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ABSTRACT

A qualitative theory of the circuit dynamics of the Josephson junction
device using a simple circuit model is developed. By examining trajectories
on a cylindrical phase space and on the surface of a torus, respectively, the
main features of the I-V characteristics of the junction excited by d.c. and

a.c. are explained, and their properties derived. These results lead to the

interpretation of the steps of constant voltage in the a.c. characteristics as

a manifestation of the synchronization phenomenon.
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!• Introduction

The Nobel Prize in Physics was awarded to B. Josephson in 1973 for his

discovery of the quantum-mechanical tunnelling of carriers through an insula

tor sandwiched between two superconducting metals. The phenomenon has been

termed the Josephson effect since its discovery in 1962 [1] , and electrical

devices which use this effect for conduction are called Josephson junction

devices. Although seemingly esoteric, the electromagnetic properties of

Josephson junctions have been used in applications ranging from the measure

ment of minute magnetic fields [2] to the fastest known digital computers

with picosecond switching times [3].

Scientific articles related to this effect have constantly appeared in

solid state journals, both in the Western world and the U.S.S.R., since the

announcement of this effect. With a few interesting exceptions [4], these

articles are either quantum-mechanical analyses of the effect or sundry

reports of experiments which reveal some very remarkable phenomena associated

with circuits containing Josephson junctions. Those who have ventured to

solve the differential equations of Josephson junction circuits have necessar

ily restricted themselves to approximate methods [5-6], or to the use of

approximate analogue models [7]. The situation remains somewhat unsatisfac

tory from the circuit theorist's point of view as only a very limited insight

is available into the general circuit behavior of the device.

Our research has concerned itself with developing a unified qualitative

theory of the phenomena associated with Josephson junction circuits. To this

end, we have used some results from the theory of differential equations which

provide greater insight into the. txolily nonlinear behavior of this remarkable

two-terminal device. At the outset we acknowledge the 1970 paper by Waldram,

Pippard and Clark [4] which has provided us consistently with insights during

our research.

2. Modeling the Device

We chose to use the simplest available device model in our investigations,

for to use a detailed model would obscure the essential phenomena which the

device portrays in simple circuits. Our device model (Fig. 1) is the simple

one proposed by McCumber [8]. The nonlinear tunnelling phenomenon produces
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a current I sin <J>, where (f> is the phase difference of the quantum mechanical

wave function across the junction. Furthermore, one of Josephson's central

results proved that the junction voltage is given by

*(«-£& ' U-h/2. .

where h and e denote Planck's constant and electron charge, respectively. In

circuit theoretic terms, the tunnelling current can thus be modeled by a non

linear flux-controlled inductor. There is another current, attributed to

quasiparticle effects, which is modeled as the linear resistor R. The physical

capacitance of the dielectrically separated superconductors is represented by

C. Typical values are I = 10 A, R = 10 fi and C = lOnF.

Summing currents in Fig. 1, we obtain

i - Io sin *+f +CH

- t • . . h di , hC d2*
- Xo sln * + 2ii[ dl + 2i TT (1)

at

Other models for the Josephson junction often non-electrical in nature exist

in the literature. Notable amongst these is the rotating disc model [9], the

motion of a pendulum in viscous fluid [4] , and the phase locked loop [10].

The differential equations describing these models resemble the preceding

equation (1).

3. The d.c. Excited Josephson Junction

The simplest means of exciting a Tosephson junction is to impress a

direct current across its two terminals. Experiments show that a non-

sinusoidal oscillation of the voltage results [11], whose fundamental frequency

is of the order of gigahertz. At these frequencies, it is only reasonable to

experimentally specify the junction characteristics by plotting the average

(or d.c.) value of the voltage waveform as a function of the exciting direct

current. Typical characteristics of a point-contact junction taken from [8]

are given in Fig. 2.

It is of interest to note that these characteristics can vary markedly
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for junctions of different physical constructions and geometries. The main

features common to all these characteristics are as follows:

(i) A current can be maintained through the device with zero voltage across

it. This is the supercurrent region of operation.

(ii) For large current excitations beyond the critical value I , the device
o

abruptly attains a finite voltage.

(iii) A peculiar hysteresis is displayed in the characteristics, as follows.

For an increasing excitation I, the transition from the supercurrent to finite

voltage occurs abruptly at Iq, but if the excitation is now decreased, the
transition from finite voltage to supercurrent occurs smoothly at some I <I .

J CO

Although (1) has not been solved analytically, [5] and [8] have verified

both the supercurrent and the asymptotic regions of Fig. 2. Furthermore,

McCumber has calculated the variation in the hysteresis threshold, I , as a

function of the junction capacitance. His results are plotted in Fig. 3.

4. Circuit Dynamics in a Cylindrical Phase Space

Under direct current excitation i = I , (1) becomes

hC d2<j> , h drf> , T
.2i^2 + 25[Ht +Io81n*0 Xdc

'•*• %♦**♦©<.■- -(IK
This equation can be expressed in a normalized form by defining the dimension-
less variables

A Xdc A 2e A A
a - -— , a)Q = — I^R , x = oj t 3_ = a) RC

o h

so that (2) becomes

o o c o

2
d 4> , 1 di , 1 . , a

7i + B~d7 +rsin*=r (DC)dx c *c pc

Now if we define x=<j),y^i^ =|i, (DC) can be expressed in the state equa
tion form as follows:

-4-



x = fx(x,y) A y

y = fo(x,y) A i
(a-y-sin x)

3c
(3)

These are autonomous, or time-invariant state equations, insofar as the time

variable does not appear explicitly on the right-hand side. In fact, time can

be eliminated altogether from (3) by rewriting it as

ii =F(x y) Af2(X'y) =°-y-si" * (4)dx nx,yJ =f^x.y) 6cy W

Geometrically, solutions of (3) define trajectories in the three-dimensional

space2^x t> where

s\= Two-dimensional state space (or the phase plane)

t = Independent time variable

Typical trajectories inj)x t and their projections in the phase plane /^
are shown in Figs. 4(a) and 4(b), respectively.

Notice, however, that (4) has the very special periodic property that

& = f(x,y) = f(x+2tt, y)

which means that the direction field defined by (4) in 2^ is 2ir-periodic with

respect to the state variable x. Thus, the direction field can be uniquely

defined, modulo 2tt in x, by restricting ^ to the strip [0,2ir) x H . To
2

visualize continuous flows produced by this direction field, this strip can

be smoothly transformed into a cylinder (£f) by joining its two ends (Fig. 5).
A typical flow on the surface of the -Under V1 is also illustrated.

The state equations (3) possess an equilibrium point at (x,y) if

f,(x,y) = 0 and f2(x,y) = 0. Clearly this o^urs at the points y = 0,
x = arc sin a and (it - arc sin a), i.e., (arc sin a, 0) and (tt - arc sin a, 0)

are the two equilibrium points in 2-». For a < 1, these points lie symmetrically
on either side of the point (y.Oj. For a=1, the points come together and
coalesce at (y»0), and for a>1, they disappear altogether.

The nature of these equilibrium points can be one of three types: node,

Henceforth, a vector field defined on a state space 2-» is called a direction field,
The integral curves in a state space 2*» resulting from a given direction field

are called flows.
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focus or saddle point [12], . The type of equilibrium point and its stability
2

is determined by examining the signs of T, A and T - 4A [121 where

2fl 2f9 A
T ^ + t^ and A _ .,

= 2x 2y - det

2f 2f
zl rl
2x 2y

2f2 2f2j
L2x 2y J

So for (3), T= -±- ,A=-^ cos x.
c c

Thus, the equilibrium point (arc sin a, 0) is a stable node if 8 < i :
n r ' ' c 4 arc sin a

_ ,, ,- jc n 1 , whereas the equilibrium point
or a stable focus if 6 > -, : '

c 4 arc sin a

(it - arcsin a, 0) will always be a saddle point.

Differential equations of the form dy _, x _,, l0 N . , , ..,n -p = F(x,y) = F(x+2tt, y) yield tlows

on the cylinder 2^' with some very interesting properties, which have been

detailed in the treatise of Pliss [17]. We state these properties below and

provide detailed proofs for some of them in Appendix 1. The reader is

referred to [17] for a complete exposition.

We define a flow y = <j> (x) in JJ = ]R to be 2tt x - periodic if
<J>(x+2tt) = <{>(x), V x G ]R . On the cylinder J£', a 2ir x - periodic flow
will describe a closed loop.

Theorem 1. If a unique solution y = <J>(x) of (4) through (x ,y ) exists for

all x > x in ^ , and is bounded ^hen it is either 2tt x-periodic or
asymptotically approaches some 2ir x - periodic solution as x •*• *».

Thus, if the solution does not approach an equilibrium point as x -*-«•,

then it must tend to a 2tt x-periodic solution. Perceptive readers will

recognize the similarity between this result and the Poincare-Bendixson

theorem [13] .

Theorem 2. Any unique solution y = <j)(x) of (4) is bounded either above or

below as x -> °°.

We have plotted accurate phase plane portraits for the solutions of (4)

in Appendix 2, for a range of typical values of a and B . These portraits

suggest the following general properties for these solutions of (4):
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(i) For a greater than a critical value, an equilibrium point and a 2ir

x-periodic solution coexist.

(ii) The trajectories which converge asymptotically to either an equilibrium

point or a 2tt x—periodic solution are separated by the separatrix trajectory,

which is the trajectory passing through the saddle point (it - arc sin a, 0).

Thus, if yg(0) is the initial condition of the separatrix on ^f, then all
trajectories with initial condition y(0) > ys(0) tend to a 2xr x-periodic

solution, and all trajectories with y(0) < ys(0) tend tc the equilibrium point

(sin a, 0).

(iii) Keeping a constant, the 2tt x-periodic solution may be made to disappear

altogether if 8 is made large enough.

Using these phase plane portraits, we have devised a simple and efficient

numerical procedure based on the shooting method [18] to calculate the

hysteresis in the I-V characteristics. Our procedure and results are given

in Appendix 2.

It is instructive to visualize the flows on the surface of J^' as trajec-
tories inj]' x x. As 2J' is the surface of a cylinder, J]' x t can be
thought of as a series of equally spaced concentric cylinders, where each

cylinder is an isochrone; i.e., the radius of any cylinder specifies the time

variable (Fig. 6). Suppose now that there exists a 2tt x-periodic flow on >/,

which will define the loop gp(a,Sc) = ((x,y) |y(x+2?r) =y(x),x e [0,2ir)} on
2*. Then the surface defined by ^(ay& ) x xwill be an integral manifold
[14] for this periodic solution; that is, if (x0,y0,xQ) is a point in this

surface, then (x(x),y(x),x) lies on this surface for x>xQ, where
(x(x),y(x),x) is the trajectory described by the solutions of (4) with initial
conditions (x0,y0,x). Because of the time-invariance of (4), the following

properties are true:

Observation 1: y = <J>(x) is 2tt x-periodic on £' if, and only if, the
trajectory (x(x) ,(J>(x(x)) >t| is time periodic 1.. Jj' x x,

3 T > o 3 x(x+T) = x(x) + 2-rr,y(x+T) = y(x), ¥x

Thus, Theorem 1 has proved that if the state variables x and y do not

attain an equilibrium point, then they produce time periodic waveforms as

x -*• °°. We can also see how the time period of these waveforms varies as a

function of a.

Integral curves in space-time L x x are called trajectories.



Observation 2: Let (4) possess a periodic solution for a = a with time

period T. For any e >o ^| 6 > o such that if a = a + e in (4), it will still

possess a periodic solution, and the time period of this oscillation will be

(T-6).

Proof: The proof relies on two facts observed from the phase plane portraits

of Appendix 2:

(a) If, for a fixed 3 , a - a yields a 2tt x-periodic solution, then all

a > a will also yield a 2ir x-periodic solution.

(b) For any e > o the periodic solution trajectory in the x-y plane correspond
ing to (a+e) lies above the trajectory corresponding to a. More precisely,
y , (x) > y (x), V x e [0,2tt). In the V' x x space of Fig. 6, this means that

the integral manifold for the periodic solution due to a lies above the integral

manifold for the periodic solution due to a.

Fact (a) thus establishes the existence of periodic solutions above a

threshold value of a. Fact (b) states that 4>a+6(<J>) > iaW on the periodic
solutions, V (J> G [0,2ir).

5T r2Tr f27T
dt = \ _d£_ => T= \ -±- dcj,

Jo ♦(♦) Jo *(♦)

where T is the time period of the 2tt x-periodic trajectory. Clearly, then

T <T for £ > o, i.e., 36 >° s-t. T = T - 6. h

Observation 2 allows us to think of the Josephson junction as a current-

controlled oscillator whose frequency of oscillation increases with increasing

d.c. excitation applied at its te^ninals. This is an important interpretation

to bear in mind when we later consider the behavior of the a.c. excited

junction.

5. The a.c. Excited Josephson Junction

In connection with the application of Josephson junction devices as micro

wave generators and mixers [15], experimenters have looked at the characteris

tics of the device when, in addition to a d.c. bias, an alternating current of

arbitrary angular frequency (^ is applied at the terminals Fig.^7(a)j. If
the direct current excitation (the bias) is varied while keeping the alternating
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current excitation constant, a set of direct current vs. average junction

voltage characteristics is obtained. Some typical experimentally obtained

characteristics are shown in Fig. 7 (b): the major effect of the a.c.

excitation is to introduce regularly spaced constant voltage steps onto I-V

characteristics which otherwise are similar to Fig. 2. In particular, the

characteristics of Fig. 7(b) have the following features:

(i) The average voltage (V) is a monotonically increasing function of the

d.c. excitation (I, ): no negative resistance regions are observed.

(ii) The constant voltage steps appear at multiple and submultiple values of

a fundamental voltage. The heights of these steps do not appear to follow a

monotonic law.

(iii) The height of a given step is observed to vary with the amplitude of

the a.c. excitation, I . Some authors [4] suspect that this height varies as
ac

a suitable chosen Bessel function of I
ac

(iv) The effect of varying the frequency, u>, of the a.c. excitation is to

change the spacing between these steps.

Using the model of (1) with an a.c. excitation, we obtain a differential

equation of the form

— 2 —
hC d <f> , h d6_1_T'J.Tj_T-fc /ex
2e ,2 2eR dt o r dc ac

Again, the solutions of (5) will give trajectories in a cylindrical phase

space, except now subject to a time-varying direction field.

To simplify the discussion, and more importantly, to avail ourselves of

existing mathematical results, we neglect the second derivative term in (5)

by letting C = 0. Although this is not physically justified, we believe that

the second-order term does not signif: mtly alter the qualitative behaviors

which follow. Roughly speaking, we needed the second-order term in the d.c.

analysis to discover in detail the autonomous Sehavior of the circuit dynamics;

in the a.c. case, the dynamics are governed largely by the a.c. or synchron

izing excitation, and the first derivative is enough to reveal the basic

behavior of (5).

The simplified differential equation then is:

TT5- 4£ + x sin <J> = I, + I sin a) t (AC)
2eR dt o r dc ac
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Consistent with the notation of the d.c. analysis, (AC) can be normalized by

introducing the following dimensionless variables:

I
n a w ~ a acfi A — , a A —— ,

0) = I
o o

T 4 ft x ,

A A 77 , A, A J » A A £o = fi ' dc = ft ' ac = ft

whence (AC) becomes

-t± .+ A sin d> = A, + A sin !T
d!F o r dc ac

or

4| « A, - A sin <j> + A sin ? (6)
d!T dc o r ac

We observe that the. right-hand side of (6) is 2tt periodic in both <{> and T;

this property is now exploited.

6. Circuit Dynamics on the Surface of a Torus

The differential equation (6) describes a single state variable <{>. Thus,

2^ x IT is a two-dimensional trajectory space. However, because the velocity

field defined by (6) on Lxf is 2Tr-periodic along both jLj and 2\ diffeo-

morphic operations can be introduced to transform the Euclidean coordinates to

the surface of a torus where <p anH T are defined modulo 2r (Fig. 8). Conse

quently, a trajectory which lies in the plane ^ x T will> after transformation,

lie on the surface of the torus V*' x T1 . A motion of 2tt along a latitude on

the torus is called a rotation and along -. longitude is called a revolution

(see Fig. 8).

The theory of flows on a torus, initially rormulated by Poincare in

connection with celestial mechanics [16], has been brought up to date by Pliss

[17] , and applies to any differential equation of the form dy_ _ f, * where

f(x+2ir,y) = f(x,y+2ir) - f(x,y). We interpret and develop these results in the

following sections to understand the qualitative behavior of the solutions of

(6) .

4A vector field in space time E x t is referred to as a velocity field.
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7» Periodic Solutions on the Surface of a Torus

What does a periodic trajectory look like on the surface of a torus?

Periodicity means that for some T > 0, <f>(2H-T) = <J>CO (mod 2tt) for all T. On

the torus surface, this corresponds to a trajectory which closes upon itself:
three examples of such trajectories are shown in Fig. 9. These examples are
fundamental insofar as any periodic trajectory can be classified as one of

these three types. Fig. 9(a) illustrates the simplest case, where the trajec
tory executes one rotation and one revolution before closing upon itself.

Fig. 9(b) is another possibility, where one revolution and six rotations are

completed before closure, and Fig. 9(c) portrays one rotation and three

revolutions being executed before closure. In the most general instance, q

revolutions and p rotations will be completed before the trajectory closes
upon itself.

The three examples of periodic motion in Fig. 9 have important physical

interpretations. Fig. 9(a) represents an oscillatory waveform whose period

along the normalized T coordinate is 2tt, i.e., 2tt/u) sec. in actual time (t).
Fig. 9(c) requires a period of 3 x 2tt = 6xr in T9 i.e., Sir/to sec. in t. The

waveform in Fig. 9(b) advances <f> by 2tt radius in 1 0 ##1 in T due to the
•7- X ZTT = TT/3

sinusoidal symmetry of the vector field generated by equation (6), i.e., a
time period of tt/3oj sec. Recall now that the period of the sinusoidal a.c.

excitation applied to the junction is 2ttAo sec. The oscillation of Fig. 9(a)
has a period identical to that of the excitation, while that of Fig. 9(b) has
a period which is the 6th harmonic of the excitation, and that of Fig. 9(c)
has a period which is the 3rd •-bharmonic of the excitation.

In general if a trajectory executes p rotations and. q revolutions before

closing on itself, its frequency is equal to the pth harmonic of the qth sub-

harmonic of the excitation frequency.

8. Conditions for the Existence of Periodic Solutions

We return to the two-dimensional Euclidean space 2^ x T to obtain some
properties of the periodic trajectories defined above. In accordance with

Pliss, we consider Lx T (=TR ) divided up into a grid of multiples of 2tt
Fig. 10(a) so that a periodic trajectory with initial condition $(0) =0

must pass through somegrid point (2qTr,2pir): this corresponds to p rotations
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and q revolutions executed on the surface of the torus V' x 2" prior to
closure.

Henceforth, cj> = ¥(T,<bQ) denotes the solution of (6) with initial condi
tion <f>(o) = <J>Q. The following remarkable property holds for the trajectory of
F(7,0) plotted in the Z) xT plane:

Theorem 3: Let q and p be factorized as q =Kq and p =Rp (where K is an

integer > 1), and assume that the grid point (2qTr,2pfr) lies above (resp.,

below, on) the trajectory F(T,0). Then the point ^q^^p tt) will also lie
above (resp., below, on) the trajectory.

Proof: See Appendix 3.

Thus, the ratio p/q contains sufficient information to uniquely specify whether

the grid point (2q¥,2pir) lies above, below or on the trajectory F(T,0). If we

now assign the ratio corresponding to every grid point into one of the follow

ing two classes:

Class 1jM-2- F(T,0) passes below or through the grid point (2qTr,2pTr)l and

Class 2A|J F(T,Q) passes above the grid point (2qTr,2pTr)l

then these two classes have the following properties:

(i) Each class is non-empty.

(ii) Every rational number :ielongs either to Class 1 oi to Class 2.

(iii) For every x G Class 1 and y G Class 2, x > y.

Class 1 and Class 2 thus define a Dedekind cut on the rational numbers

Fig. 10(b). The real number (y) delineated by this cut (which may be rational
or irrational) is called the turning point, and is uniquely defined by given
values of A , Aae% and A in (6).

ac ac o

We can generalize this definition o_ turning point with the following
important result:

Theorem 4: Let y be the turning point generated by a given right-hand side
of (6). Then if F(2\<f>o) is the trajectory inExf generated by (6) for any
4»Q G [0,2tt), the following limiting relation holds: lim F(T,<J) )

p*» _-°_ = u

Proof: See Appendix 3.

Note that this result provides us with a purely algebraic interpretation of
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the turning point for trajectories emanating from arbitrary initial conditions;
the Dedekind cut interpretation derived from grid points is geometric, but only
holds when the initial condition is 0. A very powerful result concerning the
existence of periodic solutions can be obtained by considering the nature of
the turning point.

Theorem 5: There exists a periodic solution trajectory of (6) on the torus

2y x T1 which completes p rotations and q revolutions prior to closing upon
itself if, and only if, the turning point y = 2. .

Proof: See Appendix 3.

The interpretation of this result deserves a few remarks:

(i) A periodic solution with y = p/q will satisfy F(2qir,<J> )=<(>+ 2pir
for some <J> e [0,2it).

(ii) The junction voltage waveforms will be periodic whenever the average
junction voltage Vdc is a rational multiple of V.

(iii) If y = p/q, there may be more than one periodic solution on the torus

2' xT\ i.e., the cardinality of the set

Ji GO 4{♦0 | F(2q7r,cf>o) =<j>o +2P7T, (J)o e [0,2ir)l
may be greater than 1. However, all these periodic solutions must execute

multiples of p^ rotations and q, revolutions before closing upon themselves,
where p^ and q. are relatively prime integers and p1

q-L " q
Furthermore, we can show that these periodic solutions are stable.

Theorem 6: Assume that (6) hat; « rational turning point y = p/q. Then any

non-periodic solution approaches a periodic solution as T -* °° and a possibly

different periodic solution as T -»• -'

Proof: See [17]

Corollary: If we have an isolated periodic solution (i.e., <f> ^o\((y)

and an e > 0 such that (J) - $ I < e =* 4 £ (Al (y) , and it is stable in theO O Tq.WVX.-**

sense of Lyapunov [14, 17], then it is asymptotically stable,

Proof: See [17].

We now make some remarks on the number of periodic solutions that (6) will
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possess if the turning point y = *• . Let us define the determining function

g(<f>Q) A F(2qxr,(J)o) - (<j>q + 2pir) : the zeros of this function on the inter

val [0,2tt) are then the elements of the setjll(y). This function has the
following properties:

(i) g(<J>Q) is a continuous function of <J> . This follows from the basic
result in differential equation theory that the solution F(2qir,(j) ) is a

continuous function of the initial condition d> . [141
o

(ii) g(<J>Q) is 2tt periodic in <J> . This is true because

g(<J>0 + 2tt) = F(2q7r,<f>o + 2xr) - (<f> + 2tt + 2Ptt) =

F(2q7r,<j>o) + 2.ir - (<J> + 2tt + 2pir) = g(<J> )

due to the 27r-periodicity of the vector field of (6).
(iii) - 2it < g(<J>Q) <+ 2tt , V<f>Q. We prove this by contradiction. Suppose

g(<!>0) > 2tt for some <f>^ . Then 3 *JJ such that g(<j>") = 2ir in view of the continu
ity of g(') and that fact that g(<J>Q) must have at least one zero. Hence,

F(2qir,<£) = (2pir + <j£) + 2tt =^ + 2(P+1)tt => y=£±i , which contradicts
the assumption that y = %- .

q

Thus, g(4»Q) is continuous, bounded and 27r-periodic, and because of the
smoothness of the right-hand side of (6), it is a function of bounded varia-

tion, which means that it will have an even number of zeros on the interval

[0,2tt]. Consequently, there is an even number of periodic solutions. A
limiting case of interest is when there are only two zeros which coincide to
produce only one periodic solution.

9» Non-periodic Solutions on the Surface of a Torus

A consideration of irrational value., of the turning point (y) leads to

the discussion of non-periodic oscillatory motions. Indeed, if the turning
point is irrational, the trajectories certainly do not close upon themselves

on the torus to produce a periodic oscillation of <J>, nor do they approach an

equilibrium point. Thus, a non-periodic oscillation is obtained. Further

properties of this motion are developed in the following analysis.

Tne zero meridian of the torus is the circular locus of T = 0.' We define

a mapping M which associates the initial condition <J>(0) (tfhich lies on the
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zero meridian) to the point at which the trajectory emanating from (f)(0) next
intersects the zero meridian, i.e., M: <f>(0) +f(2tt,<j>(0)) . This is an
application of the shooting method [18] to the problem on the torus. The
composition of the mapping with itself K times means that

M: <(>(0) +f(2Ktt,(f)(0)) . From Theorem 5, if y=p/q and <J>(0) lies on a
periodic trajectory, then Mq(f>(0) = (f>(0) + 2pir

= <J>(0) (mod 2tt)

If *0 = <J>(0), we define the nth successive point <f> of <f> as <J> 4 M11^

(mod 2tt). <f>nl is said to follow <J>n2 if, moving along the zero meridian
starting from <j>Q along the direction of increasing <j>, we first encounter <f>
and then Q^. We denote this by <f>o a ^± ot <j>n2. If <a> denotes the

fractional part of the real number a, the following relationship is obtained
between the successive points of <j> .

Theorem 7: For any y, rational or irrational

a d>

and

<pq2> < <yqn> => <f> a <f>
'i2 4X

<yqn> < <yq0> => <f> a <f> a d>
1 ^2 yo Tq. ^q.

Proof: See [17].

If y is irrational, we know from Theorem 5 that no trajectory on the torus

i/ x 2" will close upon itself. Without loss of generality we can study the
behavior of the trajectory with initial condition (j> =0. Let fi(y) be the
set of successive points of ^ i.e., fi(y) A(<f>k |k=l,2,...} ,and ^(y) be
the set of accumulation points of S(m)•

Lemma: If y is irrational, then <P(y, is a perfect set (ire., the set is
closed and everywhere dense).

Proof: See [17].

Theorem 8: For solutions of (6) and irrational y, the set ^(y) covers the
entire zero meridian of JT1 x T\

Proof: See

This result is very important for obtaining a convenient picture of how a
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trajectory with an irrational turning point occupies the surface of a torus.

The trajectory covers the entire zero meridian densely, and by extension

covers the complete surface of the torus densely. A simple example of such a

trajectory is <|>(20 = vT, where y is irrational; clearly, if T is a multiple of

2?r, then \xT cannot be a multiple of 2tt and. as T progresses, the trajectory

gradually covers the entire torus. It is not suprising that any trajectory

with an irrational y is topologically equivalent to the trajectory \iT + <$> ,

as stated in the following corollary, which is proved, aLong with the next

corollary in [17]. . ....

Corollary 1: If the turning point y is irrational (and ^P(y) coincides with the

entire zero meridian)« then there exists a homeomorphism of the torus onto

itself such that the trajectories of (6) are carried into the trajectories of

ar y •

Another consequence of Theorem 8 is:

Corollary 2: The mapping M satisfies the ergodic hypothesis [19] .

Under these conditions, an anlytic form can be given to these densely

covering trajectories [20]:

2
Theorem 9: There exists a function oj: 3R -*• K. which is continuous and satis

fies u)(x,y) = w(x+2ir,y) = u(x,y+2Tr) such that every solution of (6) can be

written as

<j>(20 = y-77 + c + ui(T,\iT + c) where c is a constant.

Conversely, for any constant c, <j>(70 defined above solves (6), and to each

value of c (modulo 2tt) there corresponds a unique (j) .

Proof: See Appendix 3. n

Corollary: The waveform \xT + c + u)(T,\iT + c) defines an almost periodic

trajectory on the surface of the torus ^' x T1.
An almost periodic waveform is not periodic, but is best defined by

comparison with a periodic waveform. If x(t) has period T, then

|x(t + T) - x(t)| = 0

for all values of T. However, if x(t) is almost periodic., then if we choose

an arbitrarily small z > 0, there is a length L(e) such that

|x(t+T) - x(t)| < £

for all t, and T < L(e), where T depends in general on the initial time t.

A precise definition of almost periodicity, along with some of its more
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interesting properties are given elsewhere [14] . Here, we simply state the

following two properties which are of direct interest:

(i) If 4>00 is almost periodic, then so is d^ .
du

(ii) The average value of <f>(u) is well-defined and independent of u if

cf)(u) is almost periodic.

The averaging process used in (7) to interpret the turning point as the

average normalized junction voltage is thus consistent for both rational and

irrational values of y.

10. Structural Stability of the Turning Point

If a given R.H.S. of (6) yields a turning point y, is it possible to

perturb the R.H.S. in some manner such that the turning point of the perturbed

system also has value y? We restrict ourselves to additive perturbation

functions of the form f (T,<1>), where f CT,<f>) = f (T + 2ir,<J>) = f (T, <f> + 2ir), so

that the essential features of the differential equation remain unchanged. The

turning point of the unperturbed system is said to be structurally stable if

there exists some e > 0 so that any additive perturbation f CP,$) with

|f (r,<|>)| < c yields the same turning point for the perturbed differential

equation.

The following result is central for structural stability:

Theorem 10: Equation (6) has a structurally stable turning point (y) if, and

only if, u is rational and the determining function g(<J>Q) changes sign on the
interval [0,2ir).

Corollary: Because the right-hand side of (6) is analytic, its turning point

u is structurally stable if, and only f, it has at least one asymptotically

stable periodic solution.

We have shown previously in Section 8 th~t g(<f>Q) is a bounded, continuous
and 2ir-periodic function of bounded variation, so that a. transversal intersec

tion with the axis is sufficient to guarantee structural stability of the

turning point, according to Theorem 10. The Corollary could be used to show

the structural stability of a rational turning point if the method of Lyapunov

were applied to ascertain the asymptotic stability of the periodic trajectory

as suggested in [21] ; readers who have some experience in finding Lyapunov
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functions will know that this is not a simple task.

Finally, Theorem 10 establishes that all irrational turning points are

structurally unstable.

An important physical consequence of these results is that only structur

ally stable solutions can be experimentally observed; structural instability

means that the continually present perturbations due to noise, etc. in any

experiment will change the character of the solutions.

From the circuit theoretic point of view the turning point can be

interpreted as the normalized average junction voltage. For the instantaneous

junction voltage is

/. N n" d<f>
V(t) =2T dt

whence the average junction voltage becomes

v • lim 1 ffc h_ d<Ku) d = _h_ lim <fr(t) -4>(0)
dc = t-x» t J 2e du 2e t-*» t

*(£)-*«» I lim ♦(£)
(!) ~~2eT~l$

(where <f>(0) = <j) )

h lim

2e T*»

<* iim 'g.y
2e y-*» f

u)h

2e
x y ...(7) (7)

V V
dc A dc , ' A wh _ _ _ /n.

y = = where V= — =IRxft (8)
r fr 2e o

o)h V

2e

ii* The I-V Characteristics of an a.c. Excited Josephson Junction

Typical I-V characteristics of a direct current applied to a junction in

the presence of an a.c. excitation are suown in Fig. 7(b), and their singular

feature is the appearance of constant voltage steps. We now explain the

mechanism of these steps using the results on the stability of turning points

developed in the preceding section.

Recall the differential equation (6) defining the junction dynamics

dd>
w = Aa„ + ^ sin <j> - A slviT
q!1 dc o ac
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Corresponding to a given d.c. input A , the solution trajectories of (6) define
dc

a unique turning point u(A, ).
dc

Thus, a unique point defined by the coordinates (]x(AA ), A, ) is obtained
dc dc

in the normalized I-V plane, remembering that y is merely the normalized

average junction voltage. The results in the preceding Section indicate that

the junction voltage waveform is periodic if the normalized voltage is rational,

and almost periodic if it is irrational.

Consider the effect of increasing the d.c. input from A, to A, + SA, ,
dc dc dc

where &4, > 0. Two observations are now in order.

Observation 1: The turning point, y, varies continuously with changes in A .

Proof: Choose an e > 0. Let Pl € (u,yfe), which means that Pl e Class 1
qj qrr

°f y^dc^ as defined in Section 8. By the analytic continuity of the solution
of (6) with the parameter A, [14], there exists a p > 0 such that for all A\

dc r dc

G ^dc " p' ^dc + P^ the traJectory F'(#, 0) generated by the differential
equation

df = Udc +^o sin ♦ -\c Sin T)

will pass below the grid point (2qir,2pTr) of the spaces 2 x T; 'i.e., Pl ^
Class 1 for y(4* ). Therefore, ±

dc *

given £>0, 3 3 >03 |^c -AdJ <3-* |u(^c) -yWdc>| <e n

Observation 2: The turning point, y, increases monotonically with A. .
dc

Proof: Let the trajectory passing through the origin in 1, x f due to excita

tion A. be F(2*,0), and the trajectory due to an increased excitation A. +

6i4dc (6i4dc >0) be Fg(r,0). Then Ffi (i.")) >F(2*,0) for T>Gbecause j& for
the perturbed system is greater at each point of the space i, x T. Thus, some

elements of Class 1 of the unperturbed system might become elements of Class 2

of the perturbed system, but no elements of Class 2 of the unperturbed system

will become elements of Class 1 of the perturbed system; in short, the Dedekind

cut of Fig. 10(b) might be a more positive number for the perturbed system.

•'• »wdc + «V >Pwac>..
Whenever there exists a SA, > 0 such that \i(A + 64, ) = y(4, ), the turning

point due to A, is structurally stable. Theorem 10 assures us that this can

only happen when ]*(A, ) is a rational number. This means that a constant voltage
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step exists at this voltage v(A3 ), when a change in current (&A, ) does not
dc dc

produce a change in the voltage (y). Constant voltage steps thus only occur

when the average junction voltage is a rational multiple of h x a), and this
2e

is indeed experimentally observed.

No equilibrium points(where -jj = Ojcan exist for the a.c. excited system
due to the sinusoidal forcing term on the right-hand side. This means that unlike

the d.c. excited system, the current observed in the characteristics of Fig.

7(b) is not a supercurrent, but is merely a large constant voltage step, much

like those appearing at other voltages throughout the characteristics. The pre

ceding dicussion shows that the instantaneous junction voltage here will be a

periodic waveform whose average value must be exactly zero.

12. Evaluating the Heights of Constant Voltage Steps

The existence of the constant voltage steps is now established. The question

which naturally arises next is: What determines the heights of these steps?

In particular, when do steps whose height is zero occur? We have not found con

venient analytical answers to these questions, but have obtained some insight

into the mechanism of step production by the qualitative considerations which

now follow.

The maximum upper bound on the heights of the steps is first obtained.

If both sides of (6) are averaged with respect to time assuming pG4j ) = ~~>

we obtain

A i• -

p q ^dc t^ h B**<*oa*

5 1 f2q7rNow -1 < -^- \ s±mb(T)dT < +1
" 2qfr Jq

which means that on a constant voltage step, we must have

AuUdc) =0=Mdc +A, Â ja,\la4<r>d^<
so that 'A4j I < 1A .

dc' — o

LAA + 2A
dc — o

If the function sin<J)(.T) is. periodic on the T axis, then its average value must
lie between +1 and —1.

In words, to maintain y constant, any change in the average value of &±n$(T) must
be compensated by an equal and opposite change in A, .
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The height of a constant voltage step thus must be less than 1A. In particular,

the step at V. = 0 cannot exceed the maximum supercurrent.

Recall the determining function defined as g((J) ) A F(2qir,(f> ) - (<f> +2pir)
o — ' o o

for a rational turning point y = J1. A typical graph of g(<|> ) vs. 4» satisfying

the properties stated in Section 8 is shown in Fig. 11(a); each zero crossing of

the graph corresponds to a distinct periodic solution.

Observation: Let $* be a zero-crossing point; i.e., g(<j>*) = 0. The periodic

solution at <f>* is locally asymptotically stable if, and only if, 4f|<f>* <0.
' x T is C°° function, g(<j> ) will be a C

function. Thus, there is an e-neighborhood of $* on which 4? < 0. Therefore,
O Qffl

O

<j> G (*J,<J>J+e) means g(<J>o) < 0; i.e., F(2qTT,<j>o) < <fr + 2pir o F(2qTT,<j> ) < <f> (mod2 )
so the non-periodic trajectory starting from <J> tends to the periodic trajectory

through <J>*. This argument is illustrated in Fig. 11(b). The sufficiency proof

is obvious. n

Let us now turn to examining the step heights using the determining function.

The structural stability of a rational turning point has a convenient interpretation

in terms of the graph of the associated determining function: if this function

intersects the <J» -axis transversally at a point, it will continue to intersect

it for a small enough perturbation if A. in the right-hand side of (6), so that
dc

periodic solutions satisfying F(2qir,<j> ) = <J> + 2pTr will exist for both the original

and the perturbed systems. This amounts to the structural stability of this

turning point (y), where the original and perturbed values of A, are two values

of d.c. excitations on the constant voltage step at y.

Given that g(<j> ) intersects the <J> -axis transversally, the height of the

corresponding step is determined by ti.a values of positive and negative pertur

bations, respectively, that can be applied to A, so that g(<j> ) for the per

turbed system intersects the <j> -axis tangentially. This argument is graphically

summarized in Fig. 12. We note that if A. and A, are the maximum and mini-° dc dc , 1
mum values of A. on a step of constant voltage, then e A «g(<l> )I*!* ^[o»2ir]V = 0

with A^K on the R.H.S. of (6) and gm±n A (g(<f>0) |<J>0g[o,2tt]] =0with i4mn
on the R.H.S. of (6) (or vice-versa).

It would be possible to numerically calculate the height of the step at a

given voltage if we knew one point (A. ,y) on the step; if the corresponding

determining function for y (where y must be a rational number) intersected the

<f> -axis transversally the turning point would be structurally stable and the
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step then would have a non-zero height. This height can be found by perturbing
A3 both positively and negatively until the determining function intersects the
dc

(J> -axis tangentially: the difference between these perturbations is then the
step height. A numerical integration procedure is requited to evaluate each

values of the determining function.

The problem is how to obtain the initial point Udc»y)• If we select Adc
and numerically solve (6) there is no means of deducing numerically whether
the resulting turning point is rational. However, we can turn the problem around
and fix y to be a rational number by choosing integers p and q (such that y =
2);then if we can find an Adc such that Wdc»*) is an admissible pair on the I-V
characteristics, defined by (6), we can proceed to apply perturbations to A^.
Suppose the a.c. excitation in (6) is set to zero

41 = Aj + Asin* ••* (9)
i.e. dT dc o

This differential equation can be solved analytically [22] to obtain

T = 2 arctan

y^72"- <v2

A^ -A 1 + tan(<|>/2)
dc o

^dc^o 1 - tan((J)/2)

lim ♦(2') _ y/A 2 2 (10)
whence .y = ^ " Adc o V

T

Fixing yby choosing £ we can determine Adc from (10) . This is the value of
•Aa that would be obtained on the characteristics in the absence of a.c. excitation
dc

If a small a.c. excitation is now applied so that

4£ = A, -A sind> + z sin T
dT dc o Y

where e > 0 is small, the resulting value of A,r to maintain y - p/q will shift by

a small amount. This observation suggests the following algorithm:

Given: p, q, and a numerical integration subroutine.
p

Step 1: Set x = A. obtained from (10) with y = •

Step 2: Define g(cj) ) = F(2qir,(j) ) - (2pir+<j> ) obtained from integrating (6)
. o o o

with A, = x.
dc
Check whether g((j) ) has zeros on the interval [1,2tt]: if yes, go to Step 4.

Step 3: Set x - x+6, where 6 > 0 is some suitably small number.
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Return to Step 2.

j>tep_4: (x,y) is an admissible signal pair on the I-V characteristics.

Now apply perturbations to x to determine the heights of the steps. n

This algorithm can provide the heights of constant voltage steps at least

for a small a.c. excitation of amplitude e, and should numerically confirm the
12 3 11 2 2
1* 1' l,***,2, 3,***,3' c»*#">etc.observed step heights for y=o,- 22

13* A Phase Locking Interpretation of the Characteristics of an a.c. Excited

Josephson Junction

Anderson [23] originally suggested the appearance of constant voltage steps

in the a.c. excited characteristics as the result of a process of synchronization

and many papers since [24, 25] have developed models of the junction which display

step-like behavior in their characteristics due to this phenomenon. The results

of our analysis provide, for what we believe is the first time, a precise
understanding of this phenomenon.

A constant voltage step can appear in the I-V characteristics, as the

preceding analysis shows, only when the turning point has a rational value ^-;

i.e., the frequency of oscillation of the instantaneous junction voltage (to.)

=£ x the frequency of the a.c. excitation (u>. ),as explained in Section 7.
4 in '

Furthermore, <o. can be considered as an oscillation frequency controlled by

the d.c. excitation, as suggested in the last paragraph of Section 4. Thus, a

constant voltage step occurs whenever the continuously variable w. is a rational

multiple of the applied w-; in particular, when the qth harmonic of a. synchronizes

with the pth harmonic of to.

The height of the step is an indication of the entrainment range of this

synchronization; roughly speaking, variations in A over the height of the step

would tend to change to , but the synchronization process causes to. to be en-

trained by u and maintain the turning point at a constant value. It is pre

cisely this reason why the phase-locked loop model of Bak [10] successfully

simulates the I-V characteristics of the a.c. excited junction. This circuit

is shown in Fig. 13, and provides a very convenient experimental means of dis

playing our arguments. The locking ranges for the harmonic/subharmonic syn

chronization taking place in the phase-locked loop circuit then correspond to

the step heights.
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14. Extension of Results to General Synchronization Phenomena

A more general statement of the phenomenon of synchronization is as follows:

there exists an autonomous system x = f(x) with a stable limit cycle of period

T, to which is applied an oscillatory excitation force of period T', with the

result that the period of. oscillation of the autonomous system is entrained to

T' by the excitation.

Suppose the autonomous system has a state space 2-* on which its dynamics

are determined by a time-invariant direction field. The effect of the applied

excitation is to impose a T'-periodic perturbation on the direction field, and

synchronization occurs if this time-varying direction field has a new limit

cycle in 2*t with period T*.

This time-varying direction field in 2^ is equivalent to a T'-periodic
velocity field uniquely defined at each point of the space L x t, where t is
the time variable. The limit cycle of the autonomous system generates an integral

manifold which is a cylinder in L x t, i.e., if L(x) C 2^ is the limit cycle,
where L(x) A "J x(t) |te[o,T), x(t+T) =x(t)|,then this cylinder is L(x) x
[o,»). If a suitably small excitation is applied so that x = f(x) + e g(t)

(where g(t+T') = g(t)) and synchronization is obtained, then we should expect

a closed curve in £ denoted by L (x) such that L (x) = L(x) and x(T',xo) =
x for any x £ L (x). This idea is illustrated in Fig. 14 and was originally
^o ~o e „

suggested by Levinson [26]. An integral manifold which has the shape of a

distorted "cyclinder" is generated by all the trajectories with initial conditions

on L (x). Because the endpoints of the "cylinder" at t=o and t=T! are identical

and the velocity field defined on the surface of this "cylinder" is also identical

at these points, the two ends of the "cylinder" can be joined together smoothly

to form a "torus." The advantage o± doing so is that all the preceding theory of

flows on a torus, which is presented in a general form as flows on 2-manifolds

in [13] can then be applied to this pro ->m, and the conditions for the existence

and stability of closed trajectories on the "torus" obtained. These closed

trajectories are precisely the synchronized soxo.'-.ions.

A recent Russian text [27] contains the latest results for the dynamics on

such a "torus".

15. Conclusions

The features of the d.c. I-V characteristics of a Josephson junction .have

been explained in terms of the flows on a cylindrical phase space. The.junction
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phase difference (<J>) attains an equilibrium point in the supercurrent regime,
and acts like a current-controlled oscillator in the finite voltage regime.
The hysteresis in these characteristics is due to the co-existence of an
equilibrium point and a periodic solution.

For the a.c. excited Josephson junction, the dynamics are described for

a simpler circuit model as trajectories on the surface of a torus. Using
the concept of a turning point to define the various possibilities of perio
dic flows on the torus, the character of harmonic and subharmonic oscillatory
waveforms is defined. Furthermore, the existence of almost periodic waveforms

is established. The presence of constant voltage steps is related to. the

strucutral stability of the turning point, which roughly means that the character

of a periodic oscillation is not affected by small enough perturbations in the

excitation. An algorithm is suggested to numerically determine the heights of
these constant voltage steps.

A precise interpretation is finally provided for how an a.c. excited

junction is subject to synchronization phenomena, and that the step height
is merely the entrainment range, or locking range, of each synchronization

event. It is then shown how synchronization, in general, can be geometrically

interpreted as closed trajectories on an integral manifold which can be smoothly
transformed into an n-dimensional "torus."
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Appendix 1

Theorem 1. If a unique solution y = (f>(x) of (4) through (x ,y ) exists for all
Eoo

, and is bounded, then it is either 2it x-periodic or asymptotically

approaches some 2ir x-periodic solution as x -»• °°.

Proof. If 6(2tt) = <j>(0), then due to the time-invariance of the R.H.S. of (4),

the solution is 2ir x-periodic. This is the trivial case.

Suppose, without loss of generality, that 6(2tt) > 6(0). Then the sequence

{6(2kiT)}, K = 1,2,.. ,, tends to a limit as k •> «>. The sequence is clearly bounded

by hypothesis. Suppose that it is not monotonic i.e. suppose-6(4ir) <_ 6(2tt).

Let y = i|>(x) be the solution of (4) with initial condition iK2tt) = 6(0). By the

periodicity of the direction field of (4),

*(x) = 6(x-2ir), Vx.

^ ^(4tt) = 6(2tt) > 6(4tt) as assumed above.

But iK2it) = 6(0) < 6(2tt) by construction.

3 x e (2t?,4tt) s.t. 6(x) = 'i'(x). But this contradicts uniqueness, so
6(4tt) > 6(2tt).

By induction, 6(2(K+l)ir) > 6(2Kir), all integers K. =* the sequences is monotonic.

By the axiom of completeness, a bounded monotone sequence has a limit (a,say).

Next, we observe that the solution y = X(x) of (4) with x(0) = a is 2ir

x-periodic. For if 6v(x) = 6(x+2ttK), K integer, then '<L(x) is a solution of (4)
In. K

due to the 2ir x-periodicity of the. direction field. Moreover, from what we have

shown above, lim 6^(0) = a. By continuity, 6v(2tt) -*• X(2fr) as K + «. . But 6„(2tt)
K-x» K . K

= 6((K+1)2tt) -> a as K •*• «>. => X(2tt) = a = X(0). => y = x(x) is 2ir x-periodic.

Finally, notice that 6(x) asymptotically approaches (x) as x + ». For

any solution of (4) depends continuously on its initial condition, so that given

e > 0, 3 <5 > 0 s.t. for y = y(x), |y(0)- [ < 6 => |y(x)-x(x) | < e, Vx G [0,2ir].
As {6(2irK)} ->• a, choose K- large enough su Lhat |6(2TrK)«a| < c for VK >^ K_.

|6(x)- X(x) | < e for Vx _> 2-rrK-.

Thus, 6(x) asymptotically tends to x(x).

The theorem is thus established. n
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Appendix 2

Accurate plots of the solution flows of (4) in 2^ corresponding to various

values of a and 8 are shown in Fig. A-1. The direction field is represented

by the field of small arrows, the corresponding flows by thin solid lines and the

separate trajectory by thick solid lines. The equilibrium points are represented

by the pairs of thick dots on the x-axis. In Fig. A-1 (d), (e) and (f), the thick

dotted lines are 2ir x-periodic flows.

We now interpret these phase plane portraits in terms of the d.c. I-V

characteristics of the junction (Fig. 2). Note that in Fig. A-1 (a), (b) and (c)

all flows, irrespective of initial condition, tend to a stable equilibrium point

where y = 6 = 0. This corresponds to the supercurrent regime in the I-V charac-

teristics where a finite current (a>0) can be sustained at zero voltage (6=0).

In Fig. A-l(d) a flow will either tend to a stable equilibrium point or to a 2ir

x-periodic flow depending on the initial condition. The 2tt x-periodic flow will

yield a periodic waveform for 6(t), so that a non-zero average value of 6 will

exist. Thus, in this case, a supercurrent or a finite voltage state can both be

obtained, and this corresponds to the hysteresis in the I-V characteristics.

Finally, in Fig. A-l(e) and (f), all the flows tend towards a 2tt x-periodic flow,

and this is the finite-voltage regime in the I-V characteristics.

Quantitative considerations of the hysteresis in the I-V characteristics

McCumber [6] has calculated the minimum value of a required to enter the

hysteresis loop in the I-V characteristics of the d.c. excited junction: this

corresponds to I£ in Fig. 2. He has thus obtained a plot of this critical value

(a£) vs. the normalized junction capacitance (6 ), by what he implies to be
numerical solutions of the differential equation (DC).

Based on the insight we have obtained from the phase plane portraits, we

can formulate a simple means to obtain a similar plot. In terms of these portraits,

for a given 8c, aQ is the smallest value of a which will yield a 2ir x-periodic
trajectory. If we are only interested in determining the existence of periodic

trajectories, the "shooting method" of numerical analysis can be used by defining

the following function for (4):

F(6q) = y(2ir;6o)

where y(x;6Q) is the solution of the implicit differential equation (4) with
initial condition 6Q using a numerical integration procedure. Then any fixed
point of the map F:6q •> y(2ir;6o) approximates a point on a 2ir x-periodic
solution within the accuracy of the numerical procedure.
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Using the forward Euler method of integration and plotting F(6 ) vs. 6 for

various values of 3Q for each a we obtained the plots of Fig. A-3. The intersection
of F(6q) with the st. line of unit slope through the origin thus determined the
fixed points of the map F. Notice that there exists a minimum value of 6 = 6min

o ro

below which the F(6q) curve does not exist; this minimum is determined by the
initial condition separatrix trajectory on the phase plane portraits, for the flows

in 2-» with initial condition <6rain do not exist throughout the interval [0,2ir].
Given a, the values of 3 were varied until intersection with the straight

line was just obtained: the value of a gave a for this critical 3 . The plot of

our computer predicted a vs. 3„ agreed very well with that of McCumber*s in Fig. A-2
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Appendix 3

Theorem^ Let qand pbe factorized as q=^ and p-^ (where Kis an Inte
ger >1), and assume that the grid point <2q«,2pw) lies above (resp., below, on)
the trajectory F(T,0). Then the point (2,^,2?^) will also lie above (resp.,
below, on) the trajectory.

Proof: If the trajectory F(T,0) lies below the grid point (2qu,2p„) then it lies
below (4q1t,4p7r) and in general below (2nq„,2npl0. We see this by considering the
solution trajectory «,(T) of (6) which passes through the point (2qn,2pir). By
uniqueness, ^(T) > F(T,0), V T.

cfrj^qit) >F(4qir,0). (3 ~

Now note the following property of these two trajectories: F(T,0) passes through
the origin and ^(T) passes through the point (2q,r,2p,r). As (6) defines a2„-
periodic velocity field, F(T,0) =^(T+2,,0 -2pw. Thus,

F(2qir,0) =^qir) -2pir - ^Wqir) <4Ptt (3>2)

From (3.1) and (3.2), F(4q*,0) <4P* i.e., the trajectory F(T,0) passes below
the grid point (4qu,4pir). The argument can be repeated for any (2nq,r, 2np*).

Assume now the contrary to the hypothesis of the theorem i.e., that (2qir,
2p») lies above the trajectory F(T,0) but (2,^,2?^) does not. Then one of
the following must hold:

(i) (2qin,2Pln) lies below the trajectory. But by the preceding arguments,
this means that (2^,2.^) lies below the trajectory. This leads to acontra-
diction.

(ii) (2qiTr,2p tt) lies on the trajectory. But then by the 2tt-periodicity of
the velocity field, (2^,2^*) also 1'es on the trajectory, which again leads
to a contradiction. Thus the theorem is proved. a

Theorem^.. Let ube the turning point generated by agiven right-hand side of
(6). Then if F(T,6Q) is the trajectory in Ex Tgenerated by (6) for any
<f>0 e [0,2ir), the following limiting relation holds:

*<T,60)
lini =~- = U
T-*» 1
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Proof: We establish the result by considering two special cases.

Special Case 1: lim r—2— = y.
znir

n-*»

2
Choose an e > 0, a positive integer N s.t. e > — and an integer m s.t.

m-1 m+l
< y <

N " N

From the Dedekind cut intepretation of turning point, this inequality Implies that

the trajectory F(T,0) passes below the grid point (2Nir,2(m+l)-tf) and above the

grid point (2Nir,2(m-l)ir) . Thus,

2(m-l)ir < F(2Ntt,0) < 2(m+l)Tr (3.4)

Dividing (3.4) by 2Ntt, and subtracting from (3.3)

2 ^ F(2Ntt,0) ^ 2
— — < u — —5 *—— < —

N M 2Ntt N

y -
F(2Nir,0)

2Ntt
< e

(3.3)

As e is made arbitrarily small, N must increase in inverse proportion so that

F(2Ntt,0)
lim

N-x»

y -
2Ntt

= 0.

Special Case 2: lim F(TT>0) =y.
T-h»

An arbitrary T can be written as T = 2irn + T1 where n is a sufficiently large

integer so that T1 € [0,2tt). If (6) is expressed as an integral equation with

zero initial condition, we get

T

6(T) Af(T,0) =F(2mr,0) +[ (Adc-A0sin6+AacsinT)dT
*2mr

T TNow *< A[ (A -A sin*+AacsinT)dT <f (A^+A^A^)dT <(Adc+A0+Aa(,) 2*
J 2nir J 2r t

Thus 61 is a bounded quantity.

F/T o) ms*>*w
T

F(2n7T,0) , 6*
2nir 2nir

1 +
T'

2mr
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Now as T -»- «, n ^ oo but 6' and T' remain bounded quantities.

,,m F(T,0) F(2mr,0)
lim ^— - lim 2mr = M from sPeclal Case 1.

General Case: By uniqueness of the solutions of (6), its trajectories in£x T
do not intersect, which yields the following inequality:

F(T,0) < F(T,6Q) < F(T,2kTT) = F(T,0) + 2k*

- Umi(i^<.lim!^V< ^z^
T-*» •£-*» T-*»

F(T,6 )
=> lim ~2- = p. n

T-x»

Theorem 5. There exists a periodic solution trajectory of (6) on the torus
2/ xT' which completes p rotations and q revolutions prior to closing upon
itself if, and only if, the turning point y = -^ .

Proof: Sufficiency: If for some 6Q G (0,2ir), F(2q7r,60) =6Q +2Ptt, then by the
2Tr-periodicity of the velocity field, we have

F(2qmr,6 ) 6.
o V~- = —£- + £
2qmr 2qnir q

F(2qrni,6.)
lim - ^- = u =£
n-*» 2(inir q

where the last interpretation of y follows from Special Case 1 in the proof of
Theorem 4.

Necessity. Define the function g(6Q) =F(2qir,60) -(2Ptt+<J>0) . Then the zeros of
g(6Q) lie on closed solution curves on the torus£' xt\ As F(2q7r,6 ) depends
analytically on the initial condition 6Q, g(6Q) is acontinuous function of 6Q.
Furthermore, g(6Q) = g(6Q+2n7r), Vn positive integers.

For the sake of contradiction, assume that (6) has no solution trajectories,
which after executing p rotations and q revolutions, close upon themselves on the
torus, i.e., g(6Q) $ 0, V6Q. As g(6Q) is continuous, it must always maintain a
constant sign. For definiteness, assume that g(6Q) >0, and let a^inf g(6Q).
Since g is both continuous and periodic, a > 0 (strictly).

g(6Q) >_ a >0

=* F(2qir,60) >_ 6Q + 2p7r + a (3#5)
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Let <frx = F(2q-iT,60). As (3.5) holds for all 6 ,

F(2qir,61) >_ $1 + 2P7T + a (3.6)

By the periodocity of the R.H.S. of (6), F(2q7r,6 ) E F(4qir,6 ), whence (3.6)

becomes

F(4qTT,6Q) >. F(2qir,6 ) + 2pir + a

and using (3.5)

F(4qTT,6Q) ^6+ 4pir + 2a

In fact, we can show using induction that

F(2nqTr,60) >_ 6Q + 2npir + na, all integers n (3.7)

For suppose the inequality is satisfied for some n = m.

Then F(2qir,6m) >_ <f>m + 2piT + a where we have invoked (3.5) and 6 = F(2mqir,6n).
But F(2q7r,6m) = F(2q(m+1)TT,60) .

F(2q(m+1)7T,60) >_ F(2qmiT,6 )+ 2pTr + a

Combining this with (3.7) with n = m, we get

F(2q(m+l)TT,<j>0) >_ 6Q + 2(m+l)p7r + (m+l)a.

Thus, the inductive proof is complete.

Now, dividing (3.7) by 2nqiT

F(2nq*,V ^„ [ „ • ♦„

2nqir — q 2q?r 2nqiT

and proceeding to the limit as n '

y >£+^>£- q 2qir q

which contradicts the hypothesis that u - •£• , and establishes necessity. n
2

Theorem 9. There exists a function co : TR -v H; which is continuous and satisfies

o)(x,y) = a)(x+2ir,y) = a)(x,y+2iT) such that every solution of (6) can be written as

6(T) = uT + c + w(T,uT+c)

where c is a constant. Conversely, for any constant c, 6(T) defined above solves

(6) , and to each value of c (modulo 2it) there corresponds a unique 6_.

Proof: Let the homeomorphism of Corollary 1 to Theorem 8 which carries the torus

onto itself be h.
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If F(T,6Q) is the solution of (6), then by the periodicity of the field
on the torus

F(T,60+2tt) = F(T,6Q) + 2tt (3#8a)

F(T+2tt,6q) = F(T,M60) (3-8b)

where the map M is defined in Section 9 of the text. Let c = h(6n) =* 6 = G(c)
A —1/ . 0 0
- h (c). From the properties of h given in [20], the following is true for G:

C(c+2ir) = G(c) + 2tt (3.9a)

MG(c) = G(c+2ttu) (3.9b)

Let F(T,c) = F(T,G(c)). Then by (3.8a) and (3.9a)

F(T,c+2 ) = F(T,c) + 2tt (3.10)

By (3.8b) and (3.9b)

F(T+2tt,c) = F(T+2tt,G(c)) = F(T,MG(c)) = F(T,G(c+27ry)) = F(T,c+2Try) (3.11)

Now define u)(T,z) = F(T,z- T) - z, Vt,z G ]R .

Then by (3.10) and (3.11):

U)(T+2ir,z) = (u(T,z+2tt) = o)(T,z)

A
Setting z = uu + c,

F(T,c) = uT + c + o)(T,yT+c)

which proves the thoerem.

The converse follows from r ^ definitions of oj and c. n
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FIGURE CAPTIONS

Fig. 1. The device model.
Fig. 2. Typical 1-V characteristics with d.c. excitation ^
Flg 3. McCumber's calculation of the hysteresxs xn Fxg. P

variation of the critical current Ie with Junction capacitance, using
normalized values).

Fig. A. (a) Atypical trajectory in 2> T" v
(b) The projection of the trajectory in 2-

Fig. 5. Illustrating the transformation of the semi-xnf.mte strip L-t
surface of the cylinder 2J'.

Fig. 6. Aperspective view of atrajectory in 2-' *t.
f *-v,a n r excited junction.m. 7. Circuit diagram of the a.c. 3 ^ surface

Flg. 8. Illustrating the transformatxon of the square ^
of the torus. 2v x T'• nn the torus.„<= closed trajectories which can exist on the tor

Fig. 9. The three types of closed traj fra1ectory
. . ?vT and an example of a periodic trajectory

Fig. 10. (a) Grid points in 2-* T, and an ex
starting with zero initial condition,
(b) Illustrating the Dedekind cut on the real .me.

Fig. U. (a) Atypical graph of the determining function.
(W Stable and unstable periodic •«*•«•"• the determining

Fig. 12. interpreting the step heights in terms of the varxati
function. excited Josepnson junction.Fig. 13. AFhase Locked Loop model .or the a.c. excited P synchronized

S i .,.„•• Folds for the autonomous and the syntuFig. 14. Comparing the integral ^ folds tor
limit cycles.
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