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Abstract

The Lanczos algorithm can be used to approximate both
the largest and smallest eigenvalues of a symmetric matrix
whose order is so large that similarity transformations are
not feasible. The algorithm builds up a tridiagonal matrix
row by row and the key question is when to stop. An analysis
leads to a stopping criterion which is inspired by a useful
error bound on the computed eigenvalues.

1. INTRODUCTION

The Lanczos algorithm came back into prominence about
five years ago [7,8] as the most promising way to compute a
few of the eigenvectors of very large symmetric matrices. To
be specific we think of computing the p smallest (or largest)
eigenvalues of the n*n symmetric matrix A together with the
associated eigenvectors. Typical values are p»3, n=1000.

The algorithm must be provided with a starting vector q^
and then it builds up, one column per step, two auxiliary
matrices. After j steps it will have produced jxj symmetric
tridiagonal matrix T* and an n* (j+1) matrix
Qi+i - <qi.q2.---»«j+i>- Let el'""ep denote the p extreme
eigenvalues of Ta.

What we want is that the {Q±} should be good approxima
tions to the wanted eigenvalues of A (0^,... ,0-, say) and we
ask the following questions. Will the Q± inevitably improve
as j increases? How much or rather how little work is needed
to compute an a posteriori bound on the errors in the Q±1

We still do not know how best to use the Lanczos pro
cess. The surprising fact is that the Q± are sometimes cor^.
rect to 3 or 4 decimal figures even when j is as small as /n.
What makes the method interesting is that such good fortune
cannot be guaranteed. It depends on qx, on the spread of the
ex., and on the precision of the arithmetic operations.
tThe authors are pleased to acknowledge partial support from
Office of Naval Research Contract N00014-69-A-0200-1017.
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It is a pleasure to acknowledge the excellent pioneering
work of Paige in his doctoral thesis [8] and the studies by
Golub [2] and others [1] on the block version of the method.

Sparsity of A plays a simple but crucial role here. It
permits the computation of Av, for any n-vector v, in only wn
basic operations, where w is the average number of nonzero
elements per row. Of more importance sparsity discourages the
use of explicit similarity transformations which invariably
destroy sparsity even when they preserve bandwidth. The only
knowledge of A which the Lanczos algorithm demands is how A
acts on selected vectors, an attractive property for sparse
problems.

To get round some of the difficulties posed by the gaps
in our understanding it has been proposed that the Lanczos
algorithm be used iteratively as follows. Start with qj1' and
run the algorithm for j-j steps, compute the p best eigen

vector approximations available from T^ 'and Q. and take a
weighted combination of them as a new starting vector q^ ,

run Lanczos for j steps, compute a new q1 , and so on.
The process can be continued until the {Q±} computed at the
end of each run converge to the desired number of figures.

Is this a good idea? How should the j*1' be chosen? We
do not have definitive answers to the questions raised here
but we do present a computable a posteriori error bound, an
estimate for loss of orthogonality among the columns of Qj, a
tentative stopping criterion, and a useful way of analyzing
the algorithm.

Standard Householder matrix conventions will be followed
except that M* denotes the conjugate transpose of M and 1
denotes the identity matrix.

2. ERROR BOUNDS FOR THE EXACT LANCZOS ALGORITHM

When executed in exact arithmetic the matrix
Q-j = (qi»...)qj)» which is generated column by column, is
orthonormal:

(1) Q*Qj -1.
and is part of an orthogonal matrix Q which reduces A to tri
diagonal form. The algorithm, or rather its j-th step, is
completely specified by the single matrix relation



(2)
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is always uniquely determined by A, Qj, and Tj. An essential
characteristic of the Lanczos process is that the residual
matrix AQj-QjTj has'all its substance concentrated in its
final column. An atractive feature of the process, not
obvious from (2), is that only the two most recent columns of
0% need be kept in fast memory at the k-th step, so qk_2 can
be put out to secondary storage. Sometimes the early q vec
tors are discarded but this makes it very difficult to esti
mate the accuracy of our approximations. Equation (2) is a -
nice compact way of remembering the algorithm.

Suppose now that the Lanczos process is halted at the
end of the j-th step. The approximations to the desired
eigenvectors and values of A are made as follows. The p
extreme eigenvalues of Tj are computed along with their nor
malized eigenvectors. We suppress the dependence on j and
write

where

T .c.
3 t

c.Q.

(c. ,c )
9 V

2.....P * *-*• T.C
3

ce

0- diag(0i,...»6) •

Then we compute the Ritz vectors v± « QjCj., i»l»--.»P« When
04 is orthonormal these Ritz vectors are the best approximate
eigenvectors, in the sense of residuals, that can be made
from linear combinations of the columns of Qj and the 0j_ are
the best approximations to the corresponding eigenvalues.
There is a considerable body of knowledge concerning the accu
racy of the exact Ritz approximations. The Kaniel-Paige
theory [3] gives a priori error bounds on 0i and vi which
tell how accuracy increases with j. Moreover there are re
fined a posteriori error bounds which can be computed when
the algorithm is terminated. However even with exact calcula
tions there is no inexpensive, feasible criterion which can
tell us the best j at which to stop.
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Let us look at some simple a posteriori bounds. They
employ the spectral matrix norm tlBd = max II By11/1!vB, v ^ 0.

THEOREM 1 (Kahan, 1967). Let H be any p*p symmetric matrix
with eigenvalues 0^ and let S be n*p and orthonormal. Then
there are p eigenvalues a^i of A such that, for i°l Pi

|0.-a.,| < USSBl .

We do not know which of A's eigenvalues are the o^i.

The proof is based on the Weyl/Wielandt monotonicity theorem
and is given in [3].

We are not interested in all of Tj's eigenvalues, only
p of them. In fact we have

T .C - CO ,
3

Now apply Theorem 1 with S =» QjC to obtain the following
result.

COROLLARY. Let AQj-QjTj » rje? and TjC - CO where Cm and
C are orthonormal and HrjH » 3j. Then there are p eigen
values a^i of A such that for i=l,...,p,

Thus when the last elements of some normalized eigen
vectors of Tj are small good accuracy is obtained for
thaLr eigenvalues even when 3j is not small. Unfortunately we
have no easy way of guaranteeing which eigenvalues of A are
being approximated. This is an intrinsic limitation of the
Lanczos method and will not be discussed in detail here.

The best way we know of testing which of A's eigenvalues
{dfe} are being approximated by the Q± (i=»l,...,p) is to per
form a triangular factorization of A-0i into LDLT and count
the number \)± of negative elements of D. By Sylvester's
Inertia theorem there are v^ of the a's less than 0i-

3. PRACTICAL ERROR BOUNDS AND TERMINATION CRITERIA

From now on we let Qj, Tj, etc. stand for the quantities
stored in the computer. Because of roundoff error Qj will
not be orthonormal and the residual matrix will not have all
its substance in the last column. Fortunately Theorem 1 can
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be generalized.

THEOREM 2 (Kahan, 1967). Let H be any p*p matrix with
eigenvalues 0i, let S be any n*p matrix of full rank p;
then there are p eigenvalues a^» of A such that, for
i - 1..-..P.

|0.-ct.,| < itf|ilS-OTl«I(S*S) ' I.

Note that B(S*S) ^B is the reciprocal of S's smallest singu
lar value o^S) = Ai(S*S). A proof may be found in [3]. The
factor i/f is believed to be superfluous.

In order to use Theorem 2 we observe that Qj and Tj
actually satisfy

where F* accounts for roundoff error.

COROLLARY. Let TjC - C0; then there are p eigenvalues a±*
of A such that, for i = l,...,p,

|0.-<x.,| < S2aFA-M + ZJe*.cn/o,W/) •
'11 — 3 t/t/ *• v

PROOF. Apply Theorem 2with S= QjC. •
In order to use the corollary an upper bound is needed

onBFJ and a lower bound on the singular values of QjC. With
the test of current techniques C will be very close to ortho-
normal. In the sense of quadratic forms,

(4) 0 < C*C < 1

and hence, by the Cauchy interlace inequalities

Error analyses in [5] and [8] show that ||FjB is small,
like roundoff in BAH, and so the term IlFjil'UcB is completely
dominated by gJe^Cll for all realistic values of j. Thus in
practice the bound in Corollary 1 is degraded by the factor
I/O]..

Corollary 2 assures us that it is worthwhile to con
tinue the Lanczos algorithm even after orthogonality among
the q± has been lost provided that they are still linearly
independent. Experience suggests that good approximation to
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internal eigenvalues <x± can be obtained by continuing the
algorithm indefinitely. However after 0*3.(Qj) = 0, i.e. when
linear independence is lost, the user is faced with the iden
tification problem, namely to say which of the 0^ do not
approximate any of the a's and so are spurious. This problem
can often be solved in particular applications but it is very
troublesome to devise a procedure which will make this identi
fication for the general case.

In order to escape this difficulty we would like to stop
immediately 0*1(Qj) < 1/2. However it is out of the question
to compute this number at each step, or even update it.
Instead we develop a computable lower bound on a^(Qj) and stop
a Lanczos run as soon as it vanishes. If the approximations
are not satisfactory we can form a new starting vector from
the Ritz vectors and start another run.

Since C is not computed at each step there is no simple
way of bounding a^QjC) rather than Oj^Qj).

4. MONITORING LOSS OF ORTHOGONALITY

Because of finite precision arithmetic Qj will not be
orthonormal. Let us write

and find some specific expressions for Kj. Note that

wqa1 - mQj = Di-d-^,)B <i+k. .
3 3d 3 3 */

and, in the sense of quadratic forms

i-V<«ft<i+V
Hence, while K < 1,

fi^T. < /A, (Q*G.) = a. (Q.) < aAQ .C)
3 — 1 3 3 1J -*• «/

Our problem is thus reduced to finding a computable
bound Kj. This can be accomplished in avariety of ways.
Here is one of the simplest. Observe that

^SVjSvi

Let

Then, by considering the quadratic forms we see that
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H-q+iW i
K3 CJ
">3 Kl

Here we have used the fact that, by definition,

,211-0*^0 - |l-»<?jl I<k3
but, actually, <i is the bound on the error in normalizing an£
vector to the given precision, including q-j+i, and is taken as

OWIl,Any computable bound Cj will yield acorresponding defi
nition of Kj, namely

K3+l
K3 Ci

Since *i is known we focus our attention on Cj and Qjqj+r

5. AN EXPRESSION FOR Q*r^
We write

«3 e2

h a2 S2

o •

O

J-2 3 _

and let Fj -(fX fj). Our bound Cj comes from a'useful
expression for Q?rJ«

LEMMA 1. Let Qj and Tj satisfy (H):AQj-QjTj -Fj+rje}.
Then

PROOF.

Q*.r>. - Q*.(AQ.-Q.T.-F.)e. , using (H),
3 3 3 3 3 3 3 3 .i »

1
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- [T^Q,+F*'Qj+e^*.Q,-Q*.Q.T.}e.^Q^f1 , (H) again,
3 3 3 3 3 3 3d « 3 o d d •*•

- w •
From the first line above

On transposing and rearranging the desired expression is
obtained. D

In practice

where g.t accounts for roundoff error in the division by 3j and
is always insignificant. In any case

We observe that BQjqj+1B will not be small, like round
off in 1whenever, because of past errors, flQjr^B ? BQjBBrjfl.
In exact arithmetic Qjrj « 0 and this property fails in prac
tice to the extent that there is cancellation in forming rj;
the resulting large relative error in the small vector rj
becomes significant when rj is divided by Bj to produce qj+i.
As Paige points out in [7] this happening must be seen in
perspective. We want cancellation to occur in the formation
of rj because cancellation is the harbinger of convergence of
the $i to an a.

6. ACOMPUTABLE BOUND ON ^%^+1
The expression for Q^rj given in Lemma 1is best split

into two parts

b. = [a-QSQj)T;-{l-e.eVTAl-Q*Q;)]ei' .
3 3 d v 3 3 3 d d d

It turns out that our bounds on flbjfl overwhelm those on BdjB
as soon as j> 4. To bound Bdjil a detailed error analysis of
the Lanczos algorithm is needed. There is little incentive
to present this because the resulting bound makes an insigni
ficant contribution to'Cj. We shall simply quote the results
in [5] which are quite similar to those in [7].

The results are stated in terms of
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Wg =(I Ikv!2)1/2 =[*^«(4M)]1/2
U V

which arises in the general bound on the error in computing
Av. However flAflg Is just a convenient bound on the more real
istic but less accessible quantity BAB where A » (la^l). For
large sparse matrices BAfl is usually much smaller than BAHe-
The following estimates are crude but adequate for our pur
poses: for i £ j,

l^i^l <K1ME •
Bfl.I2 <1+K. ,

1 1

DF.I-. < J3 max l/.D , i < j •
j a 1

k < 2(n+6)e ,

where e is the precision of the arithmetic facilities.
Finally we quote

LEMMA 2. UA < d^+3+K.)Mlff •

Turning to BbjB we find

LEMMA 3.. If DQiqi+iD < C±, i < j, then

B^B2 <tK^-Oj,)"^ +̂ (^..2+2^)>2+{(3^+1)^141/

PROOF. Partition the terms in bj and observe

(WJVVj =

!T.(1-G^.)0. =
J 3 3 3

Li-n/
a. +
J

1(7 .
V-i •

^.Kf-2
2vn
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The factor (1-ejej) simply annihilates the bottom element.
Recall that ll-Bq^fl21 < Kl9 by definition of K^. Hence the
top part of bj is

^-rV^-iVi-i
QU3-1 +B,J.,i(l^l2-l»,3l2)

and the bottom element is

(1-1^1 >*r»j_]qfo_1 •
By definition of the basic Lanczos steps

"j+l*J ' Aq3 - a3q3 ~*3-lq3-l - f3 +B393
then, subtracting and adding cu,

Now suppose that |qiqi+i3j_| £ ty±9 i£ j> then the error bounds
quoted above Lemma 2 yield • •••

i^.£ 3x^0+1^ ,
< 3jk [UII , since ty < 3k±U^ .

Straightforward application of the triangle inequality gives
the desired bound. D

Adding these results together we define

+(3j+l)2K2Bi4||2}1/2 +(/J+3 +K^U^ ,
C. = 0J./3- + /1+K- e .

3 3 3 3

Then, by induction,

LEMMA 4. If e_x = CQ =0, HQ*qi+1H <C±, i<jthen

WJW - s- •

PROOF. Apply Lemmas 2 and 3 and the error bounds to

Q%q = Q*r./Q. + Q*5. . D
jv+i Vj j
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Let us summarize the procedure. During the j-th step
of a Lanczos run we compute

V r3> V qi*
then

V S" and Kj>i •
While Kj < 1 the algorithm proceeds to step (j+1).

The extra work in updating Kj is very slight and is
dominated by the computation of B(Tj_1-aj)B. This may be
bounded as follows.

0(T.^-cu) B£rnax^2 +Icu-ouI+V »
i^-j

£ 3+ max|cu-a.| ,
k<3

< 3+ max(|a-a.|,|a-a.|) ,
— "3d

where

a » min a., a = max a., 3 = roax(3. 7+3.) .

Note that the third inequality involves no searching over j
elements provided that a, a, and 3 are_updated at each step;
a = min(a,aj), a = max(a,aj), 3= max(3,3j-2+3i-l)- The
second inequality costs (j-1) comparisons and is tighter. The
first inequality is H(Tj_1-aj)ll00, except for the presence of
Bj-i, and this can never exceed U(Tj_i-aj)D by more than a
factor of /2.

A more complicated procedure for monitoring loss of
orthogonality is described in [5]. 1-QjQj is majorized by a
jxj matrix Wj, called the scoreboard. The triangular factori
zation of 1-Wj is updated at each step and the Lanczos run
continues until a nonpositive diagonal element appears. The
cost is approximately j2/2 arithmetic operations and, more
seriously, j storage locations.

The quantity Kj grows exponentially and its use will
certainly terminate Lanczos runs prematurely. This is not
necessarily inefficient for the following reason. The Lanczos
algorithm yields monotonically improving approximations. It
thus can be used for calculations to low accuracy as well as
high. It is important not to give the user unwanted figures
when the extra cost is significant. If Lanczos is run until
|q*qj+il >°-1 <sav) then ei may alreadv have conversed to
too many figures.

In practice IIAllE may not be readily available and the
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estimate B(Tj_i-ou) II + |ctj | is used in its place. Sometimes
the bound on UdjU is omitted for simplicity.

7. BEHAVIOR OF THE SPECTRUM OF Tj

In Figure 1 we show the lowest five eigenvalues of Tj,
for j = 10,20,...,60, in a Lanczos run on a matrix A with
eigenvalues a± « i, i* 1,2,...,253. Also shown is aA(Qj) and
/1-Kj. The starting vector q-^ was chosen to be rich in the
first four eigenvectors.
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Fig. Ja. 5 smallest eigenvalues of T.

Three phases may be distinguished in the run. Note
that p = 4.

Early Phase: 0i is not an accurate approximation to aA
for i = 1,...,p.

Middle Phase; One or more of the 8A have converged to
working accuracy and there is still a one-one correspondence
between 6^ and a± for i =» l,...,p.

Late Phase: The one-one correspondence has been lost.
Among the Q^ occur multiple approximations to various a's as
well as spurious values close to no a.

If q^ had been chosen to be rich in eigenvectors 1, 3,
and 4 the picture would have been more complicated. If p is
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+

10 20

smallest singular value of Q.

+ = computable lower bound

30 40

Number of Steps

Fig. lb.

• ,'•

50 60 70

too large then there may be multiple approximations to ax
before any 8 has converged to ou.

Corollary 2 in Section 2 implies that the late phase
cannot begin until linear independence is lost to working
accuracy. Paige's error analyses [7] show that Phase 1 ends
before orthogonality is lost to working accuracy.

It is usual for an outer eigenvalue to converge before
an inner one but this cannot be taken for granted. The out
come depends on q^.

We recommend that Lanczos algorithms be tailored to the
problem in hand. The urge to write a universal Lanczos pro
gram should be resisted, at least until the process is better
understood.
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