Copyright © 1978, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



HOW FAR SHOULD YOU GO WITH THE LANCZOS PROCESS?

e by

W. Kahan and B.N. Parlett

Memorandum No. UCB/ERL M78/48v

18 July 1978

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720




SPARSE MATRIX COMPUTATIONS

HOW FAR SHOULD YOU GO WITH THE LANCZOS PROCESS?f

W. KAHAN and B.N. PARLEIT
Department of Mathematics
and

Computer Science Division

Department of Electrical Engineering
and Computer Sciences

University of California at Berkeley

Berkeley, California 94720

Abstract

The Lanczos algorithm can be used to approximate both
the largest and smallest eigenvalues of a symmetric matrix
whose order is so large that similarity transformations are
not feasible. The algorithm builds up a tridiagonal matrix
row by row and the key question is when to stop. An analysis
leads to a stopping criterion which is inspired by a useful
error bound on the computed eigenvalues.

1. INTRODUCTION

-

The Lanczos algorithm came back into prominence about
five years ago [7,8] as the most promising way to compute a
few of the eigenvectors of very large symmetric matrices. To
be specific we think of computing the p smallest (or largest)
eigenvalues of the n*n symmetric matrix A together with the
assoclated eigenvectors. Typical values are p=3, n=1000.

The algorithm must be provided with a starting vector qj
and then it builds up, one column per step, two auxiliary
matrices. After j steps it will have produced jxj symmetric
tridiagonal matrix T; and an nX (j+1) matrix
Qi+l = (ql,qz,...,qj+1). Let el,...,ep denote the p extreme
eigenvalues of Tj.

What we want is that the {8;} should be good approxima-
tions to the wanted eigenvalues of A (Gty,..-50p, say) and we
ask the following questions. Will the 84 inev tably improve
as j increases? How much or rather how little work is needed
to compute an a posteriori bound on the errors in the 04?

We still do not know how best to use the Lanczos pro-
cess. The surprising fact is that the 64 are sometimes cor-
rect to 3 or 4 decimal figures even when j 1s as small as vn,
What makes the method interesting is that such good fortune
cannot be guaranteed. It depends on q3, on the spread of the

Oy and on the precision of the arithmetic operations.
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It is a pleasure to acknowledge the excellent pioneering
work of Paige in his doctoral thesis [8] and the studies by
Golub [2] and others [1] on the block version of the method.

Sparsity of A plays a simple but crucial role here. It
permits the computation of Av, for any n-vector v, in only wn
basic operations, where w is the average number of nonzero
elements per row. Of more importance sparsity discourages the
use of explicit similarity transformations which invariably
destroy sparsity even when they preserve bandwidth. The only
knowledge of A which the Lanczos algorithm demands is how A
acts on selected vectors, an attractive property for sparse
problems.

To get round some of the difficulties posed by the gaps
in our understanding it has been proposed that the Lanczo

algorithm be used iteratively as follows. Start with q{lg and

run the algorithm for j==j(l) steps, compute the p best eigen-—

vector approximations available from T§1) and le) and take a
(2)

weighted combination of them as a new starting vector q; *»

(2) (3)

run Lanczos for j steps, compute a new q , and so on.
The process can be continued until the {64} computed at the
end of each run converge to the desired numb?i of figures.

Is this a good idea? How should the } ) be chosen? We
do not have definitive answers to the questions raised here
but we do present a computable a posteriori error bound, an
estimate for loss of orthogonality among the columns of Q4, a
tentative stopping criterion, and a useful way of analyzing
the algorithm.

Standard Householder matrix conventions will be followed
except that M* denotes the conjugate transpose of M and 1
denotes the identity matrix.

2. ERROR BOUNDS FOR THE EXACT LANCZ0S ALGORITHM

When executed in exact arithmetic the matrix
Qj = (ql,...,qj), which is generated column by colummn, is
orthonormal: :

and is part of an orthogonal matrix Q which reduces A to tri-
diagonal form. The algorithm, or rather its j-th step, is
completely specified by the single matrix relation
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T, |T.i
(2) A e.i=| @ E;',,-‘Z'*= Q. +| o0
0

@ Q..+ r.e*
QJJ Jid’

where eg = (0,...,0,1) has j elements and Hrjﬂz = rgrj - 8§.

The residual vector

75 = B = W Te
is always uniquely determined by A, Qj, and Tj. An essential
characteristic of the Lanczos process” is that the residual
matrix AQ4-QjTy has all its substance concentrated in its
final column. _An atractive feature of the process, not
obvious from (2), is that only the two most recent columns of
Qg need be kept in fast memory at the k-th step, so qy.p can
be put out to secondary storage. Sometimes the early q vec-—
tors are discarded but this makes it very difficult to esti~
mate the accuracy of our approximations. Equation (2) is a .
nice compact way of remembering the algorithm.

Suppose now that the Lanczos process is halted at the
end of the j-th step. The approximations to the desired
eigenvectors and values of A are made as follows. The p
extreme eigenvalues of Tj are computed along with their nor-
malized eigenvectors. We suppress the dependence on j and
write

chi = ciei , 1= 1,...4p » 1.e. TjC = (O
where C = (cl,...,cp) , 0= dtag(el,...,ep) .

Then we compute the Ritz vectors vy = Qjci, i=1,...,p. When
Qi is orthonormal these Ritz vectors are the best approximate
elgenvectors, in the sense of residuals, that can be made
from linear combinations of the columns of Q4 and the 64 are
the best approximations to the corresponding” eigenvalues.
There is a considerable body of knowledge concerngng the accu-
racy of the exact Ritz approximations. The Kaniel-Paige
theory [3] gives a priori error bounds on 64 and v4 which

tell how accuracy increases with j. Moreover there are re-
fined a posteriori error bounds which can be computed when

the algorithm is terminated. However even with exact calcula-
tions there is no inexpensive, feasible criterion which can
tell us the best j at which to stop.
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» Let us look at some simple a posteriori bounds. They
employ the spectral matrix norm {Bl = max(iBvl/0vl, v # O,

THEOREM 1 (Kahan, 1967). Let H be any pXp symmetric matrix
with eigenvalues 64 and let S be nXp and orthonormal. Then
there are p eigenvalues 041 of A such that, for i=1,...,pP,

lo,-a;,| < 14s-sED .

We do not know which of A's eigenvalues are the ayv,

The proof is based on the Weyl/Wielandt monotonicity theorem
and is given in [3].

We are not interested in all of Tj's eigenvalues, only
~p of them, In fact we have

T.C = (O,
J

Now apply Theorem 1 with S = QjC to obtain the following
result.

COROLLARY. Let AQj-Q4Tj = rjeg and T4C = CO where Qi and
C are orthonormal and {r:]] = B;. Then there are p eigen-—
values aj+ of A such tha for i==1,...,p,

' *
'ei'airl S.Bjuejcﬂ .

Thus when the last elements of some normalized eigen-
vectors of T4 are small good accuracy is obtained for
thelr eigenvalues even when Bj is not small. Unfortunately we
have no easy way of guaranteeing which eigenvalues of A are
being approximated. This is an intrinsic limitation of the
Lanczos method and will not be discusged in detail here.

The best way we know of testing which of A's eigenvalues
{og} are being approximated by the 8 (1==l,...,g) is to per-
form a triangular factorization of A-84 into LDL® and count
the number vj of negative elements of D. By Sylvester's
Inertia theorem there are Vi of the a's less than 6.

3. PRACTICAL ERROR BOUNDS AND TERMINATION CRITERIA

From now on we let Qj, Ty, etc. stand for the quantities
stored in the computer. Because of roundoff error Qg will
not be orthonormal and the residual matrix will not have all
its substance in the last column. Fortunately Theorem 1 can
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be generalized.

THEOREM 2 (Kahan, 1967). Let H be any pXp matrix with
eigenvalues 01, let S be any nXp matrix of full rank p;
then there are p eigenvalues aj' of A such that, for
i=1,...,p,

l6,-a,,| < /ZUs-sa1-1s*9) /1

Note that ﬂ(S*S)_llzl is the reciprocal of S's smallest singu-
lar value 03(S) = Jilis*s). A proof may be found in [3]. The
factor V2 is believed to be superfluous.

In order to use Theorem 2 we observe that Qj and T4
actually satisfy

3 A-- ..=F.+P.".'
3 , QJ QJTb Jd JeJ

where Fj accounts for roundoff error.

COROLLARY. Let T4C = CO; then there are p eigenvalues aj'
of A such that, for i = 1,...,p,

lo,-o ] < /i(ﬂan-ucn+sjne3.cﬂ)/ol(ajc) .

PROOF. Apply Theorem 2 with S = Q4C. o

In order to use the corollary an upper bound is needed
on |Fs0 and a lower bound on the singular values of QiC. With
the best of current techniques C will be very close to ortho-
normal. In the sense of quadratic forms,

(4) 0<C* <1
and hence, by the Cauchy interlace inequalities
.) < X .
cl(QJ) hd ol(QJC)

Error analyses in [5] and [8)] show that [F | is small,
like roundoff in [All, and so the term [Fsll-ICll 18 completely
dominated by Bjﬂe*cﬂ for all realistic values of j. Thus in
practice the bouna in Corollary 1 is degraded by the factor
1/03.

Corollary 2 assures us that it is worthwhile to con-
tinue the Lanczos algorithm even after orthogonality among
the q; has been lost provided that they are still linearly
independent. Experience suggests that good approximation to
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internal eigenvalues 0j can be obtained by continuing the
algorithm indefinitely. However after cl(Qj) = 0, i.e. when
linear independence is lost, the user is faced with the iden-
tification problem, namely to say which of the 61 do not
approximate any of the a's and so are spurious. This problem
can often be solved in particular applications but it is very
troublesome to devise a procedure which will make this identi-
fication for the general case.

In order to escape this difficulty we would like to stop
immediately cl(Qj) < 1/2. However it is out of the question
to compute this number at each step, or even update it.
Instead we develop a computable lower bound on 0;(Q4) and stop
a Lanczos run as soon as it vanishes. If the approximations
are not satisfactory we can form a new starting vector from
the Ritz vectors and start another run.

Since C is not computed at each step there is mno simple
way of bounding ol(QjC) rather than 01(Qj)-

4, MONITORING LOSS OF ORTHOGONALITY

Because of finite precision arithmetic Qj will not be
orthonormal. Let us write

1- *- . <K-
11- Q10 < x;
and find some specific expressions for Kye Note that

2 _ 19%g.1 = 01 - (1-9%Q. 1+K.
0,17 = 1030, = 11- (1321 < 1+

and, in the sense of quadratic forms

-K. < @*Q. < 1l+k. .-
1 J "QQQJ - J

Hence, while Kk, < 1,
/ -K ., < Q‘;‘ . :l . <0 .C )

Our problem is thus reduced to finding a computable
bound K;. This can be accomplished in a variety of ways.
Here is one of the simplest., Observe that

-0%Q. . -Q%*q.
1 QJQJ Qaqa+%

Q

1-8%,1%41 ©

* L]
J+1 2

—a* -lq.
Gu 1 b7z,,0
Let

*

Then, by considering the quadratic forms we see that
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i %
%

Here we have used the fact that, by definition,
' 2
=0*0: = -
i1 QIQIB Il ﬂqlﬂ | < |<1

but, actually, K3 is the bound on the error in normalizing any
vector to the given precision, including qj+1, and is taken as
knowm.

Any computable bound L4 will yield a corresponding defi-
nition of Kj» namely

K. C.
K. EE J J ﬂ
J+1 cj KI

= 1 - & Y4
-i{ocj+|<1+/(:<j Kl) +4!;J.} .

Since k] is known we focus our attention on &y and ngj+1‘

5. AN EXPRESSION FOR Q;‘rj

We write

O Bj-1%

énd let F - (fl,...,fj). Our bound g4 comes from a'useful
expression for Qgrj.

-me1.Laqjmdgsamﬁ(m:mr%qaq+qq.
Then

ar. = [(1-02@)7T, - (1-e e (1-Q4C.) le,
i [(1:QJQJ)TJ* (1-e;e )T ;¢ % 7145
+Fjag + @jhagape; - &g

PROOF .
tp . = Q*(AQ.-Q.T .-F.)e. i H
QJJ QJ(QJQJJJ)J,usng(),

- ((eNQ. - 94Q.T N2 - @3F. %=
[(AQJ)QJ QJQJTJ]e’j 5 using A*=4,
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i

To o o'F- -' o/ o™ s oTo ‘ + = b3 H
I 1 -(l-Q OQ o) I (l-@ :d o)i -Ie. lI oq 3 ' 2.1 oQueo

o i AR
Q3f3 .

From the first line above

ﬁA.-e%%lTe.

%% J%%iJ* .

= . --0..+e. H 3 -e- .
q3Aq; - a;+e1(1-01Q,)T € ;

*7) % =
ejer; =4

On transposing and rearranging the desired expression is
obtained. - O

In practiée

Ue1 = 7318579
where g; accounts for roundoff error in the division by Bj and
is always insignificant. In any case

* = L]
Udjpg = Gri/B;+ 985

We observe that HQ?qj+1H will not be small, like round-
off in 1 whenever, because of past errors, ﬂQgr i = lQ*Iﬂrjﬂ.
In exact arithmetic Q*r = 0 and this property %ails in prac-
tice to the extent that there is cancellation in forming ry;
the resulting large relative error in the small vector r
becomes significant when ry is divided by Bj to produce q4+1-
As Paige points out in [7] this happening must be seen in
perspective. We want cancellation to occur in the formation
of rs because cancellation is the harbinger of convergence of
the B3 to an a.

6. A COMPUTABLE BOUND ON Q’iqj "
The expression for erj given in Lemma 1 is best split
into two parts

= =% T, - - "l B *: . T
Z’j = [51 QJ.QJ.le (1 eJeJ)fJu.QJQJ)]eJ
. = .+ =2 . . P o] o o
;2 Flq;+ (g3azgmee; - Qf;

It turns out that our bounds on byl overwhelm those on Hd4l
as soon as j > 4. To bound [ld;ll a"detailed error analysis of
the Lanczos algorithm is needei. There is little incentive
to present this because the resulting bound makes an insigni-
ficant contribution to 4. We shall simply quote the results
in [5] which are quite similar to those in [7].

The results are stated in terms of
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1ty = (§ Tl 1HY? = [tracearant/?

BV
which arises in the general bound on the error in computing
Av. However lAllp is just a convenient bound on the more real-
istic but less accessible quantity [Al where & = (Jagi|). For
large sparse matrices Al is usually much smaller than fAllg.
The following estimates are crude but adequate .for our pur-
poses: for i < j, ‘

1 0 +8;0g,1 <« 04l

E

K
Iinqi-ail < KlﬂAﬂE .
2
HQiE < 1'*Ki ’
Py < jmaz If;0 , 1<3d,
Ky < 2(n+6)e ,

where € is the precision of the arithmetic facilities.
Finally we quote

LEMMA 2.- hd;l < (/5'+3+|<J.)BAEE .

Turning to Bbjﬂ we find

LEMMA 3... If 0Qfqy43l < 4, 1 < j, then

2 : 2 . 2
1b,1° < {E(Tj_l-aj)ll;j_z+Bj_1(cj_2+2|<1)} +{(354+1)x, 1415}

PROOF. Partition the terms in bj and observe

_ -Qﬁ- q.;_

. 95195 A
| 1-llg ey

1595-1

J=1

“lg.1%)- %

=% =
094 T |

- 2
519195 % 251831371951 ’] .
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The factor (1—e e ) simply annihilates the bottom element..
Recall that 'ﬂqill < K1, by definition of kj. Hence the
top part of bj is :

2
e;_11a;1%1q;_;1%)

Q’E q.
_ Jj-21j-1

and the bottom element is
2
1-lg.1%a.-B. ,q9%g. ., .
A-laz0e; -85 193951
By definition of the basic Lanczos steps

. B.=A40.~0.q.~B. .q. .~Ff.+B.q.
UpsBj = 4959495 -85 1951~ F;+B;9;

then, subtracting and adding ey,

AAq - - 2, *
lq% q0+1 JI lqAQ' (!.l+|l nCI-l l Iaj'+|Bj-1qqu-1|
*
+ 38901

Now suppose that |q qi+lB I <Yy, 1 < j, then the error bounds
quoted above Lemma i yiel é I

an. < 3K1llAll+wJ._1 s
< 3jKlﬂAll , since \bl < SvclllA[l .
Straightforward application of the triangle inequality gives
the desired bound. 0O
Adding these results together we define

- 2
w; = f[ﬂ(Tj_l-aj) llcj_1+8j_1(cj_2+21<1)]
+ G0 AR + (F3+c Al
E vid . € !
CJ. = wj/Bj"' j .

Then, by induction,

= - * . ;
LEMMA 4. IfZ_; =1L, =0, IQfa, .0 <%, 1< then

Aq ., <C..
llQJqJHll < CJ

PROOF. Apply Lemmas 2 and 3 and the error bounds to

Qdzpp = Qrs/8; + &3s; - O
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Let us summarize the procedure. During the j~th step
of a Lanczos run we compute
uj’ PJ-’ Bj’ CIJ-+1 ?
then
wj, Cj, and Kj+1 .
While k§ < 1 the algorithm proceeds to step (j+l1).
The extra work in updating kj is very slight and is

dominated by the computation of H(Tj_l—aj)ﬂ. This may be
bounded as follows.

b(r;_j-0)l < maz(B;_; + o] +8,)
i<J
<B+ maxlak-ajl s

-

k<g
<B+ maa:(lg—ajl,la-ajl) ,
where

¢ =min o, o=mxa;, B= maz(B,_,+B.) .
i<k

Note that the third inequality inyolves no searching over j
elements provided that ¢, a, and B are_updated at each step;
a = min(gsaj)’ o = max(aaaj)’ B = max(B,Bj_z'l'B -]_)- The
second inequality costs (j-1) comparisons and is tighter. The -
first inequality is “(Tj-l-aj)"w’ except for the presence of
B4-1, and this can never exceed H(Tj_l—aj)ﬂ by more than a
factor of v2.

A more complicated procedure for monitoring loss of
orthogonality is described in [5]. l-Q*Qj is majorized by a
j*j matrix Wy, called the scoreboard. }he triangular factori-
zation of 1-Ws is updated at each step and the Lanczos run
continues until a nonpositive diagonal element appears. The
cost is approximately j</2 arithmetic operations and, more
seriously, j“ storage locatioms.

The quantity k4 grows exponentially and its use will
certainly terminate ianczos runs prematurely. This is not
necessarily inefficient for the following reason. The Lanczos
algorithm yields monotonically improving approximations. It
thus can be used for calculations to low accuracy as well as
high. It is important not to give the user unwanted figures
whgn the extra cost is significant. If Lanczos is rumn until
Iqlqj+1| > 0.1 (say) then 8; may already have converged to
too many figures.

In practice [lAlg may not be readily available and the
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estimate I(T4-1-a Yl + |ag]| is used in its place. Sometimes
the bound on de is omitted for simplicity.

7. BEHAVIOR OF THE SPECTRUM OF Tj

In Figure 1 we show the lowest five eigenvalues of Tj,
for j = 10,20,...,60, in a Lanczos run on a matrix A with
eigenvalues oy = 1, i = 1,2,...,253, Also shown is Oi(Qj) and
vl-kj. The starting vector q; was chosen to be rich in the
first four eigenvectors.

10.0
(o]
9.0
8.0
7.0
6.0
5.0
+
3.0 A A + o o
+
2.0 x x X A A
X
X
1.0 Y v v v v §
0.0 10 20 30 %0 50 o 3
Fig. la. & smallest eigenvalues of T.

J

Three phases may be distinguished in the run. Note
that p = 4.

Early Phase: 6 is not an accurate approximation to 04
for i = 1,...,p.

Middle Phase: One or more of the 64 have converged to
working accuracy and there is still a one-one correspondence
between 64 and a3 for 1 = 1,...,p.

Late Phase: The one-one correspondence has been lost.
Among the 64 occur multiple approximations to various o's as
well as spurious values close to no a.

If q; had been chosen to be rich in eigenvectors 1, 3,
and 4 the picture would have been more complicated. If p is

~
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1-0 oooc;oo++..covo.

+ .
-9 + * + smallest singular value of Qj

.8 '
+ o ]

. + = computable lower bound

O————5 20 30 20 50 %0 70

Number of Steps -

Fig. 1b.

too large then there may be multiple approximations to Qj
before any & has converged to agé

Corollary 2 in Section 2 implies that the late phase
cannot begin until linear independence is lost to working
accuracy. Paige's error analyses [7] show that Phase 1 ends
before orthogonality is lost to working accuracy.

It is usual for an outer eigenvalue to converge before
an inner one but this cannot be taken for granted, The out-
come depends on qj.

We recommend that Lanczos algorithms be tailored to the
problem in hand. The urge to write a universal Lanczos pro-
gram should be resisted, at least until the process is better
understood.
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