

Copyright © 1978, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

IMPLEMENTING CAPABILITY-BASED PROTECTION

USING ENCRYPTION

by

D. L. Chaum and R. S. Fabry

Memorandum No. UCB/ERL M78/46

17 July 1978

IMPLEMENTING CAPABILITY-BASED PROTECTION

USING ENCRYPTION

by

D.L. Chaum and R.S. Fabry

Memorandum No. UCB/ERL M78/46

17 July 1978

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Implementing
Capability-Based Protection

Using Encryption*

D.L. Chaum and R.S. Fabry

University of California/ Berkeley

ABSTRACT

Use of encryption allows a system to provide
self-authenticating capabilities. Such capa
bilities can be mixed freely with other
information without compromising system secu
rity. They can also be used to construct a
network-based protection system in which
secure nodes are not endangered by less
secure nodes. The approach allows capabili
ties to be used on systems which are not
capability based and allows capabilities to
be kept by individuals much as passwords are.
A number of constraints of earlier implemen
tations are relaxed. A particularly simple
implementation of type extension becomes pos
sible.

Key Words and Phrases: Capabilities, Protec
tion, Encryption, Type Extension, Networks,
Access Control.

CR Categories: 4.35

* This work was partially supported by the National
Science Foundation under NSF Grant MCS75-23739.

July 14, 1978 DRAFT

Implementing
Capability-Based Protection

Using Encryption

D.L. Chaum and R.S. Fabry

Introduction

It is generally agreed that strong encryption algo

rithms either exist today or will exist within a few years.

Such algorithms allow new solutions to a number of old prob

lems in computer systems. Solutions based on encryption

have somewhat different properties than conventional solu

tions. In this paper we contrast conventional capability-

based protection schemes with those implemented using

encryption.

We consider the application of cryptography to protect

ing capabilities themselves; we do not consider the use of

encryption for protecting data [8,1].

Encryption is a technique with which information is

mapped into a form which reveals the original information

when an inverse mapping is applied, but otherwise reveals

nothing about the original information [3]. The mapping is

assumed to be drawn from some large class of mappings. The

information specifying which member of the class has been

used to encrypt some piece of information is called the key_

of the encrypted information because it is needed to perform

the mapping or the inverse mapping. We assume that the size

and nature of the class of mappings is such that there is a

July 14, 1978 DRAFT

•v

- 2 -

negligible probability of determining the key (or of per

forming a mapping without it) by carrying out some feasible

computation.

A capability is a bit pattern which functions both as

the address of some object (such as a file) within a com

puter system, and as authorization for its possessor to

access the addressed object [2,5,11]. Typically, a capabil

ity is implemented as an object identifier concatenated with

some access bits that specify which of the accesses defined

for the object (such as reading and writing) are allowed to

the possessor of the capability. Figure 1 shows such a

capability representation.

I I| ACCESS BITS | OBJECT IDENTIFIER |
I I 1

Figure 1. Typical Capability Representation.

Authentication of Capabilities

The traditional implementation of capability-based pro

tection enforces a distinction between capabilities and all

other forms of information in the system [5]. In such sys

tems, only the capability manager routines which create and

interpret capabilities can establish a particular bit pat

tern as a capability. Even if a user knows the bit pattern

July 14, 1978 DRAFT

- 3 -

for a desired capability, there is no way the user can cause

the bit pattern to be interpreted as a capability. In such

systems capabilities are said to be externally authenti

cated. Two approaches have been used for external authenti

cation. In the tagged approach, each word of information in

the system is tagged to indicate whether it contains a capa

bility or not. In the partition approach, capabilities

appear only in certain segments or tables which are known to

contain only capabilities.

Instead of being externally authenticated, capabilities

may be self-authenticating. If capabilities did not include

access bits, self-authenticating capabilities could be

fabricated by choosing the object identifier at random from

a sparsely filled identifier space. For example, in a sys

tem with sixty-bit object identifiers in which a million

objects exist, the chance of guessing the object identifier

corresponding to an existing object would be one in a mil

lion million. If it were possible to test a bit pattern

every millisecond, it would take over thirty years, on the

average, to find one valid object identifier. The probabil

ity of a failure in a protection mechanism due to such an

attack could be made negligible compared to other possible

failures by adjusting the fraction of the identifier space

which is valid. The risk could also be decrease by tech

niques like logging attempted use of invalid object identif

iers.

July 14, 1978 DRAFT

- 4 -

If one were to merely concatenate an access bit field

with such a self-authenticating capability, a user who

understood the structure of the capability representation

could modify the access bits to authorize any desired

access. Such a possibility would eliminate much of the use

fulness of the access bits.

Encryption can be used to make it very difficult for a

user to change the access bits in a self-authenticating

capability. The capability manager requires a secret

encryption key. It first constructs an unencrypted capabil

ity for a new object by concatenating the access bits and an

unused object identifier. The capability manager then

encrypts the capability using its secret key. Only the

encrypted form of the capability is distributed to its

users. When a user presents the capability manager with a

bit pattern claimed to be a capability, the capability

manager can decrypt the bit pattern, and thereby obtain the

corresponding unencrypted capability. The redundancy in the

identifier space not only authenticates the object identif

ier but also authenticates the access bits.

This solution makes the common assumption that a block

encryption scheme can provide authentication under a known

plaintext attack [3]. In particular, even a user who has

examined many capabilities and their unencrypted representa

tion must not have gained insight into how to form new

encrypted capabilities.

July 14, 1978 DRAFT

- 5 -

There are two costs to the self-authenticating capabil

ity scheme described above. First, the identifier space

must be sparsely filled. Fortunately, the size of the

object identifier grows logarithmically as a function of the

number of potential object identifiers. As hinted above,

even a sixty-four bit capability may allow enough redundancy

for many applications. Second, encryption and decryption

steps are introduced. There may be a delay due to encryp

tion and decryption even with the use of hardware encryption

devices. If capabilities are cached [5], the average delay

may be diminished.

Networks

In a network which uses protection based on externally

authenticated capabilities which can be passed between

nodes, all of the nodes of the network must work together to

ensure that the separation between capabilities and other

information is maintained. In this respect, each node is no

more secure than the weakest node. In such a situation, a

user might have to be concerned that a node the user does

not trust has either accidentally or maliciously fabricated

an improper capability for one of the user's objects.

Self-authenticating capabilities behave similarly to

passwords. It is possible for a user to obtain the bit pat

tern corresponding to such a capability from a computer sys

tem, to retain the bit pattern outside the computer system,

and to re-enter the bit pattern at a later time.

July 14, 1978 DRAFT

- 6 -

The use of self-authenticating capabilities allows mul

tiple capability managers, each with its own key. With mul

tiple capability managers, a capability can be used only by

presenting it to the appropriate manager. The holder of a

capability must remember, explicitly or implicitly, which

capability manager created the capability.

One capability manager cannot be compromised by the

actions of a second capability manager which uses a dif

ferent key unless the first explicitly relies on the second

for some service. In a network, a capability manager at

each node can have its own key. A user can then obtain a

capability for an object and pass that capability around to

users and nodes which are trusted without being concerned

that untrustworthy nodes of the network will somehow subvert

the protection mechanism.

Type extension

The definition of a complex system as a hierarchy of

levels has been found to be a valuable technique for struc

turing systems [4,7]. In object-oriented systems, such as

those using capabilities, this implies that many types of

objects will be unknown to the base-level of a system and

that type extension facilities will be used to implement the

object types of one level in terms of those of lower levels

[6,11]. The set of programs which implement a new type of

object is called the type manager for that type of object.

July 14, 1978 DRAFT

- 7 -

In systems based on externally authenticated capabili

ties, a type manager cannot issue capabilities for new

objects directly. The type manager might, for example,

have to call the system capability manager, passing as a

parameter a capability which authorizes the bearer to ask

for capabilities for objects of the new type [6,11].

With self-authenticating capabilities, a type manager

can choose a key of its own and use that key to generate its

own capabilities. That is, it can manage its own capabili

ties. There is no need for capabilities for different types

of objects to be the same length. The size of the access

bit field can vary depending on the object type. The object

identifier part of the new capability can contain one or

more capabilities for the object used to implement the new

object. When the object identifier includes capabilities,

the redundancy in the included capabilities may be used to

authenticate the including capability.

An advantage of multiple capability managers, each with

its own key, is that the decision concerning the sparseness

of the identifier space is separate for each capability

manager. In particular, the length of the object identifier

need not grow as the size of the network or the number of

types of objects grows.

Mapping

With externally authenticated capabilities, a map is

July 14, 1978 DRAFT

used to implement a mapping from the object identifier in a

capability to the implementation of the object for two rea

sons. First, it is almost always necessary to have more

information about the implementation than can be put into a

relatively small, fixed-length object identifier. Second,

it may be necessary to change implementation objects as when

files are relocated on a disk.

With self-authenticating capabilities, the size of an

object identifier can vary with the type of the object.

(Variable-size capabilities for objects of a single type are

even possible.) Because changing the implementation is usu

ally relevant only for objects implemented directly in terms

of physical resources, one may expect that most higher-level

type managers using self-authenticating capabilities will
t

not need a map.

A map can perform a number of functions in addition to

those mentioned above, however. For example, revocation can

be implemented using a map [9]. If a system defines a

notion of the identity of an accessor, a map can also be

used to implement access control lists [10] or logging.

If such features are required of a particular object

manager, the object manager will still need some of the ser

vices of a map. The object manager may use an internal map

or rely on an external map. In either case the map need be

no more complex than that required with externally-

authenticated capabilities.

July 14, 1978 DRAFT

- 9 -

Auditing

Auditing is a concern in some capability-based systems.

With externally authenticated capabilities, all of the

storage of a system which might contain capabilities can be

scanned during an audit (after stopping the system, for

example, so as to obtain consistent results.) In this way,

it can be determined whether the protection state has cer

tain properties or a snapshot of the current protection

state can be obtained. With self-authenticating capabili

ties, it is not, in general, even possible to locate all

capabilities.

The utility of auditing is limited by the fact that

capabilities are often entrusted to programs whose behavior

cannot be easily discovered. Independent of h©w capabili

ties are authenticated, systems for which auditing is impor

tant must rely primarily on techniques like revocation,

access control lists and logging.

Conclusion

Capabilities can be made self-authenticating by the use

of encryption. The major advantage of such a scheme is that

capabilities need not be kept exclusively under the control

of universally trusted authorities. Such capabilities can

be used in networks where nodes do not necessarily trust one

another and can be kept outside computer systems. Type

extension works well with self-authenticating capabilities.

July 14, 1978 DRAFT

- 10 -

References

1. , Bayer, R. and Metzger, J.K. On the encipherment of
search trees and random access files. ACM Trans. Data
base Syst. 1, 1 (March 1976), 37-52.

2. Dennis , J.B and Van Horn, E. Programming semantics for
multiprogrammed computations. Comm. ACM 16, 3 (March
1973), 143-155.

3. Diffie, W. and Hellman, M. New directions in cryptogra
phy. IEEE Trans. Inform. Theory 22, 6 (Nov. 1976),
644-654.

4. Dijkstra, E.W. The structure of THE multiprogramming
system. Comm. ACM 11, 5 (May 1968), 341-346.

5. Fabry, R.S. Capability-based addressing. Comm. ACM
17, 7 (July 1974), 403-412.

6. Lampson, B.W. and Sturgis, H.E. Reflections on an
operating system design. Comm. ACM 19, 5 (May 1976),
236-243.

7. Parnas, K.L. A technique for software module specifi
cation with examples. Comm. ACM 15, 5 (May 1972),
330-336.

8. Petersen, H.E. and Turn, R. System implications of
information privacy. Proc. AFIPS 1967, SJCC, Vol. 30,
AFIPS Press, Montvale, N.J. pp. 291-300.

9. Redell, D. Naming and protection in extensible operat
ing systems. Ph.D. Dis., Comptr. Sci. Div., Elect.
Eng. and Comptr. Scis. Dept., U. of Calif., Berkeley,
1974. Also as: Tech. Rep. No. MAC-TR-140, Project
MAC, MIT, Cambridge, Mass. 1974.

10. Saltzer, J.H. Protection and control of information
sharing in Multics. Comm. ACM 17, 7 (July 1974), 388-
402.

11. Wulf, W. et al. Hydra: The kernel of a multiprocessor
operating system. Comm. ACM 17, 6 (June 1974), 337-
345.

July 14, 1978 DRAFT

	Copyright notice 1978
	ERL-78-46

