPU or not) to deter-
mine the order of execution. This order of execution is
dynamically changed to reflect changes in the state of the ac-
tive processes consistent with the scheduling policy. For ex-
ample, in round robin scheduling, a process that uses its CPU
quantum is placed at the end of the execution list. Covert in-
formation is then transmitted through the scheduler by the
confined subsystem affecting the position of the spy in the
order of execution. For our analysis, the order of execution

_is assumed to be hidden from the spy. Thus the number of

ways the confined subsystem can send information through
the scheduler is limited. The spy can only tell when he is at
the top of the list (the spy is executing) or not at the top of
the list (the spy is not executing). This limits the channel
outputs to observations of the real time between quanta allo-
cated to the spy.

There are three methods for transmitting information by
using real time information. Of the three, two can be
analyzed using the same channel model while the third does
not yield readily to analysis and must be totally blocked by
the confinement mechanism. In- the first method, the
confined subsystem varies the amount of non-zero CPU time
used each quantum to send different code letters through the
channel. The amount of CPU time used will vary from one
quantum to the next as successive bits of information are
transmitted. The amount of a quantum used by the confined
subsystem will affect the time between successive spy execu-
tions. For example, if the scheduling policy uses a quantum
length of one second, a simple channel encoding of the infor-
mation to be sent is for the confined subsystem to use all of

14

the quantum to send a 1 bit and only a small part of the
quantum to send a zero bit. A generalization of this strategy
is for the confined subsystem to use 1X seconds to send a
zero, 2X to send a one, 3X to send a two, ..., and (n+1)X to
send an n where X is no greater than one-nth. of the quan-
tum length and is dictated by the channel characteristics.

At this point is is instructive to determine the maximum
bit rate using reasonable system parameler assumplions to
emphasize the significance of this channel. The maximum
bit rate for.the scheduling channel occurs if only the confined
subsystem and the spy are executing, and when both subsys-
tems reside in primary memory at the same time. If we as-
sume that process switching overhead is randomly selected
from the range 300 to 500 microseconds (the exact number
depends on the system overhead functions performed during
the switch), then the noise injected by process switching into
the channel ranges from a minimum of 600 to a maximum of
1000 microseconds (two process switches) per code letter
transmitted. For this noise level, a suitable value of X in the
last paragraph would be 401 microseconds (= 1000-600-1).
To transmit the maximum bit rate, the real time per code

© letter sent must be minimized. This is accomplished by the
. confined subsystem encoding information into the two shor-

test quantum lengths which are one microsecond for the 0 bit
(assuming the cycle time of the machine is one microsecond)
and 401 microseconds for the 1 bit. The capacity of this
channel is one bit per channel use since the channel outputs
are always correctly decoded. If the inputs are equally likely
and the spy is assumed to take 1 millisecond to execute each
quantum, then the average channel bit rate is 1 bit/(201 mi-
croseconds for the average service execution time + 800 mi-
croseconds for -context switching + 1000 ‘microseconds for
the spy-execution) = 500 bits/real second.. At this rate; over
eight 10-character/second teletypes could be continuously
printing with a 6 bit character set. Thus.the rate.of informa-
tion flow through this channel can be significant. The aver-
age channel bit rate in normal operation with other users on
the system will depend on the system workload.

The second method for sending information through the
CPU scheduler is by encoding information in the time
between two successive confined subsystem quanta (the in-
terquantum time channel). One realization of this channel is

Code letters sent 1 (o] V] 1
and received

Confined XY XX .
subsystem >
execution I

Spy XX XX XX XX
exccution

Figure 4.2
The Interguantum Time Channel

shown in Figure 4.2 for the case in which only the confined

-subsystem and the spy are assumed to be in the CPU queue.

To send information, the confined subsystem and the spy -
agree on the set of times (denoted by t, , t,, t; , and t,)at
which information is to be sent. The transmission strategy is
for the confined subsystem to be executing at time t. if the
i'" bit is a one and to not be executing at time t, if the jth
bit is a zero. The confined subsystem and spy regulate the
times at which they execute by blocking until some event
(such as a certain real time) occurs. This feature, which al-
lows a process to interrupt its own execution for a specified

e
L3

e

Huskamp: Covert Communication Channels in Timesharing Systems

amount of time, is present in many systems in the form of a
“suspend” or ‘‘sleep” system call. This execution suspen-
sion enables the confined subsystem and the spy to guarantee
that they will be executing at a specified real time. The spy
tests whether the confined subsystem is executing at time t;
by awaking just after the agreed upon time. If the confined
subsystem has previously awakened and is executing, the spy
will observe a delay in the beginning of his execution. In
Figure 4.2, the spy’s execution is delayed at times t, and t,
but not at-times t, and t;. The message sent is then 1001.

The analysis of the interquantum length channel does
not require a different channel model from the quantum
length channel above. The difference between the two chan-
nels is that the quantum length channel sends information by
varying its non-zero CPU quantum length while the inter-
quantum time channel sends information by the number of
times a zero quantum length is allocated. These two chan-
nels can be combined if the allowed quantum length for the
confined subsystem can be both zero and non-zero. When a
zero length quantum is allocated, the interquantum channel
is being used by the confined subsystem, and when a non-
zero length is allocated, the quantum length channel is being
used. In the following analysis, the equivalent channel model
will be used rather than the two separate models.

The third method for transmitting information through
the CPU scheduler is by the confined subsystem encoding in-
formation in its total execution time. The total confined sub-
system execution time may be leaked by the spy noticing a
variation in his quantum allocations due to the termination of
the confined subsystem. For example, observing the equili-
brium steady state of the system (i.e. the distribution of the
spy’s interquantum times), the spy might be able to deter-
mine when.the confined subsystem is no longer receiving
CPU time. That is, when the system becomes less busy. than

" before; the confined subsystem has stopped execution. - The

strategy used to block. this channe! depends.on.whether the
channel is to be part of the channel model (partially
confined) or not (absolutely confined). For absolute
confinement, the most common blocking method is for the
invoker of the confined subsystem (confiner) to specify the
time limit. This can be done by either specifying a time limit
for the entire terminal session with the timesharing system or
specifying a time limit for just the confined subsystem execu-
tion. If the entire terminal session is given a time limit, a
long running confined subsystem can affect the terminal ses-
sion length, causing a longer or shorter session to be needed
than planned. If a shorter session is needed than was initially
specified, the remaining time will be wasted, but with no
unexpected information leakage. If a longer session is need-
ed than was initially specified, at least one additional bit of
information could be leaked if the confined subsystem is res-
tarted when the time limit expires. The restart could be no-
ticed by the spy as an addition to the workload that affects
the spy’s quantum allocations. Therefore, the confiner must
be wary about the time limit specified and about requesting
additional CPU time at the expiration of the time limit.

The alternative to confining the entire terminal session is
to confine each confined subsystem execution with its own
time limit. The same considerations apply here as for the
terminal session time limit. If the confined subsystem
finishes early, the remaining time must be allocated even
though it can not be used. The confiner may submit the next
task to be done to utilize the remaining CPU time, but under
the same constraints as are imposed on the confined subsys-
tem. If the confined subsystem requires more time than allo-
cated, the confiner may restart the subsystem but at the risk
of leaking at least one bit of additional information.

The advantage of specifying a time limit for the entire

15

terminal session is that other processes besides the confined
subsystem may cause the terminal session length to vary.
Thus if the terminal session is continued and the spy notices
the continuation, the spy is not certain that the continuation
is caused by the confined subsystem trying to leak informa-
tion. In effect, there is a possibility that more noise is
present than might be expected. However, in the worst case
the assumption would be that the spy knows about all
unconfined processes and that the amount of extra noise is
zero. In the confined subsystem time limit case, the spy does
know the continuation is a direct result of the confined sub-
system execution.

The time limit channel can also be treated as a partially
confined channel, which makes the scheduler channel model
consist of two parallel channels: the quantum length channel
and the time limit channel. The channel capacity would then
be the sum of the capacity of each of these channels. For
this thesis, it will be assumed that the time limit channel is
absolutely confined and that the channel model consists of
only the quantum length channel discussed above. If the
analysis of the parallel channel case is desired, the techniques
of Chapter 6 can be applied to each of the parallel channels
separately to obtain the channel capacity.

One consideration in the design of scheduling algorithms
is that transmission noise can often be decreased if the
scheduler uses process characteristics in its scheduling deci-
sion. If the spy knows the property used in scheduling, he
can make the spy process assume any value of the property
to trick the scheduler into decreasing the channel noise nor-
mally generated by the independent processes. This strategy
is analogous to Coffman’s scheduling countermeasures
[Coffman68] for obtaining preferential scheduling for
processes. ~For a priority scheduler: in- which the -process .
priority is selected from a segment of the real line (e.g. 0.0 to

-1.0 inclusive), the spy can decrease the channel noise by set-
.ting ‘the priority of the spy. process to just less than that of

the confined subsystem. Information is transmitted through
the quantum length channel by the confined subsystem
blocking after using the CPU time required to send a bit,
which causes the spy to begin execution. Execution of the
confined subsystem and spy alternate to continuously send
information. In this priority scheduler, processes with a
priority less than the confined subsystem and spy do not con-
tribute noise to the channel. If the priority of the confined
subsystem is high enough to block out all other processes,
perfect transmission can be obtained. Similar strategies can
be used for schedulers using memory length, number of page
faults, CPU time estimates or working set size as the
scheduling property.

4.2 Restrictions for Confined Scheduling

To offer either absolute or partial confinement, a
scheduler must guarantee that the maximum amount of leak-
age is calculable. For absolute confinement, the channel
capacity is measurable (i.e. zero) if and only if the scheduling
decision is made independent of any inputs provided by the
executing confined subsystem. In this case the channel tran-
sition probability matrix (CTPM) is not needed to compute
the channel capacity. However, for partial confinement, the
channel transition probability matrix must be obtained.
With the CTPM, the calculation of the capacity is straightfor-
ward. In some cases of interest, the CTPM is so large that
constraints must be placed on the scheduling channel to per-
mit the CTPM to be calculated. In the quantum length chan-
nel, the confined subsystem might be able to choose any
amount of an allocated CPU quantum with a grain-of-time of
one machine cycle as the channel input. The real time out-
puts observed by the spy will also have a grain-of-time of one

e

re

—— —— e ————ten

Huskamp: Covert Communication Channels in Timesharing Systems

machine cycle. In this case, the discrete memoryless channel
capacity is not computable in practice when users other than
the confined subsystem and the spy are executing, since the
elements of the CTPM can not be measured with an accept-
able error. In a computer system with a CPU quantum
length of 0.1 second and a machine cycle time of one mi-
crosecond, 100,000 probability distributions must be meas-
ured to obtain the CTPM (one for each possible input). Of
course if there is no channel noise (i.e. constant process

switching time and only the confined subsystem and the spy

are executing), the CTPM can be found but the channel
capacity can only be computed if the confined subsystem uses
a “‘small”” number of channel inputs (e.g. less than 50). The
limitation on the capacity calculation here is the number of
iterations needed to find the channel input probabilities that
achieve capacity. For these reasons, the straightforward
channel capacity calculation method can not be used on a
confined subsystem that is not constrained in some manner.
Two restrictions that together allow the channel capacity
to be calculated are the limiting of the channel outputs ob-
servable by the spy to be a multiple of some fixed constant,
and the limiting of the number of possible quantum lengths
allocated to the confined subsystem to some small number.
The spy restriction is implemented by the operating system
starting each user’s quantum only at a time that is some mul-
tiple of the chosen constant. This policy does cause CPU
time to be wasted during process switching, but this is viewed
as part of the cost of offering confinement. Another source
of wasted CPU time results from the small number of quan-
tum lengths that can be allocated to the confined subsystem.
Since the amount of a quantum used by the confined subsys-
tem during execution varies as a function of hardware con-
tention and the task to be.performed, it is unlikely that the
chosen confined subsystem quantum is always exactly correct.
Some CPU time is normally wasted to pad the’ confined

subsystem’s CPU requirement to one of the allocatable..-

lengths. In ‘both these restrictions, the wasted CPU time is
traded for the ability to calculate the channel capacity. The
discrete channel model that results from these restrictions is
discussed in detail in Chapter 5.

Both of these restrictions are necessary to make the
CTPM computable. If only the times at which processes start
execution is discretized, then the confined subsystem can ex-
ecute for any multiple of a machine cycle. Each of these exe-
cution times must be viewed as a different channel input
which causes the number of inputs to be too large for a capa-
city calculation to be made. If only the CPU execution time
is quantized, then the variable swapping time, which is a
multiple of a machine cycle, causes the spy to begin execu-
tion at any multiple of a machine cycle. The channel output,
in this case, is defined to be the time between the end of one
spy execution and the beginning of the next. This time inter-
val is in multiples of the machine cycle time which leads to a
large number of channel outputs. Thus the channel capacity
is not computable here due to the large number of outputs.
Both restrictions limit the channel inputs and outputs making
the CTPM computable.

4.3 Scheduling Algorithms to be Analyzed

Three scheduling algorithms are studied to determine
their effect on the capacity of the covert scheduling channel
and on the cost of confinement. The algorithms are varia-
tions of first-come-first-served (FCFS), round-robin (RR),
and two-level feedback (FB). FCFS and RR are examples of
non-priority-type algorithms, while FB is a priority-type algo-
rithm in which the priorities are based on allocated CPU

time. In all the algorithms, the confined subsystem is han-
-dled differently from other processes.to permit measurements

16

of the covert channel capacity. The non-confined subsystems
are handled as expected for each algorithm.

4.3.1 First-Come-First-Served Scheduling

The first-come-first-served scheduling policy is imple-
mented by a single queue of active processes waiting for the
CPU. New arrivals enter at the end of the queue and the
next process to be serviced is taken from the front of the
queue (i.e. the-process -having been in the queue the longest

~amount of time). When a process is.selected for execution,

the CPU is allocated to the process until its CPU requirement
is satisfied. After completing its CPU requirement, the pro-
cess normally exits the CPU queue. However, when the
CPU requirement of the confined subsystem is satisfied, it is
placed at the end of the CPU queue rather than being deleted
from the queue. When the confined subsystem is selected
for execution, the required amount of CPU time is allocated
to satisfy its request (possibly zero CPU time), and this cycle
is repeated for the confined subsystem until the entire sub-
system execution is terminated. The confined subsystem can
only be removed from the CPU queue when its time limit
expires. This continuous circulation in the CPU queue is
done for the confined subsystem to model the information
channel as a quantum length channel only, and not as two
parallel channels (the quantum length and interquantum time
channels) as discussed earlier in this chapter.

Information is sent through the FCFS scheduler by the
confined subsystem prividing inputs to the quantum length
channel by varying the amount of CPU time required for ex-
ecution. The spy’s channel outputs are obtained by deter-
mining the real time between two successive quantum alloca-
tions. Due to the implementation of the FCFS scheduler,

between every two successive spy quanta, provided the spy
process causes itself to be placed at the end of the CPU
queue-immediately -after its quantum terminates. Thus syn-
chronization between the confined subsystem and the spy is
automatically provided by the scheduler, even if an absolute
confinement scheduling algorithm is used to block other
covert channels. This makes decoding the channel outputs
easier than for the case in which the spy does not know if the
confined subsystem has executed between two successive spy
executions. A channel model that implements such a case is
explored in Chapter 6 and is shown to indeed yield a smaller
capacity.

4.3.2 Round-Robin Scheduling

Round-robin (RR) scheduling is implemented like FCFS
scheduling with the exception that at most Q CPU seconds is
allocated at any one time (Q is the quantum length of the
scheduler). If the process does not complete in the allotted
CPU time, then it is placed at the end of the queue to await

* Not complete

Arrivals—» @ - Complete

Figure 4.3
Round Robin Scheduling

another quantum allocation (Figure 4.3). As for FCFS,

when a non-confined process terminates, it is deleted from
the CPU queue until more CPU time is required. Again, the
confined subsystem is treated specially since it is always re-
turned to the end of the CPU queue after execution regard-
less of whether it completed its CPU requirement or not.

- the confined subsystem .is guaranteed-to-execute ‘exactly once - -

re

Lraamn

S

Huskamp: Covert Communication Channels in Timesharing Systems

The confined subsystem can only be removed from the CPU
queue when its time limit expires.

As for FCFS, the confined subsystem is guarantieed to
execute exactly once between two spy executions provided
the spy process always returns to the end of the CPU queue
after its CPU quantum. This fact helps the spy to decode in-
formation sent through the quantum length channel.

In RR, the percentage of the CPU used by the confined
subsystem is inversely proportional to the number of active
processes. This is the type of behavior that is desirable in a
scheduler for confinement since the confined subsystem may
waste a large percentage of its allocated CPU time under
some confined scheduling strategies such as absolute
confinement. RR also does not use any properties of the
processes in the scheduling decision. Thus the spy process
can not obtain preferential scheduling to decrease the channel
noise as can occur in other types of schedulers.

4.3.3 Feedback Scheduling
The two-level feedback scheduling algorithm is imple-

High Priority Queue

Arriva.ls-—-»l I I I I—- CPU

» Completes

Not Completes

t
| Low Priority Queue '
I l I l JI CPU > Completes

t ' Not Completes

Pigure b.4
Feedback Scheduling

mented by two queues as shown in Figure 4.4. New arrivals
enter the high priority queue and are processed in the order
of arrival. If the new arrival completes in the high priority
queue quantum, Q, , the process is deleted from the CPU
queues until more &PU time is required. Otherwise the pro-
cess is placed at the end of the low priority queue. When the
process reaches the head of the low priority queue and there
are no processes waiting for execution in the high priority
queue, then a quantum of length Q, is allocated to the pro-
cess. If the process does not complete in Q, CPU seconds, it
is placed at the end of the low priority CPU queue to await
another quantum allocation. When the process does com-
plete, it is deleted from the CPU queues until more CPU
time is needed. The two-level feedback algorithm analyzed
here is non-preemptive. Once a low priority queue quantum
begins, a newly arrived process waits until the end of the
quantum to begin its execution.

The confined subsystem is treated differently than the
other processes in the system to make the channel capacity
analyzable, - If this were not the case, the information chan-

-nel would have to be treated as two parallel channels rather

than one. This is true because in addition to the quantum
length channel, a queue-residency channel would be present,
since the confined subsystem could transmit information by
the queue in which it is residing. Because the optimal send-
ing strategy for this parallel channel representation is a
research topic in itself, a less general method for handling the
confined subsystem is used to study the effect of priority on
the channel capacity rather than studying the more general

-question of the effect of the general feedback -algorithm on

channel capacity.

17

Two ways of scheduling the confined subsystem are to
restrict the subsystem to execute in the high priority queue
only, or in the low priority queue only. With either of these
methods, the quantum length channel can be analyzed as in
the FCFS and RR cases in which the confined subsystem is
placed at the end of the appropriate CPU queue (high or low
priority) after execution, regardless of whether its CPU re-
quirement was satisfied or not. As before, the confined sub-
system is allocated a zero length quantum if it becomes eligi-
ble for execution but needs no execution time. Of these two
methods, constraining the confined subsystem to execute in
the low priority queue is the more interesting case since new-
ly arrived processes in the high priority queue will execute
before the confined subsystem in the low priority queue.
This may provide a highly variable amount of channel noise.
If the confined subsystem was constrained to the high priority
queue, less channel noise would be present since processes in
the low priority queue would not contribute any channel
noise. Also, the low priority queue processes would be
prevented from executing since there would always be a pro-
cess (the confined subsystem) in the high priority queue.
For this thesis, the confined subsystem will be constrained to
always execute in the low priority queue.

Information is transmitted through the quantum length
channel by the confined subsystem varying the amount of
CPU time it uses every time it becomes eligible for execu-
tion. Since the confined subsystem is constrained to execute
in the low priority queue, the spy’s strategy is to also execute
only from the low priority queue. The spy process can fall
into the low priority queue by being a new arrival in the CPU
queue, which places it in the high priority queue, then using
more CPU time than the high priority queue quantum length,
Q,, - For the spy to continually .circulate in the low priority
queue (follow. the confined subsystem), the spy process may
take on a set of properties to insure it stays in.the low priori-

‘ty queue. For example, in the CTSS FB scheduler [Corba-

t062], the spy process could change its memory length and
effectively choose which priority queue it would enter next.
This is due to memory size being a determinant of queue
placement. Many systems use some type of priority deter-
mining rule to increase the throughput. Thus it is reasonable
to assume that the spy can utilize such a rule to effectively
choose the priority queue in which it will execute. With this
ability, the channel output seen by the spy is the real time
between two consecutive quantum allocations. Since the
confined subsystem and spy both continually circulate in the
low priority queue, the confined subsystem is guaranteed to
execute exactly once between two consecutive spy executions.
This synchronization between the confined subsystem and
the spy aids the spy in decoding the channel outputs.

As noted for the RR scheduler, the FB scheduler also
has the property that the percentage of the CPU used by the
confined subsystem decreases as the number of active
processes increases. Since the confined subsystem may waste
CPU time, this effect is desirable in a confined scheduler.

For feedback, the type of absolute confinement strategy
used on the other covert channels might make a difference in
the scheduling channel capacity by permitting certain sending
strategies to be fruitful. For example if the spy is able to
detect when the confined subsystem actually executes, then
in addition to a spy process circulating in the low priority
queue, another spy process can be injected periodically into
the high priority queue to try and eliminate some of the
channel noise caused by the other legitimate users of the sys-
tem. The channel output, then, is the real time between the
two spy executions that most closely brackets the confined
subsystem execution. This procedure decreases the amount
of noise generated by the unconfined processes if the high

-

ve

A T & e Ty wa R0

Huskamp: Covert Communication Channels in Timesharing Systems

priority queue spy process takes a very small swap time and
uses very little CPU time each execution so as to not affect
the equilibrium state of the system. In the analysis to be per-
formed, it is assumed that the other covert channels are ab-
solutely confined by either the partitioning method or by a
masking policy that does not permit the spy to determine
when the confined subsystem receives a CPU quantum. Ei-
ther of these policies will negate this spy strategy.

4.4 Number of Spies _

The channel capacity of the covert scheduling channel is
dependent on the number of concurrently executing spy
processes as well as the number of independent (non-spy and
non-confined) users. There are two different viewpoints that
must be considered when observing the current workload of
the system. If the system administrator observes a workload
of 27 users (including one executing confined subsystem),
the parameters for scheduling the confined subsystem may be
set on the assumption that there are 25 independent users,
one spy and one confined user. If, however, the number of
independent users is overestimated, the capacity of the chan-
nel may be much larger than anticipated for the partial
confinement case. In the case of perfect collusion in which all
users other than the confined user are cooperating (i.e. 26
spies and one confined user), there is no channel noise intro-
duced by the other users. Thus only the noise injected by
the operating system prevents perfect transmission (zero
decoding error for each input sent). In order for an operat-
ing system to offer partial confinement, assumptions must be
made about the characteristics of the user population.

The other viewpoint is from the perspective of the spy
who sees a certain workload on the system and wants to in-
crease the channel capacity by adding more spy. processes.. .
One possible strategy for increasing the channel capacity is to-

‘trap some of the independent processes (but not the confined

subsystem) between two spy processes and to eliminate their
effect on the observed channel output.. For the round robin
and FCFS schedulers, this strategy can be implemented as in

(4) P,Confinee Spy L Spy S {—>CPU

(B) Spy S P,Confinee Spy L. }—CPU

(c) P’ Spy S P,Confinee Spy L }—»cCPU
Figure %4.5

Two Spy Strategy. for Round Robin/FCFS ,
. i
Figure 4.5. The spy initiates two processes, one right after
the other, with the first process taking a negligible amount of
CPU time (Spy S) and the second taking some non-negligible
amount of time (Spy L). Figure 4.5A shows the situation
when these two spy processes reach the head of the queue.
The queue entry labeled P,Confinee represents some combi-
nation of independent processes and the confined subsystem.
At any time there are usually some processes waiting for in-
put from their console and are not in the CPU queue. These
processes are not shown in the figure. After Spy S executes,
it is placed at the end of the queue and the situation is now
as shown is Figure 4.5B. Since Spy L takes a non-negligible
amount of time to execute, there is a non-zero probability
that some of the processes waiting for input will receive in-
put,. will_end their thinking period, and will enter the CPU

18

queue during Spy L’s execution. This leads to the situation
in Figure 4.5C where P’ represents the processes that joined
the CPU queue during Spy L’s execution. In this case, the
channel output observed by the spy is the time between the
termination of the quantum assigned to Spy L and the begin-
ning of the quantum assigned to Spy S. The processes la-
beled P’ do not generate any noise since they are not part of
the channel output. Since the amount of noise may decrease,
the channel capacity may increase. This trapping strategy
will,- however, increase the response times seen by the users
of the system and will increase the average number of
processes in the CPU queue (the average channel noise).
This method will be investigated further in Chapter 6 where
measurements are given for the round-robin scheduling algo-
rithm.

For the channels to be investigated in this thesis it will
be assumed that one spy process is used unless specifically
stated to the contrary. This analysis will give the expected
channel capacity as a function of the number of independent
users. The question of how much collusion a confinement
mechanism should be able to tolerate must be an
installation-dependent decision. In situations where the users
have a thorough background check before being allowed to
use the facility (such as in the military clearance procedure),
a smaller amount of collusion might be assumed. In systems
that process highly sensitive data that must be absolutely pro-
tected, perfect collusion must be assumed. This means that
the noise attributed to independent users must be ignored in
the analysis.

4.5 Summary
This chapter has explored the different ways information

can :be sent.through..the CPU.scheduler. - The major com- -

munication channels in the CPU scheduler. are. implemented
by the- different quantum lengths -that are allocated to the ..
confined . subsystem . and the total execution time of -the
confined subsystem. The total execution time channel is as-
sumed to be blocked by the confiner specifying the time.
Only the quantum length channel will be studied further.
The requirement of being able to calculate the channel capa-
city for partial confinement was shown to impose restrictions
on the confined subsystem and on the system as a whole to
limit the number of channel inputs and outputs to a manage-
able number. There are many interesting channels that can
be formulated but not solved due to the restrictions which
must be imposed to make them tractable. This is particularly
true for scheduling algorithms implemented as information
channels with memory. Restrictions on the number of quan-
tum lengths that can be allocated to the confined subsystem
and the resolution of the channel outputs seen by the spy
make the scheduling covert channels analyzed here tractable.

Another facet of the confinement problem is the deter-
mination of the number of spies which might be using the
system at one time. Since the channel capacity is dependent
on the number of independent users generating channel
noise, an evaluation of the trustworthiness of the user com-
munity is necessary before using partial confinement.

L3

Huskamp: Covert Communication Channels in Timesharing Svstems

5. THE MODEL

5.1 Introduction

To study covert channels, the channel capacity must be
calculable so that the magnitude of the information leakage
problem can be determined. The concept of channel capacity
for the scheduling covert channel has been previously dis-
cussed at some length for the scheduling algorithms to be
analyzed (first-come-first-served or FCFS, round robin or
RR, and two-level feedback or FB). This chapter will discuss
the method for computing the channel capacity.

5.2 Overview of the Analysis Method

The channel capacity measurements presented in
Chapter 6 are based on a simulation model of the Compatibie
Time Sharing System (CTSS) developed at MIT during the
early 1960’s [Corbato62]. There are two reasons this system
was chosen for study. First, CTSS was a simple operational
system that supported a number of simultaneous timesharing
users. By basing the capacity measurements on this system,
the results should reflect realistic estimates of the channel
capacity for real systems. Of course, each different timeshar-
ing system will have different channel capacities since
different hardware and different system policies are used.
However, the procedure for measuring these capacities is the
same one presented here. Second, detailed measurements of
the system operation are available and an accurate simulation
model of the system had been previously developed
(Scherr66]. The simulation model is a convenient source of

system measurements since the instrumentation can be easily .

added to obtain the performance characteristics of interest.

The first step in the analysis- process -is ‘to validate our
simulator of a CTSS-like system with the simulator measure-
ments produced by Scherr’s CTSS simulator. Our simulation
results are only CTSS-like since discretization of the system,
as explained in Chapter 4, must be done to make the capacity
computable. For validation purposes, the discretization
feature has not been used so that a direct comparison with
Scherr’s results could be made.

The second step is to use the output from our simulator
to parameterize a semi-Markov model of the timesharing sys-
tem which will be needed to calculate the channel capacity.
The semi-Markov model represents the effect of allocating
CPU time to the confined subsystem on the CPU scheduler.
In particular, the number of processes that are requesting
CPU time (and hence the noise level) distinguishes the states
of the model from one another. For any given state in the
model, the next state probability and the probability of the
amount of time until the next state transition are obtained
from the model parameters.

The third step is to obtain a CTPM for the CPU schedul-
ing channel from the semi-Markov model. Once the CTPM
is determined, the capacity can be found using the methods
explained in Chapter 2.

The following sections present each of the above steps in
the capacity calculation procedure in more detail along with
the validation information for each step. A discussion of the
outputs obtained from the model is postponed until the next
chapter.

5.3 The CTSS Timesharing System Simulator

The hardware used for CTSS is similar in speed and
capacity to the minicomputer-based timesharing systems
presently available. Specifically, the CTSS host machine was

19

an IBM 7094 with six 1ape units, one IBM 1301 disk drive,
and one IBM 7320 swapping drum. The IBM 7094 was
modified 10 have two 32K memory banks (one for user pro-
grams and one for system programs), and automatic reloca-
tion and bounds protection registers. However, in the imple-
mentation of CTSS measured by Scherr, the automatic relo-
cation register was not used, causing all user programs 1o
start at absolute location zero in the user memory. Thus at
most one complete user program could be in memory at one
time,

There are two characteristics of the CTSS system that
simplify the simulation. The first is that there is no overlap-
ping of CPU time and 1/0 time. Thus all I/0 time is includ-
ed in the user’s quantum allocation. Since there is at most
one complete user process in memory at one time, the sys-
tem swap time is not overlapped with useful user CPU time.
This decreases the complexity of the system. The second
characteristic is that Scherr found the non-swapping system
overhead associated with a user to be approximately linear
with respect to the CPU time requirement of the user. Thus
the user’s real CPU requirement is suitably lengthened to ac-
count for both the user CPU time and for system overhead.

One simplifying assumption made by Scherr in simulat-
ing CTSS is that the CPU requirement for each interaction as
well as each user think time is independent of all previous
CPU requirements and think times. Introducing this assump-
tion did not appreciably affect the simulator validity since the
CTSS simulator closely agreed with the measurements of the
real CTSS system. This assumption is also made in the simu-
lator implemented here for the capacity measurements.

The CTSS simulator is described by the model in Figure
5.1. This is a closed interaction model of a timesharing sys-

Process
Infinite Number cf CPU)
Thinking Servers Requirement
Part Satisfied
Active
Process Process CPU Reguirement
Part

Not Satisfied
System of ol o)

> C
~ (=)

Queues

Figure 5.1
CTSS Queueing Model

tem that accounts for all users on the system. No users ei-
ther enter or exit from the model. A typical interaction in a
timesharing system consists of two parts. The first part is the
period of time during which the user is thinking of his next
input line to be entered. This includes both the actual think-
ing time and the time required to type in the input. At the
moment the input is entered, a process is activated by the
operating system to perform the task desired by the user.
The process is scheduled for execution through a system of
queues and is eventually allocated a quantum of CPU time.
If the. quantum allocated does not satisfy the CPU require-

v

Huskamp: Covert Comnmnicanon Charriels in Tinesharing Systems

ment of the process, the process reenters the sysitem of
gueues to be scheduled for another quantum allocation.
When enough CPU time has been allocated to the process to
satisfy the CPU requirement, the interaction is complete and
the operating system waits for more input from the user be-
fore any more CPU time is allocated to that user. Figure 5.1
consists of two parts that model the thinking user (thinking
part) and the allocation of CPU time to the user’s process
(active process part). The thinking users on the sysiem are
modeled by a service station with an infinite number of
servers. Thus there is never a queue at this station. The ser-
vice distribution is the one measured by Scherr which is near-
ly (but not quite) exponential. The mean of this distribution
is 35.2 seconds with a standard deviation of 23 seconds. The
think time density has an impulse of area 0.12 at time=0
representing the processes in the workload that generate the
next command themselves without user intervention. The
active process part consists of a sysiem of queues (which
represent the scheduling algorithm) and a single CPU server.
The service time for the CPU service station includes the
time to swap in the current process, to execute the process
and to swap out the process. The CPU service distribution
used is the same one used by Scherr. The CPU time distri-
bution is characterized by many CPU requests requiring very
small amounts of CPU time, as shown by the distribution
median being less than 0.05 seconds. A typical example of
this behavior is file editing. In addition to these small
interactive-type requests, there are also some fairly large re-
quests, such as for compilations and long program execu-
tions. These requests make the mean of the distribution
(0.88 seconds) much larger than the median.

In the CTSS ‘model there are three classes of processes:
unconfined processes for users not executing confined,.the
spy process and the confined subsystem. The unconfined
processes are free to enter and leave both parts of the model
but the spy process and confined subsystem are constrained
to never leave the system of queues representing the
scheduler, as noted in Chapter 4. The CPU service distribu-
tion of each class is distinct due to the different characteris-
tics of each class. The unconfined processes exhibit the
characteristics observed by Scherr, the spy process uses very
little resources during execution, and the confined subsystem
exhibits characteristics which vary depending the scheduling
strategy used. Since the interquantum time probability distri-
bution for the spy is needed in the calculation of channel
capacity, the queueing theory model of this system is not
pursued in favor of the simulation approach.

The objective of the simulator development for the chan-
nel capacity study is to duplicate the CTSS simulator results,
then to make suitable modifications (such as discretization)
to allow the channel capacity to be measured. Table 5.1 is a
comparison of the results obtained from our simulator with
the results published in ([Scherr66] for the round-robin

‘scheduler with a quantum length of 2 seconds and 25 users

(no discretization). These measurements show that there is
not a large discrepancy between Scherr’s simulator and our
simulator. In fact, all of the measurements listed in Table
5.1 for the capacity measurement simulator are within 5% of
the values obtained from Scherr’s CTSS simulator. Based on
this comparison, our simulator is believed to reflect the CTSS
system behavior closely enough for the purposes of this
thesis. Thus the measurements reported here are based on a
real timesharing system. and should illustrate the magnitude

-of channel capacities available in such a system.

20

Capacity
Scherr Meazzurement
CTSS CcT8sE
Simulator Simulator
Average response 7.20 7.32
time
% Disk time 2k .1 23.6
utilization
(swapping)
% User CPU time 52 5
Table 5.1

Comparison of Scherr's CTSS Simulator
with Our CTSS Simulator

5.4 The Semi-Markov Model for Capacity Calculation

The next step in the calculation requires that the output
from the simulator be used to formulate a semi-Markov
model of the scheduling algorithm to be analyzed. The use
of semi-Markov models to analyze a stochastic process in a
computer system is not new. A similar approach is taken in
[Chu76] for analyzing page replacement algorithms. In that
analysis, the semi-Markov model is used to represent the
page faulting characteristics of an executing process. In the
present analysis, the semi-Markov model represents the in-
terquantum times seen by the spy. Since the confined sub-
system can usually be allocated one of several possible quan-
tum length (e.g. any multiple of the discretization interval
up to the maximum quantum length), there is usually more
than one semi-Markov model representing a scheduling algo-
rithm. Each semi-Markov model represents the effect. of al-
locating one particular quantum length to the confined sub-
system. In the following model derivation, only one semi-
Markov mode! is considered. Generation of the other
models for the different quantum lengths is performed in the
same manner.

Before proceeding with the derivation of the model, a
brief introduction to the characteristics of a semi-Markov
model will be given. A semi-Markov process is represented
by a set of states, S; (0<i<n). The Markov property of this
representation states that the behavior of the model at any
instant of time is governed by the current state and the time
of the last transition into the current state. The behavior is
not dependent on the history of the states entered before the
current state. Given the current model state, S; (0 < i < n),
the probability of the next state being S; (0 < j < n) is given
by a transition probability function. There is one such func-
tion for each state in the model. Once the next state, S;, has
been determined by the transition probability function, the
amount of time between the transition into the current state,
S;, and the transition to state S; is given by a probability den-
sity function. There is one such time probability density
function for each ordered pair of states (S;,S;), 0<i, j<n.
For the present analysis, the semi-Markov model is used to
determine the probability of a certain state sequence occur-
ring and the probability density of the interquantum times
seen by the spy.

The major hurdle in the analysis is defining a state space
describing the CTSS system for the semi-Markov model that
is small enough to make the computation of the above two
probability densities feasible. A state space that exactly
models the CTSS system must include a representation of the

Huskamp: Covert Communication Channeis i Tomesbaring Systems

number of quanta each process in the CPU qucue has been
previously allocated for the current interaction, and the
amount of time each process that is waiting for user input
(the user is thinking) has been in that state. This is a very
large state space since a user’s think time and previous CPU
time allocation could be measured in the hundreds of
seconds. To decrease the stale space size, cerlain assump-
tions are introduced. These assumptions serve to eliminate
the necessity of exactly representing the process state and are
the topic of the next section.

5.4.1 Mode] Assumptions

To simplify the representation of the real CTSS system,
five assumptions are made about the user and process charac-
teristics. The last three assumptions are actually incorporated
into the simulator and all five are used in generaling the
semi-Markov model parameters. The decision as to the vali-
dity of these assumptions will be made by comparing the
channel capacity obtained from the semi-Markov model with
the capacity obtained from simulation. No individual valida-
tion of the assumptions will be done.

The first assumption is that the think time distribution
for each user is exponential. As noted in [Estrin67}, the ob-
served think time probability distribution for CTSS is very
close to exponential so it is expected that this assumption will
not greatly affect the validity of the model. The effect of this
assumption is to decrease the number of states needed in the
semi-Markov model. If the assumed think time probability

distribution is not exponential, the amount of time each.

thinking user has been thinking would have to be encoded
into the state space. For example, suppose there are ten
users on the system and- that these users may either be think-
ing or requesting CPU time for a_process. Also assume that
the think time density function has non-zero probability for
the interval 0 to 20 seconds and that the discretization used is
0.2 seconds. With these assumptions, the number of states
needed to accurately represent just the thinking users is:

20
0.2

10 2 9
0.2

20

+ 0.2

+...+

]=l.01x102°

The reason for the large number of states is that knowing
how long a user has been thinking does affect the probability
of this future behavior. With the exponential distribution as-
sumption, the amount of time each user has been thinking
gives no clue as to how much longer the user will be think-
ing, due to the memoryless property of the exponential distri-
bution. Thus the number of states needed for the above ex-
ample with this assumption is 11.

The second assumption is that the number of quanta re-
quired for execution of a process is geometrically distributed.
This means that the probability of a process terminating dur-
ing any given quantum is independent of all previous execu-
tions of the process. In the timesharing system model, this
distribution is generated by first deciding whether the execut-
ing process terminates during the present CPU allocation by
flipping a -coin biased according to the queue of which the
process is a member. Given the outcome of the toss, the
CPU time needed is then chosen from either the terminating
process distribution for that queue or the non-terminating
process distribution for that queue. The terminating and
non-terminating distributions are not dependent on the
number- of quanta previously allocated to the process. These
simulations are obtained from simulation measurements and

2]

can be viewed as an average of the behavior of all processes.
The assumption of a geometric distribution for the number
of quanta required and use of the terminaling and non-
terminating CPU time distributions from the simulator will
produce a process behavior that is different from the one ob-
served in CTSS. If, however, the assumption of a geometri-
cally distributed number of quanta is not made, the amount
of CPU time previously allocated must be kept for each exe-
cutable process, which makes the number of states large for
the same reason as for the think time case. The validation
measurements to be given later will show- that the behavior
of the model with this assumption closely parallels the
behavior of the real system.

The third assumption is that the behavior of a process is
independent of the state of any other process and of the
number of users on the system. This assumption is never
exactly satisfied by a real system since there is a feedback
effect between the system workload and the type of jobs exe-
cuted by the users. For example, if there are a number of
long running, high priority jobs being executed, the user
might run non-interactive jobs since the interactivity of the
system might be poor. However, in Scherr’s analysis, this
feedback effect was not included in the simulator, yet the
simulation results did accurately represent the CTSS system.
Thus our omission of this feedback effect should not
significantly affect the results of this analysis.

The fourth assumption is that the entire operating sys-
tem is discretized with a discretization interval of 0.2 seconds
unless otherwise noted. This assumption was previously
mentioned in Chapter 4 and serves to make the channel
capacity analysis tractable. There are._two ways .10 .interpret
the capacities computed using this assumption. The first in-
lerpretation is that the- measurements are an approximation
to the operation of a real system. As the discretization inter-
val approaches zero, the capacity measurements more nearly
approximate the true channel capacity in an undiscretized
system. In this interpretation, the capacity calculation is done
by integration rather than by the discrete methods used here.
The problem with this approach is in accurately specifying the
continuous (or very small discretization interval) probability
functions needed for the integration operation without hy-
pothesizing some convenient function such as exponential.
Note that the probability function specification is only a prob-
lem for determining the channel capacity for partial
confinement and not for absolute confinement in which the
capacity is zero. The second interpretation is to accept
discretization as a constraint on the design of systems
offering partial confinement. In the system design, the
discretization interval is set to the smallest value for which
the channel capacity can be computed. The capacity obtained
can then be taken as a good estimate of the actual channel
capacity. Operating systems that offer partial confinement
must give some kind of guarantee that the amount of infor-
mation leakage by a process will not exceed a certain amount.
The view which most closely supports this is the interpreta-
tion of discretization as a constraint. This is also the view
that will be taken in this thesis.

The fifth assumption defines the characteristics of the
spy process. Since the spy executes continuously, the more
CPU and swapping time used by the spy each execution, the
larger is the mean average scheduler queue length. Since
more unconfined processes executing mean a decrease in
channel capacity, the spy’s objective is to perturb the system

--as little as possible to keep the channel noise to a minimum.

Huskamp: Covert Comnunication Charnels i Tiiesharing Sysiems

For this reason, the spy should use as little CPU timc per ex-
ecution und as little memory as possible. The simulator and
the semi-Markov model assume that the spy uses only 1 mi-
crosecond of CPU time each execution and that the spy’s
memory requirement is only one word. Both of these charac-
teristics are chosen to insure that the actual system periurba-
tion due to the spy is greater than that assumed and thus that
our results represent an upper bond on the amount of leak-
age.

5.4.2 Analysis Assumptions '

In addition to the assumptions dealing with the CTSS
system, three assumptions are also made in the channel capa-
city analysis. The first assumption is that the confined sub-
system and the spy do not know the number of processes re-
questing CPU time or have any knowledge of the number of
processes in any queue. If the spy could tell, for example,
how many unconfined processes execute with the confined
subsystem between two spy executions, the spy might be able
to more intelligently decode the channel outputs and thus
raise the capacity of the channel. To satisfy this assumption,
the system must not make available to any process the
number of processes requesting CPU time. In fact, the entire
system performance evaluation effort would have to be care-
fully evaluated to insure that no leakage of performance in-
formation to potential spies could result in more leakage.
For example, if the spy is able to find out that the average
CPU requirement for the different job classifications (e.g. stu-
dent, faculty, research) and the spy knows the confined sub-
system is a “‘research’ job, then a better guess as to the total
running time of the confined subsystem can be made. This
information is not generally available 1o the spy process since
the identity of the other concurrently executing processes is
not known. This information could leak additional informa-
tion, although the amount of extra channel capacity is prob-
ably small from such gross measures of system performance.

The second assumption for the analysis is that the sys-
tem workload consists of one confined subsystem, one spy
process and n general users (n = 5, 15, or 25) at any one
time. The number of users on the system remains constant
(no logons or logoffs) but the proportion of users thinking
varies with time. The one confined subsystem restriction

. could be removed by explicitely accounting for the charac-

teristics of the additional confined subsystems in the model.
However, providing more than one spy may cause the chan-
nel capacity to increase as mentioned in Chapter 4. The
effect of two spies will be analyzed in Chapter 6 to determine
the effect of this assumption. A discussion of this point is
deferred until then.

The third assumption is that for partial confinement, the
confined subsystem will be forced to allow the system to re-
turn to some predefined equilibrium state between each
series of variable quanta sent. A variable quantum is defined
as a quantum with length determined by the confined subsys-
tem. Each set of variable quanta perturbs the system from
its equilibrium state. To make the channel capacity measur-
able, the equilibrium state must be reestablished between
each set of variable quanta as explained in Chapter 2. The
equilibrium state used in all cases is the state that results
from the confined subsystemn being allocated a constant
length quantum every time it is eligible for execution. this
constant quantum length is called the equilibrium quantum

- length since it defines the equilibrium state. This point is

more- thoroughly explained in Chapter 6. This formulation of

%]
(38)

the covert channel is appealing since the subsystem that pays
most of the penalty for confinement, either in long response
times or in wasted CPU allocations, is the confined subsys-
tem. This does not mean, however, that the unconfined
users will be unaffected by the confined execution.

5.4.3 Model Parameterization
A semi-Markov model of a stochastic process is com-
posed of three parts:
1) A set of i states (0<i<n) representing the stochastic
process
2) A set of state transition probabilities. If the current
state is j, the probability that the next state is i is P;;. These
transition probabilities obey the usual rules:
n
a)ZPk,:l, OSJQH.
k=0
b)P;j?O, 0<i N J<n

3) A set of transition time probability density functions,
T;;(1) for 0 < i, j < n. The function T;;(t) gives the proba-
bility that the time spent in state j before the transition to the
next state i is t, given that the transition from state j to state i
occurs,

The model is characterized by the Markov property that
the behavior of the process at any time is dependent only on
its current state and not on any previous state. Thus any past
history that affects the current behavior of the process must
be encoded into the current state. The difference between

_the semi-Markov model and a straight Markov model is that
the state residency time probability density function is includ-

ed in the semi-Markov case and not in the straight Markov
model. It is the inclusion of the state residency time proba-
bility density function that makes the semi-Markov model
suitable for measuring the channel capacity of the scheduling
covert channel. For the interested reader, a more formal
definition of the semi-Markov model can be found in
[Ross70].

To determine the capacity of the covert scheduling chan-
nel, there must be a way to model the effect of allocating
different quantum lengths 1o the confined subsystem on the
rest of the system. In particular, since the covert channel
output observed by the spy is the interquantum time, the
effect of allocating different amounts of CPU time to the
confined subsystem on the spy’s interquantum time must be
calculable. This is accomplished by using a set of semi-
Markov models (one complete model for each possible CPU
quantum length allocated to the confined subsystem) each
with the same state space but with different P;; and T;; func-
tions. The remainder of this chapter will explain how one of
the semi-Markov models from the set is obtained for a given
quantum length allocated to the confined subsystem. The
models for the remaining confined subsystem quantum
lengths can be generated by using the same technique.

The scheduling algorithms to be analyzed are round-
robin (RR), first-come-first-served (FCFS), and two-level
feedback (FB) as described in Chapter 4. The semi-Markov
model parameters for RR and FCFS are calculated in the
same way since the two algorithms are closely related. How-
ever, the FB scheduler is very different from either the RR
or the FCFS scheduler. In particular, FB is implemented
with two queues of different priorities while RR/FCFS is im-
plemented with only one queue. Because of this difference,
the method for parameterizing the semi-Markov model for

. the FB scheduler is more complex than for the RR or FCFS

scheduler. For this reason, the RR/FCFS model will be dis-

. Covert Communication Channels in Timesharing Systems

cussed first and the additional steps needed to parameterize
the FB model will be discussed next.

In the RR/FCFS model, the model states represent the
number of unconfined processes ahead of the spy in the CPU
queue at the instant the spy is placed at the end of the CPU
queue. Thus for four unconfined users in the system, state 2
represents the situation in Figure 5.2. For this state, the
CPU queue ordering of the unconfined processes and the
confined subsystem is immaterial since they will all execute

/- Thinking User 3
\- > Terminate
Thinking User &4 CPU

Does not terminate CPU requirement

Unconfined |Unconfined
>|SPY | supsystem|PTOCESS 1 procesr; 2

Confined

(uP1) (up2

Figure 5.2
Representation of State 2 for the RR/FCFS Model

before the spy process. Note that changing the number of
users in the system does not affect the number of users in
the CPU queue for this state, but does affect the number of
users that are thinking. Because of the exponential think

time ‘assumption and-the independence of the present CPU

requirement and the past CPU time allocations, the state of
the scheduler can be given by the total number of users in
the CPU queue. For a workload of 25 unconfined users, the
complete state space would have 26 states representing 0,
1,..., 25 unconfined processes in the CPU queue. However,
most of the higher numbered states have a very small proba-
bility of occurrence and can be neglected for the purpose of
the analysis. The contribution of the neglected states to the
channel capacity is small since virtually all of the capacity
results from the three states representing 0, 1, and 2
unconfined users in the system. For this reason, the
RR/FCFS model uses only 12 states (states 0—11) for a
workload of 25 unconfined users, 8 states for a workload of
15 unconfined users, and 6 states for a workload of 5
unconfined users.

The next task is to compute the remaining two com-
ponents of the semi-Markov model: the transition probability
density functions, P;;, and the transition time probability den-
sity functions, T;;. To do this, it is first necessary to simulate
the scheduling algorithm to be analyzed and to obtain the
probability that an unconfined process will terminate during
its next quantum allocation, the probability density function
for the amount of real time a terminating process will take
during its next quantum allocation, TERM(t), and the pro-
bability density function for the real time a non-terminating
process will take during its next quantum allocation,
NTERM(t). Both of the probability density functions in-
clude any necessary swapping time. With these simulation
measurements, the P;; and T;; functions can be computed by
starting in state j and computing the probability and the time
density function for each event sequence that results in a

-. transition -to state i. The.P;; function is simply the summa-

23

tion of the probability of all event sequences leading to state
i. The T;; function is obtained by weighting the convolutions
of the TERM(t) and NTERM(1) probability densities which
represent the event sequence for a transition from state j to
state i, by the probability of the event occurring. As an ex-
ample, take the case of computing the transition probabilities
and the transition time probability density function for state 2
with four unconfined users (two unconfined users thinking
and two unconfined user processes requesting CPU time).
This starting state is shown in Figure 5.2. From this starting
point, six events could occur during the execution of
Unconfined Process 2 (UP2). The possibilities are:

1) UP2 terminates and neither thinking user activates a
process that enters the CPU queue.

2) UP2 terminates and one thinking user activates a pro-

Requirement. cess that enters the CPU queue,

3) UP2 terminates and each thinking user activates a

. process that enters the CPU queue.

4) UP2 does not terminate and neither thinking user ac-
tivates a process that enters the CPU queue.

5) UP2 does not terminate and one thinking user ac-
tivates a process that enters the CPU queue.

6) UP2 does not terminate and each thinking user ac-
tivates a process that enters the CPU queue. From the simu-

) lator output and the exponential think time assumption, the

probability of each of these events and the real time density
function is calculable in a straightforward manner. For case 3

Thinking User 2 ———

Spy | CP| Up1 CPU

UP3.or.| UP3 or.
UP4 UP4

CP = confined process

UP3 or UP4 = either unconfined process for
user 3 or for user &

UP1 = unconfined process for user 1

FPigure 5.3
Intermediate State After Unconfined Process 2 Executes

above, the intermediate state entered is shown in Figure 5.3.
The transition probability for case 3, PT, is computed by the
expression:

Y (C,; x (probability one user quits thinking
=0 in real time <t)?2
x (probability one user continues
thinking longer than time t)°
x (probability UP2’s execution time is t,
given UP2 terminates)
x (probability UP2 terminates)

in which C;; is the number of combinations of j things that
can be made without regard to order out of a total of i things.
The simulator provides the probability that UP2’s execution
time is t given UP2 terminates and the probability that UP2
terminates. The probability one user quits thinking in time
< t and the probability one user continues thinking longer

e

ranrme

J—y

Huskamp: Covert Communication Channels in Timesharing Systems

than time 1 are computed from the exponential think time
density function. The real time density function for the in-
termediate transition due to the execution of UP2, T(1), is
simply:

T(t) = C,, x (probability one user quits thinking
in real time < t)?
x (probability one user continues longer
than time t)°
x (probability UP2’s execution time is t
given UP2 terminates)
x (probability UP2 terminates)

When the calculation for the six cases above is completed,
there is a partial transition probability defined from state 2 to
the allowable intermediate states as shown in Table 5.2.
Since there is still one unconfined process ahead of the
confined subsystem and the spy in the CPU queue, this pro-
cedure must be repeated using each of the intermediate states
in Table 5.2 as starting states. The main complication of this

Total Number of

Unconfined Users Cases
Number of in Queue Behind Contributing to
Thinking Users the Spy Transition
o 3 6
1 2 3,5
2 1 2,4
3] 1
Table 5.2

Intermediate States After One Unconfined Procﬁ;s Execution

calculation is in computing the time density function from
the convolution of the density obtained for the transition
from state 2 to the first intermediate state, with the density
for the transition from the first intermediate state to the
second intermediate state. This operation is, however,
straightforward.

After the execution of UP1 has been accounted for, only
the confined subsystem remains to execute before the spy.
The procedure for calculating the state transition probability
and the transition time density for the confined subsystem is
the same as for the unconfined processes with one difference.
The difference is that the confined subsystem takes a fixed
amount of time to execute, which is the CPU quantum
length for the confined subsystem execution for which this
model is being computed. The probabilities of processes
entering the CPU queue at the completion of a user think
time, in particular, are dependent on the CPU allocation

given to the confined subsystem. Thus the formula for PT -

above has only one non-zero term in the summation and the
formula for T(t) is non-zero only for t equals the confined
subsystem quantum length. After the confined subsystem
execution has been accounted for, the remaining factor that
determines the state transition is the spy execution. As not-
ed before, the spy takes as little CPU time as possible to keep
its system perturbation to a minimum. The assumed execu-
tion time for the spy is one discretization interval (0.2
seconds unless specifically noted otherwise). The effect of

24

the spy is computed in the same manner as for the confined
subsystem only the execution time is a constant 0.2 seconds.
The resulting transition probabilities and transition time den-
sity functions after the spy computation are the final func-
tions.

The above procedure stepped through the computation
for only state 2 of the semi-Markov model. Each state must
be similarly analyzed with the same CPU quantum length for

-the confined subsystem to obtain a complete semi-Markov

model. The CPU allocation to the confined subsystem is
then changed to another possibility and another entire model
computed. This results in the necessary one semi-Markov
model for each possible confined subsystem CPU allocation.

The FB analysis is slightly more complex since it is not
known how many unconfined processes will execute between
two successive spy executions in the low priority queue, due
to processes entering the high priority queue. This two
queue structure also complicates the description of the inter-
mediate states since the number of processes in both queues
must be kept.

The state space for the FB algorithm excluding the inter-
mediate states is composed of a pair of numbers, (A,B) in
which A is the number of processes in the high priority
queue and B is the number of processes in the low priority
queue. Since the spy always executes in the low priority

g queue, A is zero when the spy begins execution. To reduce

the size of the model state space, the model states represent
the state of the CPU queue when the spy begins execution
(all pairs for which A=0). Thus the state space can be
represented by the single number B.

To obtain the transition probabilities; P, and the transi-

| tion time probability density functions, T;;(t), the same

method is used as for RR/FCFS but with .two major.
differences. The first difference is that the number of inter-
mediate states is much larger—i.e. all allowable values of
(A,B). This makes computation of the model parameters
more difficult. The second difference is that there is a non-
zero probability that the spy will not execute again within
time T,, where T, is an arbitrarily large number. This could
occur if processes enter the high priority queue and terminate
in one quantum allocation in such a way as to lock out all low
priority queue processes from execution. Thus there is a
finite probability that no transition will occur within a finite
time. The approach taken to this problem is to establish a
probability threshhold (0.995 unless otherwise stated): the
transitions from intermediate states to the intermediate states
and to the final model states (those with A =0) are computed
until the sum of the transition probabilities into the final
states exceed the threshhold. All transition probabilities are
then normalized to 1.0 and the computation terminates. For
example, take the case of determining the transition probabil-
ities and the transition time density function for the (0,2)
state (0 unconfined processes in the high priority queue and
2 unconfined processes in the low priority queue) in a system
with four unconfined processes. After the first unconfined
process in the low priority queue executes, the next state
could be any legal state (A,B) where 1 < B < 3. To caicu-
late the state probabilities for the next transition, all the in-
termediate states from the first calculation are used to com-
pute the second order transitions as in the RR/FCFS
analysis. However in the FB analysis, the same state may oc-
cur more than once in a state transition sequence unlike the
RR/FCFS analysis. The transition computations are contin-
ued until the amount ‘of state probability in all the terminal

X

Y

Covert Communication Channels in Timesharing Systems

states (i.e. those states (A,B) in which A=0) is greater than
0.995. The state transition probabilities and the transition
time density functions are then normalized so that all proba-
bilities sum to 1.0. The effect of the confined subsystem and
the spy are then taken into account as for the RR/FCFS
analysis which yields the final model parameters. As for
RR-FCFS, the number of states used in the model is not the
number of unconfined processes in the system since some of
the states have only a small probability.of occurrence. The
FB model uses only 10 terminal and 70 intermediate states
for a workload of 25 unconfined processes, 8 terminal and 40
intermediate states for a workload of 15 unconfined
processes, and 6 terminal and 30 intermediate states for a
workload of 5 unconfined processes.

Since the number of states for a CPU queue may be less
than the number of unconfined users in both the RR/FCFS
and FB models, some special action must be taken when the
number of unconfined processes in a CPU queue exceeds the
maximum allowable by the model. This problem is handled
by having the highest numbered state represent all states that
are not explicitely represented. For example, in the
RR/FCFS model with 25 unconfined processes and only 12
states, the scheduler queue with 0 to 10 unconfined processes
is explicitely represented and the remaining state is used to
represent 11 to 25 unconfined processes in the scheduling
queue. For the FB aigorithm with a maximum state
representation of (A,B) for A,B > 0, the state (A,Y) re-
ceives all transitions for non-represented states (X,Y) for X
> A and Y < B, the state (X,B) receives all transitions for
non-represented states (X,Y) for X < Aand Y > B, and the
state (A,B) receives all transitions for non-represented states
(X,Y) for X > A and Y > B. The validity of restricting the
state space in this manner will be determined when the chan-
nel capacity computed from the semi-Markov model is com-

- pared with the channel capacity obtained from simulation.

5.4.4 Channel Transition Probability Matrix Generation

To calculate the channel capacity, a channel transition
probability matrix (CTPM), which gives the probability of the
spy observing a certain interquantum time given the CPU
time allocated to the confined subsystem, must be computed.
From the definition of the semi-Markov model, the CTPM
can be generated for both the discrete memoryless channel
(DMC) case and the discrete channel with memory (DCWM)
case.

By definition of the DMC, the channel must return to its
equilibrium state before each variable quantum length is allo-
cated. The equilibrium state is determined by the equilibri-
um quantum length allocated to the confined subsystem.
That is, the quantum length that is allocated to the confined
subsystem between variable quanta. For example, if the
transition probabilities for the semi-Markov model with at
most two unconfined users in the CPU queue at one time is
given in Figure 5.4, then the model state probabilities at
equilibrium, S; for i=0, 1, 2, can be found by solving the fol-
lowing transition equations based on the transition diagram
[Kleinrock75]. - The equations for Figure 5.4 are:

SO + 81 + 82 = 1.0
0.70S, + 0.25S; + 0.30S, = S,
0.20So + 0.60S; + 0.30S, = S,
0.10So + 0.155, + 0.40S, =S,

The first equation is the requirement that the state probabili-

25

State 0.40
2 <—-—I

0.70 State
Lol |<

Pigure 5.4
Semi-Markov Model of Equilibrium Quantum

ties must sum to 1.0. The remaining three equations (of
which only two are independent) result from the requirement
that the probability of entering a state during the next transi-
tion is equal to the probability of the state at equilibrium.
Solving these equations gives the equilibrium state probabili-
ties:

Sp = 0.470, S, = 0.361, S, = 0.169

The CTPM for the DMC case is computed entirely from the
semi-Markov model computed from the requirement that the
confined subsystem is allocated the equilibrium length quan-
tum. The CTPM row corresponding to zero CPU time allo-

cated to the confined subsystem .is computed. by.weighting . --

each transition time density function,.T;;(t), by its probabili-

--ty of occurrence since the equilibrium.state probabilities are

known, then summing over all the transition- time density
functions. The CTPM row corresponding to 0.2 seconds allo-
cated to the confined subsystem is found by shifting the zero
CPU time CTPM row found above one discretization interval
(one discretization interval=0.2 seconds). That is, if the
CTPM row for zero CPU time allocated to the confined sub-
system is:

Interquantum time 00 02 04 06 038
Probability 00 06 02 02 00

then the CTPM row for 0.2 seconds allocated to the confined
subsystem is:

Interquantum time 00 02 04 06 08
Probability 00 00 06 02 0.2

Simple shifting of the density produces the correct result
since the time used by the confined subsystem is added to
the effects of the unconfined processes. For the transition
time probability function of the equilibrium quantum given in
Table 5.3 and the state transition probabilities given in Table
5.4, the CTPM row corresponding to zero CPU time allocated

- to the confined subsystem is:

Interquantum Time 02 04 06 08
Probability 0.676 0.161 0.163 0.0

To compute the probability for a confined subsystem quan-

ST SN AN & SUCEC S JURL e S B

’
T U S S IC L

SN RO

Huskamp: Covert Communication Channels in Timesharing Systems

From To
State State

Interquzntum Time Probabilities
0.2 sec 0.4 sec 0.6 sec

(o] (o] 0.90 0.05 0.05
(o] 1 0.70 0.20 0.10
(o] 2 0.%0 0.25 0.35
1 o 0.60 0.20 0.20
1 1 0.50 0.30 0.20
1 2 0.40 0.30 0.30
2 [s) 0.65 0.25 0.10
2 1 0.45 0.20 0.35
2 2 0.35 0.10 0.55
Table 5.3

Example Transition Time Probability Density Function
for the Equilibrium Quantum ’

From To

State State Probability
o] (o] 0.80
(] 1 0.10
(o] 2 0.10
1 (] 0.60
1 1 0.25
1 2 0.15
2 (o] 0.50
2 1 0.30
2 2 0.20

Table 5.4

' Example Transition Probabilities for a Variable Quantum

tum length of 0.2 seconds, the formula is:

2
Y (Equilibrium probability of state i)
i=0 2

x Y. ((Probability of 0.2
3k=0 geconds given the transition from state j
to state k) x (probability of the transition
from state j to state k))

A similar calculation is made for the 0.4 and 0.6 second pro-
babilities. As noted before, the CTPM row corresponding to
0.2 seconds would be:

04 06 038
0.676 0.161 0.163

Interquantum Time
Probability

and for 0.4 seconds would be:

06 08 1.0
0.676 0.161 0.163

Interquantum Time
Probability

The calculation of the CTPM for the DCWM is more
complex since there is one row for each n-tuple of possible
confined subsystem quantum lengths and there is one
column for each n-tuple of possible interquantum times. In
this analysis, n will usually have a value of three. The calcu-
lation of the probability of each n-tuple of interquantum
times is done by iterating on all possible n-tuples of state se-
quences. For- every n-tuple of possible- state occurrences
Sy, Sz, ...,Sy), the probability of the state sequence is

26

given by the equilibrium state probability for S; multiplied by
the appropriate transition probability to each succeeding state.
The n-tuple of interquantum times given the state sequence
can be computed from the semi-Markov model in a straight-
forward manner. Multiplying the probability of the state se-
quence by the probability of the interquantum time n-tuple
given the state sequence and summing over all possible state
sequences gives the probability of the interquantum time n-
tuple.

To illustrate the method outlined above, the example
used for the DMC will be extended to the DCWM case for
n=2. Assume the confined subsystem chooses to send the
equilibrium quantum, characterized by the parameters in
Tables 5.3 and 5.4, twice in succession as its variable quanta.
The equilibrium state probabilities of (0.470, 0.361, 0.169)
for state Sg, S;, S, respectively are remembered from the
earlier analysis. The first thing to do is to choose a state se-
quence which gives the scheduler states when the variable
quanta are allocated to the confined subsystem. The state se-

. quence initially chosen is not important since all possible

state sequences will be used in the final summation. Assume
the sequence (Sy, S;) is chosen. The probability that the spy
observes the interquantum pair (0.2 seconds, 0.4 seconds) is
to be calculated. The contribution to the probability of the
outputs (0.2 seconds, 0.4 seconds) being observed by the spy

' from the state sequence (S, S,) is computed by:

' Prob((0.2seconds,0.4seconds)given (Sy,S;))

= Prob(S, is the equilibrium state) - -
x Prob (transition from Spto S;)
x Prob (0.2 seconds given the transition from Sgto S;)
x Prob (0.4 seconds given S,;)
= (0.470) x (0.10) % (0.70) %< [(0.2x0.6)+(0.3x0.25)
+ (0.3x0.15)]
=(.008

Remember that this is the probability given the selected state
sequence. The probability of (0.2 seconds, 0.4 seconds) must
be summed for all state sequences before the correct value
for this CTPM element is obtained. This procedure is then
repeated for all the elements needed for the CTPM matrix.
The major problem with calculating the CTPM for the
DCWM is that the number of possible n-tuple outputs seen
by the spy is very large. This makes both the number of ele-
ments in the CTPM and the CPU time required to compute
the CTPM large. To make the CPU time requirement rea-
sonable, the number of outputs seen by the spy for the
CTPM must be limited. For the calculations in Chapter 6,
the number of spy observations is limited to the first twenty
time intervals for the DCWM. For a discretization of 0.2
seconds, the channel outputs actually modeled are 0, 0.2,
04,..., 3.4, 3.6, and greater than 3.6 seconds. The effect of
this limitation on the results of Chapter 6 is discussed next.

5.4.5 Semi-Markov Model Validation

The semi-Markov model developed above can be validat-
ed with respect to our CTSS simulator. The validation con-
sists of simulating the scheduling algorithms of interest,
keeping track of the scheduler’s equilibrium state probability
and interquantum time density function, and comparing these
figures with those obtained from the model for the DMC.
One good measure of the model validity is obtained by com-
paring a representative set of channel capacities based on the
simulator density function and on the model density func-

0 B JOo 3010UD B W9ISAsqns pauguod sy) -3ulaid sjuasaidar

[ouueyd mdug—aanu Y]y, ‘spoyjowl. - uone[noed yjoq -
(osn tomvys/s3te u £313wdvg)
oUUTR) O OYl 103 $ITNSY UOTINPITVA
L°¢ otqes
1otz si2°2 6 98"t 34 [4
gee t (11344 17441 oSt 214 <
Ryyugsur Kyvargur 12601 916° 1 8328 4
=2t 128t 1$°8 otgt -7 4 14
ofs° 1 9Lt 952t ™3t 34 St
ozL'2 928°2T o 1 ot E11: 4 $t
ASsutsur Rypuryur 3341 (3144} $404 14}
ng°z 26L°2 (11301 et 73 St
911 géo*t zgl'o €i9°0 wy sz
o6t ogLt €60 3L6°0 45 sz
Ayvarsur Ravuryur 9ttt Lot 402 11
(11443 £z E 140} 1601 74 s2
Teaeug “TToWeqD . (ouGwq) MeUL-% Yedewq) sndir-t ITapewss ¥ISsa 3o
PRTRIISUONA] PIUTTIISUOILY ToPoN poxnswoy loqEny
N samyveR .

3usn sanjedes [puueyd 9y) Jo uosuedwoo B St [¢ d[qe]

. ‘PIAIISqO SIUIM}
urmuenbigymr Ads jo rsquinu sy} Uo paseq J8eidae dyl 01
uonippe jueoyrudis B sayew pue Apusnbaij sinddo wnjuenb
-I91Ul PUOYAS Z'() Y} ‘SINJ00 SWIN P! WINSAS B UIYM snyj
‘S[EAI9IUIQNS PU0As [2JB AIIY) UBY} S[EAISIUIQNS PU0IIS T°Q
aIouWl AUBW AR IY} ‘[BAIDIUI PUOIIS (O ' ul ‘9idwexs 104
*2InSeSW 9WI} [B21 B UO UBY) JOYjel UONNISX?d IoJ I[qidid
ST W9)SASQNS PoUYuUOod Y} SIWN JO IsquInu 3Y) U0 paseq A
-1suap £Anqeqoid e Sundayjas L)SUSp 9yl 03 aNp SI SIYJ, "9sed
I3sn G 9y} 10J UIAD “J0[S PUOIIS Z°Q 9Y) UI PIIBIUIDUOD SI
fpiqeqoid ag3 Jo 1SOWT 1By} ST SANISUSP 3SAY} JO 2Injeaj Jofew
ayL ‘-Auoeded sy 01 [N AI9A SAINQUIU0D A)isusp Sururewals
2y} 2ouls ANjiqeqoid puosas Z'Q Y} J0J dN[BA 1991109 B Juuie)
-q0 uo juapuadap si Aoeded Puueyd pandwiod Yy ‘uone|
-nofed A1oeded ayy 104 "spuodss g'o 1oj Ajiqeqoid wnyuenb
-12U1 J9MO] 3Y) O] SIUNOIJE YOIYm WIISAS [opoul Y3 uey) pa
-1593u00 arow AIYSIS 9q 01 WIISAS PAINSLIW JY) Sasned SIyJ,
*98BWI UONNIIXD S} S3AES puUR SIJBUIWIS] ssad01d Suipassard

0197 30 y3BuoT wmyuenyd WNTIqTTINDZ uv J03 Kiysuaq

A37TTQUQ0Ld dWTY wM3UsNbIdjUT WNTIQTTINDT ay3 207 €3[NodY UOTIBPI(RA

9°$ °tqul

3-399°2 €-292°¢ (-l €-300°C t-ne*g 1-361°6 TOpON
2-2%9°2 (-320°€ (-36g'x €-3g6°v 2-231° 1-3L2*6 oansway we 4
2-306°s €-262°2 C-agLcf £-FEL°S :-ast'? 1-319°6 TopoR
z-3ig° 1 €-3¢g'2 €-361°w (-3Jo2’y 3-3S0° 1-208°6 oansway o £
zeatzer €-8%y'2 f-ale’C £-320°6 (-356°Q 1-209°6 T3POR
2-33"1 €-366°2 €-390°y €-g0r°y 20204°C b-ASN°6 eanswoy 8304 4
2-399°t €-3lv-z €-32v°€ €-309°y (-309°L 1-3$5°6 TOSPOW
3661 C-aslz C-2gocy C-gidcy €-3€0°Q 1-219°6 sansesy [*] [4
[S{1d) z-’.l.eo' L Zeaf€tr Z-399°1 Z-qn‘3 I-mo'i 1800H

1e3L2°1 2-350°% 2-30°¢ 2-3°1 2-ALv'L 1-309°1l samowdy "Wt]
2-394°¢ €-36y°6 2-Sf2c1 z-:C9°L 2-769°2 1-364°Q TOPOR
2-329'9 £-3¢L*6 T-AWLTL 2-3%i1 3-386°2 (~qis°9 ednewoy ny €
2-363°¢ €-220°6 2-364°1 2-2(9"4 3-3L9°3 1-A0l'E Topou
z-320°9 €-369°6 2-a6C°1 2-204°1 2-LT°Q (~3E°Q eaneeHy o428 £
2-306*9 €-me°L €-296°6 T-a(C°1 3-289°1 1-319°0 Topon
z-262°¢ -3yl 2-390°1 -t 2-3E1°Z 1-359°9 eanemdy « 1)
13z1cy 2-2$0 3Lt 3-m66°t 2-3iLcE 1-gho°f TOPON

1ageeC ze3fets 2-269°1 3-%08°1 3-2L°C 1-qMyr 6 eamewy e £z
=230 2-SC6c1 2-7206°1 3-;C°2 Z-zvcf r-miley Topon .
1-366°2 2-219°t 2-330°2 3-760°2 2-32@°€ 1-26y°9 osnswsy e (<]
=369°1 2-319°1 Z-;LET1 E-F19°B 2-gLi'w 1-Epcd TOpOR
1-209°1 2-39L°t B-2KC°3 T-2K°T B-T0€°y 1-A1L sanewy 8432 2
4-296°1 z-3C0°1 2-36€°1 2-z6l"t 3-3u6°3 1-30°L TIPOW
1eg22°2 C-3i6°6 2-FL*y 2-JuSTy 2-316°2 1-701°L sanswoy u <3
X 0333 TR PEI23g [3=XIT) wodag tapou? 20TADIYIG e138] 3O

oy € LY 90 90 10 (3] sansvIn 2aqany

Y} J1 Spuodas 40 9q Aewr swn Surddems pue uonnodxa s.Ads

9y} ‘woisAs PIINSEdW oY) U] 'SPU0IAS. T A[OBXDd SAem[e. -.

st £ds oy jo owy uonnoaxs pue Juiddems syy yeyy uondwns
-Se [9pouw 2y} 0} anp SI SIYL 'Speo[jIom 1y3i| JOJ anjeA pain
-SBaW 9y} WO JSOW JY) SIdYIP Swil winjuenbiojul puodss
$0 s@ jo Anjiqeqoid [opowr oyl “ywod ANSUIP PuOIIS
T0=) 24} 1OJ 0p, UTIM QI8 A)SUSP [9powW SY} pue ANsusp
palnseaul 3y} Y1oq JBY} SMOYS 9°G S|qeL ‘[fews S Adeded [e)
-0} 9} 0] S31€IS 9S0Y) JO UONNQLIIUOD Y} 0UIS uohe[ndfed £
-1deded oY) ur JuedYIUSIS jou SI $9)e)s ANjiqeqoid [fews. 3y} JOJ
soouaIapIp 98eiuaorad a8ref oyl -spnjiudew JO IOpPIO JUIBS
9y} JO 9Je pU® IN[BA Ul SUOHENON[J JUIBS 9} MOYS SpPOYIdW
om] 9y} Joj saniiqeqoid 9yels wnuqgmbe 9yl ‘S¢S Iqe],
U] ‘[opOWI 3y} UL 98 SB SIJBS AUBW SB I0J A[UO saIndy 2AI8
0] pajeouny) SI ¢°¢ Qe Ul SMOI , JINSe3|N,, 9Y) JOJ ANsuap
fiiqeqoid Y [OPOW AONIBRJA-IWSS AY) WIOIJ S}NSAI 3Y) A1k

«[9POIA,, PAloqe] SMOI 3y} pue UONE[nWIS 3y} WOIJ S)nsal
o) aIe 2InSeS|,, PI[aqe] SMol 9YL '9'¢ pPue ¢'¢ SIjqe] Ul
uoAl8 aIe Ansuap Ajiqeqosd swn winjuenbiaul Yy pue san
-1jiqeqouid 9yeys wWinuqInbs ay3 Joj s)nsal uonepljea 3yl
‘uon
-39S ISE[Y} UI Passnos|p s ASuop swn wnjuenbisul win
-uqiinba ayy Sunjiys £q paje[nd[ed 3q Ued JOJB[NWIS JY) WOI)
paule1qo 41D 9y JO SMOI Y] ‘uonounj AJsusp awi wny
-uenbiayul wnuqrinbs 9y} Woij 28 paInseaw sawl wnjuenb
-191ul Ads 9y} SNy ‘JoUUBRYD 1ISA0D Y} 01 103dS3I Yim Winlq
-1inba 18 Sunesado s1 101R[NUIIS 3Y) ‘poylaw SIY) Y\ 10U SI
waIsAsqns pauyuod ay) Inq pare[nuus st Ads ay} ‘suoneinuils
IS[Npayds a9y} UI JBy} SUBdW SIYJ ‘UISOYD SI SPUOIIS 013z JO
y18u9] winjuenb wnuqipnba ue ‘suni uonepijea 3yl 104
‘uony

SWaISAS Suripysawy [ul sjpuuDy?) UoNDNUNWWO)) 113400 dur

0197 JOo Y3BuaT umjuend umyTIQITINDI ue YITA
£37TTqRQOxd 23B3S UMTIQTTINDI I0F S3TNSIY UOTIBPTIITA
§°S 3atqey N
s ¢-3 vz -3 23 17
Lty o€ ge'y se'y ore 6 Topon
93 ¢-3 v7 -3 7 3
zT°E 65y 99y 2v'y gete 6u6 asmsmey 1.} €
(2 67 ey f-3 T 102
wwL ord 9E apd et 196 tapom
L I -y -1 23 -1
€61 w1°8 62°C w9 16°C 29°6 smewey o]
t-g 63 -7 €2 T g
SeannnT. I
e - o -
grot UL 911 w1tE 40 §9°6 amseen &4 <
61 L-3 € g T 3
(33 vt,_: tg; lv'; 6;'! er’ <opon
-2 v -
00°0 19°t $E°% £$°6 vt Q"6 amwen « <
t-x €7 €-2 23 B3 L 1-3
53 3 ad 4 o o ey e
€1 651 1070 080 LIt 6 ol Gotp ssmrem wl L
-q-@--¢-g f-g €-3- -3 2T 13 41
B K] &“; c(l" s:; nr: u;‘u 0:: tepon
B .2 - -3 & - -
:.'r: 21 €6°Z (wS witl BT (0T1 18°g esmIvm L St
¥ g 93 €3 €3 € &-3 -z
:(-: o9 z;i og': ‘{': t:; 5?2 n{.:: tapon
-2 w-% €- .3 g » 2
sz't €% witt gf°8 29°¢ 09°1 ¢0°6 SLtg sansven 434 11}
£-3 €21 -3 93 €3 € 23 1-3
92'. £9°9 Qv's 9:‘0 9:'; (:: o;‘; ”': Tapon
.§ %31 e €2 K- ® .3 4
Lu'; 9 {z'i ot A€ty L8°1 @ty K6 mamseen (7]]
€1 &7 &3 221 &1 2:3 23 23 4T T 11 t1
65"L $0°1 6vti 10°Z §9°d 1v'f a2’y €e°§ 629 009 ovi 6o0°% tepou
€3 232 &3 &3 ¢-3 &3 23 &3 2:3 3 101 d
919 00°1 €°1 of*1 L4°Z +0°f 9L°T Wy 'E f0tL 9E"1 Gyt sanewew e 4}
€3 €32 §-3 &3 &2 2T -3 &3 23 I 113 42
ty's fsg'v el vomt fecn €6°1 6@ 1€ 623y 2676 €yt U609 TPoN
€1 -3 t-1 &3 &1 €3 -3 21 23 &3 171 172
19°C w96 127G 60"t Ov'Y O0°1 IE°Z 66°8 QL€ 0€'¢ Iy fuTy emae e @
¢a ¢3 €3 E-1 €-3 €3 -3 23 23 T3 1;X 1%
AR AR A R LR Tl B
- g g - - ® - - » - -
13 92 ¢ o&'i gzey ©06°8 2£°Q ¢2°1 WL L€ gty (€04 Sl asmewan [7=Y] <«
¢3 ¢z ¢1 €3 (-3 21 T3 33 2 42
cx TEEE R ES HCE N W S
- . 1 - - %* o -
B4 “-'; L1y's getr "9 6 of°u 1971 96°T gut UL g0ty eneven (7] 2}
= =3 [so]) =3 {15} Y torow, Totnpmiag waaspy 3O
ﬁ}‘s‘) lo;-'silu:) (ezi itii U:F &5 g ua‘i I'z:') Gsi o umm? s

Huskamp: Covert Communication Channels in Timesharing Systems

second, a 0.4 second or a 1.0 second quantum length. The
unconstrained channel allows the confined subsystem to
choose a 0, 0.2,..., Q quantum length where Q is infinite for
FCFS, is 2.0 seconds for FB and RR2, and is 1.0 for RR1.
The capacities for the two methods are very close for the
three-input channel (which is the channel to be extensively
studied in Chapter 6) and are within 10% for the uncon-
strained channel. The 10% error is considered reasonable for

- our purposes since most of the results are concerned with

varying the capacity by orders of magnitude rather than by
10%.

For the DCWM, it is impossible to obtain an accurate
probability density on even 2-tuples of spy interquantum
times from the simulator. Thus the validation of the semi-
Markov model done by the DMC analysis above must suffice.
The validation procedure above does include the transition
probabilities and the transition time density functions in the
results of Tables 5.5 through 5.7 since they are needed to
compute the equilibfium state probabilities. Thus these
parameters are, at least indirectly, validated by the DMC pro-
cedure.

The remaining question is whether the truncation of the
channel inputs to the first 20 observations will affect the
results. This question for the DMC channel (which is the
only one for which a capacity comparison can be made) is

Number . Capacity Capacity
of Users Scheduler - All Outputs 20 Outputs

25 FB 1.132 1.130
25 FCFS 1.116 1.11%
25 - RR2 0.973 0.973
25 RR1 0.782 0.782
15 FB 1.365 1.365
15 FCFS 1.361 1.359
15 RR2 1,320 1.319
15 -RR1 1.256 1.256
5 " FB 1517 1.517
5 FCFS 1.521 1,520
5 RR2 1.512 1.512

5 RR1 1.497 1.497 }

|

" Table 5.8

DCWM with Limited Channel Cutputs

answered in Table 5.8. Here the capacity calculated using
only 20 interquantum observations is compared with the
capacity calculated using all the observations for the channel.
The channel used in Table 5.8 allows the confined subsystem
to choose between a 0, 0.4 or 1.0 second variable quantum.
The conclusion is that limiting the outputs to twenty does not
significantly affect the DMC capacity. This means that most
of the capacity is determined by a few high probability inter-
quantum times that are contained within the first 20 inter-
quantum times. Thus it is reasonable to expect that for small
n, the capacity of channels sending n consecutive letters will
also be closely approximated by the DCWM model used.

5.5 Summary

This chapter defines the semi-Markov model used in the
capacity calculations and how the channel capacities can be
calculated from the model. Our CTSS simulator used in gen-

- erating probability densities for the model parameter calcula-
-tion algorithm is validated against a similar simulator written

28

by Scherr. The semi-Markov model itself is validated by
comparing the channel capacities obtained directly from the
simulator with the capacities obtained from the model. The
approach of using only 20 channel outputs in the capacity cal-
culation for the DCWM does not appear to affect the channel
capacity calculated. Now that the method for obtaining the
covert channel capacities has been discussed, the model
results can be analyzed in the next chapter.

_.p. Covert Communication Channels in Timesharing Systems

6. ANALYSIS OF CONFINED SCHEDULING POLICIES

6.1 Introduction

Designing an operating system involves making difficult
choices between sometimes opposing system objectives. One
typical trade-off is the evaluation of the cost of implementing
a certain feature in the operating system versus the benefit it
will provide. If the benefit is perceived to outweigh the cost,
then the feature is implemented. A good example of this

type of consideration is in the design of ‘a confinement-
- mechanism. However, in the case of confinement, there are

very few studies and even less experience in implementing
confinement for covert channels in timesharing systems. The
objective of this chapter is to answer some of the questions
about the cost of confinement and the characteristics of the
CPU scheduler covert channel for our simple CTSS-like
timesharing system, by using the semi-Markov model
developed in Chapter 5. Such an investigation will yield in-
sight into the confinement of other similar covert channels
that are present in a typical timesharing system.

This chapter explores different issues relevant to making
design decisions about confinement. In discussing these is-
sues, data for each of the scheduling algorithms discussed in
Chapter 4 (i.e. round-robin, first-come-first-served, and two-
level feedback) is presented for the cases in which the algo-
rithm used may make a difference in the resuits. The first is-
sue discussed is the amount of information leakage that can
be transmitted through the covert CPU scheduling channel in
the event that no confinement mechanism is implemented.
Since the amount of leakage will vary with both the schedul-
ing algorithm and the number of users on the system, both
of these factors are discussed. Other important factors in

-these measurements are the choice: of the discretization inter-

val for the semi-Markov model, equilibrium quantum length
and system workload. The effects resulting from all these
variables are analyzed.

If the amount of leakage that occurs for no confinement
is more than can be tolerated, the cost of completely closing
this channel by absolute confinement must be evaluated.
The cost function used is a combination of the response time
and the wasted CPU time. If neither absolute confinement
nor no confinement is satisfactory, then an intermediate
choice is provided by implementing different channel models
in the CPU scheduler to give a reasonable trade-off between
cost and information leakage. The channel models analyzed
are constructed by using the information channel synthesis
techniques explained in Chapter 2. Other techniques that are
investigated to obtain a favorable trade-off include basing the
return to equilibrium for the DMC channel model on real
time and implementing the channel with memory model.
The last issue to be discussed examines the variation of chan-
nel capacity with the number of spy processes to determine if
several spies can do better than one spy in receiving leaked
information. Finally, implications for the other covert chan-
nels present in operating systems are drawn from the results
for the scheduler channel.

- Before the results are presented for the scheduling covert
channel, a brief summary of the analysis assumptions for the
semi-Markov model and the cost function are presented.
This is done in the next section. ’

6.2 Background for the Channel Analysis

The purpose of this section is to briefly review the major
points in Chapters 3 through 5 that affect the analysis
presented in the remaining sections of this chapter and to
define in detail the DMC and DCWM channel models. This
section -provides the necessary background for the remainder
of the chapter.

29

6.2.1 Operation of the Schedyling Covert Channel

The scheduling covert channel leaks information from
one process to another by allowing each process to choose
the amount of CPU time it will actually use each quantum
that it is allocated. The choice of quantum length affects the
amount of time the other processes spend in the CPU queue
waiting for service. The process can regulate its quantum
usage by executing for a measured amount of time before
waiting on input from the user or by suspending its own exe-
cution. For example, in a single CPU system, if process A
chooses to use all of its quantum, the processes waiting for
the CPU will be delayed longer than if only a small part of
the quantum is used. This dependence of the time between
quantum allocations (interquantum time) of one process (the
spy) on the CPU time used by another process (the confined
subsystem) is the method by which information is transmit-
ted through the scheduling covert channel.

To execute a process confined, the user makes a special
request to the operating system. The effect of this request is
to make the operating system aware of which process may try
to transmit information. However, there is no method by
which the operating system can identify the spy process since
it may be disguised. Since the spy can not be prevented from
observing the output of the scheduling covert channel be-
cause its identity is unknown, the amount of information
transmitted by the confined subsystem must be restricted and
measured. The method for accomplishing this is to allocate
quanta to the confined subsystem based on some information
channel model with a measurable channel capacity. Several
different types of channel models will be analyzed in later
sections. The measurements taken are based on a simple
timesharing system developed at MIT called the Compatible
Time-Sharing System--(CTSS). A brief -description -of this -
system is given next.

. 6.2.2 Important- Characteristics of the CTSS System-

The CTSS system developed in the early 1960’s was one
of the first timesharing systems. The host machine was an
IBM 7094 with a maximum user memory of 32K words. The
operating system component that most affected the perfor-
mance of the system was memory management. The
memory management algorithm swapped in every program
starting at the same memory location (address zero of the
user memory). Thus at most one complete program was in
memory at any one time. For this reason, the process
switching procedure always required a swap out of the current
user and a swap in of the next user before the next user
could be executed. Another consequence of the memory
management algorithms was that no overlapping of one
user’s CPU time and another user’s 1/0 time could occur.
This means that the 1/0 characteristics of a user’s program
do not need to be explicitely modeled. Instead, the CPU
quantum allocated includes any user 1/0 that is done. Also,
the system overhead (not including swapping) was found by
Scherr [Scherr66] to be proportional to the amount of CPU
time actually used during the quantum. Like the user 1/0
time, the system overhead is included in the user CPU time
and is not separately modeled.

The above system features are incorporated in a closed
system simulation model that is shown in Figure 5.1 from
Chapter 5 and consists of two service stations. One station
representing thinking users has an infinite number of servers.
The service distribution is nearly exponential with a mean of
35.2 seconds as found by Scherr. The other station
represents the CPU and has a single server. Processes com-
pleting a CPU quantum either return to the system of queues
for the CPU if more CPU. time is required or-go to the ser-
vice station representing thinking users. (A user can have at

E IR ST .

Huskamp: Covert Conununication Channels in Timesharing Systems

most one process competing for CPU time at any given
time.) The confined subsystem and the spy are, however,
constrained to always return to the CPU queue and to never
enter the thinking user station as explained in Chapter 4. A
more detailed discussion of the simulator model is presented
in Chapter 5.

6.2.3 Summary of Conventions and Major Assumptions
Used in the Analysis

There are several conventions to remember when' read-
ing the following sections. The first is that when a quantum
length is specified for unconfined processes, it refers to the
maximum amount of useful CPU time that can be allocated
to an unconfined process each time the process is eligible for
execution. Thus any swap time needed to make the process
ready for execution is not included in the quantum length.
On the other hand, when a quantum length is specified for
the confined subsystem, it includes both the useful CPU time
used and any time needed to ready the process for execution
(including swap time). This difference in the definition of
quantum length for the confined subsystem is necessary to
obtain an accurate estimate of the covert channel capacity.
The channel capacity computed can only be accurate if the
entire perturbation made by the confined subsystem is includ-
ed in the channel model.

Another convention used in the analysis is that whenev-
er a system load in terms of number of users is specified, the
number does not include either the confined subsystem or
the spy. Thus if it is stated that there are 5 users on the sys-
tem, there are really 5 unconfined users, the confined subsys-
tem, and the spy.

The last convention used is the naming of the scheduling
algorithms: analyzed.. RR1 " stands - for-round-robin with a 1
second quantum length, RR2 stands for round-robin with a 2
second quantum length, FCFS stands for first-come-first-

served, and FB stands for two-level feedback as explained in---

Chapter 4. Remember that for the FB algorithm, the
confined subsystem is constrained to circulate in the lower
priority queue while the unconfined processes move between
the two queues depending on their execution characteristics.

There are two major constraints on the system operation
to allow the channel capacity to be measured. The first is
that the system is assumed to be discretized. This simply
means that processes begin execution at some multiple of the
discretization constant. For this analysis, the discretization
constant is 0.2 seconds unless noted otherwise. This con-
straint permits the covert channel capacity to be computed
using the discrete memoryless channel (DMC) and discrete
channel with memory (DCWM) models by ensuring that the
spy observes only discrete channel outputs. A more detailed
discussion of this constraint was presented in Chapter 5.

The second constraint -prevents the confined subsystem
from sending arbitrarily long sequences of continuously
transmitted code letters. With the present state-of-the-art of
information theory, this type of transmission strategy through
a channel with memory (which characterizes the usual
scheduling channel) can not be analyzed with respect to the
channel capacity in the general case. Thus the channel is

- constrained to return to a confiner chosen equilibrium state.

at certain intervals to allow analysis. This is an-inherent con-
straint in providing partial confinement having a measurable
capacity as explained in Chapter $5.

In the analytic modeling of the CTSS system, several as-
sumptions are made to permit the creation of a semi-Markov
model and the calculation of channel capacity. The assump-

tions used are: 1) Each user has an exponential think time. ..

2) The number of CPU quanta required for each user in-
teraction is geometrically distributed. The distribution of the

30

total CPU time required for each interaction is a function of
the geometric quantum requirement distribution, and the ter-
minating and non-terminating probability functions obtained
from the simulator. 3) The behavior of a process is not a
function of the load on the system. 4) The spy process takes
a minimal amount of CPU time each execution and has a
minimal program length. Also the spy process can not be
identified by the operating system. 5) The confined subsys-
tem is identified to the operating system by the confiner be-

- fore execution -begins which allows the operating system to

schedule the confined subsystem differently than unconfined
processes. 6) Neither the confined subsystem nor the spy
know the total number of processes requesting CPU time or
the number of processes in any CPU queue (if there is more
than one queue). The above assumptions are covered in
more detail in Chapters 4 and 5.

6.2.4 The Semi-Markov Model

The purpose of the semi-Markov model defined in
Chapter 5 is to enable the channel transition probability ma-
trix (CTPM) of the scheduling covert channel to be calculat-
ed, to determine how many equilibriumn quanta must be allo-
cated to return the system to near equilibrium after a pertur-
bation caused by the confined subsystem, and to investigate
the DCWM channel model. The model states represent the
state of the scheduler just after the spy is allocated a quan-
tum and thus has state transition times representing the in-
terquantum times seen by the spy. This is a natural formula-
tion of the semi-Markov model since information is transmit-
ted to the spy by the spy process observing its interquantum
times. The model state transition probabilities and transition
times can be calculated from parameters supplied by the
CTSS simulator as explained-in- Chapter-5:- In: particular, the
probability of a process terminating .during the current quan-
tum, the time density of a terminating quantum and the time
density of a non-terminating quantum-are used: To the
effect of the unconfined processes is added the effect of the
spy process and the confined subsystem to compute the tran-
sition probabilities and transition time densities for each
state. Computing the CTPM from the semi-Markov model
uses only the structure of the model in the calculation since
brute force techniques are needed to obtain the required pro-
bability densities from the model. All the probability infor-
mation needed is included in the model. The remaining two
sections explain the two types of channel models that are
analyzed with the semi-Markov model.

6.2.5 The DMC Model

To permit the scheduler channel in a timesharing system
to be represented as a DMC for the calculation of channel
capacity for partial confinement, the same CTPM must be
used for each code letter sent. For the scheduling covert
channel, a code letter corresponds to a quantum allocated to
the confined subsystem with a length chosen by the confined
subsystem (i.e. a variable quantum). In this situation, the
CTPM represents the ‘‘equilibrium state’” of the system be-

fore the variable quantum is allocated. In terms of the model

developed in Chapter S, the equilibrium state is characterized
by the state probabilities being close to the equilibrium state
probabilities. Of course, immediately after-the confined sub-
system is allocated a variable length quantum, the equilibri-
um state may no longer exist due to the disturbance ‘caused
by the confined subsystem. To reestablish the equilibrium
state, the confined subsystem is allocated a fixed length quan-
tum (called an equilibrium quantum length) for a sufficiently
long time before another variable quantum is allocated.

- Since the system must be in equilibrium before every vari-

able quantum is allocated, the channel can not ‘“‘remember”

Zovert Communication Channels in Timesi.aring Systems

previously transmitted input letters by having the CTPM be
dependent on the previous channel inputs. The allocation of
equilibrium quanta is done here to enable the channel capaci-
ty to be calculated, as pointed out in Chapter 2.

In practice, a timesharing system does not return exactly
to an equilibrium state in a finite amount of time after a per-
turbation. Thus the DMC model requirement, which is that
the equilibrium state be reestablished before each variable

- quantum is allocated, is never precisely satisfied. For this

reason, an approximation to the.equilibrium state is used to
permit analysis of the channel capacity. When the system
state is ‘‘close enough’’ to the equilibrium state, it is as-
sumed that the equilibrium state has in fact been reesta-
blished. A natural metric for measuring the nearness to
equilibrium is the DMC capacity function. For the channels
to be investigated, the system is assumed to have returned to
its equilibrium state when the DMC channel capacity (which
is a function of the state probabilities) returns to within 10%
of its equilibrium value, given that the largest system pertur-
bation occurs. Thus the return to equilibrium is given by a
measure of the closeness of the state probability distribution
after the perturbation, to the equilibrium state probability dis-
tribution. The time required to return to equilibrium is
measured in rounds where one round is defined to be the
time between two successive executions of one process (e.g.
the spy). From the semi-Markov model, which is based on
the rounds seen by the spy, the equilibrium requirement is
computed by (1) solving for the equilibrium state probabili-
ties and computing the equilibrium DMC channel capacity
based on these probabilities, (2) simulating the effect of allo-
cating the quantum producing the largest perturbation to the
confined subsystem by using the state transition probabilities

of the model, and (3) simulating the allocation of .a constant. -

quantum . length (equilibrium - quantum - length) to the
confined subsystem by using the state transition probabilities

of the model until the DMC channel. capacity..is within 10%..

of the equilibrium value. This definition of equilibrium is, of
course, not the only possible definition. Any function of the
system state could be used instead of the capacity measure.
However, the capacity measure seems most appropriate since
the channel capacity is the quantity of interest.

The choice of the equilibrium quantum length to be used
affects both the confiner and the unconfined processes. If
the equilibrium quantum length is zero, the equilibrium state
of the system represents the confined subsystem not being
present in the CPU queue. This choice yields the least effect
on the unconfined processes as measured by their response
times. However, for this equilibrium quantum choice, the
number of equilibrium quanta that must be allocated between
two variable quanta is usually large, which increases the
response time of the confiner. For example, based on the
model of the CTSS-like system introduced in Chapter S, the
number of equilibrium quanta allocated for a 25 user load
can be as large as eight for the round-robin scheduler with a
quantum length of one second. This means that if the
confiner’s think time ends just after a variable quantum is al-
located, the confiner is not allocated more CPU time until
eight rounds have -occurred, which could take several
minutes. Also, if the. CPU requirement of the confined sub-
system is long and requires several quanta to complete, the
total real time needed for the interaction may be large due to
the possibly large amount of real time between variable quan-
ta.

Using equilibrium quanta to reestablish the equilibrium
condition can affect the comparison of two scheduling algo-
rithms with respect to capacity and cost. If scheduler A re-
quires four equilibrium quanta to reestablish equilibrium and

-scheduler B only-requires two equilibrium ‘quanta for the

31

same workload, then scheduler B could have a lower cost
than A due to the larger number of variable quanta allocated.
That is, for 20 quanta allocated by both A and B, A would al-
locate five variable quanta but B would allocate ten. The
capacity measured in bits/useful CPU second is directly pro-
portional to the number of variable quanta allocated. Thus in
the above example, if A and B had the same capacity in
bits/channel use, then B would usually have a higher capacity
in bits/useful CPU second.

To make confined scheduling more - attractive to the
confiner, the average confiner response time can be de-
creased by allocating an equilibrium quantum length that is
greater than zero. Now if the confiner’s think time ends just
after a variable quantum is allocated, the CPU requirement
may be satisfied by the equilibrium quantum allocations
without ever using a variable quantum allocation. This
method usually increases the CPU time wasted by the
confined subsystem and also increases the response time of
the unconfined users. But if good response time is important
to the confiner, the extra cost may be justified. A side
benefit to the confiner of allocating a non-zero equilibrium
quantum is a decrease in the channel capacity measured in
bits/channel use. The decrease is caused by an increase in
the average CPU queue length resulting from the heavier
workload represented by the confined subsystem. For exam-
ple, in round-robin scheduling with 25 users, a maximum
quantum length of 2 seconds, and possible variable quanta
values of 0.0, 0.2, 0.4, ..., 2.0 seconds with an equilibrium
quantum of 0.4 seconds, the channel capacity in bits/channel
use is 40% of the channel capacity with an equilibrium quan-
tum of 0.0 seconds.

6.2.6- The DCWM Model

The other type of channel to be analyzed is the discrete
channel with memory (DCWM). For this channel, the
CTPM is.not.the same for each input sent since the equilibri-
um state is not reestablished between consecutively sent code
letters as noted in Chapter 2. However, in Chapter 2 it was
pointed out that in order for the capacity of the channel with
memory to be computable with a limited amount of computer
resources, the equilibrium state must be reestablished after
some number of consecutive variable quantum allocations.
In a DCWM, the current state of the channel (i.e. the
number of active processes in the CPU queue) will affect the
channel outputs seen by the spy for all code letters sent until
the equilibrium state is reestablished. For example, the pro-
bability of the spy observing a round time of 20 seconds fol-
lowed by a round time of 0.2 seconds for two consecutively
transmitted variable quanta of 0.0 seconds (no equilibrium
quantum in between) is different than the probability of the
spy observing the same sequence of outputs in the DMC
channel model in which there are equilibrium quanta in
between. The reason is that in the DCWM model, the long
round time indicates that there are many processes in the
CPU queue waiting for service. For a short interquantum
time to be observed after the long interquantum time, all the
unconfined processes must terminate during their quantum
and no processes can enter the CPU queue from the think
mode. The 0.2 second round time represents the execution

- time of the spy only. A typical DCWM CTPM wouid have a

few large probability entries representing certain combina-
tions of consecutively sent inputs and would have many very
small probability entries.

The DCWM model is different from the DMC model in
that the average capacity per code letter transmitted may ei-
ther increase or decrease with the number of consecutively
allocated variable quanta.. For example, assume the schedul-
ing covert channel has an equilibrium quantum length of 0.0

-

.

JRCE IR

e aDEY

Huskamp: Covert Communication Channels in Timesharing Systems

seconds and quantum lengths of 0.0 and 1.0 seconds allocat-
able to the confined subsystem. The equilibrium state is
found for the case of zero time being allocated to the
confined subsystem. When a variable quantum of length 0
seconds is allocated to the confined subsystem, the state of
the system continues to be the same as the equilibrium state
and the CTPM for the next consecutive code letter sent is
the same as the equilibrium CTPM. If, however, a 1.0
second quantum is allocated to the confined subsystem, the
system ‘is perturbed, resulting in larger average CPU queue
lengths for the second letter sent than for the equilibrium
state. Thus the states in the semi-Markov model represent-
ing a large number of users in the CPU queue become more
probable at the expense of the states representing a small
number of users. A representation of this situation is shown

0.9 0.1 i
1 0.8 (0.05) J
(0.2 : State s tate 0.9
0.95 ‘ < o I(o.ss)
! 0.1 (0.45) 2

(o] 1
0]0.95 0.05
110.05 0.95

CTPM for State 1

0.51 0.49
k9 0.51

CTPM for State 2

Figure 6.1
Channel with Memory Having Decreasing Capacity s
!
in Figure 6.1. State 1 represents a small number of processes
in the CPU queue (high capacity state) and state 2 represents
a large number of processes in the CPU queue (low capacity
state). The state transition probabilities in parentheses are
for the confined subsystem being allocated a 0 second quan-
tum and the transition probabilities not in parentheses are for
the confined subsystem being allocated a 1.0 second quan-
tum. The equilibrium state probabilities (0.9 for state 1 and
0.1 for state 2) are obtained by using the parenthesized tran-
sition probabilities since the equilibrium quantum length is
zero. The CTPM for the DMC model of this channel is

Table 6.1
CTPM for the DMC Model of Figure 6.1

| oo o1 10 11 ‘
.00 | 0.8295 '0.0765 0.0765 0.0175
o1 0.0765 0.8295 0.0175 0.0765
10 | 0.0541 0.0399 0.5395 0.3655
11 0.0399 0.0541 0.3665 0.5395 [
Table 6.2 ‘

CTPM for the 2-Bit DCWM Model of Figure 6.1 1

32

letter DCWM model of this channel has the CTPM shown in
Table 6.2 and is computed by tracing each pair of inputs
through all possible state combinations using the state transi-
tion probabilities. For this channel, the DMC capacity is
0.550 bits/channel use and the DCWM capacity is 0.439
bits/channel use. Note that the actual capacity of the
DCWM channel is 0.878 bits/two quantum allocations, but
since each channel input consists of two quantum allocations

- to the confined subsystem, the capacity is 0.439 bits/channel

use. The decrease in capacity for the DCWM case is a result
of the first input letter having a high probability of being
transmitted in the large capacity state (state 1) and of the
second input letter having a lower probability of being
transmitted in the large capacity state. Thus the average
capacity per input letter for the 2-letter DCWM is less than
the DMC capacity.

An example of a channel in which the capacity in
bits/channel use for two consecutively transmitted input
letters is greater than for one consecutively transmitted input

0.9 0.1

1 |

= 0.8 (0.05)

0.2 State - State] 0.9
(0.95) 1 0 (0.55)
0.1 (0.45)

] 1 o

0]0.51 o0.49 0.95 0.05

1]o.49 o0.51 0.05 0.95
Figure 6.2

Channel with Memory Having Increasing Capacity

is shown in Figure 6.2. This is the same channel as in Figure
6.1 except that the CTPM for state 1 is exchanged with the
CTPM for state 2. The CTPM for the DMC case is shown in

!

%
|

i

Table 6.3
CTPM for the DMC Model of Figure 6.2

| o0 01 10 11

0.3156 0.2385 0.2384 0.2076
0.2384 " 0.3156 0.2076 0.238L4
0.3847 0.0613 0.4817 0.0723
0.0613 0.3847 0.0723 0.4817

00
01

11

Table 6.4
CTPM for the 2-Bit DCWM Model of Figure 6.2

Table 6.3 and for the 2-bit DCWM case in Table 6.4. The
DMC capacity for this channel is 0.0843 bits/channel use and
the 2-bit DCWM capacity is 0.216 bits/channel use. The in-

shown in. Table 6 l and is- computed by welghtmg each state -~ crease in capacity for the. DCWM case is a result of the-first

CTPM by its-equilibrium probability of occurrence. The 2-

input having a high probability of being transmitted in- the

© »
[LI] [Y [ady - ¥ R -

Huskamp: Covert Communication Channels in Timesharing Systems

low capacity state (state 1) and of the second having a lower
probability of being sent in the low capacity state. Because
the capacity of a DCWM might increase or decrease over the
DMC case, the continuous sending policy for scheduling al-
gorithms must be carefully analyzed to avoid underestimating
or grossly overestimating the channel capacity. The question
of how the scheduling channel capacity varies with the
number of consecutively allocated variable quanta is dis-
cussed in a later section.

The possibility of the DCWM capacity varying with- the
number of consecutively transmitted code letters means that
even if the capacity of the general DCWM for an infinite
number of consecutively transmitted code letters is calcul-
able, it is not necessarily the correct capacity when only a
finite number of quanta are allocated. For example, if the
channel being analyzed has a strictly decreasing channel capa-
city, then the infinite consecutive code letter case has a capa-
city of zero bits/channel use while the finite consecutive code
letter case has a positive capacity. In the scheduling covert
channel, since all processes terminate in a finite amount of
time, the number of consecutively sent code letters is finite
and the capacity calculation must account for this. In prac-
tice, for the covert scheduling channel capacity to be comput-
able for a finite number of consecutively sent code letters,
the number of consecutively allocated variable quanta can not
exceed three due to the amount of resources needed to per-
form the calculation. This is an inherent limitation in the
analysis method. For example, assume the number of chan-
nel outputs observable by the spy is 20. This is a very con-
servative figure and is generally much lower than the usual
number of observations. If four consecutive variable quanta
are allocated, the spy can observe any four-tuple of channel
outputs. Each row of the CTPM would then consist of 204
or 160,000 elements. If the confined subsystem can choose
from any one of three possible variable quantum lengths, the

number of rows in the CTPM is 34 or 81. The total number.

of computer words necessary to hold the CTPM is then 12.96
million which is difficult to process efficiently on present
computer systems. In addition, the amount of computer time
needed to compute the CTPM elements and to compute the
capacity would be prohibitive. Thus the amount of effort and
resources needed to compute the channel capacity is large
even for a modest number of consecutive variable quanta. In
this thesis, the DCWM capacity will be computed for the al-
location of at most three consecutive variable quanta with a
choice of three different quantum lengths for each variable
quantum. To decrease the number of channel outputs seen
by the spy, only the first twenty outputs (corresponding to 0,
0.2, 0.4, ... 3.6, and greater than or equal to 3.8 seconds) are
used in the calculation. The difference in the DMC channel
capacity between using 20 outputs and all outputs is less than
0.1%. By limiting the number of assumed spy observations
and the number of possible variable quantum allocations, the
CTPM size and capacity calculation time is feasible.

For the above reasons, the DCWM model to be investi-
gated will allocate at most three consecutive variable quanta

--‘before forcing the system to return to equilibrium by allocat-

ing a sufficient number of equilibrium length quanta. The

‘number of equilibrium quanta allocated is computed by

determining how many are required to return the capacity for
the first code letter sent in the block of consecutively sent
code letters (DMC model) to within 10% of its original DMC
capacity given the worst case perturbation. The method for
tracing the effects of the perturbation through the semi-
Markov model is the same as outlined in Chapter 5. The
same considerations for the choice of the equilibrium quan-

-tum length (zero versus non-zero) apply to the DCWM as to -

the DMC.

33

6.3 Cost and Information Leakage Functions

Two measures of the performance of a timesharing sys-
tem are the average response time per user interaction and
the amount of resources needed to complete a given task.
The average response time is indicative of the amount of
work that can be performed in a given amount of real time,
and the resource usage determines the computation cost of
using the system. These measures are not independent and
represent a trade-off decision for the confiner. In order to

capture the true confiner cost associated with a confined

scheduling algorithm, both response time and resource usage
must be used in the cost equation. Otherwise, the scheduler
that optimizes the confiner’s response time allocates an
infinite quantum length to the confined subsystem and the
scheduler that optimizes the computer resources used (i.e.
wastes no CPU time) allocates a near-zero quantum length to
the confined subsystem. Neither of these extremes is desir-
able since in the first case the unconfined users are provided
almost no CPU time and in the second the confiner has a
very long response time. A combination of response time
and CPU cost was previously used in [Gold69] to compare
timesharing and batch systems. A slight modification to the
cost function used in [Gold69] to account for confinement is:

Confiner Cost = $/useful CPU second = {(Cost of
a CPU second) x (Average number of wasted plus
useful CPU seconds allocated for each useful CPU
second)} + {(Cost of a user’s real second) x (Aver-
age response time per interaction) X (Average
number of interactions per useful CPU second)}

The first term in {...} represents the cost of allocating enough
CPU time on the average to obtain one CPU second of use-
ful work. This term does not include process swap time but
does -include useful CPU time and wasted CPU time. A
point estimate of the term (average number of wasted plus
useful CPU seconds allocated for each useful CPU second)
can be obtained from a simulation of the scheduling algo-
rithm by dividing the sum of the total number of wasted
CPU seconds and the total number of useful CPU seconds al-
located to the confined subsystem by the total number of
useful CPU seconds. The (cost of a CPU second) term is
determined by amortizing the cost of a system with the ap-
proximate power of the CTSS IBM 7094 used in the simula-
tions over a five year period. A comparable machine on
today’s market is the PDP-11/70 or its equivalent which can
be purchased with a ‘‘reasonable™ configuration of memory,
disks and a printer for approximately $250,000. The cost for
running the system for five years including personnel and
material costs will be approximately another $250,000, based
on experience with the PDP-11/70s at the University of Cal-
ifornia, Berkeley. Amortizing the total amount of $500,000
over five years means that there must be a recovery of
$100,000/year. By assuming the system runs a full eight-
hour shift, 5 days a week, 50 weeks a year (which accounts
for holidays and emergency maintenance time), there are
2000 hours/year. The cost per hour is then $100,000/2000
or $50/CPU hour. This $50/hour figure is the one used in
the cost calculations.

The second term in {...} is the cost to the confiner result-
ing from poor response time. This term equates the user’s
real-time cost with his salary as an estimate of the response
time cost. The average response time per interaction is
measured from the simulations. The number of interactions
per useful CPU second is given by Scherr in [Scherr66] as
(1.0/0.88). The cost of a user’s real second is determined
from an assumed salary of $24,000/year or $0.0032/real
second. This value assumes that programmers and not

- -managers, who -are generally more highly paid, -will be the

-
- .
P N -
: . 3 .

g

¥

Stk i

{9 i% oA

-t

FRpE 3

" characteristics of a typical process.

Huskamp: Covert Communication Channels in Timesharing Systems

ones who actually interface to the timesharing system. If
people in a different salary range interface with the system,
the user cost changes and the trade-off between the CPU
time expended and tolerable response time changes. An ex-
ample of the user cost being very high is if a very high priori-
ty is placed on completing a confined job within a specified
time limit. In this case it could be more cost effective to
waste large amounts of CPU time to insure completion. The
values for both CPU cost and user cost in this thesis are
chosen to represent values in an everyday situation. The
analysis can be carried out for other values of these parame-
ters representing special situations in a straightforward
manner. An analogous cost function could be obtained for
the unconfined users of the system which would also include
response time and CPU time but not swapping time. Such a
function will be used for this purpose in several places in the
following sections.

To evaluate the cost function, several of the parameters
will be obtained from simulations of the CTSS-like system.
To determine the simulation error for these parameters, the
methods explained in [Crane74] and [Lavenberg75)] are used
to obtain a confidence interval. The methods are based on
the fact that the simulation contains points in time at which
the system being simulated returns to the same state (called
regeneration points). The simulation between any two con-
secutive regeneration points is then independent of the simu-
lation between any other two consecutive regeneration points.
This produces a series of independent, identically distributed
(iid) intervals. Classical statistics is then used on the iid in-
tervals to obtain a variance estimate and a confidence interval
for each of the parameters. For the measurements reported
here, the confiner cost for the 5 user case has an error of +
3 to 8.percent; for the 15 user case has an.error of + 5to 9
percent,.and for the 25 user case has an error of + 9 to 15
percent.

For partial confinement, the channel capacity for the
covert scheduling channel must be- obtained. The channel
capacity is expressed in units of bits per useful CPU second
allocated to the confined subsystem, to be compatible with
the computer cost function expressed in units of $ per useful
CPU second (or $/useful CPU second). The expression for
the capacity is:

Capacity = Bits/useful CPU second = (Capacity per
variable quantum allocated in bits/channel use) x
(Average number of variable quanta per useful CPU
second)

Remember that the capacity of a channel assumes that the
optimal encoding and decoding strategy is used by the
confined subsystem and the spy. Any information rate from
zero up to the channel capacity is theoretically possible. The
number of variable quanta allocated per useful CPU second is
obtained from the simulation of the scheduling policy. The
confidence intervals for the capacity in units of bits/useful
CPU second range from 8 to 12 percent for the lightly loaded
case (5 users), to 12 to 18 percent for the fully loaded case
(25 users). Again, the higher error is for the low capacity
cases and the lower error is for the high capacity cases. The
error for the capacity measured in bits/channel use is much
lower (on the order of 3%) than the bits/useful CPU second
measure. The channel capacity is achieved by the confined
subsystem varying his quantum length to send the maximum
amount of information per quantum without regard for the
response time seen by the confiner. A confined subsystem
that achieves the channel capacity does not usually have the
A typical process is

. characterized by a .relatively short CPU requirement (0.88...
. CPU seconds on the average). followed by a relatively long .

34

user think time (35.2 seconds on the average). This behavior
will usually not yield the channel capacity since too many
short quanta (e.g. when the confiner is thinking) are allocat-
ed. Thus the confined subsystem that is trying 1o leak the
maximum amount of information will generally be allocated
more CPU time to perform a task than a normal process do-
ing the same task.

For the simulations here, the confined subsystem is as-
sumed to be a normal process. Thus the cost and capacity
measures reported do not explore the trade-off between actu-
al encoding/decoding strategies and CPU cost. Here, the cost
function represents the penalty paid by the confiner for exe-
cuting a non-sending confined subsystem under confinement.
However, the capacity function represents the channel capaci-
ty for the confined subsystem and the spy performing the op-
timal encoding and decoding strategy. This gives the max-
imum amount of information that could be leaked if the
confined subsystem and the spy were trying to communicate.

6.4 Information Leakage in a System Without Confinement

To study the extent of the information leakage problem
on systems not providing confinement, the unconstrained
channel model is used. The unconstrained channel model is
a DMC that permits the ‘“‘confined subsystem’’ (or sender in
systems not offering confinement) to choose which quantum
length is allocated each time it is eligible for execution. Since
the semi-Markov model is a discrete model, there are a finite
number of quantum lengths to choose from. For the FB and
RR2 schedulers, the maximum quantum size is 2.0 seconds
and for the RRI scheduler is 1.0 second. Thus for the
discretization interval of 0.2 seconds, the sender can choose
quantum lengths.of 0.0, 0.2, ..., 2.0 seconds (11.inputs) for

- the FB and RR2 schedulers, and quantum.lengths of 0.0, 0.2,

..., 1.0 seconds (6 inputs) for the RR1 scheduler. To make .
use of ‘this channel, the confined subsystem must be able to
regulate the quantum allocated (for a non-zero quantum
length) and skip quanta (for a zero quantum length). To re-
gulate the length of non-zero quanta, the sender can time its
execution by using the real time clock which is accessible in
most systems. When the sender has used the amount of
CPU time it wanted to for this quantum allocation, it gives
up the CPU to the next user. In the original CTSS system,
this could be done by the sender process changing its length.
In most systems, there is some facility for doing a similar
thing, such as issuing a ‘‘sleep” system call which suspends
the process until some event occurs. To regulate the number
of zero length quanta allocated, an event type mechanism
could be used that is present on some systems. The method
is for the spy process to cause a different event to occur each
time it executes. The confined subsystem then waits on the
event that it knows will occur a specified number of spy exe-
cutions in the future. Thus the sender process is ‘‘allocated™
zero length quanta until it is activated by the event for which
it is waiting. It is permissable for the sender and the spy to
use the event mechanism in this way since there is no restric-
tion on information given to the sender under confinement.
Only information from the sender is to be confined. If the
operating system being used does not have an event mechan-
ism or some similar feature to allow the sender process to
skip executions, the zero quantum length can be approximat-
ed by the confined subsystem using a very small quantum.
For this analysis in this section, the sender is assumed to be
able to choose a zero length quantum.

The unconstrained DMC has the largest capacity (in
bits/channel use) of any DMC for a given maximum quan-
tum length and a given discretization size. The capacity ob-
tained is also achievable since the sender and the spy can im-
plement the DMC. transmission method. As shown in Table

*
>

v,

Huskamp: Covert Communication Channels in Timesharing Systems

Scheduler
FB RR2 RR1

o| 3.6 3.8 2.58
Number of 5 3.2% 3.23 2.38
Users 15 | 2.84 2.72 1.93
25 | 2.32 1.94 1.17

Equilibrium Quantun Length = 0.0 Seconds

Table 6.5

Unconstrained Channel Capacity
in Bits/Channel Use

6.5 for FB, RR2 and RR1, with an equilibrium quantum
length of zero seconds, the amount of leakage can vary by a
factor of three depending on the system workload and the
scheduler. The capacity of this scheduling covert channel
model ranges from 1.17 bits/channel use for the system with
25 users and the RR1 scheduler to 3.24 bits/channel use for
the system with 5 users and the FB scheduler. The theoreti-
cal maximum capacity for the FB and RR2 algorithms with
zero unconfined users (zero channel decoding error) is 3.46
bits/channel use (= log base 2 of 11 inputs) and for the RR1
algorithm is 2.58 bits/channel use (= log base 2 of 6 inputs).
The capacity measurements for the 5, 15, and 25 user cases
are obtained from the semi-Markov system model.

The order of the scheduling algorithms with respect to
the channel capacity in Table 6.5 is not surprising. The ord-
ering of the algorithms with respect to decreasing channel
capacity is the same as the ordering with respect to increasing
mean:.CPU - queue ‘length. - The longer mean CPU queue
length is indicative.of more channel noise. ‘The reason for
the large difference in capacity between the FB/RR2 algo-
rithms and the RR1 algorithm is that the FB/RR2 algorithms
have 11 possible sender inputs and the RR1 algorithm only
has 6 possible inputs.

The capacities in Table 6.5 can be used to determine the
maximum number of variable quanta that can be allocated to
the sender to keep the number of bits leaked through the
channel below the total permissable leakage specified by the
confiner. For example, if the confiner can allow no more
than 100 bits to be leaked and there are 15 users on a system
using the RR1 algorithm (channel capacity = 1.93
bits/channel use) then no more than 51 variable quanta can
be allocated to the confined subsystem during its execution.

Now suppose that the confined subsystem is not trying to
send information to a confederate but is a normal job. In
this case, the system uses the unconstrained channel model
to measure the amount of potential information leakage
based on the capacities in Table 6.5. The unconstrained
channel model is chosen so that the confined subsystem can
run efficiently by having a large choice of quantum lengths
from which to match the CPU time needs of the confined
subsystem. Since the confiner can not tell whether the
confined subsystem is trying to communicate with a spy or
not, the confiner must assume that every variable quantum
allocated to the confined subsystem leaks, on the average,
the number of bits shown in Table 6.5. From simulations of

each scheduling algorithm and workload combination, the.

average number of variable quanta allocated for each second
of CPU time that is spent doing useful work for the confined
subsystem (useful CPU second) can be determined. By mul-
tiplying this number by the capacities in Table 6.5, a capacity

- in bits/useful CPU second (=[bits/channel use] x [number

of channel uses/useful CPU second]) can be found as shown
in Table 6.6 for an equilibrium- quantum length of zero

35

Scheduler
FB RR2 RR1
5 260.7 153.8 196.6
Number of 15 75.7 44 .8 35.3
Users 25 13.0 9.4 6.3

Equilibrium Quantum Length = 0.0 Seconds

Table 6.6

Unconstrained Channel Capacity
in Bits/Useful CPU Second

seconds. In this thesis, the term ‘‘useful CPU second”
means the number of seconds of CPU time spent actually ex-
ecuting the confined subsystem program. Any wasted CPU
time due to discretization, to intentionally allocating the
wrong size quantum length, or to swapping is not included.
Of course, a confined subsystem that is actively trying to
send information may have its capacity in bits/useful CPU
second higher or lower than the value obtained through the
simulation. However, Table 6.6 demonstrates that in using
confinement for a subsystem that does not try to communi-
cate with a spy process, a significant amount of leakage must
be assumed, ranging from 260.7 bits/useful CPU second for
the 5 user FB scheduler to 6.34 bits/useful CPU second for
the 25 user RR1 scheduler. This translates into 29,328 32-bit
words per CPU hour for the 5 user case and 713 32-bit words
per CPU hour for the 25 user case.

Table 6.6 does not have the same ordering of capacities
for the 5 user case as does Table 6.5. This is due to the
number- of equilibrium quanta allocated for -each .scheduling
algorithm for this workload. It takes one equilibrium quan-
tum (of length 0 seconds) to return the system with a FB or
RR1 scheduler to equilibrium but it takes two equilibrium
quanta for the system with the RR2 scheduler. This means
that when a variable quantum length is allocated by the RR2
scheduler to the sender, there is a higher probability that
some amount of useful CPU time will be used. This is a
direct consequence of waiting longer between variable quan-
tum allocations for the RR2 scheduler. The result is that the
number of channel uses/useful CPU second is much less
than for FB or RR1. This causes the capacity in bits/useful
CPU second for the 5 user RR2 scheduler to be less than for
the 5 user FB or RR1 schedulers. For the RR1 and RR2
schedulers with 15 and 25 users, the number of equilibrium
quanta allocated between two variable quanta does not
influence the ordering of the schedulers as much as the chan-
nel capacities (in bits/channel use). Thus the ordering for
the 15 and 25 user workloads is the same as in Table 6.5.

The first-come-first-served scheduler (FCFS) is not
shown in either Table 6.5 or 6.6 because its capacity (in
bits/channel use) is theoretically infinite for any workload.
This is due to the ability of the confined subsystem to choose
any positive quantum length for allocation which means there
are an infinite number of possible channel inputs. For exam-
ple, if the quantum lengths chosen by the confined subsys-
tem are in multiples of some large CPU time (e.g. 10
minutes) so that the probability of a decoding error is nearly
zero, then the capacity in bits/channel use is the log (base 2)
of the number of inputs. Since there are an infinite number
of possible inputs, the capacity is infinite. Since the FCFS al-
gorithm is not interesting for the unconstrained channel
model, the RR2 algorithm is used to demonstrate the effect
of a longer quantum on the round-robin scheduler. In subse-
quent-sections,- the RR2 algorithm will not be used but will
be replaced by the FCFS algorithm.

L3

Huskamp: Covert Communication Channels in Timesharing Systems

The channel capacities given in this section for the un-
constrained channel model are based on the discretization in-
terval of 0.2 seconds. Higher channel capacities can be ob-
tained by using a smaller discretization interval as will be
shown in the section discussing discretization. One of the
problems with designing a system offering confinement is
that the system designer does not know the encoding strategy
used by the confined subsystem and the spy. To insure that
the amount of leakage is not underestimated, the number of
bits specified by the channel capacity must be assumed to be
leaked each time the confined subsystem chooses its quan-
tum length. This leads to a very large amount of assumed
leakage in bits/useful CPU second. The following sections
explore techniques for decreasing the amount of assumed
leakage but at an added cost in wasted CPU time.

6.5 The Effect of Workload on Channel Capacity

The results in Table 6.5 show that the capacity of the
scheduling covert channel decreases as the number of users
increases, if all other factors are held constant. This effect is
due entirely to the increase in channel noise caused by a
larger average number of unconfined processes in the CPU
queue. As the number of users increases, the high capacity
states in the semi-Markov model that represent fewer users
become less probable. For the DMC model, the equivalent
CTPM for the semi-Markov model produced by this probabil-
ity shift yields a lower channel capacity.

The capacity measure that is of concern to the system
designer, which is bits/useful CPU second in Table 6.6, also
decreases as the number of users increases. In this case, the
difference between the extremes is more than an order of
magnitude. The difference is caused by two factors. The first
factor is the .decrease in the capacity measured in
bits/channel:use mentioned above. The second factor is that
for a large number of users, a perturbation to the system-re-
quires more equilibrium quanta to bring the system back to
its equilibrium state. Thus the number of equlibrium quanta
needed to reestablish the equilibrium state for the 25 user
case is greater than for the 5 user case, which causes the
number of variable quanta allocated to the confined subsys-
tem per useful CPU second to be less for the 25 user case.
The decrease in capacity in bits/channel use and the decrease
in the number of variable quanta/useful CPU second for the
25 user workload over the 5 user workload produce the in-
verse relation between the number of users and the channel
capacity in bits/useful CPU second.

The implication of this inverse relationship for system
design is that fewer restrictions are needed on the confined
subsystem as the load on the system increases to produce a
constant capacity. However, using just the workload to regu-
late the channel capacity is too costly for both the confiner
and the unconfined processes. To obtain a small channel
capacity, the systern must be heavily saturated, which causes
the system response time to be large. Methods for decreas-
ing the capacity other than by regulating the workload must
be explored.

6.6 The Effect of the Equilibrium Quantﬁm Length
The equilibrium quantum length chosen for the confined

- subsystem affects both the channel capacity and the cost of

confinement. As the equilibrium quantum length increases
from zero, the steady state noise level of the system in-
creases and the capacity in bits/channel use decreases. The
number of variable quanta/useful CPU second increases until
the equilibrium quantum is about midway between its two
extremes, and then decreases. This is due to the number of
equilibrium quantum allocations needed to reestablish the
equilibrium state.decreasing until the midpoint is reached,

36

then increasing. The cost is affected by the equilibrium
quantum length chosen since a longer quantum length gives
a shorter confiner response time but usually results in more
wasted CPU time. The converse is also true.

A typical graph of capacity versus cost for non-zero

O 25 Users, FB Scheduler

400} A {5 Users, FB Scheduler
| £0-0.0 O 5 Users, FB Scheduler
EQ =Equilibrium Quantum
200 Length in Seconds
= 190F .00
o - A
o sol E0=4.2
@ i EQ+=1.6
2 i £Q=2.0
5 [L\
]
o>
w {0
w 3
" N
2 s}
-~ 5
.o i
L K
@
© o.9F
g -
s [OEQ:2.0
0.2} . -
[o K] | I R N 1 N 1 [D SR B SR |
0.04 042 020 0.28 036 044 0.52

CONFINER COST (§ 7/ USEFUL CPU SECOND)
. Figure 6.3
FB Unconstrained Channel Copacity vs. Cost

equilibrium quanta is shown in Figure 6.3 for the FB
scheduler with different workloads. The graphs of the other
scheduling algorithms exhibit features similar to the FB graph
and are not shown. The most striking feature of Figure 6.3
is the different shaped curves for the different numbers of
users. Both the 5 and 15 user curves show a distinct trade-
off of capacity versus cost due to the negative slope. The 25
user curve with its slightly positive slope indicates just the
opposite. In the 25 user case it is more cost effective for the
confiner to use a larger equilibrium quantum length to de-
crease both the cost and channel capacity. The cost decrease
for increasing equilibrium quantum lengths is due to a
marked decrease in the confiner’s response time. For exam-
ple, for the zero equilibrium quantum length, the response
time is 54.2 seconds and for the 1.2 second equilibrium quan-
tum length, the confiner response time is 17.3 seconds. The
response time cost component and the CPU time cost com-
ponent are separated in Figure 6.4A for the 25 user case.
The conclusion is that the confined subsystem should be allo-
cated a large equilibrium quantum length to avoid having an
extremely large response time cost. If the user cost is in-
creased by a factor of 10, which places a very high premium
on completing the job quickly, the conclusion would still be
that a large equilibrium quantum should be allocated since
both the CPU and response time cost curves are fairly un-
responsive to changes- in- equilibrium quantum length- for
lengths in the 0.8 to 2.0 second range.

- The 15 user case exhibits a definite trade-off between

.

=y

o

Huskamp: Covert Communication Channels in Timesharing Systems

e NE v CPU Cost
g.‘ 0.46 O User Cost
wa 25 Users, FB Scheduler
wz o42
"o o
D20
~ W o0.08 [y e S '
52 0.04
Ouoo [SEE N W N T VOO D00 TN N UUNE SO N M A VY SO S T
© . 02 0.4 06 08 10 4.2 14 1.6 18 20
EQUILIBRIUM QUANTUM LENGTH
é.- o.22} (B! V/V
§z oo ..---v_/v/
28 ous v ¥ CPU Cos
\:‘J'; 0.40 O User Cost
s 15 Users, FB Scheduler
Lo 0.06
OU
o 0.02 g
) ’ 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
EQUILIBRIUM QUANTUM LENGTH
5 040: te) 7
w— " [/v
u o /'V
5§ o%°r v V CPU Cost
N I v
L N7 0.201 O User Cost
:3 0.10f 5 Users, FB Scheduler
0l !
(=] 0.00 Vo s). A A A
(3] . B S S S B D L D AL LA P R R R AL
0.2 0.4 0.6 0.8 10 1.2 4.4 1.6 {.8 20

EQUILIBRIUM QUANTUM LENGTH
Flgure 6.4
. Unconstrained Channel Cost Components -

channel capacity and confiner cost in Figure 6.3. As the
equilibrium quantum length increases from 0 to 1.2 seconds,
the capacity decreases much faster than the cost increases as
shown in Figure 6.3. Equilibrium quantum lengths in excess
of 1.2 seconds show a tendency to have a less favorable
capacity-cost trade-off. This behavior is a result of the fac-
tors discussed at the beginning of this section. Increasing the
equilibrium quantum length may be a cost effective method
for decreasing the channel capacity for a limited capacity
range in the 15 user case since the capacity per useful CPU
second decreases by a factor of 18.5 when the equilibrium
quantum length is increased from 0 to 1.2 seconds, while the
cost only increases by a factor of 4.8. The dominant factor in
the cost for the 15 user case is the wasted CPU time for
non-zero values of the equilibrium length as illustrated in
Figure 6.4B. For a zero equilibrium quantum length, the
cost is much less than with a non-zero equilibrium quantum
since there is no wasted CPU time.

For the 5 user case, as the equilibrium quantum length
increases from zero seconds, most of the extra CPU time is
wasted, with only a small part being used to reduce the
confiner’s response time as-shown in Figure 6.4C. Thus the
cost function steadily increases as the equilibrium quantum
length increases. In a similar manner, the capacity in
bits/useful CPU second shows a steady decline in Figure 6.3
due to a decrease in capacity and a decrease in the number of
variable-quanta/useful CPU second as the equilibrium quan-
tum length increases. As for the 15 user case, the cost for a
non-zero equilibrium quantum in the 5 user case is extremely
high.

The large cost incurred for non-zero equlibrium quantum

lengths-for the 5 and 15 user workloads is due to the linear -

function-used for the -CPU time cost. In both of these cases,

31

since excess CPU capacity is available, the confined subsys-
tem could conceivably be charged a lower rate for the CPU
time used. This probably would not occur if computer time
is being purchased from an outside service bureau but could
occur for an in-house system. Many systems offer lower
rates for non-prime time computing and the extension of this
rate philosophy to accomodate confinement may become a
common practice. Such a CPU charging philosophy would
alter the relationship of the workload curves in Figure 6.3. If
the CPU time charge is decreased to zero, the entire cost
would be the user cost, which makes the 5 user case the least
expensive and the 25 user case the most expensive. This is
the opposite ordering from Figure 6.3. Other cost functions
could be found which would also change the results present-
ed here. However, the linear CPU cost function is one of the
most common charging algorithms currently in use and will
be utilized in the remainder of this thesis.)

The problem with using the equilibrium quantum length
alone to decrease the channel capacity is that the capacity of
the channel may never become low enough to suit the appli-
cation, or the cost becomes extremely high. Later sections
examine other capacity limiting strategies that can decrease
the capacity to zero or near-zero by changing one channel
parameter.

In subsequent sections the 5 user FB scheduler channel
and all 15 user scheduler channels will be investigated only
for an equilibrium quantum length of zero seconds. This
choice minimizes the confiner cost. The objective in later
sections is to produce a less costly partial confinement
method than that produced by varying the equilibrium quan-
tum length. The cost of wasted CPU time for any other
value of equilibrium quantum length would be too great to
meet this objective. :

6.7 The Minimum Cost of Partial Confinement

The unconstrained channel-model analyzed in the last
three -sections provides the starting point for the channel
models to be investigated in later sections. This model yields
the lowest cost to the confiner of the models to be studied
since it allows the confined subsystem a wide choice of CPU
quantum lengths when a variable quantum length is to be al-
located. Since this is a low cost model, the cost to the
confiner for the ability to measure the amount of potential
information leakage is an interesting statistic. This cost in-
cludes the cost of discretization and the cost of implementing
a DMC channel through the introduction of equilibrium
quanta. The cost to the unconfined process only includes the
cost of discretization. The confiner and unconfined costs for
the FB scheduler are shown in Table 6.7 for the different
values of the equilibrium quantum length. The costs for the
other schedulers are similar and are not shown.

" The minimum cost factor for partial confinement (=
confiner cost/unconfined cost) ranges from 2.71 for 25 users
to 1.08 for 5 users. The lower cost factors corresponding to
large equilibrium quantum lengths for 25 users are not con-
sidered since most of the factor decrease is due to a rise in
the unconfined cost with .no significant change in the confiner
cost. A light load is necessary to obtain the least cost for ex-

- ecuting a confined subsystem as shown in Table 6.7. Howev-

er, this results in a very large potential confinement leakage
as shown in the previous section. The trade-off of these two

~ factors must be weighed before the confined subsystem is ex-

ecuted.

Table 6.7 shows that it can be very expensive to execute
a partially confined subsystem as compared to unconfined ex-
ecution. Of course, execution of an absolutely confined sub-
system costs even more as explained in Chapter 3. The cost
of -partial - confinement-and the cost of absolute confinement

~a

o

trrme LR o

v
DRCSEL =R

Huskamp: Covert Communication Channels in Timesharing Systems

Confiner Unconfined
Number Quantum Cost (=A) Cost (=B)

of Length ($/Useful ($/Useful Cost Ratio

Users (Seconds) _CPU Second) _CPU Second) (A/B)

25 0.0 0.213 0.0k93 L.32

0.4 0.165 0.0k496 3.33

0.8 0.151 0.0531 2.84

1.2 0.147 0.0543 2.7

1.6 0.147 0.0561 2.62

2.0 0.1h45 0.057k 2.53

15 0.0 0.0hkk 0.0303 1.ks

0.k 0.17h4 0.0322 5.40

0.8 0.183 0.0328 5.58

1.2 0.210 0.0333 6.31

1.6 0.250 0.0358 6.98

2.0 0.251 0.0369 6.80

5 0.0 0.026 0.0240 1.08

0.k | 0.230 0.0246 9.35

0.8 0.299 0.0255 12.15

1.2 0.338 0.0263 “12.85

1.6 0.384 0.0273 14 .07

2.0 . 0.397 0.0283 14,03

FB Scheduler

Table 6.7
Cost for the Unconstrained Channel

are compared in a later section to determine if partial
confinement can be an alternative to absolute confinement.

6.8 The Effect of Discretization

The concept of discretization is used in the hardware im-
plementation of all digital computer systems. The hardware
sequences for the computer. operations are based on a clock
pulse that occurs at fixed time intervals (called the machine
cycle time). Thus all events in a computer system can only
occur at one of these discrete times. For-example, the spy
process in the covert -scheduling channel can only receive
channel outputs that are multiples of the machine cycle time
since it must measure its interquantum time in multiples of
the machine cycle time. The discretization inherent in a
computer system is used in Chapter 5 to develop a semi-
Markov system model. Due to the difficulty in obtaining the
CTPM for a discretization interval the length of a machine
cycle, the larger value of 0.2 seconds is chosen for the
analysis here, as explained in Chapters 4 and 5.

In a real system providing partial confinement, the
discretization interval used in the system analysis will also
have to be substantially greater than a machine cycle to ob-
tain a reasonable estimate of the channel capacity with a
discrete channel model. The discretization interval chosen
must also be enforced, which means that all users start their
execution quanta only at-times that are multiples of the
discretization interval. This enforcement produces a trade-off
decision for the system designer as to the appropriate value
of the discretization interval. As the interval increases, the
amount of CPU time that is wasted between the completion
of the quantum of one user (which includes swap time) and
the beginning of the quantum of the next user is usually ap-
proximately: one-half of the discretization interval. This was-
tage affects both confined and unconfined subsystems and
discretization intervals. The effect of this wasted CPU time
can be viewed as an increase in the workload generated by a
certain number of users. For example, a 15 user load with a
discretization interval of 0.2 seconds may be equivalent, with
respect to response time, to an 18 user load with a discretiza-
tion interval of a machine cycle.-

Balanced--against this CPU wastage is a decrease in the -

channel capacity for a given workload as the -discretization in-

38

terval is increased. The reason for the capacity decrease is
explained in the Data Processing Theorem (discussed in
Chapter 2) which states that post-processing of channel out-
puts can only decrease channel capacity. In this case, the
post-processing involves consolidation of a large number of
distinct channel outputs for the smaller discretization system
into a smaller number of distinct outputs for the larger
discretization system. This consolidation can only cause the
capacity to remain the same or decrease, but never to in-
crease. An example of the magnitude of the capacity changes
that can be expected by varying the discretization interval is

0.2 Second 0.05 Second
Discretization Discretization
Capacity Capacity
Number (Bits/Channel (Bits/Channel
of Users Scheduler Use) Use
25 FB 2.32 .81
25 RR2 1.94 4.68
25 . RR1 1.7 3.70
5 FB 3.24 5.27
5 RR2 3.23 5.27
5 . RR1 2.38 .31
Table 6.8

Unconstrained Channel Capacity for
Different Discretization Intervals

shown in Table 6.8 for intervals of 0.2 and 0.05 seconds.
These measurements are for the channel capacity extremes
(5 and 25 users) for an equilibrium quantum length of zero
to give the range of possible channel capacities of interest.
For the largest amount of leakage (5.users, FB), the capacity
in bits/channel use increases by .a factor of 1.63 over.the 0.2
second interval length case. This increases the potential leak-

- age in bits/useful-CPU second to greater than 47,700 32-bit

words for a one hour production run. On the other end of
the scale, the capacity for the small amount of leakage (25
users, RR1) increases by a factor of 3.16 over the 0.2 second
interval case. This boosts the potential leakage in bits/useful
CPU second from 713 words to greater than 2,250 32-bit
words for the one hour production run. As the discretization
interval approaches a machine cycle, the channel capacity
with zero users and a constant system overhead for process
switching becomes the log (base 2) of the quotient of the
quantum length divided by the machine cycle time. For a
two second quantum length and a machine cycle time of one
microsecond, the largest .capacity is 20.93 bits/channel use,
which is a significant amount of information. If the number
of unconfined users is not zero or the system overhead for
process switching is not a constant, the capacity will be less.
This discretization analysis confirms the conclusion of an
earlier section that the potential information leakage of
current systems can be quite large since these systems have a
discretization interval equal to the machine cycle time. The
beneficial aspects of introducing a larger discretization inter-
val into a system design (lower channel capacity, easier
model analysis) must be weighed against the performance
lost. In particular, the system will respond more slowly with
a given workload and a large discretization interval than with
a small discretization interval. It is our belief that for partial
confinement to be a viable option, the discretization interval
should be substantially larger than the machine cycle time.

6.9 The Cost of Absolute Confinement
Absolute confinement is the most expensive form of

-confinement for the scheduling covert channel since the

scheduling algorithm must not use-any information from the

&)

(1
.

‘e

- ————

o -

e e s -y

it minn adeh Rlest Sul B

———y

LR

Huskamp: Covert Communication Channels in Timbsharing Systems 39

AR B
S s 3

R N R

state of the confined subsystem in making scheduling deci-
sions, as pointed out in Chapter 3. This results in CPU time
being allocated when it can not be used by the confined sub-
system and in CPU time not being allocated when it is need-
ed. The best absolute confinement scheduling algorithms,
with respect to confiner cost, take into account the general
execution characteristics of the confined subsystem to be exe-
cuted. For example, if the confined subsystem is known to
be 1/0 intensive, less CPU time could be allocated than if it
is CPU intensive. But when the entire terminal session,
which consists of executing many programs having different
characteristics is to be confined, tailoring the scheduling algo-
rithm can be difficult. An example is the program debugging
procedure in which file editing, compilation and program exe-
cution are done in a cyclic manner. Each of these programs
has distinct characteristics so that a scheduling algorithm that
is optimal for one program is generally not optimal for anoth-
er.

The following sections discuss the absolute confinement
algorithm used in this thesis and the difference in cost
between absolute confinement, partial confinement (using the
unconstrained channel model), and no confinement. A cost
function that accounts for the users executing unconfined
programs as well as the confiner is also discussed.

6.9.1 The Absolute Confinement Scheduling Algorithm

Rather than taking into account all the different types of
programs a user might execute during a terminal session, an
absolute confinement algorithm that allocates a fixed non-
zero quantum length to the confined subsystem every nth
time the confined subsystem is eligible for execution (i.e.
comes to the head of the CPU queue) is used. At all other
times the confined subsystem is eligible for execution, a
quantum length of zero seconds is allocated. -

To obtain the quantum length and the value of n for the
absoiv- confinement scheduler, a two step procedure is used.
The fi' ¢ step is to determine the best choice of the non-zero
quantum length by simulating an absolute confinement
scheduler for n=1. For the 25 user FB or FCFS scheduler,
this quantum length is 1.4 seconds, for the 25 user RR2
scheduler the length is 1.2 seconds, for the 25 user RR1
scheduler the length is 1.0 seconds, for the 15 user FB, RR1,
and FCFS algorithms the length is 0.4 seconds, and for the §
user FB algorithm the length is also 0.4 seconds. In the 15
user and 5 user cases, the small quantum length is necessary
to avoid wasting a large amount of CPU time. A quantum
length of 0.2 seconds causes a large increase in the user cost
due to the inability of large confined programs to be com-
pletely swapped in and executed in one quantum allocation.
Thus the 0.4 second quantum is the better choice. For the
25 user case, the large quantum length indicates that the user
cost factor is much more important than in the 15 and 5 user
cases. This requires a long quantum allocation to reduce the
confiner’s response time.

The second step is to determine the value of n which
gives the lowest confiner cost given the quantum length from
step 1. For 25 users with all schedulers, skipping no quan-
tum allocations yields the lowest confiner cost. This is not
surprising since this step is designed to reduce the CPU time
cost at the expense of user cost. For 15 users with the
FCFS, RR1 and FB schedulers, skipping three quantum allo-
cations yields the lowest confiner cost. For 5 users with the

FB scheduler, skipping nine quantum allocations yields the

lowest confiner cost.

Even though the procedure for determining the absolute
confinement algorithm scheduling parameters is a two step
procedure, only one variable is really being varied for each
workload. For the 25 user workload, n must be one to keep

the user cost low. For the 15 and § user cases, the quantum
length allocated must be the smallest feasible length or else
excess wasted CPU time results. Thus instead of exploring a
two dimensional space of absolute confinement scheduling al-
gorithms, only a one dimensional space is analyzed in each
case.

Subsequent references to minimum absolute
confinement cost refer to the cost obtained by the above pro-
cedure. This is not necessarily the lowest absolute
confinement cost since all possible absolute confinement al-
gorithms were not analyzed. However it will provide a
benchmark for comparing the cost of absolute confinement
with other confinement policies.

6.9.2 The Cost Penalty for Absolute Confinement

The absolute confinement cost given by the above algo-
rithm is useful in answering two questions about
confinement. The first question is whether partial
confinement can be less costly than absolute confinement. If
partial confinement is less costly, it may be preferable to use
partial confinement in certain applications. To answer this
question, the confiner cost of absolute confinement is com-
pared with the confiner cost for the unconstrained channel
analyzed previously. Having a lower confiner cost for the un-
constrained channel does not guarantee that partial
confinement would be used since the information content
cost of leaking some data must be added to the cost of partial
confinement. Thus a lower cost for partial confinement is a
necessary but not sufficient condition for partial confinement
to be used. In the analysis presented here, only the confiner
cost is considered and not the information content cost for
partial confinement. The second question is how much more
expensive is it to execute a subsystem with--an absolute
confinement -scheduling algorithm- than to execute the -sub-
system with an algorithm that does not offer confinement.
The comparison will assume that both algorithms are used on
discretized systems. The effect of this assumption is exam-
ined critically in a later section.

The behavior of an absolutely confined subsystem with
an unconfined workload of 25 users differs greatly from

-22r 25 Users, FB Scheduler

{00 Bits of Leokoge

EQ* Equilibrium Quontum
Length in Seconds

== Minimum Absoilute
Confinement Cost

EQ= 0.0

.20

48

A6f

EQ=4.2 EQ={.6
ey
—_0 0 O—

A4+

CoST (7/ USEFUL CPU SECOND)
i
I
BE
8]
§.?| :
I
|
I
|
|
I
ml
°|
Q

!
300

A2
A0 1) 1 1)
50 {00 150 200 250
NUMBER of TOTAL USEFUL CPU SECONDS
Figure 6.5

Unconstrained Choﬁne! Cost vs. Absolute Confinement Cost
25 Users, FB Scheduler

unconfined workloads of 15 and 5 users. Figure 6.5 is the
graph of the total cost per useful CPU second for a 25 user
workload versus the amount of CPU time obtainable before

—————e o 2 S 2 RS

Huskamp: Covert Communication Channels in Timesharing Systems

160 bits may be leaked. In other words, the confiner esti-
mates his CPU requirement for the terminal session (in use-
ful CPU seconds), finds that number on the horizontal axis,
then determines the cost of CPU time from the appropriate
curve. The horizontal dotted line is the lowest cost absolute
confinement scheduler, which in this case represents allocat-
ing the confined subsystem a quantum length of 1.4 seconds
every time it is eligible to execute. The solid line is the cost
to the confiner of using the unconstrained channel to obtain
CPU time, given that at most 100 bits can be leaked, with the
equilibrium quantum length as the parameter. The leakage
value of 100 bits is an arbitrary choice. Any other value
would change the scale of the horizontal axis, but not the
shape of the curve. For example, a leakage value of 50 bits
would multiply all the horizontal axis marks by one-haif to
obtain the graph for this case. The relationship between the
number of total useful CPU seconds and the channel capacity
is an inverse relationship: as the capacity decreases, the
number of total useful CPU seconds increases.

The interesting feature of Figure 6.5 is that for a large
range of CPU times (and channel capacities), the cost
difference between absolute confinement (the most expensive
form of scheduling since the needs of the confined subsystem
are not considered) and unconstrained scheduling is only
about 8%. This result is not entirely unexpected after finding
that a very large equilibrium quantum length minimized the
cost for the unconstrained channel. For the 25 user case, the
user cost is greater than the CPU cost, which allows CPU
time to be traded for a faster user response time to produce a
Jower total cost. Since the majority of the quanta allocated to
the confined subsystem are equilibrium quanta, it seems like-
ly that the absolute confinement scheme of allocating a large

- quantum -every time to-the confined subsystem would not

differ greatly in cost from the unconstrained channel scheme.
The conclusion reached from Figure 6.5 is that for the FB
scheduler, the overhead of making the channel capacity
measurable (i.e. the inclusion of equilibrium quanta) intro-
duces enough overhead that the cost to the confiner of partial
confinement and absolute confinement are nearly the same.
Thus for the heavily loaded system, partial confinement does
not appear to give a satisfactory trade-off of capacity versus

€Q=0.0
0.24
2z 23 Users, RR{ Scheduler
[} 400 Btz of Leokoge
g . . - EQe Equilibrium Ouaontum
0,22} ° Length in Seconds
— = Minimum Absolute
=] U Conlinement Cos?
Q.
©. 20 t
) -
: - . . i
w
w 4
m.l 8
=}
~
.46
- — —— —— —— — — —
344 —T0et.2
(8]
200 400 600 800 1000 {200 1400 {600

NUMBER of TOTAL USEFUL CPU SECONDS

. Flgure 6.6
Unconstrained Channel Cost vs. Absolute Confinement Cost

25 Users, RR Scheduler

confiner cost. As shown in Figures 6.6 and 6.7, this
phenomenon is not restricted to the FB scheduler, but is also
exhibited by RR1 and RR2.

40

23 Users, RA2 Scheduler
{00 Bits of Leckoge
€Q » Equilibrivm Qusatem
Length in Seconds
o= Minimgm Absoiute
Confinement Cost

cOST (47 USEFUL CPU SECOND)

PR WP RSN SRS RTINS R U .
200 400 600 800 1000 1200 ﬁloo
NUMBER of TOTAL USEFUL CPU SECONDS

X Figurs 6.7
Unconstrained Channel Cost vs. Absolute Confinement Cost

25 Users, RR2 Scheduler

The S user and 15 user workload cases exhibit an entire-
ly different cost behavior than the 25 user workload case.
The confiner cost versus number of useful CPU seconds

0.30¢
— EQ=2.0
0 0.2 =
S 5 EQ=4.6
(o]
(8]
w
w
- 0.20 :
a.
(8]
_J e e o e e e o ———
=)
o 0.45
V3]
w
o} 45 Users, FB Scheduler

{00 Bits of Leaokage
~ 0.10H EQ = Equilibrium Quantum
™=y - Length in Seconds
~ —— Minimum Absolule
- Confinement Cost
w
o) 1
(3] 0.05 A EQ=0.0
f 0.0l | i | 1]
. {0 20 30 T 40

NUMBER of TOTAL USEFUL
CPU SECONDS

. Figure 6.8
Unconsirained Channel Cost_vs. Absolute

Confinement Cos.i 15 Users, FB Scheduler

graph for the 15 user FB scheduler is shown in Figure 6.8.
The graphs for the other schedulers with a 15 user workload
and all schedulers with a 5 user workload have the same
characteristics as Figure 6.8 and are not shown. The dotted
horizontal line in Figure 6.8 is the minimum absolute
confinement cost and the solid line is the unconstrained
channel cost for different values of the equilibrium quantum
length: Unlike the 25 user workload case, the confiner cost

_ of the unconstrained channel for an equilibrium quantum

Huskamp: Covert Communication Channels in Timesharing Systems

length of zero seconds is 27% of the cost of absolute
confinement. As the equilibrium quantum length increases,
the cost eventually exceeds the absolute confinement cost.
The fact that the cost of partial confinement can be
significantly less than absolute confinement for the 15 user
and 5 user workloads shows that a trade-off of cost versus
capacity can be made in these cases. Since the unconstrained
channel cost curve rises abruptly as the equilibrium quantum
length increases, using the equilibrium quantum length as a
“knob”’ for adjusting the capacity/cost trade-off does not pro-
duce a large range of CPU times for which partial
confinement is cheaper than absolute confinement. In subse-
quent sections, other knobs are explored that provide better
control over the cost and capacity.

There is still the question of how much absolute
confinement costs compared to no confinement. The answer

Unconfined Confiner
Number of Cost (=A) Cost (=B)
Users, ($/Useful ($/Userud Cost Factor
Scheduler CPU Second) CPU Second) (B/A)
25,FB 0.0568 0.156 2.75
25,RR2 0.0626 0.163 2.60
25,RR1 0.0705 0.146 2.07
15,FB 0.0302 0.161 5.33
15, FCFS 0.0330 0.159 4.82
15,RR1 0.0335 0.169 5.04
5,FB 0.0235 0.138 5.87
Table 6.9

Cost of Absolute’Confinement Versus No Confinement |

is contained in Table 6.9 which gives the cost factor-for abso-
lute confinement (= cost of absolute confinement for the
confiner divided by the cost of no confinement for each
unconfined process). The cost factor for
confinement for 25 users and the FB scheduler (= 2.75) is
nearly the same as for the unconstrained channel model in
Table 6.7 (= 2.71). The major difference is in the 15 and 5
user workloads. The cost of absolute confinement is 4 to 6
times larger than the unconfined cost for these workloads.
The corresponding cost of partial confinement is 1 to 1.5
times the unconfined cost. As mentioned before, absolute
confinement is very expensive compared to partial
confinement for the cost function defined in section 6.3 for
the S user and 15 user workloads.

6.9.3 Using System Cost for the Comparison

Although the cost function defined in section 6.3 will be
used throughout this thesis, an alternative would be to in-
clude the cost for all users in the cost function. Such a cost
function could be called the system cost function. This type
of cost function would prevent the scheduler from being op-
timized for the confiner at the expense of the users executing
unconfined jobs. This type of cost function might be used by
the system administrator to keep the average level of satisfac
tion with the system response high. .

One natural system cost function would be a user-
weighted cost function in which the cost to all users of the
system is averaged. For example, if 25 users are executing
unconfined programs and one user is executing a confined
program, the cost of execution (including both CPU time and
user time) for one unconfined user would be multiplied by 25
and the product would be added to the cost for the one
confined user. The function used to determine the cost for
both the confined and unconfined users is the one defined in
section 6:3. The interesting question involving the system
cost function is whether the cost relationship between abso-

absolute -

4]

lute confinement and partial confinement as implemented by
the unconstrained channel changes if the system cost func-
tion is used rather than the confiner cost alone. The analysis
results could change if the scheduling parameters chosen to
minimize system cost are different than the parameters
chosen to minimize confiner cost.

The most important parameter chosen is the value of the
equilibrium quantum length since this parameter is the pri-
mary factor in determining cost. The data for the equilibrium
quantum selection for the 5 and 15 user workloads is given in
Table 6.7. For these two cases, the confiner cost and the
unconfined user cost are minimized at the same equilibrium
quantum length (= 0.0 seconds). Thus the equilibrium
quantum length used to minimize system cost is the same as
the equilibrium quantum length that minimizes confiner cost.
To compare the difference in system cost between absolute
confinement and the unconstrained channel (partial
confinement), the data in Table 6.9 and Table 6.7 are used.
The system cost for the 15 user FB scheduler, which is typi-
cal of the other schedulers, for absolute confinement is 0.614
$/useful CPU second (=0.161 for confiner cost +
(0.0302%15) for user cost) and for the unconstrained channel
is 0.499 (=0.044 for confiner cost + (0.0303x15) for user
cost). The difference between the user costs for these two
cases is small but the difference between the confiner costs is
large. The small difference in cost for the unconfined jobs is
typical of all the measurements (about 3%), so the schedul-
ing parameters for confinement do not significantly affect the
unconfined user cost. Since the type of confinement does not
materially affect the cost to the unconfined users, the
confined scheduling parameters should be chosen to minim-
ize the confiner cost as has been done in the subsequent
analysis. This conclusion also holds for the 5 user case.

For the 25 .user case, the equilibrium quantum length
chosen will depend on the cost function used. As shown in

Absolute Unconstrained
Confinement Channel
Equilibrium System Cost System Cost
Quantum Length (¥/Useful ($/Useful
(Seconds) CPU Second) CPU Second)
0:0 X 1.546
0.k 1.478 1.505
0.8 1.488 1.h79
1.2 1.57 1.505)
S 1.6 1.6k6 1.550 |
1.580 ‘

2.0 1.657

Table 6.10

System Cost vs. Confiner Cost
for the 25 User, FB Scheduler

Table 6.10, the equilibriumn quantum length that minimizes
system cost is 0.4 seconds. This is different than the equili-
brium quantum length of 1.4 seconds that minimizes system
cost. This difference is due to the large effect of absolute
confinement on the cost to the unconfined users. For the
equilibrium quantum length of 0.4 seconds, the difference in
system cost between the unconstrained channel and absolute
confinement is on the order of 5%. This result is consistent
with the difference of 8% found for the equilibrium quantum
length that minimizes confiner cost. Since the difference
between the absolute confinement cost and partial
confinement cost is small with both cost functions, absolute
confinement would probably be used instead of partial
confinement as noted before.

In summary, the use of system cost in choosing the

.

oy

.

B a2

toerTeamty - e

Huskamp: Covert Communication Channels in Timesharing Systems

scheduling parameters should not alter the conclusions of this
thesis. For the § and 15 user cases, the equilibrium quantum
length parameler chosen is the same for either cost function
and for the 25 user case, the equilibrium quantum chosen ac-
cording to either cost function results in partial confinement
(with the unconstrained channel) not being significantly
cheaper than absolute confinement. A cost function that
charges the confiner a certain rate according to the workload
(i.e. charge less per CPU second when there is an excess of
CPU time available as in the 5 user case) might change the
conclusions. The feasibility and usage of such a cost function
is an open area of research.

6.9.4 The Effect of Discretization on the Absolute
Confinement Cost

The cost of absolute confinement could be measured
without any system discretization since discretization is not
needed to compute the channel capacity. Without discretiza-
tion, the absolute confinement cost might be lower than that
measured. However, by using the appropriate design stra-
tegy, the cost of partial confinement could aiso be lower than
that given here. If a system is to be designed with a partial
confinement feature, the correct procedure would be to first
model the system with a discretization that is large enough to
permit the set of computations of the channel capacity at a
reasonable cost. This is the method for choosing the 0.2
second discretization interval used in this thesis. Once the
correct neighborhood is found for the scheduling parameters,
a once-only computation could then be made of the channel
capacity for a small enough discretization interval that the
system overhead due to discretization would be small.

To obtain a better idea of the magnitude of the absolute
confinement cost difference with no -discretization, the 25
user and 5 user FB scheduler was simulated with a discretiza-
tion interval of 0.05 seconds. At this level of discretization,
the percentage of wasted CPU time for unconfined. users is 2
to 3% for a 25 user workload. The cost increase of the 0.2
second discretization over the 0.05 second discretization for
unconfined users is 1.16 for 25 users and 1.05 for 5 users.
The confiner cost increase is a factor of 1.05 for 25 users and
is 1.01 for 5 users. These figures suggest that the unconfined
user cost will drop more rapidly than the confiner cost. Thus
as the discretization goes to zero, the cost factor increases for
executing absolutely confined as opposed to unconfined. The
reason that the unconfined cost decreases more rapidly than
the absolute confinement cost is that by reducing the discreti-
zation interval, the response time cost and the wasted CPU
time decrease for the unconfined case. For absolute
confinement, the response time cost will decrease but the
wasted CPU time component will not decrease. This is due to
the absolute confinement scheduling algorithm being unable
to allocate a quantum length based on the needs of the
confined subsystem. Thus the increasing cost factor for abso-
lute confinement as the discretization interval decreases
should be expected. These measurements suggest that the
cost factor of executing absolutely confined versus
unconfined will increase slightly as the discretization de-
creases. Also the variance in cost of absolute confinement as
the discretization interval decreases is small.

6.9.5 Summary

This section has presented a major result of this thesis:
partial confinement yields only a 8% reduction in the confiner
cost for heavy workloads but yields reductions of 80% to 85%
for the lighter workloads over absolute confinement. For the

-heavy.workload case, the cost.of making the capacity measur- .-

able causes the very small cost advantage of partial

confinement. ..For. most. applications, the advantage .is small .

42

enough that absolute confinement would probably be pre-
ferred over partial confinement. For the medium and light
workload cases, however, the cost advantage of partial
confinement is significant and could provide an allernative to
absolute confinement. The last part of this section demon-
strates that absolute confinement is very costly compared to
unconfined execution.

6.10 Partial Confinement Using DMC Channel Models

The previous section demonstrated that partial
confinement can be less costly than absolute confinement for
medium and light workloads. The penalty for using partial
confinement is that the amount of leakage is not zero. The
non-zero leakage and lower cost result from the operating
system choosing which quantum length to allocate to the
confined subsystem based on the state of the confined sub-
system. Those scheduling strategies in which the quantum
choice is heavily dependent on the confined subsystem state
usually leak more information and cost less than strategies
that are not as heavily dependent. A desirable feature of a
confinement mechanism is to provide a ‘knob” that regu-
lates the amount of dependence by adjusting a small number
of parameters. This feature is included in the three DMC
channel models investigated in this section.

The objective of this section is to show that partial
confinement can provide a choice of channel capacities that
vary more than an order of magnitude for less cost than ab-
solute confinement. This allows the confiner to have a wide
selection of cost/capacity choices for an application in which a
non-zero amount of leakage can be tolerated. The channel
models that are implemented by the scheduler to provide par-
tial confinement are based on the cascaded, the compound
and the cascaded compound.channel models - presented in
Chapter 2. These models are not the only ones that can be
used. Any channel model that can be implemented in a com-
puter. scheduler is a possible candidate.. But these models do
provide a wide range of cost/capacity choices.

The next section explains the constrained channel model
that will be used throughout the rest of this chapter. The
constrained model is shown to have the same characteristics
as the unconstrained model analyzed earlier but with fewer
inputs to make the analysis easier. Constraining the channel
is necessary for a comparison of the DMC and the DCWM
channel models since the DCWM model can have at most
three inputs for computational reasons.

6.10.1 The Constrained Channel Assumption

The constrained channel is a channel in which only a
subset of the possible quantum lengths can actually be allo-
cated to the confined subsystem. For example, in RR2 with
a discretization interval of 0.2 seconds, the confined subsys-
tem can choose a quantum length of 0.0, 0.2, ..., 2.0 seconds
as in the unconstrained channel. In the constrained channel
model, only three of these possible quantum lengths can be
allocated. Decreasing the number of inputs for the confined
subsystem can only decrease the channel capacity as ex-
plained by the Data Processing Theorem. For example, in
the channel that transmits data without any decoding error,
decreasing the number of channel inputs from 11 to 3 de-
creases the channel capacity from log, 11 (= 3.46) bits per
channel use to log, 3 (= 1.58) bits per channel use. The rea-
son for the decrease is that the data must be encoded into a
smaller number of symbols, which decreases the data rate of
the channel.

The choice of the quantum lengths that can be allocated
to the confined subsystem for the constrained channel model
must be a function of the job characteristics. Since our view
of confinement .is that the entire terminal session must be

‘e

.

Huskamp: Covert Communication Channels in Timesharing Systems

confined, the characlteristics to use are the ones for the entire
workload. In the CTSS workload, most of the jobs require a
very small amount of CPU time (less than 0.05 seconds) for
each interaction. A typical job with this characteristic is an
interactive editor that waits for an editing command, per-
forms the editing function specified, then waits for the next
editing command. If swap time is included with the small
CPU time requirement, most of these interactions complete
in less than 0.4 seconds. The remainder of the workload
represents interactions that require more than a trivial
amount of CPU time, such as compilations. To handle these
requests efficiently, a quantum length longer than 0.4 seconds
is required. After experimentation with several values of a
longer quantum length, the value of 1.0 seconds was chosen
to handle interactions in this class, although other quantum
lengths in the neighborhood of 1.0 seconds (e.g. 0.8 and 1.2
seconds) yielded similar results. The most frequent type of
quantum request occurs when the CPU is to be allocated to
the confined subsystem, but the CPU time can not be used
(i.e. the confiner is thinking). This requires that a zero
length quantum also be a channel input. This case occurs
frequently in the light and medium workload cases in which
there is excess computer capacity. Based on the above con-

siderations, a three input constrained channel allows the

confined subsystem to have possible channel inputs of 0.0,
0.4 and 1.0 second quantum lengths.

The comparison of channel capacity and confiner cost for
the unconstrained and constrained channels with a zero

mcor.straincd. Constrained Unconstrained Constrained
Channel Channcl c‘l’:nnnel c Mnel
Nuaber of Capacity Capacity 03t
Usars, (Bizs/Useful (Bit../uaeml ($/vscrul (3/ l:se:'x.l
Sgheduler _CSU Secend). _CPU Seo CPU Sacond) Seoaond)
0.62 1.23 0.147 . 0.162
HE - 1. 51,12 0.0Lk o.0b7
15,FCFS Infinity 49,19 X 0.052
15,FR1 35.30 30.53 0.056 0.051
5,F3 260.7 121.6 0.026 0.029

The equilibriun quantum length is zero accomls except for the 25 user FB

scheduler. In this case the trained 1 equilibriun quantum
length 48 1.2 scconds and the constrained chammel equilibrium quantun
length is 1.0 seconds. !

Table 6.11
Unconstrained Channel vs. Constrained Channel

length equilibrium quantum is given in Table 6.11. The larg-
est decrease in channel capacity, of course, occurs for the
FCFS scheduler in which the capacity is finite for the con-
strained channel and infinite for the unconstrained channel.
Excluding the FCFS algorithm, the average percentage capa-
city decrease for all the algorithms is about 32%. The
confiner cost for the constrained channel is within 10% of the
unconstrained channel for all schedulers except FCFS. The
cost for the FCFS scheduler is undefined for the uncon-
strained channel since the number of equilibrium quantum
allocations required to return the system to equilibrium can
not be determined. This is a result of there being no largest
perturbation that can be caused by the confined subsystem.
The unconstrained channel does not necessarily have a lower
cost than the constrained channel since the number of equili-
brium quanta allocated between two variable length quanta
may be greater for the unconstrained channel model, which
increases the cost of the unconstrained channel. This effect
occurs for the RR1 scheduler. The difference in cost is on
the order of 10%. Also the capacity of the 25 user FB un-
constrained channel capacity is less than the constrained
‘channel due to the smaller number of equilibrium quanta al-

-- located per useful CPU second for. the constrained channel.

- Since the cost of the constrained channel is not much

43

different from the unconstrained channel, the channel inputs
that are omitted in the constrained channel do not appear to
have a large effect on the cost of confinement. Since the cost
for the constrained channel is nearly the same as the uncon-
strained channel but with a smaller channel capacity, the con-
strained channel will be used as the base channel for the sub-
sequent channel models in this chapter.

In subsequent sections, the only heavy workload and
light workload scheduler to be analyzed is the FB scheduler.
For a heavy workload, all the schedulers exhibit similar
characteristics and yield capacity and cost values in the same
neighborhood. Since the FB type of algorithm is frequently
used in practice, it is the one chosen to represent the heavy
workload case. For the light workload, the excess CPU time
available makes the characteristics of all schedulers similar.
Again FB is chosen as a typical example of this workload.

6.10.2 Constrained Cascaded Channel Model

One method for decreasing the channel capacity is to not
always allocate the confined subsystem the quantum length it
needs every time. The effect of this strategy is to make the
decoding task of the spy much more difficult. This problem
can be overcome by the confined subsystem and spy doing
more sophisticated encoding and decoding, but at a reduced
rate of data transmission. One implementation of this chan-

Confined Channel
Subsysten Quantum Constrained Output
————— S chedul ey Charmel
CPU Selected Observed
Requirement by Spy
|o.o 0.4 1.0 Jo.o 0.2 0.6 ...

0.0 A B B o c c2 C3 coe

0.4 B A B 0.4 | D D2 D3 cee

1.0 B B A 1 El E2 E3 coe

CTPM for Scheduler CTPM for Constrained Channel

B = (1.0-A)/2.0

Figure 6.9
Constrained Cascaded Channel Model

nel is shown in Figure 6.9. Here, the confined subsystem
makes its CPU requirements known to the scheduler which
allocates a quantum length according to the scheduler’s
CTPM. That is, with probability A, the desired quantum
length is allocated, and with probability (1.0-A)/2.0 each of
the unwanted quantum lengths may be allocated. The allo-
cated quantum is then used as the input to the constrained
channel analyzed in the last section which represents the oth-
er users of the system and which has as outputs the inter-
quantum times seen by the spy.

The entire covert channel (scheduler channel + con-
strained channel) can be analyzed with the cascaded channel
model discussed in Chapter 2. The capacity of the entire
channel can be regulated to range from zero (for A=1/3) to
the constrained channel capacity (for A=1.0). The scheduler
channel capacity is zero exactly when A=1/3 because all the
rows of the scheduler CTPM are equal. By the Data Process-
ing Theorem, the capacity of the entire cascaded channel is
then shown to be zero. Of course, when A=1.0, the
scheduler always gives the confined subsystem the quantum
it wants so the cascaded channel model has the same capacity
as the constrained channel alone. The ability to continuously
adjust the channel capacity by varying one parameter is desir-
able in a partially confined environment. If this feature is not

B o

BT

Huskamp: Covert Communication Channels in Timesharing Systems

provided, an excessively restrictive (lower capacity but higher
cost) channel model may have to be used to insure the infor-
mation leakage specifications of the confiner are met.

The result of using the cascaded channel model for the
heavily loaded system with the FB scheduler is shown in Fig-

25 Users, FB Scheduler
400 Bits of Leckage
EQ = Equilibrivm Quantum
Length in Seconds
— — Minimum Absolute
Confinement Cos!
A = Cascoded Chonnel
Porameler

o

»

(o]
1

EQ+0.0

A«0.6

£00.8 -
i —O——— €0+ 0.4

f (YA«0.6 R O.G A 0.4
2:08,,4+0.8 ~ "0
______ N e e e e s === EQ- .0
\Au,o

ot
N
O

e
o
1

o
o

COST (£/ USEFUL CPU SECOND)

1 1 1 1 1
500 {000 1500 2000 2500
NUMBER of TOTAL USEFUL CPU SECONDS
Flgure 6.40
Consiroined Coscoded Channel Cost vs. Absolute !

" Confinement Cost 25 Users, FB Scheduler i

ure 6.10. As the value of A decreases from 1.0, the confiner .
cost must increase since the quanta allocated depends less
and less on the needs of the confined subsystem. Since the
cost of the constrained channel alone (A=1.0) is within 5%
of the absolute confinement cost, the cascaded model does
not provide much incentive to use partial confinement. As
shown in Figure 6.10, for an equilibrium quantum value of
1.0, which yields the least cost for the constrained channel,
the cost quickly exceeds the absolute confinement cost. The
increase in cost is due to both a longer average response time

Equilibrium Channel CPU Cost User Cost
Quantum Parameter ($/Useful ($/Useful
(Seconds) (A) CPU Second) CPU Second)
0.0 1.0 0.0175 0.163
0.0 0.8 0.0307 0.193
0.0 0.6 0.0ko7 0.224
0.0 0.k 0.0593 0.256
0.4 1.0 0.0636 " o0.0888
0.k 0.8 0.0580 0.110
0.4 0.6 0.0738 0.115
R 0.4 0.0796 0.132
1.0 1.0 - 0.0711 0.0776
1.0 0.8 0.0839 0.0809
1.0 0.6 0.0798 0.0876
1.0 0.4 0.0757 0.0947
Table 6.12
Cost Components for 25 Users, FB Scheduler for the
Constrained Cascaded Channel Model

and more wasted CPU time as shown in Table 6.12.

The medium workload case is shown in Figure 6.11 for
15 users and the FB scheduler. The graphs for the RR1 and
FCFS algorithms for this workload exhibit similar behavior
and are not shown. The cascaded channel gives a lower cost
for partial confinement for applications that can tolerate a
leakage of more than 3.92 bits/useful CPU second with a
zero second equilibrium quantum. If 100 bits can be leaked
in the total execution of the confined subsystem, then 25.5

_ seconds of useful CPU time can be obtained. If a non-zero

equlibrium -quantum -length is used, the confiner cost in-
creases significantly as shown in Figure 6.11 for an equilibri-

44
> EC+0.4
2
S
b €£0+0.0
o A-0.4
S — —— —— — —
c
(8]
) 15 Users, FB Scheduler
2 100 Bits of Leckage
w ' EQ-= Equilibrium Quortum
3 Lengih in Seconcs
b ———Minimum A4bsclute
~ Confinement Cost
A+ Coscoded Chomnel
\o 05 A=1.0 Parometer
-
1723
8 | S— 1 [l 1 1
{00 200 300 400 500
NUMBER of TOTAL USEFUL CPU SECONDS
Figure 6.04

* Constrained Coscaded Chonnel Cost vs, Absolute
Confinement Cost 15 Users, FB Scheduler

um quantum length of 0.4 seconds. The lower channel capa-
city induced by the non-zero equilibrium quantum is more
than offset by the extra amount of CPU time wasted. This
makes the zero length equilibrium quantum the reasonable
choice for partial confinement.

In the light workload case, partial confinement also costs
less than absolute confinement for the cascaded channel
model. This cost advantage only occurs for large amounts of

0.30¢
EQ=0.0
Oxos
O 0.25
= 5 Users, FB Scheduler
8 {00 Bits of Leakage
w _EQ= Equilibrium Quontum
(2 Length in Seconds
0.20}-pP A=0.6 . — — Minimum Absolute
2 Confinement Cost
O A = Cascoded Chonnel
" Parometer
-
E 0.45 _:.0.8 L .
w
(42}
2
~N OO
=
-
w
O 0.05F . .
U -
DA=1.0
1 1 ! J
o 5 {00 150 200

NUMBER of TOTAL USEFUL
CPU SECONDS
Figure 6.2
Constrained Cascaded--Channel Cost vs. Absolute
Confinement Cost 5 Users, FB Scheduler

leakage as shown in Figure 6.12. The confiner must be able
to tolerate leakage at a rate greater than 40 bits/useful CPU
second to have this channel model cost less than absolute
confinement.-- This translates into only 2.5 useful CPU
seconds if a total of 100 bits may be leaked. This exception-

Huskamp: Covert Communication Channels in Timesharing Systems

ally high rate of leakage would most likely make absolute
confinement the most frequently used alternative. - Another
alternative is for the system to simulate the effect of addi-
tional users to decrease the channel capacity but at a large in-
crease in the system overhead. This strategy is discussed in a
later section after all the channel models have been intro-
duced.

The constrained cascaded model by itself does not de-
crease the channel capacity enough to make partial
confinement very cost effective over absolute confinement.
For the heavily loaded system, there is almost no cost advan-
tage for partial confinement and in the lightly loaded system,
the leakage rate is much too large. For the medium work-
load, the minimum leakage to make partial confinement less
costly is still rather large at 3.92 bits/useful CPU second.

6.10.3 Constrained Compound Channel Model

Part of the problem with the cascaded channel model is
that the zero second quantum length does not have a large
enough probability to decrease the cost for the medium and
light workload cases. The typical interaction is characterized
by a long user think time followed by a short CPU time re-
quirement. Thus in the medium and lightly loaded system,
the most frequently allocated quantum length is zero
seconds. To decrease the channel capacity and to weight the
zero second quantum length more heavily, the compound
channel model explained in Chapter 2 is used. As for the
cascaded channel model, the compound channel model is also
constrained since the confined subsystem can only be allocat-
ed a quantum length of 0.0, 0.4, or 1.0 seconds. The strategy
in using the compound channel model is to decrease the
capacity by allowing the confined subsystem to choose the
quantum length to be allocated only at random times. When
the confined subsystem is prevented from choosing the quan-
tum length, a quantum length -of zero seconds is allocated.
The constrained compound channel model is shown in Figure

|

l 0.2 0.4 0.6 ... I 0.2 0.4 0.6 ...

0.0 | S11 S12 S13 ... 0.0 811 S12 S13 ...

0.4 | S21 S22 S23 ... o.4| s11 S12 Ss13 ...

1.0 | 831 S32 S33 ... 1.0{ S11 s12 Si13 ...
Pigure 6.13

Constrained Compound Channel Model

6.13. State 1 represents a variable quantum being allocated
to the confined subsystem (with probability P) and state 2
represents a 0.0 second quantum being allocated with proba-
bility 1.0 - P. In state 2, the 0.0 second quantum is allocated
without regard to the actual CPU needs of the confined sub-
system. The capacity of the CTPM for state 2 is, of course,
zero. Since this is a DMC model, after the appropriate quan-
tum has been allocated based on the selected state, a
sufficient number of equilibrium quanta are allocated to re-
store the system to its equilibrium state given the worst per-
turbation by the confined subsystem before the next model
state is selected. -

The behavior of the 25 user workload case for this chan-

45

nel model is similar to the constrained cascaded model. In
both cases, the cost difference between absolute confinement
and the minimum cost for this model (P=1.0 and the equili-
brium quantum length =1.0 seconds) is about 5%. Since the
cost can only increase as the compound channel parameter,
P, decreases from 1.0, the usefulness of this model for partial
confinement is very limited. The cost versus capacity graph

0.50

€0+ 0.0
o Pe0.25 v
Z 25 Users, FB Scheduisr
8 0.40% 400 Bits of ‘Leokogs
w EO ¢ Equilibrium Ouontum
" Longth In Seconds
) — - Minimum Absolute
2 ' Confinement Cost
© 0.30F P » Compound Channel !
3 >,P' 0.5 Porometer !
2 . 1'
“‘ozot‘;“ P=0.26 |
wnv p . 0.
= Ps1.0 i —O— EQ* 1.0 |
_— e . — — —— — — — H
< — —— i
x PelO :
~ 0.0} '
5 1
o3)
(¥ I
200 400 600 800 (000 {200 {400 {600
NUMBER of TOTAL USEFUL CPU SECONDS
Flgure 6.14

.Consirained Compound Chonnel Cost vs. Absolute
Confinemnent Cost 25 Users, FB Scheduler

is shown in Figure 6.14.

The point at which partial confinement becomes less
costly than absolute confinement for the medium workload
case is nearly the same as for the constrained cascaded chan-

0.40 ' EQ:

0.0
45 Users, FB Scheduler P=0.05 A,
400 Bits of Leakage
EQ = Equilibrium Quontum
- Length in Seconds
=] —— Minimum Absolute
z Confinemant Cost
80.30 - P = Compound Chaonnel
w Paromater
[72]
pn
o
(8]
-
20.20}
w
w
w
b — —— A
= P=0.40
~ .
X
:0.40- /A P=0.20 .
3 _Apro.2s
© P=0.50
P={.00
0.0 1 1 1 1 1)
< : (o] 20 30 40 50 60
NUMBER of TOTAL USEFUL CPU SECONDS
Figure 6.45 .

Constrained Compound Channel Cost vs. Absolule
Confinement Cost {5 Users, FB Scheduler

nel. “This is shown in Figure 6.15. The rate for the com-
pound channel is about 3.59 bits/useful CPU second and for
- the-cascaded channel is about 3.92 bits/useful CPU second.

’

- ———cn S 5 A 175

e~

'cOST (# / USEFUL CPU SECOND)

Huskamp: Covert Communication Channels in Timesharing Systems

If 100 bits can be leaked by the confined subsystem, then the
compound channel model permits 27.9 useful CPU seconds

of computation.

0.35 EQ #0.0

P=0.02 J

0.30 5 Users, FB Scheduler
t00 Bits of Leokage
EQ # Equilibriuvm Quontum
Lengih in Seconds
- -— Minimum Absolute
=~ Confinement Cost
P =Compound Chonnel
Porometar

o
)
o

o

v

[e]
T

4
o
T

0.10[/
07P=0.10

0.05F P+0.15
P=0.25
P=0.50
P=1.00
] 1 1 A S |
10 20 30 40 50
NUMBER of TOTAL USEFUL CPU SECONDS

Figurs 6.16
Consiroined Compound Channel Cost vs. Absolute

... - Confinement Cost 5 Users, FB Scheduler

The light workload -case in Figure--6.16 for- the con-
strained compound channel model shows a marked difference
from the cascaded model. The minimum leakage at which
partial confinement is less costly for the compound channel is
3.3 bits/useful CPU second as opposed to 40 bits/useful CPU
second for the cascaded model. The difference in perfor-
mance is due to the large probability of allocating a zero
second quantum length to the confined subsystem. A com-
parison of the minimum leakage for cost-effective partial
confinement for both the 15 and 5 user workloads for the
compound channel model shows that the workload difference
only affects the CPU time cost and not the amount of CPU
time that can be obtained with partial confinement. The 5
user workload even costs less than the 15 user case for com-
parable amounts of useful CPU time.

The compound channel model is much better suited to
light workloads than the cascaded channel since it is able to
weight the zero second quantum length heavily. For the
medium and heavy workloads, the compound channel per-
forms about the same as the cascaded channel. The next
step is to obtain a channel that combines the different charac-
teristics of each of the two channel models in order to give a
larger range of capacities over which partial confinement is
cheaper than absolute confinement." ’

6.10.4 Constrained Cascaded Compound Channel Model
The constrained cascaded compound channel model is a
synthesis of the constrained cascaded channel and the con-
strained compound channel analyzed in the last two sections.
-Figure 6.17 shows graphically why a combined channel is
better for: the 15 user FB scheduler. For relatively large

. channel capacities, the compound-channel is better than the

*

46

Constrainred Casceded
Channel (Vary A)
Constrained Compound
Chonnel (Vory P)

Point Common {o Both
Channels (A={.0, P*1.0)

15 Users, FB Scheduler

A =Coscoded Channel
Parometer

P = Compound Channel
Parometer

>0
[RN
~90

CAPACITY (BITS / USEFUL CPU SECOND)

o»

o.4 1 1 1 1 I 1
(o 0 I 0.2 0.3 0.4 0.5 0.6
.COST (§ ./ USEFUL CPU SECOND)
Figure 6.17
Constrained Coscaded Compound Channel Models,
I5 Users, FB Scheduler

cascaded channel since decreasing the compound channel
parameter, P, from 1.0 causes the capacity to decrease shar-
ply. But as P approaches 0, the slope of the curve steadily
decreases. At some point the cascaded channel becomes
more cost effective than the compound channel and contin-
ues to be more cost effective as the capacity decreases to
zero.

The synthesized channel model is formed by making the
equivalent CTPM for the cascaded channel of Figure 6.9
(which was derived in Chapter 2) the CTPM for state 1 in
Figure 6.13. This means that there are two parameters that
can be used to change the characteristics of the channel: the
parameter for the cascaded channel (A) and a parameter for
the compound channel (P). An example of the interaction of
these two parameters is shown in Figure 6.18 for the heavy
workload FB scheduler. In this graph of capacity versus cost,
concentric curves that are closer to the origin represent
parameter choices that are superior to those with curves
farther from the origin. The reason is that for any channel

" capacity, the cost to the confiner is less.” For the heavy work-

load FB case, the curves representing choices of the parame-
ter P that are less than 1.0 are farther from the origin than
the P=1.0 curve. Thus any partial confinement channel
model for the heavy workload case should fix P to a value of
1.0 and just vary A to obtain the desired capacity. As stated
before, since the cost of absolute confinement is within 5-8%
of all points on the P=1.0 curve, absolute confinement is

..probably a more -attractive alternative than partial

confinement.

Huskamp: Covert Communication Channels in Timesharing Systems

T T 1TV

USEFUL CPU SECOND)
(o}

3 7
i 79
0.04F o
~ E
o [o]
A Y L
= O Ps1.0,A=1.0,0.8,0.6,0.4 \L ',
> v P=0.5; A=1.0,0.8,0.6,0.4
'5 O P=025;A4=10,0.8,0.6,0.4
g0.00{ 25 Users, FB Scheduler
. & E Equilibrium Quanium Py
S C Lengthe{.0 Second
- A = Coscoded Chonnel Poromater
B P = Compound Chonnel Parameter
] 1
| 1 |
0.000¢ o o
COST (£ / USEFUL CPU SECOND)
Figure 6.18
Consirained Cascaded Compound Chaonnel- -
!
1

25 Users, FB Scheduler

The channel model results for the medium workload
case in Figure 6.19 are much different than the heavy work-

load case for the FB scheduler. This figure is typical of the-

FCFS and RR1 algorithms for a medium workload and of the
FB algorithm under light load. Figure 6.19 shows that as the
value of P decreases from 1.0 to 0.25, the curves formed by
varying A for constant values of P are more cost effective for
values of P closer to 0.25. Curves having values of P greater
than 0.25 shift away from the origin and thus become less
cost effective. For values of P less than 0.25, the increased
user response time cost more than outweighs the decrease in
capacity. An example is the value P=0.05 in Figure 6.19.
Thus there exists a value of P at which the curve formed by
varying the value of A is the best for this channel model.
The method for finding the correct value of P in Figure 6.19
is by experimentation. The curves for the medium workload
FCFS and RR1 schedulers, and for the light workload FB
scheduler are similar to Figure 6.19 and are omitted. The
value of P that produces the minimum capacity/cost curve
for 15 users with the FCFS algorithm is 0.5, for 15 users with
the RR1 algorithm is 0.7, and for 5 users with the FB algo-
rithm is 0.1.

As a comparison of the various scheduling algorithms,
Figure 6.20 gives the capacity versus cost points for the §
user FB scheduler, the 15 user FB, FCFS, and RRI
schedulers, and the 25 user FB scheduler. The points are for
the value of P giving the minimum cost curve and for
A=1.0, 0.8, 0.6 and 0.4. The curves in Figure 6.20 are or-
dered according to workload. The most cost effective curve
represents the light workload, the next cost effective curve is
for the medium workload, and the least cost effective curve is
for the heavy workload. This is surprising since it might
seem better to run a confined subsystem when there are

-.many other users on the system to generate noise.

CAPACITY (BITS / USEFUL CPU SECOND)

{00

{0

04

CAPACITY (BITS / USEFUL CPU, SECOND)

0.04

.20

(o]

o

0.001}

T Trrrrrg T T T Trr1] T 7 T Trrrry T rrtrrrm

T TT7TY

47

P=1.0,A=1.0,0.8,0.6,0.4
P=0.25;A*1.0,0.8,0.6,0.4

. P=0.05;A+1.0,0.8,0.6,0.4
\/ {5 Usors, FB Scheduler

‘A Equilibrivm OQuontum

Length= 0.0 Seconds
3 \ A = Coscaded Chonnel Poramefer

xo b

P = Compound Channel Porometer

P=0.2%

—P=0.05

©

1 | 1] 1 1 J

o
-2

[oX] 0.2 0.3 0.4 0.5 0.6 0.7 |

COST (4 7/ USEFUL CPU SECOND)
Fi
Constrained COscoé?e‘gcwmpOund Channel

{5 Users, FB Scheduler

: 25 Users, FB Scheduler
.45 Users, FB Scheduler
S Users, FCFS Schoeduler
45 Users, RR{ Scheduler
S Users, FB Scheduler

godp o0

i . 1 2 |

P 005 OIO 0!5

COST ‘(#7/ USEFUL CPU SECOND)

: Flgure 6.20
.--All Work Loads ond Schedulers

. Constrained Cascaded Compound Channel

- ~-The -constrained -cascaded-compound channel allows the - mnﬁner -to choose a Tange covering nearly two orders of

FLERIE 12 SRR -

ta . i b

O S SR LI T T WL

Huskamp: Covert Communication Channels in Timesharing Systems

magnitude of channel capacity in bits/useful CPU second.
The low end of the capacity range includes capacities on the
order of 0.1 bits/useful CPU second, which is much lower
than for the previous two channel models, and at a cost that
is less than absolute confinement. The results of this section
can be used to make a comprehensive confinement strategy
to cover all workloads. This is done in the next section.

6.10.5 The Scheduling Strategy for Partial Confinement

Since the objective of the confiner is to execute the
confined subsystem at the lowest cost, the curves in Figures
6.18 to 6.19 suggest how this can be done for a given work-
load and scheduling algorithm for the constrained cascaded
compound channel. The minimum cost curve is found by
holding A at 1.0 and decreasing P from 1.0 until the point on
this curve closest to the origin is found. Assume that the
value of P at this point is P’. The minimum cost curve then
follows the capacity versus cost curve for P=P" and decreas-
ing values of A. When (or if) this curve meets the absolute
confinement curve, the capacity versus cost curve becomes
vertical, denoting that any desired capacity requirement can
be satisfied at the absolute confinement cost. The minimum
cost curve can be thought of as the envelope of all the capa-
city versus cost curves investigated in previous sections. For
example, take the cost versus capacity curves for the heavy
workload case with the FB scheduler that are shown in Figure
6.18. In this case, decreasing the value of P from 1.0 only
shifts the capacity versus cost curve away from the origin (i.e.
see Figure 6.18) so P" is 1.0. The value of A is decreased
until the cost equals the absolute confinement cost, at which
point the minimum cost curve becomes vertical. There is not
a wide range of capacity requirements that can be filled by
the FB scheduler under a heavy-workload as pointed out pre-
viously. For the medium and light workload cases, P* does
not equal 1.0 as can be seen in Figure 6.19. The result of
plotting these minimum cost curves for the workloads and
schedulers under investigation is shown in Figure 6.21.

There are four interesting features of Figure 6.21. The
first item is that the range of capacities available that cost less
than absolute confinement is over two orders of magnitude
and that capacities as low as 0.1 bits/useful CPU second are
cheaper than absolute confinement. This makes partial
confinement attractive even when fairly low data rates are re-
quired. The second item is that partial confinement can cost
anywhere from 20% of the absolute confinement cost to
100% depending on the permissable bit rate. This means that
significant cost savings can be realized by using partial
confinement. The third item is that there is no algorithm in
the medium workload case that does best with respect to
capacity and cost. All three scheduling algorithms display the
same type of behavior and with values of capacity and cost in
the same neighborhood. The fourth item is that for partial
confinement, the algorithms appear to be ordered by work-
load with respect to their cost effectiveness. The light work-
load case is most cost effective followed by the medium
workload then by the heavy workload. This should be con-
sidered in choosing when a confined subsystem is to be exe-
cuted. One possible implementation of partial confinement
for the light to medium workload cases would be for the sys-
tem to add pseudo-users until the channel noise generated by
the pseudo-users and the real users is enough to lower the
channel capacity to an acceptable level. The basis for this

.strategy is that with a light workload, for example, there are

more than sufficient resources to handle all the user’s com-
puting needs. Rather than waste those excess resources (or
give the users an improved response time), the resources

- might be used to-generate channel noise... From Figure 6.21,

this strategy for the FB scheduler does not give the best

48

25 Users, FB Scheduler
i15 Users, FB Scheduler
{5 Users, FCFS Scheduler
{5 Users, RR{ Scheduler
Users, FB Scheduler

-

00

0o4dadoO

[©]

Ty ooy L S B A |

CAPACITY (BITS / USEFUL CPU SECOND)
o

[e X} 4 \

:) \

: b . Y

_ 15, RR{ -

L 15, FB 1

S, FECFS |

i : 25, FB =

0.04 S L , SFE+q 1
. 0.05 040 045
COST (# 7 USEFUL CPU SECOND)

Figure 6.21
Minimum Cost for oll Schedulers and Work Loods
Constrained Cascaded. Compoqund Channel

cost/capacity trade-off for the light workload since a better
cost can be obtained without adding pseudo-users for any
desired capacity. For the medium workload case, a small ad-
vantage might be gained for very small capacity requirements
by adding pseudo-users due to the slightly smaller absolute
confinement cost of the 25 user workload. However, the in-
creased response time seen by all the unconfined users would
cause many users to become unhappy with such a policy.
This might make such a small cost gain for the confiner
unjustifiable with respect to the other inconvenienced users.

Before a system designer implements partial or absolute
confinement, the cost of CPU time to the confiner must be
compared with the cost of CPU time to an unconfined pro-
cess. Such a comparison is made in Figure 6.22 for the light,
medium and heavy workload cases for the FB algorithm. In
this figure, the confiner cost normalized by the unconfined
process cost is given. The workload and scheduler that have
the lowest normalized cost for low capacity requirements is
the heavy workload FB scheduler. In this case, the user can
expect to pay 3 times more than an unconfined job. As the
number of unconfined processes decreases, the penalty factor
for executing confined subsystems rises to between 5.6 and
6.3 times. Only for very large capacities (greater than 20
bits/useful CPU second) with the light and medium workload
can a cost penalty of less than double the unconfined process
CPU time cost be achieved. This shows that any type of
confinement is a very expensive feature to implement in a
computer system.

This section has developed a method for implementing
partial confinement that is based on information theoretic
channel models. Partial confinement implemented by this
method permits a wide selection of possible channel capaci-
ties and cost savings. Partial confinement is a viable option

- for a system designer needing a flexible confinement mechan-

1sm.

Huskamp: Covert Communication Channels in Timesharing Systems

100 %5 Users, FB Scheduler

5 Users, FB Scheduler

(o]
A
O 5 Users, FB Scheduler

{0

(eR] o . (o} o

CAPACITY (BITS / USEFUL CPU SECOND)
T

3 t

1 i | 1 1]
{.0 2.0 3.0 4.0 5.0 6.0
CONFINER COST / UNCONFINED COST
Figure 6.22

Partial Confinement Penalty Graph
Minimum Cost Channel

0.0t J

6.11 Partial Confinement Using the DCWM Channel Model -

An alternative to the DMC channel model of the
scheduling covert channel is to allow the confined subsystem
to choose the quantum length to be allocated n consecutive
times. Since the system does not settle back to an equilibri-
um state between the n quanta, this strategy implements a
DCWM. To make the capacity of this scheduling strategy
calculable, the system does return to its equilibrium state
between each series of n quanta. The equilibrium state test
for the DCWM is similar to the test for the DMC. The
equilibrium state is assumed to be restored when the capacity
of one variable quantum allocation is within 10% of the capa-
city at true equilibrium. The number of equilibrium quanta
that must be allocated is determined from the semi-Markov
system model, as for the DMC model. As explained in the
first part of this chapter, n must be less than or equal to
three for computability with a limited amount of computer
resources.

The DCWM model is used to determine if a consecutive
quantum allocation strategy is better than the DMC allocation
strategy for the scheduling covert channel in terms of capaci-
ty and cost. A decision of which model is best suited for
confinement modelling must take into consideration the
confiner cost, the cost for the users not using the
confinement mechanism, the capacity of the different channel
models and the ease with which the model analysis can be
done. The channel used for the analysis is the constrained
cascaded compound channel in which the confined subsystem
can choose a 0.0, 0.4 or 1.0 second quantum when a variable
quantum is allocated. The parameter values analyzed
represent the capacity extremes so that the behavior of the
model for both high capacity/low cost and low capacity/high
cost situations can be examined.

- -.--- The careful reader. will have observed that the channel . .
operation of the DCWM is slightly different than the -

7.0

49

corresponding DMC. The DCWM allocates three consecu-
tive variable quanta rather than one for the DMC case. In
the compound channel section of the cascaded compound
channel, the P-biased coin for the DCWM determines wheth-
er the input letter corresponding to three zero quantum
lengths is allocated, or whether three quantum lengths need-
ed by the confined subsystem will be allocated. In the cas-
caded channel section, the decision of allocating the quanta
desired by the confined subsystem is also made once for
every three quanta allocated. This is different from the DMC
in which the decision is made for each variable quantum allo-
cated to the confined subsystem.

The reason the DCWM model is interesting is that the
channel capacity may decrease due to the channel memory.
If the channel capacity shows a marked decrease when the
DCWM model is used, a confined scheduler should allocate
several consecutive variable quanta to the confined subsys-
tem before forcing the system to return to its equilibrium
state. Also if the capacity is monotonically decreasing, there
would be the possibility that the DMC capacity could be used

. as an upper bound for each variable quantum allocated in the
. DCWM. Thus equilibrium quanta would no longer be neces-
. sary in the channel model. However, Table 6.13 shows that
- although there is some capacity decrease for consecutively al-

located variable quanta, there is not an order of magnitude

change. For the medium and light workload cases, the capa-
city decrease is small as more consecutive variable quanta are
allocated. Table 6.13 suggests that allocating more than one
variable quantum at a time does not provide a significant ad-
ditional channel capacity decrease over the DMC model. In
many of the cases listed, the capacity of the DCWM even
exceeds the DMC capacity in bits/useful CPU second. Thus
the DCWM model is not significantly better than the DMC
model on the basis of its capacity.

Another item of comparison is the costs for each model.

. The results in Table 6.13 are mixed. For the-higher capacity

channel models for each combination of workload and
scheduler, the DCWM model is slightly better for the
confiner cost. For the lower capacity channel models, the
DMC model tends to be better. The maximum penalty for
using the DMC model over the DCWM model is 11.9% of
the DCWM confiner cost while the maximum penalty for us-
ing the DCWM model is 18.5% of the DMC confiner cost.
The unconfined user cost (the cost for the users not execut-
ing confined) is very nearly the same for both the DCWM
and the DMC models. The cost results do not indicate a
preference of one model over the other.

Due to the nearly equal performance of the DCWM and
the DMC models, the system designer should make the deci-
sion of which model to implement based on the difficulty in
analyzing the models. Of the two models, the DCWM model
is by far the harder to analyze in terms of computing
resources expended. The cost is due to the large size of the
CTPM. Since the DMC model requires much less computing
time and space and since both models perform about the
same with respect to cost and capacity, the DMC model
should be used in practical partial confinement applications.

6.12 Effect of Two Spies on Channel Capacity

The DMC analysis assumed that only one spy process
was executing with the confined subsystem to monitor the
scheduling covert channel. In real systems, this assumption
may not be accurate since one spy could be executing several
spy processes at once. The purpose of this section is to
analyze the capacity of one two-spy transmission strategy to
see if more than one spy can increase the channel capacity.
-.In this experiment, two spies are placed in the CPU

scheduling queue at the same time with the spy process spy,

o

“a

. than 3%.

Huskamp: Covert Communication Channels in Timesharing Svsiems 50

DMC DCWH DMC DCWM
Confiner Confiner ! Unconfined Unconfined ¢ DMC . DCWM H DMC DCWH
Cos 1 Cost Cost + Capacity Capacity 1+ Capacity Caracity
No. ($/Usefu1 ($/Usem1 ($/useful ($/Useful ‘(Bus/Chanr.el (Bits/Channel H{ an/Userul (Bits/Useful
Users Scheduler P A _CPU Second) _CPU Second)! CPU Second) _CPU Second)! Use) Use) ' _CPU Second) CPU Second}
- - - \ \
25 FB 1.0 1.0 0.180 0.7k :. 0.0483 0.0483 ! 1,132 0.874 V vo.2k 10.27
0.b 0.315 o.zag ! 00,0496 o.ot'lﬁ ! 0.0103 0.02796 ' s.ns 2.105
0.5 1.0 0.275 0.27 10,0479 0.0L9 1 0.371 0.360 ' 517 .329
0.4 0.548 0.,bLs } 0.0492 0.0505 | 0.00371 0.00331 ,; 0.0683 0.0503
0.25 1.0 0.l 0.495 { 0.0487 0.0485 |} 0.154 0.162 2,945 3.565
0.4 0.689 0.693 ' 0. ous1 0.0478 ' 0.00157 0.00140 ! 0.0392 0.0306
.. decr e e
15 FB 1.0 1.0 0.0471 0.0450 1: 0.0300 0.030L E 1.365 1.185 vosra2 63.93
0.k 0.181 0.193 v 0.0310 0.0316 ’ 0.0123 0.0108 1 0.300 c.289
0.5 1.0 0.0616 0.0661 ! 0.0305 0.0306 | 0.u6k 0.530 ' 20.35 25.90
0.k 0.157 0.179 ! 0.0300 0.0310 ' 0.00457 0.00L74 ! 0.15L 0.215
0.25 1.0 0.0797 0.090! s 0.0305 0.0301 1 0.199 0.246 1 10.59 15.67
0.4 0.159 0.173 E 0.0305 0.0304 E 0.00201 ©.00216 : 0.100 0.119
;;-" “FeFs 1.0 1.0 0.0518 0.0463 1 0,03k0 0.0332 1 1.360 1.206 1 9.9 56.99
EI N R O 2 17 I I+ A 14
0.5 1. .05 0.0582 . 2 . . . 27.45
0.k 0.149 0.151 \ 0.0329 0.0326 1 0.00452 0.0L91. | 0.139 0.17
0.25 1.0 0.0950 0.08u8 i 0.0328 0.0324 H 0.193 0.258 y 6.267 14,23
0.4 0.172 0.16L ! 0.0325 0.0330 !} 0.00196 0.00228 ! 0.0766 0.123
.............. ecmcemeememememmamemeomeese-eemmesqesmmesceecmro—c-e--ceseemjeme-sm-m-eeseememcescecemcaqec-c-ecesescaouceeo-esess
15 RRI 1.0 1.0 0.0514 0.0516 ; 0.0333 0.0344 1} 1.256 1.136 ! 30.53 34.91
0.4 0.161 0.16% ! 0,035 0.0353 !} 0.0174 0.103 ' o.218 0.222
0.5 1.0 0.08L4 0.0778 « 0,0338 0.0336 0.k16 0.5t6 v T.677 17.86
0.4 0.169 0.166 t 0.,0339 0.0340 |} 0.00415 0.00465 ! 0.0941 0.1h5
0.25 1.0 0.122 0.124 ! 0.0334 0.033% ! 0.173 0.243 ! 4.800 10.08
0. 0.230 0.204 i 0.0314 0.0338 *. 0,00177 0.0021k 3 0.0555 0.0797
P FB 1.0 1.0 0.0292 0.0283 ! 0.0240 0.0235 1 1.517 1,656 11216 e
0.k o.z‘nh 0,31} : 0.0249 o.ozsg : o.olss o.gési ! bO{‘O 0.682
0.5 1.0 0.033 0,0329 0.0237 0,023 0.542 0.687 547 81.86
0.k 0.199 0.221 i 0.02u% 0,0250 5 0.00517 0.00611 E 0.32k 0.530
0,25 1.0 0.0421 0,028 « 0,0281 0.0245 4 0.0245 0.332 1 21,65 43,22
0.4 0.1k 0.173 T 0,0280 0.0245 | 0.00238 0.,0029% | 0.185 0.29
Table 6. 13

Comparison of the DMC and :BCWM Models

in front of the spy process spy, in the queue. ‘Both spy
processes are assumed to-take one microsecond of CPU time
and to have a memory requirement of one word in order to
obtain an upper bound on the channel capacity. Due to the
discretization assumption, these assumptions mean that each
spy process executes within one discretization interval (= 0.2
seconds). Since the confined subsystem is assumed to al-
ready be in the CPU queue, the confined subsystem must ex-
ecute after spy, and before spy, Knowing this, the spy can
ignore the channel noise comnbuuon of any unconfined pro-
cess that executes after spy, and before spy, . Thus the
channel outputs consist of the real time between the execu-
tion of spy, and the execution of spy, . The constrained
channel model (with 0.0, 0.4 and 1.0 second quanta that can
be allocated to the confined subsystem) was simulated for
this two-spy case and the channel ‘capacity was computed by
the method outlined in Chapter 5 and Chapter 2.

There are two opposing forces that affect the channel
capacity. The capacity may increase due to some of the chan-
nel noise being filtered out by the spy execution strategy.
The capacity may decrease due to the extra overhead induced
by the additional spy execution. The measurements are
shown in Table 6.14. For all the cases shown, the difference
in capacity between using one spy and using two spies is less
In an attempt to increase the channel capacity by
trapping more unconfined process noise, the execution of
spy, was increased so that the execution of spy, would take
longer than one discretization interval. This only resulted in
lower channel capacities and a lower system performance with
respect to user response time due to the increased workload
attributed to spy, .

.The use of a second continuously executing spy process
does not significantly increase the scheduling covert channel

Number of 2 Spy Capacity 1 Spy Capacity
Users, (Bits/Channel (Bits/Channel
Scheduler. Use) Use)
25,FB 1.1 133
15,FB ‘1"35 . 1.37
15,FCFS 1436 "1..36
15,RR1 1.28 1..26 -
5,FB . l-.51 1.52 \
Table 6.14

Effects of Two Spies on the Channel Capacity
for a Zero Length Equilibrium Quantum’

1

capacity. For systems like the CTSS system, the spy appears
to be better off by using only one spy executing at a time.

6.13 The Constrained Time-Average Equilibrium Condition
Channel

All the DMC models previously analyzed based the re-
turn to the equilibrium state on the number of times the
confined subsystem was eligible to execute and was allocated
an equilibrium quantum. After a certain number of equilibri-
um quanta were allocated, the confined subsystem could
choose the next quantum length. One drawback to this ap-
proach is that if the CPU queue is very congested, it may
take a long real time for the confined subsystem to complete
the required number of equilibrium quanta before another
variable quantum length can be allocated. If the equilibrium
quantum length chosen is zero, this means that the time
between possible- non-zero quantum allocations to the
confined subsystem is long, which increases the confiner’s
response time. On the other hand, if the CPU queue is al-

[———— ce e eeeeam————-

Huskamp: Covert Communication Channels in Timesharing Systems

most empty, many variable quanta could be allocated in 2

- small real time which increases the number of bits potentially

transmitted per useful CPU second. Such rapid allocation of
variable quanta is usually not needed by the confined subsys-
tem since an average user is characterized by a long average
think time (35.2 seconds) compared to a short average CPU
requirement (0.88 seconds).

Both of the above problems can be attacked by specifying
when the system returns to its equilibrium state in terms of
real time instead of the number of equilibrium quanta alloca-
tions needed. In this case, two variable quanta could be allo-
cated in succession if the CPU queue is congested, and the
number of variable quanta allocated (and hence the number
of bits leaked per useful CPU second) could be decreased if
the CPU queue is empty.

The algorithm for determining how much time is needed
for equilibrium to be reestablished is analogous to determin-
ing the number of equilibrium quanta needed. To compute
the channel capacity at time t (for t a multiple of the 0.2
second discretization interval), a table is computed with row
n (n greater than or equal to 0) corresponding to time (n X
0.2) seconds and columns corresponding to the states of the
model. The entry in column m, row n represents the proba-
bility that the system entered state m at time (n * 0.2) and is
still in state m at the current time. To start the calculation,
the current time variable, t’, is set to 0 and the Oth row of
the table is initialized to the model state probabilities that oc-
cur after the largest system perturbation due to the confined
subsystem using the semi-Markov model of Chapter 5. The
parameters of the semi-Markov model in Chapter 5 were
chosen so that the channel outputs seen by the spy can be
computed. Thus the probabilities in row 0 correspond to the
system state probabilities that occur when the spy next exe-
cutes. If the spy executes just before the confined subsys-
tem, the time corresponding to row 0 of the table occurs just
before the execution of the confined subsystem following the
variable quantum allocation. Since the spy can not be
identified, the clock does not start running until the confined
subsystem is allocated its next quantum after the variable
quantum. Thus at least one equilibrium quantum is allocated
to the confined subsystem between two variable quanta.

The iteration step starts by increasing t” by 0.2 seconds.
For each entry in the rows corresponding to a time less than
t’, the probability of making a state transition at t’, P*, is ob-
tained from the semi-Markov model of Chapter 5 and is en-
tered in the appropriate column of t’. Of course the entry
corresponding to the time of entry into the state from which
the transition is made is decremented by P'. When all rows
corresponding to times less than t’ have been processed, the
DMC channel capacity is computed by using the sum of each
column as the corresponding state probability, then using the
method explained in Chapter 5 to generate a CTPM from the
state probabilities. The algorithm in Chapter 2 is used to
compute the channel capacity from the CTPM. This iteration
step is repeated until the DMC capacity of the channel re-
turns to within 10% of its equilibrium value. The last value
of t" is the amount of real time that must pass until the
time-average equilibrium is assumed to be restored.

The comparison of the constrained channel using the
number of equilibrium quanta (rounds) in its return to
equilibrium calculation and the constrained channel using
time in its return to equilibrium calculation for a zero length
equilibrium quantum is shown in Table 6.15. The most
significant feature of the table is the large decrease in the
channel capacity for the time-average channel. The smallest
percentage decrease is 82% (15 users, RR1) and the largest is

- 91%. (5 users, FB).. The-decrease is-mainly due to the time--

average method of determining the state probabilities. In the

51

Time-Average

Reund-Ave Round-Ave Tine-fverage
Nuzder of Capacity Capacity Cost ozt
Users, (Bits/Useful (Bits/Usetul {§/Useful (8/vcern)
Seheduler CPU Second) CPU § d) CPU S d) CPU Second)
25,FB 10.24 1.522 0.180 0.158
15,FB 1.2 5.503 0.0471 0.0836
15,7CF8 9.19 7.318 ~ 0.0518 0.0610
15,RR1 30.53 5.537 0.051% | 0.0569
5,FB 260.7 23.53 0.0292 0.0402
Tadle 6.15

Round-Average ve., Time-Average Equilibrium Channel
for Zero Length Equilibrium Quantun

semi-Markov model, the lower numbered states represent
fewer unconfined processes in the CPU queue, which means
less channel noise and a higher channel capacity. When all
the rounds are weighted equally, these high capacity states
occur with a large probability. However, when time-
averaging is used, these states are less probable due to the
short amount of time (but large number of rounds) spent in
these states. For example, the state representing a large
number of unconfined users in the system will have a higher
probability under time-averaging than under round-averaging
due to the large average amount of time spent in the state
before the next transition. The remaining factor in the capa-
city decrease is the decrease in the number of variable quanta
allocated per useful CPU second due to fewer variable quanta
being allocated during a succession of short round times as
noted before.

The capacity decrease is achieved at the expense of a
larger confiner cost for the medium and light workloads. As

Round-Ave Round-Ave Time-Average Tizs-A
Number of CPU Cost User Coat CPU cos::8 User g:::se
Users, ($/Useful . (8/Userul ($/Useful {$/Usofu
Scheduler CPU Second) [y} Scconﬂ[CPU Second) CPU Sccend)
25,58 0.0175 ., 0.163 Q.0181 . .0.12
15,F3 L8072 . 0.0299 . ORI . ‘4—-0.0520
15,FCES. ...:*.0.0180 .0.0338 - | T--0.01777. 0 " -0.037h
15,RRt -—— -0,0182 0.0332 0.018% 0.0356
5,FB 0.0179 0.0113 0.0177 0.0206
Tadble 6.16

Cost ccup'é;-x;nts for the Constrained Chammel and the Time-Average
Channs) for a Zero Length Equilidbrium Quantunm

shown in Table 6.16, the major difference in the confiner cost
for the round-average and the time-average channels is the
user cost (i.e. response time). The round average channel
permits smaller response times for the medium and lightly
loaded cases but the time average channel has smaller re-
ponse times for the heavy workload case. This advantage is
due to the confined subsystem being allocated more variable
quanta during times of great congestion as pointed out be-
fore.

The time-average constrained channel model significantly
decreases the channel capacity over the round-average case
but at an increase in cost for the medium and light work-
loads. Comparing the capacity/cost figures of Table 6.15 with
the minimum cost curves in Figure 6.21 shows that the
time-average cost for the capacity in Table 6.15 is less than
the minimum cost curve for the 15 user FCFS and the 15
user RR1 algorithms. The time-average cost is 66% of the
round average cost for FCFS and 62% of the round-average
cost for RR1. The time-average channel points for the FB al-
gorithm for the three workloads falls on the minimum cost
curve in Figure 6.21. This suggests that the time-average
channel model could- be profitably used in the FCFS and RR1
algorithms but.perhaps not in the FB algorithm.

-

et - Ty L

Huskamp: Covert Communication Channels in Timesharing Systems

6.14 Conclusions

The CPU scheduling covert channel is a channel that is
the most heavily used in many systems. The characteristics
of this channel for transmitting information are much like
the other resource scheduling channels (e.g. the disk mass
storage 1/0 scheduler). The major difference between the
different resource schedulers as far as confinement is con-
cerned is the workload. In most systems there is a single
CPU that must be shared among all processes, which leads to
a large amount of contention under heavy load. The disk
1/0 scheduler, on the other hand, usually services requests
for a number of independent disk units in a large system,
which results in a set of parallel channels - one channel for
each disk unit. The contention for the 1/0 devices with a
good space allocation algorithm could be much less than for
the CPU since several independent requests can be processed
in parallel. This reduced contention means that the disk
scheduling covert channel could have a much higher capacity
than the CPU channel studied for a given system user load.
Thus there are several potentially high capacity covert chan-
nels in a typical operating system since the CPU channel is
shown to have a significant information capacity, particularly
under light load. Thus the CPU scheduler channel is not the
only channel that must be confined in the operating system.

For resource scheduling channels, partial confinement is
shown to be more cost effective for medium and light work-
loads than absolute confinement. In the heavy workload
case, the cost of partial confinement is nearly the same as ab-
solute confinement, which is a surprising result. This means
that the absolute confinement strategy is probably preferable
for the (hopefully few) resources that are system bottlenecks.
The remaining scheduling channels (which usually comprise
the majority of channels) then correspond to the medium and
light workload cases investigated for the CPU scheduling
channel. Analogous methods for reducing the channel capa-
city for these channels, such as defining an appropriate chan-
nel model or using a time-averaging scheme, can be devised.
The same large range of trade-offs of capacity versus cost
should be present for all resource scheduling channels as for
the CPU channel. This does not mean that executing a pro-
cess under confinement will not be more expensive than not
using confinement. The measurements taken for the
scheduling channel show that the confiner can expect to pay
from one to six times the unconfined rate for a CPU second
depending on the workload, the type of confinement, and the
scheduler.

In some applications, the weighting factor for the user
response time might vary from the ‘“‘normal” values as-
sumed. If a process is given a very high priority for quick
completion, user cost might be ten times its usual value. In
this case, the CPU cost per second is less than the user cost
per second. To minimize the confiner cost, a larger amount
of CPU time would be devoted to the confiner than usual.
For absolute confinement, the process would most likely re-
ceive a large fixed percentage of the CPU. If the process to
be executed requires extensive interaction, a channel model
like the constrained cascaded compound channel could be
used with perhaps a different set of quantum length choices
that causes more CPU time to be allocated to the confined
subsystem. Such a policy could involve allocating a non-zero
equilibrium quantum to the confined subsystem. If instead
of increasing, the user cost decreases by a factor of ten, there
would be an incentive for the scheduler to allocate less of the
CPU to the confined subsystem. For an interactive process,
this could be implemented in the constrained cascaded com-
pound channel by decreasing the value of P or by decreasing
the equilibrium quantum length. For absolute confinement,
this could be implemented by decreasing the quantum length

52

allocated or the frequency of allocation.

With the analysis technique outlined in this and preced-
ing chapters, it is possible to select a scheduling policy and
the policy parameters needed to keep the information leakage
at a prescribed level. For example, at every user logon or
logoff, the calculation of the information channel parameters
could be made. For a channel implemented by a DMC, this
calculation could be done rapidly. (Since there is no advan-
tage to using a DCWM model, all channels would be DMC.)
Such an adaptive scheduler is needed to be able to quickly
adapt to changing workloads.

From the analysis presented in this chapter, partial
confinement is an option that should be included in
confinement mechanisms implemented for timesharing sys-
tems. The demonstrated fesibility of implementing this con-
cept is perhaps the major contribution of this thesis.

L3

2 Y

ot

Cuskemp: Covert Comvsrcgion: Channgds o Tongdiarne Sysiems

7. CONCLUSIONS

7.1 Summary

In many cases it is no longer sufficient to provide a secu-
rity mechanism that only prevents one user from directly ac-
¢cess - -~ :iher user’s data in an unauthorized manner. The
concept o s2curity should now include a provision for block-
ing the subtle unauthorized information leakages that are im-
plemented by storage, legitimate, and covert channels. This
thesis has analyzed in detail the resource sharing covert chan-
nel that is implemented by the CPU scheduler. There are
many other covert channels in a computer system that result
from resource sharing - e.g. the file disk channel and the
swapping disk channel. All channels of this type can be
analyzed by the methods used in this thesis.

In the CTSS system studied, the scheduling covert chan-
nel had the most contention of any resource scheduling chan-
nel since there is no overlap of CPU and 17/0. On other sys-
tems in which the contention for a resource scheduling chan-
ne’ is not as great, higher or lower channel capacities could
occur. The higher capacities occur if the confined subsystem
and the spy can execute concurrently so that the confined
subsystem resource request affects the spy’s request. If,
however, the contention for the channel is light enough that
all requests complete and the resource is returned to a stan-
dard state before the next request arrives, the channel capaci-
ty would be zero. Thus the results derived here for the CPU
scheduling channel can not be used to approximate the other
resource scheduling channels. However, the technique
developed for analyzing the CPU channel can be used for the
other channels. The technique used is enumerated in the
first six chapters.

Chapter 1 lists the recent developments in operating sys-
tem design that have improved the state-of-the-art in security
mechanisms. The problem of preventing direct access to one
user’s objects by an unauthorized user and the prevention of
information leakage through overt and legitimate channels
has been studied. However, the problem of covert leakage
through resource scheduling channels has not been studied
and is an active area of research. The objective of this thesis
is to analyze one such channel, the CPU scheduling channel,
in order to better understand the problem of covert leakage
and to find methods to control the leakage.

A general discussion of covert channels is given in
Chapter 3 to define the two alternatives for containing the
leakage through covert channels. Absolute confinement al-
lows zero leakage but with the restriction that no resource al-
location decisions can be based on the state of the executing
confined subsystem. All the implementations of absolute
confinement surveyed (masking, partitioning, denial of

_usage, and restoration of a standard state) could cause a large
increase in cost to either the confiner or the users not execut-
ing confined, or both. In an attempt to decrease this cost,
partial confinement is offered as an alternative. Under partial
confinement the resource allocation could depend on the
state of the confined subsystem but only if a non-zero
amount of leakage could be tolerated. The major focus of
the remainder of the thesis is on investigating this
cost/capacity trade-off.

Chapter 4 discusses the details of the implementation of
the CPU scheduling covert channel. The method for sending
information through the waiting time between quantum allo-
cations to the spy is explained. In order to make the channel
capacity measurable for partial confinement, two restrictions
on the operation of the channel are made to permit modelling

<the channel by a discrete memoryless channel (DMC) and a

discrete channel with memory (DCWM). The first restriction
_is that the systemn must return to a chosen equilibrium state

53

before each quantum that is dependent on the state of the
confined subsystem is allocated. The metric chosen -for
determining when equilibrium is established is the DMC
capacity function (as explained in Chapter 6). The second
restriction is that the operation of the channel is discretized
with a discretization interval that is much larger than a
machine cycle. This reduces the size of the channel transi-
tion probability matrix (CTPM) to reasonable dimensions.
The discretization interval size chosen is 0.2 seconds unless
otherwise noted. This chapter also describes the scheduling
algorithms used in the remainder of the thesis: round-robin
with a 1 second quantum length (RR1), round-robin with a 2
second quantum length (RR2), first-come-first-served
(FCFS), and two-level feedback (FB).
Chapter 5 explains the CTSS system used as a basis for
the simulator measurements taken and the derivation of a
semi-Markov model for the system. The semi-Markov
model is needed 10 generate the information channel model
CTPM from the simulator output. A major contribution of
this thesis is the development of the technique using this
model in the analysis of covert channels. This technique is
applicable to the other covert channels which transmit infor-
mation through the spy observing a time function. No use is
made of the stochastic properties of the model in the genera-
tion of the CTPM; only the structure of the model is needed.
Chapter 6 builds on the discussion of Chapters 3 and 4,
and the semi-Markov model of Chapter 5 to present meas-
urements on the CPU scheduling covert channel for a CTSS-
like system. The cost and capacity results presented assume
that the confined subsystem is not trying to send information.
In this case, the cost measurement is the penalty the confiner
pays for executing confined and the capacity measurement is
the amount of information leakage that must be assumed is
being leaked. No tests were made to find the cost or capacity
of a confined subsystem that does try to actively transmit in-
formation,
¢ The information leakage that must be assumed through
the CPU scheduling covert channel in a system not
offering confinement can be very large. The number of
bits per useful CPU second allocated to the confined sub-
system ranged from 260 for the 5 user, FB scheduler to
1.17 for the 25 user, RR1 scheduler. As the discretiza-
tion interval decreases, the channel capacity is shown to
be even greater.
® There exists an inverse relationship between workload
and the channel capacity, as would be expected. The
heavier workloads generate more channel noise which
gives a lower channel capacity than the light workloads
with less channel noise. The cost of confinement, meas-
ured as the cost of a useful CPU second for the confined
subsystem, varies directly with the workload. The cost
for the 25 user workload is 8 to 9 times the cost for the
5 user workload for the unconstrained channel model.
Thus simply increasing the workload is not a good
method of regulating information leakage.
® The cost for making the channel capacity measurable for
partial confinement, which is the result of introducing
equilibrium quanta, causes the unconstrained channel to
cost 2.71 times as much as an unconfined subsystem for
each useful CPU second for the 25 user, FB scheduler.
For the 5 user, FB scheduler, the cost is only 1.08 times
as much. The penalty the confiner pays for confinement
definitely increases as the number of users increases.
® A major result of this thesis is that for workloads that
border on system saturation, the cost of absolute
- confinement is only about 10% greater than partial
confinement. For this workload, most users would be
likely to choose absolute confinement for such a small

Huskamp: Covert Communication Channels in Timesharing Sysicis

cost penalty. This result is counter to some predictions
that partial confinement is always more advantageous
than absolute confinement.

o The usefulness of partial confinement is shown for the 5
and 15 user workloads in which the constrained cascaded
compound model afforded the confiner a large range of
channel capacities that cost less than absolute
confinement. This result means that partial confinement
can be significantly cheaper than absolute confinement
for certain workloads.

o The DCWM model is shown to yield almost the same
performance characteristics as the DMC channel model
for the types of channels studied. Since the DMC is
much easier to analyze and makes computation of the
covert channel parameters feasible in real time to adapl
to changing load, the DMC channel model should be
used for partial confinement implementations.

e The effect on channel capacity of introducing two spies
into the scheduling covert channel is to generally de-
crease the capacity for the trapping mechanism that is
tried. This results from the second spy generating more
channel noise by increasing the workload of the system
than it eliminates. This does not say that all two spy
strategies are inferior to one spy strategies since the sys-
tem being used may contain a feature that can be ex-
ploited by two spies to increase the channel capacity.
Also an exhaustive simulation of all strategies was not
done. However, this experiment is an important point in
the space of two spy strategies since it says that the effect
on capacity may not be large.

® The last result is that an alternate method for determin-
ing equilibrium (i.e. time-averaging) may yield a better
cost/capacity curve (i.e. less cost for equal capacities)
than the round average method used for all the preced-
ing measurements. This method did yield points below
the minimum cost curve for the constrained cascaded
compound channel model for the RR1 and FCFS algo-
rithms but yielded points on the minimum cost curve for
the FB algorithm.

7.2 Future Research

There are four areas that are logical extensions of the
work in this thesis. The first is to use the methods outlined
in this thesis to analyze the other common covert channels in
timesharing computer systems. The CPU scheduling covert
channel is by no means the only potentially large capacity
channel in a computer system. In any practical system design
effort, a comprehensive analysis of all the resource sharing
channels is necessary to determine the ones that should be
partially confined and the ones that should be absolutely
confined. This decision can have major consequences on the
performance of the system.

The second area is to investigate the synthesis of channel
models that are tailored to certain confined subsystem charac-
teristics. For example, if a timesharing program is to be exe-
cuted confined, can a channe! model be found that gives the
lowest channel capacity for any cost. The problem of optim-
izing channel models for different types of tasks is still an
open question.

The third area of research is to implement a timesharing
system with partial confinement to determine if the sysiem
can in practice adjust the channel model parameters as users
log on and log off to maintain a constant capacity for the
scheduling CPU channel. Data on the real data rate achiev-
able through the covert channel is needed to determine if the
capacity function used in this analysis is much-larger than
that achievable in practice.

The fourth area involves experimenting with other rea-

34

sonable - cost functions to determine if other partial
confincment strategies are fcasible in an actual computer in-
stallation. The linear CPU cost function used in this thesis
may not always be the one used in practice. For example,
non-prime time computing can be done at a discount in many
installations. The effect of artificially increasing the workload
with ‘‘pseudo-users” to decrease the capacity when excess
CPU capacity is available might be feasible in certain situa-
tions.

T R

[ST

.. as..amp: Covert Communication Channels in Timesharing Systems

55

BIBLIOGRAPHY

[Andrews74] Andrews, G. R. ““COPS - A Mechanism for
Computer Protection,” Proceedings of the Internation-
al Workshop on Protection in Operating Systems, IRIA,
Paris, France, (August 1974), pp. 5-25.

[Ash65] Ash, Robert. Information Theory, Interscience Pub-
lishers, John Wiley and Sons, (1965).

[Belady74] Belady, L. A. and C. Weissman. ‘‘Experiments
with Secure Resource Sharing for Virtual
Machines,”’ Proceedings of the International Workshop
on Protection in Operating Systems, IRIA, Paris,
France, (August 1974), pp. 27-33.

[Bell73] Bell, D. E. and L. J. LaPadula. ‘‘Secure Computer
Systems: Mathematical Foundations,”” Report ESD-
TR-73-278, Volume 1, The MITRE Corporation,
(November 1973).

[Blahut72] Blahut, Richard E. “‘Computation of Channel
Capacity and Rate Distortion Functions,”” IEEE
Transactions on Information Theory, 1T-18:4 (July
1972), pp. 460-473.

[Buzen73] Buzen, J. P. and U. Gagliaridi. “The Evolution of
Virtual Machine Architecture,”” Proceedings of the
National Computer Conference, 42 (1973), pp. 291-
299.

[Chu76] Chu, Wesley W. and Holger Opderbeck. “‘Analysis
of the PFF Replacement Algorithm via a Semi-
Markov Model,”” Communications of the ACM, 19:5
(May 1976), pp. 298-304.

[Coffman68] Coffman, E. G. and L. Kleinrock. ‘“‘Computer
Scheduling Methods and Their Countermeasures,”
Proceedings of the Spring Joint Computer Conference,
32 (1968), pp. 11-21.

[Cohen75] Cohen, E. and D. Jefferson. *‘Protection:in the
HYDRA Operating System,’” Proceeding of the Fifth
Symposium on Operating Systems Principles, (1975),
pp. 141-160.

[Corbato62] Corbato, F. J. and M. Merwin-Daggett and R. C.
Daley. ‘“An Experimental Time-Sharing System,”
Proceedings of the Spring Joint Computer Conference,
21 (1962), pp. 335-344.

[Corbato72] Corbato, F. J. and J. H. Saltzer and C. T.
Clingen. “MULTICS - The First Seven Years,”
Proceedings of the Spring Joint Computer Conference,
40 (1972), pp. 571-583.

[Crane74] Crane, Michael and Donald 1. Iglehart. ““Simulat-
ing Stable Stochastic Systems II: Markov Chains,”
Journal of the ACM, 21:1 (January 1974), pp. 114-
123.

[Crisman65] Crisman, P. A., ed. The Compatible Time-
Sharing System: A Programmer’s Guide, Second Edi-
tion, M. I. T. Press, (1965).

[Denning76] Denning, Dorothy E. “A Lattice Model of
Secure Information Flow,” Communications of the
ACM, 19:5 (May 1976), pp. 236-243.

[Denning77] Denning, Dorothy E. and Peter J. Denning.
“Certification of Programs for Secure Information
Flow,” Communications of the ACM, 20:7 (July
1977), pp. 504-513.

[Dennis68] Dennis, J. B. ‘‘Programming Generality, Parallel-
ism, and Computer Architecture,”” Proceedings of
IFIP 1968, North Holland, Amsterdam, (1968), pp.
Cl1-C1.

[Estrin67] Estrin, G. and L. Kleinrock. ““Measures, Models
and Measurements for Time-Shared Computer Utili-
ties,” Proceedings of the ACM National Conference,
(1967), pp. 85-96. : :

[Fenton74] Fenton, J. S. ‘‘Memoryless Subsysiems,” The
Computer Journal, 17:2 (May 1974), pp. 143-147.

[Gallager68] Gallager, Robert G. Information Theory and Re-
liable Communication, John Wiley and Sons, (1968).

[Gat76] Gat, Israel and Harry J. Saal. ‘“‘Memoryless Execu-
tion: A Programmer’s Viewpoint,” Software Practice
and Experience, 6 (1976), pp. 463-471.

[Gilbert60] Gilbert, E. N. *“‘Capacity of a Burst-Noise Chan-
nel,”” Bell System Technical Journal, 39 (September
1960), pp. 1253-1265.

[Gold69] Gold, Michael M. *‘Time-Sharing and Batch Pro-
cessing: An Experimental Comparison of Their
Values in a Problem-Solving Situation,” Communica-
tions of the ACM, 12:5 (May 1964), pp. 249-259.

[Hansen70] Hansen, Per Brinch. ‘““The Nucleus of a Mul-
tiprogramming System,” Communications of the
ACM, 13:4 (April 1970), pp. 238-241+.

[Kleinrock75) Kleinrock, Leonard. Queueing Systems; Volume
1: Theory, John Wiley and Sons, 1975.

[Lampson69] Lampson, B. W. “Dynamic Protection Struc-
tures,” Proceedings of the Fall Joint Computer Confer-
ence, 35 (1969), pp. 27-38.

[Lampson73] Lampson, B. W. ‘A Note on the Confinement
Problem,” Communications of the ACM, 16:10 (Oc-
tober 1973), pp. 613-615.

[Lavenberg75] Lavenberg, S. S. and D. R. Slutz. “Introduc-
tion to Regenerative Simulation,”” IBM Journal of
Research and Development, 19:5 (September 1975),
pp. 458-462.

[Lettieri76] Lettieri, Larry. ‘“Making Their Marks,”” Computer
Decisions, 8:1 (January 1976), pp. 28-30.

[Lipner75] Lipner, Steven B. “A Comment on the
Confinement Problem,” Proceedings of the Fifth Sym-
posium on Operating Systems Principles, The Universi-
ty of Texas at Austin, (November 1975), pp. 192-
196.

[Parnas72) Parnas, D. L. *‘A Technique for Software Module
Specification with Examples,”” Communications of the
ACM, 15:5 (May 1972), pp. 330-336.

[Popek74] Popek, Gerald J. and Charles S. Kline. ““Verifyable
Secure Operating System Software,” Proceedings of
the National Computer Conference, 43 (1974), pp.
145-151.

[Ritchie74] Ritchie, Dennis M. and Ken Thompson. “The
UNIX Time-Sharing System,” Communications of the
ACM, 17:7 (July 1974), pp. 365-375.

[Ross70) Ross, Sheldon M. Applied Probability Models with
Optimization Applications, Holden-Day, (1970).

[Rotenberg74] Rotenberg, Leo J. “‘Making Computers Keep
Secrets,”” MIT Project MAC Report MAC-TR-115,
Ph. I? Thesis, Cambridge, Massachusetts, (February
1974).

[Saltzer74] Saltzer, Jerome H. ‘“Protection and Control of In-
formation Sharing in MULTICS,> Communications of
the ACM, 17:7 (July 1974), pp. 388-402.

[Scherr66] Scherr, Allan L. An Anabsis of Time-Shared Com-
puter Systems, Research Monograph Number 36, M.
I. T. Press, (1966).

[Schiller75] Schiller, W. L. ““The Design and Specification of
a Security Kernel for the PDP-11/45, Report
ESD-)TR-75-69, The MITRE Corporation, (May
1975).

[Schroeder72A] Schroeder, M. D. *“‘Cooperation of Mutually
Suspicious Subsystems in a Computer Utility,”> MIT
Project MAC Report MAC-TR-104, Ph. D. Thesis,

- Cambridge, Massachusetts, (1972).

Huskamp: Covert Communication Channels in Timesharing Systems

[Schroeder72B] Schroeder, M. D. and J. H. Saltizer. “‘A
Hardware Architecture for Implementing Protection
Rings,” Communications of the ACM, 15:3 (March
1972), pp. 157-170.

[Spier73] Spier, Michael J. and Thomas N. Hastings and Da-
vid N. Cutler. “‘A Storage Mapping Technique for
the Implementation of Protective Domains,”
Software Practice and Experience, 4 (1974), pp. 215-

230.
{Turn72] Turn, Rein and Norman Z. Shapiro. ‘‘Privacy and
Security in Databank Systems - Measures of

Effectiveness, Costs, and Protector-Intruder Interac-
tions,” Proceedings of the Fall Joint Computer Confer-
ence, 41 (1972), pp. 435-444.

[Ware67] Ware, W. H. *‘Security and Privacy in Computer
Systems,” Proceedings of the Spring Joint Computer
Conference, 30 (1967), pp. 279-282.

[Weissman69] Weissman, C. *‘Security Controls in the
ADEPT-50 Time-Sharing System,”’ Proceedings of
the Fall Joint Computer Conference, 35 (1969), pp.
119-133.

[Weissman75) Weissman, Clark. ‘‘Secure Computer Opera-
tion with Virtual Machine Partitioning,” Proceedings
of the National Computer Conference, 44 (1975), pp.
929-934.

[Wolfowitz63] Wolfowitz, J. *“The Capacity of an Indecom-
posable Channel,” Sankhya, Indian Journal of Statis-
tics, Series A, 25 (1963), pp. 101-108.

[Wolfowitz64] Wolfowitz, J. Coding Theorems of Information
Theory, Second Edition, Springer-Verlag, (1964).

BIOGRAPHICAL NOTE

Jeffrey Craig Huskamp was born in Louisville,
Kentucky on October 17, 1949. He attended public
school there, graduating from Atherton High School
in June, 1967. He attended Purdue University start-
ing in September, 1967, and received the B. S. de-
gree with highest honors in electrical engineering in
June, 1971, and the M. S. degree in computer sci-
ence in June, 1972. In September, 1974, he entered
the Electrical Engineering and Computer Science
Department at the University of California, Berke-
ley.

While at Purdue University, Mr. Huskamp
worked on the development of graphic input/output
packages for use in teaching circuit analysis to un-
dergraduates in electrical engineering. He also
developed a FORTRAN compiler for an IMLAC
minicomputer for use in the Computer Aided
Design Laboratory in the Mechanical Engineering
Department. From July, 1972 to September, 1977,
he was employed as a systems programmer at
Lawrence Livermore Laboratory. While at the La-
boratory, he participated in the RISOS (Research in
Secured Operating Systems) Project which studied
the security of commercially available operating sys-
tems. Mr. Huskamp is presently employed at the
Institute for Defense Analyses in Princeton, New
Jersey.

Mr. Huskamp is a member of the ACM, Tau

. Beta Pi; Eta Kappa Nu, Omicron Delta Kappa, Sig-
ma Pi Sigma and Phi Eta Sigma.

	Copyright notice 1978
	ERL-78-37 (1 of 2)
	ERL-78-37 (2 of 2)

