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ABSTRACT

This paper presents a new man-machine interactive method for bi-

objective decision-making. It is specifically designed to cope with

both the ill-defined nature of the decision problem and the high cost

of computing points in the tradeoff (Pareto optimal) set. With this

method, the decision-maker may efficiently approximate the tradeoff

set and/or estimate his preferred objective value.

First, the notion of a finite representation of the tradeoff set

by a set of points, called experiments, and a set of rectangles, defined

by the experiments, is introduced. Next, a special class of decision

makers is considered. For a decision-maker in this special class, the

finite representation of the tradeoff set defines a rectangle of uncertainty

which contains the decision-maker's preferred objective value. A

measure of the worst-case uncertainty is formulated and minimized to

yield an optimal strategy for interactively selecting experiments.

Finally, this strategy is employed in a general interactive algorithm

that works under minimal assumptions on the tradeoff set and on the

decision-maker.

Research sponsored by the Joint Services Electronics Program Contract
F44620-76-C-0100 and the National Science Foundation Grant ENG73-08214-A01
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1. INTRODUCTION

The presence of multiple objectives frequently complicates the

solution of engineering design and decision-making problems [l]-[4]. The

design or decision objectives are usually incommensurable and cannot

be combined into a single objective. Furthermore, the objectives

usually conflict with each other and, consequently, there is no one

design or decision which is best with respect to all the objectives.

Therefore, a compromise design or decision must be obtained.

The simplest situation occurs when only two objectives are present.

In this case, the decision-maker has a bi-objective function f = (f^f^,

where f :QC"*" * and9(is a topological space (commonly, ]R ), and

he has a set of feasible alternatives XcQ(. Ideally, he would like

to find apoint x€X such that f.,(x) =max{f;L(x) |x G X} and f2(x)

=max{f9(x)|x € x}. Unfortunately, there is, in general, no such point

x G X. Nevertheless, the decision-maker must evaluate alternatives in

X in terms of their values in the set of feasible objective values

Y ={y € ]R2| y =f(x), XeX} (1-D

and select a single x* € x which, in his judgment, represents a

reasonable compromise between the conflicting objectives. In making the

tradeoffs necessary to reach a compromise, the decision-maker does not

need to consider all points in Y but only the subset of nondominated

points. The set of nondominated (Pareto optimal, efficient) objective

values is

T(Y) = {y e Y|yf £Y and y;L <. y[, y2 1 y^ =* V=y1 > 0-2>
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and the corresponding set of nondominated feasible alternatives is

a = (x e x|f(x) e r(Y)}. (1.3)

The set T(Y) is often thought of as a "tradeoff curve" between f_ and

f„, and we shall refer to it as the tradeoff set associated with Y.

Since any point in Y that is not in T(Y) is dominated by some point in r(Y),

the decision-maker needs only to consider T(Y) when evaluating possible

solutions to his problem.

Thus, the original and impossible problem of finding an x which

simultaneously maximizes the two objective functions is replaced by

the subjective tradeoff problem: Given X and f = (f^,f ), find the

decision-maker's preferred objective value y* £ T(Y) and a corresponding

alternative x* £ Q with y* = f(x*). This problem is mathematically ill-

defined in the sense that there is no systematic way of recognizing

when a proposed solution is preferred by the decision-maker [5]. The

reason for this is that the decision-maker usually finds it difficult to

express what he means by a preferred solution until he has seen at

least some of T(Y). Also, his concept of a preferred solution evolves

as he explores T(Y).

For this reason, a customary approach [6] for solving this tradeoff

problem calls for first constructing T(Y) and then presenting T(Y) to

the decision-maker for him to select his preferred objective value y*.

Various characterizations of r(Y) that are useful for computing points

in T(Y) have been reported [6]-[13]. Usually, T(Y) consists of infinitely

many points and cannot be found explicitly, so the decision-maker must

estimate y* from an approximation to r(Y) by a finite number of points

[11], [12], [14]. An alternate approach to the tradeoff problem, now

receiving much attention in the multiple objective optimization
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literature, does not construct an approximation to r(Y) but permits

the decision-maker to interactively direct the computation to search

for y*. (See, for example, [15]-[20].)

A common difficulty with these two approaches stems from the

high computational cost: quite often both the computation of a single

point in T(Y) and each iteration of an interactive search for y*

require the solution of a difficult constrained optimization problem,

such as arises in optimal control problems. Therefore, when approximating

r(Y) or when interactively exploring for y*, we cannot hope to compute

a very large number of points in Y.

Thus, we see that solution procedures for the tradeoff problem

should meet two requirements. First, because of the ill-defined nature

of the problem, they require interaction of some simple form from the

decision-maker. Second, because of computational cost, solution procedures

should be efficient — they should estimate y* or approximate T(Y)

accurately from a limited number of points in Y or T(Y).
t

In this paper, we introduce the rectangle elimination method for

bi-objective optimization. The rectangle elimination method is an

efficient and versatile tool both for approximating the tradeoff set

T(Y) and for estimating the decision-maker's preferred point y*. As

a tool for approximating T(Y), the rectangle elimination method permits

the decision-maker to refine interactively selected portions of his

picture of r(Y). As a tool for estimating y*, the decision-maker uses

the method interactively to eliminate sequentially regions of T(Y) which

+This method is of a kindred spirit with interval elimination methods
[21], [22] for root finding and maximization of real valued functions of
a single variable.

-4-



do not contain y*. The decision-maker obtains an estimate of y* in

the form of a rectangle which contains y*.

A major advantage of the rectangle elimination method over existing

methods is its elementary assumptions about the decision-maker. The

rectangle elimination method does not assume the existence of an

underlying utility function, such as in [16], [17], [20]. Furthermore,

it does not require the decision-maker to respond to or to give

quantitative information such as weights or marginal rates of

substitution [2] between f- and f as, for example, in [14]-[20]. The

man-machine interaction required by the method is of very simple nature

and is especially suited to graphics display terminals.

In Section 2, we introduce the concept of a finite representation

of a tradeoff set by a finite set of points and a finite set of

rectangles. We show in Section 3 how this motivates the rectangle

elimination method for estimating y*. Next, we propose a model for

a special class of decision-makers. This leads in Section 4 to a class

of search strategies for estimating y*. In Section 5, we derive an

optimal search strategy. This search strategy represents a particular

rectangle elimination method which is optimal in a worst-case sense for

our special class of decision-makers and a class of tradeoff sets.

Finally, in Section 6, we state an algorithm for a very general rectangle

elimination method which places minimal assumptions on the decision-maker

and the tradeoff set r(Y).

2. FINITE REPRESENTATIONS OF BI-OBJECTIVE TRADEOFF SETS

To guarantee that solutions exist to various optimization problems

that we shall pose in this section and in Section 6, we make the following

assumption.
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Assumption 2.1: The constraint set X is nonempty and compact, and

the objective functions f. and f~ are continuous. a

Also, we distinguish three relations (4, _<, and <) defined for points

2
in K. , and, for convenience, we introduce notation for representing

2
rectangles in R .

2
Definition 2.1: Let y, yf G n . Then y <y' whenever y1 ± y^

and y« £ y'. We say that y' dominates y, denoted by y <_ y', if

y < y' but y ^ y'. We say that y* strictly dominates y, denoted by

y < y\whenever y1 < yj and y2 < y'. n
- 2 - -Notation: If z, z^E with z £jz- and z2 1^2' then the

_ 2
notation [z\z] denotes the rectangle in It , shown in Figure 2.1, with

sides parallel to the f,-f9 coordinate axes and corners z,z^. That is,

[i\ z] ={y eH2 |ix <yx <_z±i z2 ^y2 >z.2>. * (2.1)

The rectangle elimination method exploits two simple observations

about the structure of tradeoff sets. The first observation is as

follows: for given f_, f„, and X, the corresponding tradeoff set r(Y)

defined by (1.1) and (1.2) can be enclosed in a rectangle defined by

Proposition 2.1: If _y € Argmax{y |y € Y} and yG Argmax{y2|y €Y},

then T(Y) C [y\ z].

Proof: By Assumption 2.1, £ and y exist. Suppose y £ r(Y). Then

y1 <_z± and y21 ?2' If y2 <z2 or yi <*v then y ix or y 1 y- But>
by the definition of r(Y) in (1.2), this contradicts the supposition

that yS r(Y). Thus, we must have y- <_ y., and y_2 < y2, and consequently,

y <y 1 y_ and ^iy.iy^ This implies yG [y\ yj and thus

T C [y\ Z]. *
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Figure 2.2 shows a typical r(Y) and the enclosing rectangle [y\ vj . In

the subsequent discussion, we shall be interested in the class of all

tradeoff sets which can be drawn in the rectangle enclosing T(Y).

Definition 2.2: Let

RD £[y\yj and EQ £{y,y_} (2.2)

where y_ G Argmax{y- |y £ Y} and y£ Argmax{y?|y £ Y}. We define the class

of all nonempty tradeoff (nondominated) sets in R_ by

Q(RQ) k {r|r Crq, r*<f>; y,y' €rand y<y' => y=y'}. °(2.3)

Note that a r £ y(R(p nas tne property that no point in T dominates any

other point in T. A tradeoff set V£ Q(R )may be a connected curve

between y_ and y (Figure 2.3(a)), a set of disconnected arcs separated

by gaps (Figure 2.3(b)), or a finite set of points. Clearly, the

decision-maker's tradeoff set T(Y) given by (1.2) is an element of Q(R )

by Proposition 2.1.

The second observation that the rectangle elimination exploits

follows directly from the definition of Q(Rn) and is illustrated in

Figure 2.3. Suppose VG Q(RQ) • If yG r> as in Figure 2.3(a), then no

points of T can be in {y1 £ RqIy £ y'}» the set of points in R which

dominate y, or in {y' G RQ|y' <_y}, the set of points in R which

are dominated by y. Thus, T is contained in the subset of R obtained

from RQ by eliminating these two sets. The subset of R containing

T is [y\ y] U [y\ yj , the union of two rectangles.

In the case when r is not connected, as in Figure 2.3(b), we can

also eliminate two regions of F not containing points in V by choosing

y so that it neither strictly dominates any point in V nor is strictly

dominated by any point in r. The point y can be in r or in a gap,

as in Figure 2.3(b). In either case, r is contained in the union of

-7-



two rectangles, [y\ y] U [y\ v_]. We now define the set of all

yGR for which VC [y\ y] U [y\ yj.

Definition 2.3: Let r€ Q(R ). The set fi(r,RQ) CRq is the
set of all points in R which neither strictly dominate nor are strictly

dominated by any point in T; that is,

fi(r,R0) Mye rq| {y' es RQ|y <y» or y' <y} n r =*}. «
(2.4)

As an immediate consequence of (2.3) and (2.4) we have

Proposition 2.2: For all V€Q(RQ) ,rCg(r,RQ) and EQ C£>(r,RQ).

Figure 2.4 shows the set fi(r,RQ) for the tradeoff set shown in Figure 2.2

Note that when £(r,RQ) *T, 8(r,RQ) is the union of T, rectangles,

and horizontal and vertical line segments.

Consider now the case when we know a set of K points in J^(r,RQ).

Each of these points allows two rectangular subsets of RQ not containing

points in Vto be eliminated. Thus, the set of K points and

E = {y,y> define a subregion of R which encloses T. If none of the
0 u

K points strictly dominates another, then this subregion is the union

of K+l rectangles. Figure 2.5 depicts such a situation.

We now express formally our second observation.

Proposition 2.3: Let re Q(RQ) and let EC£(r,RQ) be aset
of K points. If no point in E strictly dominates any other point in

E, that is, if

y,y' e e and y4 yf => yx =y^ or y2 =y£,

then (a) E can be ordered such that E = {y ,y ,...,y } and

(2.5)

T{<rU-±*l yWi*--*-^ (2-6)
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and (b)

K+l

r C U R (2.7)
1=1 i

where R ,R2>...,RR+1 are rectangles defined by

R± =[y1"1^1] i=1,2,...,K+l (2.8)

with yu = y and y = y_.

12 KProof: (a) We can order E = {y ,y ,...,y } so that, for i = 1,2,...,K-1,

either y* <y*+1, or y* =y*+1 and y* >y**1. If y^ <yj+1, then
y* ^y ;for otherwise, we have y1 <y which violates property (2.5).

Thus (2.5) implies that E satisfies (2.6).

(b) Now let y^ T. Since EC £(T,R ), Definition 2.3 implies

that for any y' G Eeither, y| <_ y± and y£ >_ y2> or y1 <_ y[ and y2 >_ yj.

Let i be the smallest integer in (1,2,...,K+1} such that y <^y and y > y2.

Such an i exists because of the ordering (2.6) and the fact that

c t> * i., ^ K+l A , K+l A m, i-1yt Rq implies y1 < y1 = y^ and Y2 1 v2 = ^2* n yl - yl

y2 —y2* This gives us yi —yi —yi and y2 —y2 —y2' or, e<iuivalently»

y £ R where R. is defined by (2.8). Since there is an R. containing y

for each y € V, (2.7) holds. a

This proposition leads us to the next definition.

Definition 2.4: Let T^ Q(Rq) . Afinite set EC g(r,R )with

property (2.5), namely, no point in E strictly dominates any other point

in E, is said to be a set of experiments for I*. A K-experiment finite

12 K
representation of T is a set {y ,y , ,y } of K experiments for T, satisfying

(2.6), together with the corresponding set of K+l rectangles defined by

(2.8). *

Note that the intersection of sets of experiments is a set of experiments.

However, the union of sets of experiments is not necessarily a set of

experiments unless r= £(r,R0). A comparison of (2.3) and (2.5) gives us
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Proposition 2.4: For T£ Q(R ), any finite set of points in V

is a set of experiments for r. Q

Also, we have the following useful result.

Proposition 2.5: Let r£ fi(R ) and let R(E) be any rectangle in

the finite representation of T defined by a set of experiments E.

If E' C r(e) is a set of experiments for r, then E U E' is a set of

experiments for r.

Proof: Let y ^ E and y! G E' C r(e). By Definition 2.4, R(E) = [z\ zj

and R(E) H (E U E0) = {z,z_} for some z,z^ G E U E . Thus, if y' < y, then

z < y or z_ < y , which contradicts the fact that E is a set of

experiments. Similarly, y < y' implies y < z or y < z^ which again

contradicts the fact that E is a set of experiments. Therefore, since

no point in E strictly dominates or is dominated by any point in E'

and since E and E' are set of experiments, it follows from Definition 2.4

that E U E' is a set of experiments. n

From Proposition 2.3 and Figure 2.5, we infer that a finite

representation of a tradeoff set T gives an approximate representation

of T in the following sense: the union of the K+l rectangles encloses

and mimics qualitatively the tradeoff set. If no one R.,

i € {1,2,...,K+l}, has a large area relative to RQ, then we can expect
i K K+lthat the representation of Vby {y }^ - and fR.}. - will be good.

Furthermore, when y ,y e T, the dimensions of R. give a fuzzy,

qualitative characterization of the set r Hr For example, if

(y^-y?-"1) is small, but (y^-y^ is lar6e> then at the Polnt y»
little decrease in component y- must be traded for a large increase in

component y?. Finally, the finite representation gives a sharper

picture of Y as the number of experiments K is increased.
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3. A RECTANGLE ELIMINATION MODEL OF THE DECISION-MAKER

The concept of a finite representation of a tradeoff set,

introduced in section 2, suggests a procedure the decision-maker might

use interactively to approximate T(Y) and/or to systematically explore

T(Y) for an estimate of his preferred point y*. In this section, we

first discuss this procedure, called the rectangle elimination method,

in its most general form. Then we make some simplifying assumptions

and postulate a simple model of a particular class of decision-makers.

3.1 A General Rectangle Elimination Method

We assume that the decision-maker initially possesses no information

about T(Y) other than knowing r(Y) C r That is, the decision-maker

knows R but has no information with which to distinguish his tradeoff

set T(Y) from any other tradeoff set r£ G(R(p • We Provide additional

information about r(Y) to the decision-maker by allowing him to

observe sets of experiments for r(Y). By Proposition 2.3, we know that

any set of experiments E for T(Y) gives a finite representation of T(Y)

by defining a set of rectangles whose union contains T(Y). One of these

rectangles, say R(E), contains the decision-maker's preferred point y*.

Let us now consider a very general interactive decision and search

procedure for estimating y*. The procedure consists of a sequence of

stages in which a computer generates a sequence of finite sets of
i

points E1,E2,E3,... C £>(r(Y),RQ) with the property that U Efc is a
set of experiments for T(Y) for all i = 1,2,... . In the ith stage of

the processi the computer displays to the decision-maker the finite
i

representation of T(Y) defined by U E , the set of all experiments
k=l fc

from the first i stages. Since the decision-maker's concept of a
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preferred solution may still be evolving, he may not, in general, be
i

able to specify R( U e. ), the rectangle containing his preferred point.
k=l k

Instead, he may only be able to select several rectangles as possible

candidates for containing y*. The decision-maker also may be able

to eliminate some rectangles from any further consideration if no point

in these rectangles would be an acceptable solution to him.
i

Thus, the decision-maker's response to U r consists of specifying
k=l k i

the rectangles in the finite representation of T(Y) defined by U E,
k=l k

in which y* might possibly be and in which he desires more information

about T(Y). The next set of experiments E. - is then computed to refine

the picture of T(Y) within the rectangles selected by the decision-maker.

At each stage of this process, the decision-maker learns more

about T(Y), and his preferences should become increasingly better

defined. The process stops, say after N stages, when the decision-maker
N

eliminates all rectangles except for the rectangle R( U E ) containing
k=l K

his preferred point y* and this rectangle gives a sufficiently good

estimate of y*.

3.2 The Decision-Maker DM

A simpler rectangle elimination method than the one described above

arises if we restrict the class of decision-makers. Specifically,

consider those decision-makers who, at each stage i, can actually specify
i

the rectangle R( U E, ) containing their preferred point and thus
k=l k

eliminate all other rectangles in the finite representation defined by
i

U E, . We shall let a decision-maker called DM be a generic member of
k=i k
this class of decision-makers.

Formally, we characterize DM by the following model.
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Model of Decision-Maker DM: For any V€ Q(RQ) >if DM is presented

with a set of experiments E for r, then DM selects a rectangle

R(E) C R . The correspondence R(-) : E -*• R(E) between sets of experiments

for T and rectangles in R satisfies the following two assumptions:

Assumption 3.1: For any set of experiments E for T, there exist

y,y» G E U E such that
' 0

R(E) = [y\ y'] (3.1)

and

(E Ue ) Hr(e) = {y,y'}. (3.2)

Assumption 3.2: For sets of experiments E and E' for r, if

E C E', then R(E') C r(e). »

Definition 3.1: A correspondence R(0 : E -*- R(E) between sets of

experiments for T and rectangles in R0 satisfying Assumptions 3.1 and

3.2 for all T£ Q(Rn) is said to be aDM response function. The

class of all DM response functions is denoted by^^. a

Definition 3.2: Let V€Q(RQ) a"d R^^. Given aset of
experiments E for T, R(E) said to be the DM rectangle of uncertainty

for E, and the area of R(E), denoted by a(R(E)),is said to be the

DM uncertainty. n

3.3 Interpretation and Properties of DM Model

The model of DM has a simple interpretation. We view the rectangle

R(E), which DM selects upon observing the set of experiments E for a

tradeoff set T£ Q(R0), as a rectangle of uncertainty. By choosing

R(E), DM specifies that his preferred point y* is in the subset

T H R(E) and thereby eliminates from consideration all of Rq except
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for R(E) as a region in which y* can possibly be located. However,

he is uncertain of the exact location of y* within R(E) or of the

character of r within R(E). The set E gives DM only enough information

about T for him to say that y* G R(E) , but y* might be any point within

R(E).

We view a(R(E)) as a measure of the uncertainty in the location

of y*. If a(R(E)) is small relative to

*0 *»<V -fei^G2-Z2>. °-3)
the area of the initial rectangle of uncertainty R , then y* is in a small

subregion of R«; that is, the uncertainty in the location of y*

is small. Thus, a(R(E)) indicates how accurately we have estimated

y* with the set of experiments E.

Assumption 3.1 merely states that the rectangle of uncertainty

selected by DM is defined by two points in E U EQ and contains only

these two points. In other words, the rectangle R(E) is one of the

rectangles in the finite representation defined by E. If DM has

observed no experiments (that is, E = <j>) , then the rectangle of

uncertainty is Rq.

Now consider Assumption 3.2. Suppose we perform a set of

experiments E, we present E to DM, and DM selects R(E) as his rectangle

of uncertainty. If we then present DM with a larger set of experiments

E', consisting of E and some additional experiments, then Assumption 3.2

requires DM to select a subset of R(E) as his new rectangle of uncertainty

R(E'). Thus, we do not permit DM to change his mind and include in

R(E?) any region of Rq which he previously eliminated when he selected

R(E). Assumption 3.1 then implies two additional facts: First, R(E')
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is a proper subset of R(E) when some of the additional experiments

lie within R(E). Conversely, if all the additional experiments lie

outside of R(E), then R(E) = R(E'). These two facts are shown in the

next two propositions.

Proposition 3.1: Let VGQ(RQ) and R€<£, and let Eand E'
be sets of experiments for I\ If E C e' and R(E) H (E'~E) ^ <j>, then

t
R(E') is a proper subset of R(E).

Proof: By Assumption 3.2, R(E') C R(E). Now we show R(E') ^ R(E).

By Assumption 3.1, there exists y' ,y" ^EUEq such that

(E U EQ) H R(E) = {y1 ,y"}. Let yG R(E) H (E'~E). Then if R(E') = R(E) ,

we have (E' U e ) H R(E') = {y',y"} U [R(E) O (E'-E)] 3 {y\y",y}. But

this contradicts Assumption 3.1, and so R(E') ^ R(E). n

Proposition 3.2: Let r£ Q(R()) and R^Q, and suppose Eand E'
are sets of experiments for T. If E C E' and R(E) H (E'~E) = <J>,

then R(E') = R(E).

Proof: By Assumption 3.2, R(E') C R(E) . Suppose R(E) H (E'~E) = <j>.

Then (E' U EQ) n R(E') C (E' UEQ) HR(E) = (E U EQ) H R(E) . But

then Assumption 3.1 implies that (E' U EQ) H R(E') = (E U EQ) n R(E)

and, consequently, that R(E') = R(E). n

4. SEARCH STRATEGIES AND AN OPTIMAL SEARCH PROBLEM

4.1 The Rectangle Elimination Method for DM

In this section and Section 5, we consider only those decision-makers

who can operate within the limits imposed by the model of DM and,

consequently, have a DM response function R £^R. For such

+The set E' - E = {y|y GE', y£ E}.
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decision-makers we can state the first N stages of a rectangle elimination

method for any V£ Q(Rn) in algorithmic form.

Algorithm 4.1

2
Data: Initial rectangle of uncertainty RC ]R .

Step 1; Set 1=1.

Step 2: Compute a set of experiments E for Y such that

i

Step 3: Solicit the DM response to U E. and set

i j=1
R4 = R( U E.). (A.2)
1 j=l 3

Step 4: If i = N stop; else, set i = i+1 and go to step 2. a

Each iteration of Algorithm 4.1 is a stage in the decision process

and the index i is the stage counter. Each stage consists of an

experiment computation phase (step 2) and a DM interaction phase

(step 3). After N stages, the decision-maker obtains an estimate of

his preferred point in the form of the rectangle R^ The set of

experiments E is required to satisfy (4.1) because, by Proposition 3.2,

experiments outside of R. 1 do not help in reducing the uncertainty.

Also, by Proposition 2.5, (4.1) ensures that U E is a set of experiments
j=l Ji

for T and, consequently, that the DM response for U E is defined.
3=1 3

By Assumption 3.2 and (4.2)

Ri CRi-l i=1»2"-"N- (4,3)
If, in addition, one experiment in E. is distinct from the two experiments

defining R ., then Proposition 3.1 and (4.1) imply that R± is a proper

subset of R., -i •
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4.2 Search Strategies

We note that Algorithm 4.1 maps agiven tradeoff set Y£ Q(R0)

and DM response function R£ (c into a sequence of sets of experiments

E1,E2"",EN f°r T'
Definition 4.1: Any map Edefined on QxCQ by an algorithm

of the form of Algorithm 4.1, mapping (T,R) into a sequence of sets

of experiments for Y, {E ,E2,...,EN>, is said to be an N-stage sequential

search strategy. n

We further restrict the class of N-stage sequential search

strategies under consideration by fixing a priori the number of experiments

to be computed in each stage.

Definition 4.2: Let the integers k. > 0, i = 1,2,...,N, be given.

(J (k ,k9,...,lO is the class of all N-stage sequential search strategies

for which the number of experiments in E is k^ n

For notational brevity, we shall write SN^ki»k2''' *,kN^ as ^N^

when k =kfor i=1,2,...,N, and as fiN(k±) when the k/s are allowed
i

to be different.

Two special classes of strategies that are of interest are 2]/K)

and fiv(l). With an St 00 strategy, the decision-maker obtains a
K. 1

finite representation of the tradeoff set, consisting of K experiments

and K+l rectangles, from which to estimate y*. With an 2R(D strategy,

the decision-maker interactively explores the tradeoff set, one experiment

at a time, until K experiments have been computed.

4.3 Criterion for Search Strategy Selection

We face the problem of estimating a decision-maker's preferred

point y* without knowing explicitly his DM response function R or his
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tradeoff set Y. Because of the cost of computing each experiment, we

can only allow the decision-maker to observe a limited number of

experiments. This obviously constrains the number of stages N and the

number of experiments in each stage. Thus, for given N and k^ we

should deploy the experiments so as to estimate y* as accurately as

possible, no matter what R and r happen to be.

Our goal, therefore, is to find an fiN(k±) strategy which

efficiently and accurately estimates the preferred point y* for any

given TG Q(R0) and RG<~&- To do this» we need acriterion for
comparing the efficiency of different E£SN(k±) in estimating y*.
Intuitively, E efficiently and accurately estimates y* if the uncertainty

after N stages, a(0 , is small relative to the initial uncertainty

An = a(Rn). Note, however, that a(R^ depends upon both r and R.

We cannot evaluate a(R^) for a given strategy without actually applying

that strategy to a particular Y and R. Also, one strategy may yield

a smaller uncertainty a(R^) than another strategy for some particular

r and R but a larger a(R^) for other r and R. Since r and R are not known

explicitly when we begin to search for y*, a(R^) is not a suitable criterion

to use for comparing and selecting search strategies.

We need a criterion for determining how well a strategy does in

estimating y* which does not depend upon the unknown tradeoff set

and DM response function. We obtain such a criterion by considering

the worst-case uncertainty possible for all r€ Q(R ) and all

+It should be noted that a worst-case analysis of this type is a
standard practice in the study of the efficiency of search algorithms
(see, for example, [22], [23]).
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Definition 4.3: Let T€ Q(Rn) and suppose the strategy

E^ 2 (k.) generates the sequence {E_,E_,...,E } of sets of experiments for Y

Then the worst-case uncertainty with respect to the DM response, or

more simply, the worst-case DM response uncertainty A(E,T) is defined by

N

A(E,D k sup a(R( U E,)). n (4.4)
#=<£ i=l ±

Note that a sequence {E ,E ,...,E } of sets of experiments for r, generated

by an ft (k.) strategy E, defines a finite representation of Yconsisting
N l

N N
of 1 + Y\ k, rectangles. The rectangle R( U E.) is one of these

±=i i i-i *
rectangles and A(E,T) is the largest area it can have.

By considering the largest worst-case DM response uncertainty for

T£ Q(Rn), we obtain the worst-case uncertainty, which is the largest

uncertainty that can arise for any YG Q(Ro^ and anv RG ^'
Definition 4.4: For a strategy E£ 2N(k±)» the worst-case

uncertainty is sup A(E,T). a
re§<R0)

The worst-case uncertainty depends only upon the search strategy, not

upon the tradeoff set or response function.

We may now compare strategies in 2N^ki^ using the criterion of

worst-case uncertainty and choose a strategy that minimizes worst-case

uncertainty. For this purpose, we pose the following

Optimal Search Problem: Given integers N > 0 and k. > 0,

i=1,2,...,N, find E<= 2N(k±) such that
sup A(E,T) <_ sup A(E,D for all EG 2 (k,). (4.5)
^V reQ(Ro)
Definition 4.5: Asearch strategy E€ fij^Ck^ satisfying (4.5)

is said to be an optimal 2t/k-) search strategy. The minimum worst-case

uncertainty A^(k.) for 2N(k±) strategies is then defined by
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A^k.) = inf sup A(E,T) n (4.6)

5. OPTIMAL SEARCH STRATEGIES

We now study the solution of the optimal search problem. In order

to simplify the derivation and statement of the optimal search strategy,

we impose the following assumption in this section.

Assumption 5.1: Each Y£ Q(R(p is a connected curve between

yand yj that is, for each YGQ(R ), there exists acontinuous function

Y: [0,1] •*• RQ such that y(0) = y, y(l) = y_, and Y= {y(t)|t € [0,11).
n

This assumption restricts the tradeoff sets under consideration to those

having no gaps. We shall drop this assumption in Section 6 where we

consider the use of optimal search strategies with tradeoff sets having

gaps.

5.1 Partitions of a Rectangle

To derive an optimal 2ij(k4^ search strategy, we first study the

properties of a special set of points and of a particular partition in

2
an arbitrary rectangle. Let R* be a rectangle in H defined by

R' k [z\ z] (5.1)

2
for some z,z^ £ E. and let

r' k {y e r'|y = (i-t)i + tz, t e [o,i]}. (5.1)

The set I" is the straight line segment between z and z. The rectangle

R' and line segment T' are shown in Figure 5.1. R' may be viewed as a

typical rectangle in the sequence of N rectangles of uncertainty

generated by an 2^^*) strategy.
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12k 12 k
Any k points y ,y ,... ,y € I", with y- <_ y <_ ... <_ y , and the

points y = z and y = z_ define k+l rectangles in R': [y1\ y1 ]

i = 0,1,...,k (see Figure 5.1). The following lemma gives a lower

bound on the area of the largest such rectangle.

Lemma 5.1: Let [y \ y ], i = 0,1,...,k, be rectangles in R'

. „. _ 0 1 k+l c- _, . . 0 - . k+l
such that y ,y ,...,y ^ r' with y = z and y = z^. Then, the area

of the rectangle [y \ y ] with largest area is bounded from below by
2

a(R')/(k+l) , that is,

a(R') ^ , /r ix i+1-.v-, /c ox£ <_ max {a([y \y ])}. (5.3)
(k+l) 0<i<k

Proof: Since y ,y ,... ,y G T', we have y = (l-t.)z + t.z^,

i = 0,1,...,k+l, for some t. G [0,1] and with t = 0 and t = 1.

Thus

a([yi\y1+1]) =(yi+1-yi)(y2-y2+1) =<ti+rV2(^rii)(i2"^2)
=(t.+1-t.)2a(R'). (5.4)

A o i / oLet u= max{(ti+1-ti) }. Then y > Ki^-t^^ |>^ t -t., for
1/2 k

i = 0,1,...,k, and thus (k+l)u > V (tJin-t.) = 1. Therefore,
~i=0 i+1 x

U >_l/(k+l) . This fact, the definition of y, and (5.4) imply (5.3).

Now consider a partition of R' = [z\ zj defined by k parallel

lines which have slope (.z^-^)/(z^-z ) and which cut T' into k+l

segments of equal length. Figure 5.2 depicts such a partition for

the case when k = 3. For any given k, the k lines intersect I" at

the points

y1 =z+k££ (z-z) i=l,2,...,k. (5.5)
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The equation for the ith line is then

-i -i
y-Tyi y2-y2
-A-i+ -A-- = 0. (5.6)
-rzi z2"-2

Substituting (5.5) into (5.6), the desired partition of R' is defined

by the family of k equations

g(y;z\z) =b± i=1,2,...,k (5.7)

where

g(y;5,z) ^^i+^J^- (5.8)
%_Z1 »2^2

and

An important property of this partition is given by the next fact.

Lemma 5.2: If y1 € R' satisfies g(y ;z,z) =b±, for i= l,2,...,k,
. 0 k+l „.

and y = z, y = jz, then

(yf-y!)(y'-yf1) 1-^ i=0,1,... ,k. (5.10)
1 L l l (k+l)z

Proof: Let g(y1;z,^) = b. for i = 1,2,...,k and let y = z

, k+l
and y = z.

Observe that

(' i+1 i\ / i i+1

2 2Applying first the identity ab = (a+b) /4 - (a-b) /4 and then (5.8), we

obtain
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oi-si"*^1) i^F
' i+1 i i i+1

yl ~yl , Vy2
+ '•

VZ1 Z2^2 J

^X1 [g(yi+1;i,z) -g(ySi,z)] . (5.12)
i -Since g(y ;z,z) = b± for i = 0,1,...,k+l and b±+1-b± = 2/(k+l), (5.12)

implies (5.10). n

Next suppose R' is actually a rectangle of uncertainty in a typical

stage of an 2™^.) strategy. As the next lemma shows, the partition

defined by (5.7) can be used to deploy k experiments in R' when

Assumption 5.1 holds: the intersection of each of the k lines with

P H r1 defines one experiment. Also, by Lemma 5.2, the resulting

2
uncertainty is bounded from above by a(R')/(k+l) .

Lemma 5.3: Let r€ Q(Rq) and let R' be defined by (5.1) with

z,££ T. Under Assumption 5.1, the following hold:

(a) For each b € [0,2], there exists a unique y(b) € r H r» such

that g(y(b);z,z) = b. Moreover, if 0 <_ b < b' <_ 2, then y (b) < y1(b')

and y2(b) > y2(b').

(b) If, for i=0,1,...,k+l, y GrHR» satisfies g(y1;z,£) =b±,

where b. is defined by (5.9), then

a([y±\ y±+1]) 1 a(R7 i=0,1,2,...,k. (5.13)
(k+l)Z

Proof: (a) Let b € [0,2]. From (5.8), we see that

g(z;z,z) - b <_ 0 and g(_z;z,z) - b ^ 0. Since g(«;z,z) is continuous

and z,js €= T, Assumption 5.1 implies that there exists a y(b) £ Y H R1

satisfying g(y(b);z,z) = b. Suppose y' € r H R» and g(y';z,£) = b.

Since g(y;z,z) = b represents a straight line with positive slope,

either y(b) < y' or y' < y(b). But y',y(b) £ T implies y' = y(b),
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and so, y(b) is unique. Now suppose 0 <_b < b' <^ 2. Since y(b) and

y(b') G r, either y^b) <y^b') and y2(b) >y2(b*), or y^b') <y^b)

y2(b') > y2(b). But

y^b^-y^b) y9(b)-y (b»)
— —" + "4: g(y(b');z,z) - g(y(b);z\z) = b'-b > 0.

-rzi z2~-2

Therefore it must be true that y1(b) < y1(bl) and y«(b) > y2(b').

(b) From part (a), there exists a unique y €= r H r1 satisfying

g(y ;z,z) = b , for i = 0,1,...,k+l. Since b < b , y* < y and

y« > y„ . Thus, we can define the rectangle [y \ y ] which, by Lemma 5.2,

2
has area no greater than a(R')/(k+l) . n

5.2 An Optimal 2M(k )Search Strategy

Motivated by Lemma 5.3, we define an 2M(k ) strategy below.

Note that in this strategy, the set E is computed by partitioning

R. , with k parallel lines defined by (5.15) similar to the manner

we partitioned R1.

Definition 5.1: Let the integers N > 0 and k. > 0, i = 1,2,...,N,

be given. The strategy E(k )is defined for all Y€Q(RQ) and all
R e ^13 by the following

Algorithm 5.1

Data: RQ, N, and k-,k«,...,k_.

-0 0
Step 1: Set i = 1, y = y and £ = X*

12 i
Step 2: Compute E. = {y ,y ,...,y } C r n R satisfying

gCy^y1"1,/"1) =̂ J=1,2,...,^. (5.15)
i

i

Step 3: Solicit the DM response to U e, and set
k=l k

(5.14)
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,-iv i, A X
R, = [y\xl =R( u V- (5'16)
1 k-i R

Step 4: If i = N stop; else, set i = i+1 and go to step 2. a

The application of the strategy ^N(k.) for the case when N=2

and k = 2, k = 3 is shown in Figure 5.3. It is interesting to note

that, besides being a strategy for a rectangle elimination method,

E (k.) may also be viewed as a particular strategy for a method of
N i

displaced ideal [24]. The points Cy^,^) >*• =0,1,2,...,N, in Algorithm

5.3 may be viewed as the decision-maker's ideal points; ^(k^ is then a

strategy for sequentially determining and displacing the ideal point.

We now show that S(k )is an optimal 2N(kj) strategy.

Theorem 5.1: The minimum worst-case uncertainty for an 2j/ki^

strategy is

^ i i=i (k±+i)2
Moreover, the strategy £ (k±) ,given by Algorithm 5.1, is an optimal

2N(k±) strategy.
Proof: Define

f={y €Rjy =(l-t)y + ty, te [0,1]}. (5.18)

Clearly Y£Q(R0)- Suppose astrategy E^2N(k±) is applied to Yand
some Re^. In stage i, the set E± of k± experiments is computed in

T O R. . The DM response R. is one of the k±+l rectangles in the finite

representation of f H R defined by E±. The worst-case DM response

uncertainty at stage i is supa(R.) and, by Lemma 5.1, satisfies
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a(R )
i—^ sup a(R ) i =» 1,2,...,N. (5.19)

(k±+l)2 RS&P i
Applying (5.19) recursively, we have

N 1An " ^—T < sup a(R._) (5.20)
°i=l (k±+l)2-*&Q *

and so, by Definition 4.3,

J _L_^ k(zJ) < sup A(S,D for all ISg^).
i-1 V" rS9(V (5.21)

Now let us apply the strategy E(k.) to agiven YG Q(RQ) and

RG^. By (5.15) and Lemma 5.3, the set E in Algorithm 5.1 is well

defined and the relationship between the uncertainty at stages i and

i-1 is

a(R )
a(R.) < ^^ i = l,2,...,N. (5.22)

1 (ki+D

Then (5.22) implies

N 1a(y <AQ n ±—2 (5.23)

and, consequently,

A(EM(k.),D = supa(R) <A n - =• for all re Q(R ).
n i ^Q * oi-i (k.+i)2 » °

1 (5.24)
From (5.21) and (5.24), we obtain

N -

sup A(EXT(k.),D < An n =•<. inf sup A(E,r).
^V " °i-i (k.+D2 ^2N(k-) rGQ(R0)

(5.25)

This proves (5.17) and optimality of EN(k±). a

5.3 Discussion

Despite its very conservative nature, the worst-case uncertainty

criterion leads to a strategy which reduces the uncertainty quite rapidly,

i=l (k±+l)

N
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At stage i of E (k ), (5.22) guarantees that the uncertainty is reduced

2
by a factor of (k.+l) . Theorem 5.1 says that the actual uncertainty

after N stages, a(R^)>will always be reduced from A to, at most,

iL(k.) when E (k.) is used. In practice, a(R^) may be much less than

A^(k ) since a(R^) depends upon the given tradeoff set and DM response

function.

However, it is still quite possible that a(R^) is equal or

approximately equal to iL(k.) when using ^(k^). Note that (5.21)

indicates that for T, the straight line segment between y and y_, the

uncertainty a(0 will be exactly ^(k.) . Thus, T is a worst-case

tradeoff set. Moreover, as indicated by Lemma 5.1, if, for given r,

r O R. is a straight line between y and £ , then

a(Rj = a(R. ,)/(k.+l) when E„(k.) is used. That is, the reduction
v i l-l l N l

in uncertainty is the worst it can be, and r is a worst-case tradeoff

set for stage i. Intuitively, the closer Y H r is to being a straight

line segment, the less the reduction in uncertainty will be in stage i.

For many practical bi-objective problems, portions of the tradeoff

set may be approximately linear. In fact, T(Y) is piecewise linear curve

when f- and f? are linear and XC !Rn is apolyhedron, as with bi-objective

linear programming problems [25]. Therefore, conditions which are

worst-case, or approximately worse-case, do not arise only from some

pathological bi-objective problems but are typically present. This

observation justifies the use of the optimal search strategy E (k.).

5.4 Optimal 2..(K) and 2K(1) Search Strategies
We immediately obtain optimal QAK.) and 2Kd) strategies as

corollaries to Theorem 5.1.
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Corollary 5.1: For any integer K > 0,

An
A-(K) S-5- , (5.26)
1 (K+ir

and an optimal 2X(K) strategy is E(K): compute experiments
12 K
y ,y ,...,y € Y satisfying

g(yi;y,x)=^i i=i,2,...,k. * (5.27)

Corollary 5.2: For any integer K > 0,

'K »
A^l) =-1 - (5.28)

4

and an optimal 2K(1) strategy is ER(1) given by:

Algorithm 5.2

Data: RQ and K
-0-0

Step 1: Set i = l, y = y, v_ = y.

Step 2: Compute y € r satisfying

gfrV'V"1) -1. (5-29)
12 i

Step 3: Solicit the DM response to {y ,y ,...,y ) and set

^-[y^z1] =Miy1 ,y2, •••,y1)) • <5-30>
Step 4: If i = K stop; else, set i = i+1 and go to step 2. "

Figure 5.4 shows an example of the application of £^(1). Tlie

strategy E (1) places the experiment y at the unique point of intersection

of T with the diagonal line segment between the points (y1 ,y2 ) and

(^"1,y^"1). This diagonal is defined by g(y;yi~1,Z1" )=1and bisects
R into two congruent triangles. Thus, the rectangle elimination
i-1

method employing strategy ER(1) may be thought of as a"bisection"

method for bi-objective decision-making.
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There is another optimal 2k^ strateSy wnicn can be viewed as

a bisection method. This strategy, defined by Algorithm 5.3 below,

sequentially bisects the line T, given by (5.18), instead of bisecting

rectangles of uncertainty.

Algorithm 5.3 (Strategy S (1))

Data: R« and K.

Step 1: Set 1=1, XQ = 0, and XQ = 2.

Step 2: Set A,, = X. n+ (X. --X. _)/2 and compute y^r satisfying
s -^ 1—1 —1—1 1—1

g(yi;y,z) -V (5-31)
12 i

Step 3: Solicit the DM response to {y ,y ,...,y } and set

12 iR± = R({y ,y ,...,y }).

Step 4: Set

(X±,X1) =(\_V\) if R± Cg" ^{y €R0|g(y;y,y_) -X± <0}

a^) =(x1,x1„1) if \ c ^ =<y GR0I° i g<yjy»x) - V
(5.32)

If i = K, stop; else, set i = i+1, and go to step 2. H

Figure 5.5 demonstrates the use of the strategy ER(1)• The next result

proves the optimality of E (1).

Theorem 5.2: The strategy 5L(1) defined by Algorithm 5.3 is an
__—___ j^

optimal 2tt(!) search strategy.

Proof: Let R. = [yX\ y_ ], with y1, y_ € {y ,y ,....y1} UEQ,

i = 0,1,...,K, be the sequence of rectangles of uncertainty generated

by E(1) for agiven rG Q(RQ) and RG^. To prove the optimality
of E (1), we need only to show that a(RR) <_AQM . For this purpose, we

now show by induction that
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g(y ;y»z) = \ g(x ;y,x> =^ (5.33)

X^ -XR =1/2W. (5.34)

Clearly, (5.33) and (5.34) hold for K = 0. Suppose they hold for K = i.

- - i+1 -Since X . = X + (X.-X )/2, Lemma 5.3(a) and g(y ;y,y_) = X±+1

imply y1 € R.. Thus, by Proposition 3.1, R. . is a proper subset of

R.. Suppose first that R -C G~. Then (y1 ,y_ ) = (y ,y ) and,

by (5.32), (X^.X^j) =(\,\+1>- Thus, g(£i+1;y,£) =h±+V and> bV
the induction hypothesis, g(y ,y,y_) = X±+1 and X^ - X±+1 = \±+± - X±

=(_X.-X )/2 =1/21. Next, suppose R+1 CG±+1. In this case,

(yi+1,X1+1) =(yi+1.Z1+1) and (Xi+1,X.+1) -(^.y. Thus,
g(yi+1,y,y_) =Xi+1> and, by the induction hypothesis, g(y_1 ;y,_y_) =X^
and X,_,, - X4J, = X. - X... = (X.-XJ/2 = 1/21. Therefore, (5.33) and

-rL+1 i+1 -tl i+1 ~~i i

(5.34) are true by induction. Now note that

/ K -K\ /-K K\
,r> \ / K -Kw~K K. 0/Xryl \/y2"Z2 \ ,, «*a(y =(_yi-yi)(y2-i2) -T^—^—J . (5.35)

2 2Applying the identity ab = (a+b) /4 - (a-b) /4 to (5.35), we obtain

<V iT

" K -K -K KH

^l"yl , y2^2
y_ryi y2-z2

2 A

=-r [§(/;?>£) - g<yK;y.z)l2. (5.36)

Then (5.33) and (5.34) applied to (5.36) yield a(RR) <AQ/4 . °

It is interesting to note that, unlike SR(1), ^K(!) does not

guarantee that a(R.) £a(RH)M for i>_ 2.f ER(1) only ensures that

a(R±) ±V4±-

*This can easily be shown by constructing aY€ y(RQ) for which
a(R0) > a(R_)/4.
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5.5 Selection of an Optimal Strategy

Two factors govern the decision-maker's selection of the integers
A

N and k-,k ,...,k^ when he applies the optimal strategy EN(ki) to his

tradeoff set r(Y). The first factor is computational cost, which constrains

the total number of experiments that can be computed. Thus, the

number of stages N and the number of experiments k± in stage i,
N

i= 1,2,...,N, must satisfy the constraint £ k < K, where K is the
i=l

total number of experiments allowed.

An Important property of 2 (k ) is that the calculation of experiments

in the first j stages does not require the values of N and k4+i»***»kN

to be known; the first jstages of ^(\) comprise the optimal 2j(ki>
strategy E.(k ) for all j <_N. Thus, the decision maker does not need

to specify N and k ,k ,...,1^ before computation begins. Rather, he

can select k ,k ,... sequentially, choosing k just before computing

E . Of course, for each stage j, he is only free to choose k such that
j _ j-1 3
1 < k. <K - 2l k • The Process terminates at the stage N in which

~ 3 - i=i i
N

either 2 ki =^ or tne decision-maker decides a(R^) is small enough.
i=l

Then, no matter what N and k^k^...,^ are, the decision-maker will

have used an optimal 2N(ki) strategy.
If the decision-maker has K experiments to expend, then there

are various possible values of N and k^k^...,^ he might use and
N

still have £ K = K. The second factor governing the selection of N
i=l

and k., i = 1,2,...,N, is the number of experiments per stage for which

the decision-maker can be reasonably modeled as DM; that is, the ^

experiments in R._1 must give the decision-maker enough information

about r(Y) n r so that he can make a DM response. Obviously, the
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larger the decision-maker chooses k., the more information he will

receive about T(Y) Hr However, the price he pays for this

information may be a larger final uncertainty. For example, if

K = 8, then three possible schemes for expending the eight experiments

are: three stages with {k.,k2,k }= {4,3,1} and A~(k ,k2,k.) = AQ/40,

three stages with {k ,k2,k }= {3,3,2} and A^k^k^k^ = AQ/48, and

four stages with {k ,k2,k ,k,} = {2,2,2,2} and A, (k^k^k^k^) = AQ/81.

Note that there is a tradeoff between the number of stages and experiments

per stage and the final uncertainty.

Roughly speaking, the fewer experiments per stage that the

decision-maker requires in order to make a DM response, the smaller

will be the final uncertainty. If the decision-maker is able or is

forced to make a DM response after each experiment, that is, if he uses

the strategy E-(l) or E-(l), then the final uncertainty will be the

smallest. If the decision-maker cannot make a DM response until he has

seen all K experiments, then he uses the strategy E-(K) and the final

uncertainty is largest. Thus, we have upper and lower bounds on A^ClO .

Proposition 5.1: If K > 0 is the total number of experiments which

can be computed, and if the integers N > 0 and k^ i = 1,2,...,N, satisfy
N

2 k.| = K, then
i=l ±

^^)iVViV«=^i- (5-37)
4

N N

Proof: Since K+l = £ k+l <_ II (k+l), (5.17) and (5.26) imply
i-1 i-1 k>

iL(k )±A^K) =A/(K+l) . Now note that (k±+l) <_ 2xand so

n (k±+l) <_2K. Then (5.17) and (5.28) imply AQ/4K =A^(l) <^(k±).
i=l
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6. A GENERALIZATION FOR TRADEOFF SETS WITH GAPS

In Section 5, we derived optimal strategies for rectangle

elimination under the assumption that the decision-maker makes DM

responses and under the assumption that the tradeoff set is a connected

curve between y and y> Now, in this section, we state a general

interactive algorithm for the decision-maker who does not necessarily

respond like DM. We also allow for the possibility that the tradeoff

set T(Y) may not be a connected curve between y and y_. The deployment

of experiments is motivated by S (k±) ,but the possible existence of

gaps in r(Y) forces us to modify our characterization of the experiments

prescribed by E (k.).

6.1 Characterization of Experiments

The optimal search strategies derived in Section 5 prescribe

selecting each experiment for T(Y) by solving a problem of the

following form.

Problem 6.1: Given a rectangle R* C RQ defined by

R1 = [z\ z] lyz e RQ, Ex <z1, z2 > z2 (6.1)

and given b, 0 < b < 2, find a y G T(Y) H R' (if it exists) such that

g(y;i,z) = b <6'2>

where g(»;z»z) is defined by (5.8). a

In particular, for the jth experiment in the ith stage of ^(k^),

z=y1"1, z=y^and b=2j/(k±+l).
Since we do not assume r(Y) to be connected, there is no

guarantee that there exists a point of intersection between T(Y) Hr'

and the line defined by g(y;z,^) = b. Consequently, Problem 6.1 may
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have no solution and we must modify our statement of the optimal

strategies. Since we want to ensure the appropriate reduction in

A

uncertainty, we shall force y to satisfy (6.2) but relax the

requirement that y be in T(Y). We only require y to be in the set

£(r(Y),RQ) defined by Definition 2.3. We now look for a solution

to the next problem.

Problem 6.2: Given R* C r2 defined by (6.1) and 0 <b < 2,

find aye £>(r(Y) ,R ) O r' satisfying (6.2). a

For the purpose of solving Problem 6.2, we define the function

2
v(»,b;z,z) : K. -»• H by

v(y,b;z^z) = max /b , \ . v.o.3;^ z1-i1 i2-z2J
Level sets of v(«,b;z,z) are shown in Figure 6.1 along with the line

defined by g(y;z,z) = b. Note that g(y;z,z) = b if, and only if, the

two maximands in (6.3) are equal. This gives us a fact we shall need

later.

A. y A —•

Lemma 6.1: For any y G 1 satisfying g(y;z,z) = b and any

y € B* ,

yl"yl y2"y2v(y,b;z,£) = v(y,b;z,z) + max^ — , ). (6.4)

Proof: From (6.3)

^rzi z2_^2

yl"2l . yl"yl Z2_y2 . y2"y2v(y,b;z,z) = max (b — + — , + - ) (6-5)
%_zl ^l"Zl Z2"^2 zl~-l

But g(y;z^,z) = b implies

yrzi z2_y2v(y>b;z,z) = b - — = - • (6.6)

-l"Zl z2~-2

Using (6.6) we can write (6.5) as (6.4). n
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We propose to solve Problem 6.2 by minimizing v(%b;z,z) over Y to

obtain the point y shown in Figure 6.1. We then determine the point

ye £(r(Y),RQ) H r' satisfying (6.2) by finding where the level set
2 — ~ —{y £ ]R |v(y,b;z^z) = v(y,b;z,z)} intersects the line defined by

g(y;z,z) = b. Therefore, we pose the following mathematical programming

problem.

Problem 6.3: Given z,z^ R ,with z < z^ and z2 > £2> and given

b, 0 < b < 2,

minimize v(y,b;z,z)
(6.7)

subject to y £ Y. n

Let Y(b;z,z) be the set of solutions of Problem 6.3, that is,

Y(b;z^z) = Argmin{v(y,b;z,£)|y e Y} (6.8)

and let

v(b;i,z) =min{v(y,b;i,z)|y e y}. (6.9)

Assumption 2.1 implies Y(b;z,z) is nonempty. Proposition 6.1 below

gives the relationship between Problems 6.3 and 6.1.

Proposition 6.1: If there exists a y G r(Y) satisfying g(y;z,z) = b,

then y is the unique solution of Problem 6.3, that is, Y(b;z,z) = {y}.

Proof: Let y € r(Y) and g(y;z,z) = b. By Lemma 6.1, if y^Y

and v(y,b;z,z) £v(y,b;z,z), then y <, y. Since y € r(Y), we must have
A

y = y. Therefore, y € Y and y ^ y imply v(y,b;z,z) < v(y,b;z,z).

Hence Y(b;z,^) = {y}. n

Note that when TCY) H R1 is a connected curve between z and z_y

Proposition 6.1 implies Problem 6.3 has a unique solution and this

solution solves Problem 6.1. However, in general, a solution of Problem 6.3
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does not solve Problem 6.1. In fact, solutions of Problem 6.3 need

not be elements of T(Y). The solutions are elements of the set

f(Y) k{y GY|y» GYandy<y' =>yi =yj or y2 =y^} . (6.10)

From (6.10) and (1.2), we see that T(Y) C f(Y). Figure 2.2 illustrates

T(Y) and T(Y).

Lemma 6.2: If y £ f(Y), then there exists a y € T(Y) such that

y 4 y, with y± = y or y£ = y2-

Proof: Let y €E ?(Y). BY Assumption 2.1, there exists a

y£ Argmax{y-+y9|y GY, y < y}. It must be true that y£ T(Y) . Otherwise,

there exists a y1 € Y such that y <_ y* and, consequently, such that

yl+y2 <^"^2 and y= yl * SinCe yG r(Y) C Y and yG r(Y^ * (6-10) implies

yl = yl °r y2 = y2* n
Proposition 6.2: The solutions of Problem 6.3 are in T(Y) and at

A w ^

least one solution is in T(Y); that is, Y(b;z,z) C r(Y) and

Y(b;i,z) O r(Y) t <f>.

Proof: Suppose y £ Y(b;z,z). If y £ ?(Y), then there exists a

y'GY such that y < y*. But this implies that v(yf,b;z,z) < v(y;b,z,z)

or, equivalently, the contradiction that y £ Y(b;z,z). Thus, we must

have y6f(Y). By Lemma 6.2, there exists a y ^ T(Y) such that

y <y. This implies v(y,b;z,z) ^ v(y,b;z,z) = v(b;z,^). The equality

v(y,b;z,z) = v(b;z,z0 must hold since y G Y(b;z,z). Thus y £ Y(b;z,z)

and so Y(b;i,z) H r(Y) ^ <J). n

The set ?(Y) has the following important property:

Proposition 6.3: f(Y) HRQ Cfi(r(Y),RQ) and any finite set of

points in T(Y) H R is a set of experiments for T(Y).
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Proof: Let yG f(Y) HRQ and suppose y£ fi(T(Y) ,RQ). Then, by

Definition 2.3, there exists a y1 £ T(Y) such that either y < y' or

y1 < y. But, by (6.10) and the fact that T(Y) C f(Y), this gives the

contradiction that y£ f(Y). Therefore, we have f(Y) HR C £>(r(Y),RQ).

The second part of the proposition is verified by comparing (2.5) and

(6.10) and applying Definition 2.4. a

We now establish conditions under which a solution to Problem 6.2

can be constructed by solving Problem 6.3. First, we need two preliminary

lemmas which establish conditions for bounding v(b;z,z).

Lemma 6.3: If z <. z' and z^ 4 z/ for some z',z/ € Y, then

v(b;z,z) £min{l,b}.

Proof: By the definition of v(«,b;z,z) in (6.3), the fact that

z < z', z^ <. z/, and 0 < b < 2 implies v(zf,b;z,z) <^ v(z,b;z,z)

= max{b,0} = b and v(z' ,b;z,z) <_v(z,b;z,£) = max{b-l,l} = 1. Thus, if

zf,z/ € Y, v(b;z,^) £min{b,l}. n

Lemma 6.4: If z^z £ o(r00>Rn)> then max{0,b-l} ^v(b;z,z).

Proof: Suppose z,z_ *= o(T(Y)>Rn)• BY Proposition 6.2, there exists

a y G r(Y) such that v(y,b;z,z) = v(b;z,z). This fact and (6.3) imply

z- + (b-v(b;z,z))(z,-z ) = ^ + (b-l-v(b;z,z)) (z -z ) <^y
1 111 111 (6#11)

z2 - v(b;z,z^)(z2-£2) =£2 + (l-v(b;z,^))(z2-£2) 1Y2-

If v(b;z,z) < 0, then 0 < b-v(b;z,j0, and (6.11) implies z < y. But,

since y £ r(Y), this contradicts the assumption that z £ £(r(Y),R ). Thus

0 £v(b;z,z). If v(b;z,z) < b-1, then also v(b;z^,z) < 1 since
A

0 < b < 2. Then (6.11) implies z^ < y, which contradicts the assumption

that z€ fi(r(Y),R). Therefore, b-1 <_ v(b;z,z) . °
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Now, as the next result shows, we can find a solution y to

Problem 6.2 by first solving Problem 6.3, determining the minimum

value v(b;z,z,), and then computing y with (6.12) below.

Proposition 6.4: The unique y € -r satisfying g(y;z,z) = b

and v(y,b;z,z) = v(b;z,z) is given by

y- » z- + (b-v(b;z,z))(z1-z1)
11 - -1 1 (6.12)

y2 = z_2 + (l-v(b;z,z))(z2-z2)

and has the following properties: (a) y ^ y with y = y or y = y for all

yGY(b;z,z), and (b) if z,z^ fi(r(Y) ,RQ) andz<z',z<z' for some

z\z/ G Y, then y^ fidW.Rg) H [i\ zj ,that is, ysolves Problem 6.2.

Proof: If g(y;z,z) = b and v(y,b;z,z) = v(b;z,z), then

y -z z -y

v(b;i,z) -b--±-± =-2-^- • (6.13)
^rZl Z2^2

Solving the two equations in (6.13) for y in terms of v(b;z,z), we

obtain (6.12). Now let y G Y(b;z,^). Then v(b;z,z) = v(y,b;z,£)

=v(y,b;z,z) and, from Lemma 6.1, max{(y -y^/C^-i^) ,(y2-y2)/(z2~£2)} =0.

This implies y <y with y- =y^ or y2 =y2> and thus proves property (a).

To prove (b), suppose z,^ G £(r(Y),RQ) and z4 zf, z4 z/ for some

z?,z/ G Y. By Lemmas 6.3 and 6.4, we have 0 <v(b;z,z) 4 1 and

0 <b-v(b;z,z) 4 1. This fact and (6.12) imply z± 4 yx 4 z± and

z <_ y < z or, equivalently, y^ [£\ zj. Next, let y€ T(Y) . If y <y,
— *_. — ~

then (6.3) implies v(y,b;z,_z) < v(y,b;z,z) = v(b;z,z). This contradicts

the minimality of v(b;z,z). If y < y, then y < y since, by property (a),

y 4 y. This contradicts the fact that y £ T(Y) . Since we cannot have

y£ T(Y) and either y <y or y < y, we must have y£ £(r(Y),Rn).

In solving Problem 6.3 to obtain a solution y to Problem 6.2, we

also obtain a solution y to Problem 6.3 which satisfies y < y. Note
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that if y # y, then T(Y) is not connected. Thus, we have a means of

detecting gaps in T(Y).

6.2 A General Algorithm

Proposition 6.4 motivates Algorithm 6.1, which can handle a tradeoff

set T(Y) that is not connected. Briefly, the algorithm works as follows.

In stage i, the algorithm (step 2d) computes a set of experiments

E. C R prescribed by E (k^). The algorithm obtains the points in E.

by solving problems in the form of Problem 6.2; it obtains each

point in E. by first solving an associated Problem 6.3 (step 2c).

An additional set of points E C f(Y) results from solving the problems
1 ±

of the Problem 6.3 type. The set ( U E ) U ( U E ) is a set of
k=l k k=l k

experiments for T(Y) and thus defines a finite representation of r(Y).
i

A

It is this finite representation, rather than the one defined by U E, ,
k=l R

that the algorithm presents to the decision-maker in stage i (step 3).

The algorithm does not require the decision-maker to give a DM response

at each stage; thus it is not necessarily true that R.+1 ^R,, However,

when the decision-maker gives DM responses, he selects rectangles so

that Rq ^ R.. .. .3 R^ and the algorithm guarantees that a(R^) < L(k.).

Algorithm 6.1

Data: R = [y\ y] (see Definition 2.2); the maximum number of

experiments allowed, K.

Step 1; Set i = l, y=y, _y_=y_

Step 2a: Solicit from the decision-maker the number of

i-1

experiments k. £ [1,K - T] k,] to be computed in R. ,.
1 1-1 j 1"1
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Step 2b: Set E = <J>, E = <J>, and j = 1.

Step 2c: Set

b±j =2j/(k±+l). (6.14)

Compute xJ € Argmin{v(f (x) ,b. . ;y1_ ,y_1"" ) |x € X}, yJ = f(xJ), and

v.. =v(yj,b..;yi"1,Xi"1). Set E. =E. U({yj}nR).
ij ij '•*- l l 0

Step 2d: Compute yJ:

-j -i-1 ^ ,. - w i-1 -i-lv
yi = Y-, + (b..-v..)(£. "Yi )Jl 1 13 13 •*! 1

-j i-1 , ,- - N/-i-l i-lx
13

A A a1Set E± =E± U {yJ}.

(6.15)

jComment: By Proposition 6.4, the construction of yJ by (6.15)

guarantees that g(y*i,yi"1,X ")=h±A- Thus \ is the set of experiment
prescribed by E (k ) for R , (see (5.15)).

Comment: If yJ ^ y , then a gap in T(Y) has been detected, that

is, T(Y) is not a connected curve between y and y_

Step 2e: If j = k., then set E = E. U E± and go to step 3; else,

set j = j+1 and go to step 2c.

Step 3: Display the finite representation of T(Y) defined by
i

U E and ask. the decision-maker to select a (nondegenerate) rectangle

k=1 -i iR. = ty ^£ 1 from this representation in which he wants the next set

of experiments.
i

Comment: Theorem 6.1 below shows that U E is a set of

experiments for T(Y). By Proposition 6.4(a), yj =y^ or y£ =y£; thus

some rectangles defined by U E U EQ will be degenerate, that is,
k=l k

line segments or points.
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Comment: If the decision-maker gives a DM response in step 3,

then R± Crm, ^
Step 4: If J) k. = K, stop; else, set i = i+1 and go to step 2a.

j=l X
Comment: The decision-maker may also terminate the algorithm in

step 4 under two other conditions. First, if the decision-maker's

goal is to approximate T(Y), then he may stop when the points in
i

U E, give to him what he considers an adequate picture of T(Y).
k=l k
Second, if the decision-maker's goal is to estimate his preferred point

v* and he chooses R. such that y* £ R., then he may stop when he considers
j ii

a(R ) small enough. n

When using Algorithm with a T(Y) having gaps, it may happen that

T(Y) Hr = <j> in some stage i. This anomaly arises because the

experiments do not necessarily belong to T(Y) and R lies in a gap of

T(Y). This situation will be indicated when all points of E.+1 are on

the boundary of R.. Note that in this case the decision-maker would

not make a DM response; that is, he would not select a rectangle

R C r . Rather, he would need to pick a rectangle outside of R±
A

in which to place the next set of experiments E.+2.

The man-machine interaction in Algorithm 6.1 is probably best

aided by a color graphics display terminal. The finite representation

of T(Y) can then be readily displayed to the decision-maker, and

color can be used to distinguish different pieces of information.

For example, the sets E. and E. can be distinguished by different

colors. Moreover, rectangles which possibly contain or lie in gaps

of T(Y) can be colored red to alert the decision-maker to the existence

of gaps.

-41-



6.3 Analysis of the Algorithm

We now employ Propositions 6.2, 6.3,and 6.4 to verify that

Algorithm 6.1 does indeed generate sets of experiments for r(Y).

Lemma 6.5: If step 2d of Algorithm 6.1 generates the set

i± ={y1,y2,...,y,\t:hen jjijf1 and y\ >yf\ for j=1.2,... ,1^-1.
<N -.A

and, consequently, E has the property that y,yf cEi and y < y imply

yx = y[ or y2 = y'.
-i-1 i-1

Proof: Note that (6.14) and (6.3) imply v(y,b ;y ,y_ )

4v(y,bij+1;yi~1,/"1) and v(y,bij+1;yi"1,x1"1) -b±j+1 1*<<y>b±j sy1"1^1"1)
- b. . for all yGn. Thus, in step 2c, v., < v - and

13 j-j ~* ij+-L

b... -v,. <b..^- -v,.,n. This fact and (6.15) imply y\ <yf and
ij i3 — ij+l ij+l L L

y^ ^y2+1 for j=l,2,...,k±-l. Thus, for y,y' GEi such that y<y'
we must have y- = y| or y2 = y*. n

A

Theorem 6.1: Suppose Algorithm 6.1 generates E± = E± UE^

i = 1,2,...,N. Then, for each i= 1,2,...,N, E± c \_± and
i

U E, is a set of experiments for T(Y) .
k=l k .

Proof: First note that, for i= 1,2,...,N, E± C r(Y) by Proposition 6.2,

and consequently, E is a set of experiments for T(Y) by Proposition 6.3.

The proof now proceeds inductively.

Since y°,y° eYH £>(r(Y),RQ), Proposition 6.4(b) implies

E C £(r(Y),RQ). This and Lemma 6.5 imply that E± is a set of

experiments for T(Y). Suppose y6 E. and y€ E^ Associated with y is

aj'£ f(Y), computed in step 2c, such that y<y' by Proposition 6.4(a).

If y <y, then y <y', which contradicts the fact that yG f(Y). On the

other hand, if y < y, then the fact that y G r(Y) and Lemma 6.2 imply

there is a y 6 T(Y) such that y < y <y. But this contradicts the fact

that y is an experiment for T(Y). Thus y < y or y < y implies y1 = y1

or y = y0. This proves E- = E U E is a set of experiments for T(Y).
A Z 1 1 x
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i-1

Now suppose U E, is a set of experiments for T(Y). From step 3,
k=l

i-1

y1"1,^1"1 e U E and so, by Definition 2.4, y1"1,^1"1 e £(r(Y),R ).
k=l °
- "* -i-1 i-1There exist y',v_f £ r(Y), associated with y and y_ and computed

-f 1 * 1

in step 2c, which satisfy y < yf and y_ 4 y_f by Proposition 6.4(a).

Then, by Proposition 6.4(b), we obtain E± C £(T(Y) ,R ) H R.
A

This,Lemma 6.5, and Definition 2.4 imply E. is a set of experiment for
i-1

r(Y). Then, by Proposition 2.5, E U ( U E,) is a set of experiments
1 k=l k

for T(Y).

Finally, we need to show that the union of the sets of experiments
i-1 ^ ^ i-1

E. and E. U ( U E, ) is a set of experiments. Suppose y E E. U ( U E )
1 _ I k=l R .. 1 k=l k
and y € E.. Then there is ay1 €= T(Y), computed in step 2c, for which

y < y by Proposition 6.4(a). If y < y , then y < y*, which implies the

contradiction that y ^ r(Y). If y < y, then Lemma 6.2 and the fact that

y £ T(Y) imply there is a y £ r(Y) such that y < y < y. This contradicts

A ^

the fact that y is an experiment for T(Y). Thus y 4 y or y 4 y implies
A *» A *v

yl = yl °r y2 = y2* This imPlies U Ek is a set of experiments for r(Y)
k=1 n

Theorem 6.1 ensures that Algorithm 6.1 constructs finite representations

for T(Y). The next theorem implies that when the decision-maker

responds like DM, then Algorithm 6.1 guarantees the minimum worst-case

uncertainty.

Theorem 6.2: If the decision-maker gives a DM response in stage i

of Algorithm 6.1 (step 3), that is, if R± C R^, then

a(R±) <a(Ri_1)/(ki+l)2.

-43-



Proof: By Theorem 6.1, E. C R = [y1 \y_ ]. Thus, if

R C R then by construction in step 3 and by Lemma 6.5,
i i-1

R. c [y**\ y^+1] for some jG {0,1,...,k.} and with y =y1 and

-i*A^i_i^ since aJ and .j+1 satisfy gCy^y1"1,^1"1) =b±. and

g(yj+1;yi"1,X1":l) =b±.+1, Lemma 5.2 gives a(R.) 4a([yj\ yj+1])
4a(R.^)/(k.+l)2. n

6.4 Selection of a Preferred Point

Suppose that the decision-maker uses Algorithm 6.1 and claims that

a rectangle of uncertainty R^ - [y \X 1contains his preferred point

y*. If his problem actually requires him to select y* and a corresponding

x* £ G, then he needs to compute an X* € n which gives y* = f(x*) € R^

He may try to do this using any of the approaches in [9]-[12]. For

example, he may select an e € [0,1] and solve the problem [11]

maximize f0(x)
^ (6.In;

subject to xe{x ex|y^ +efcj-^) 4^W).

emUnder suitable conditions, given in [11], a solution x*(e) to this probL

gives y*(e) = f(x*(e)) S T(Y). If it happens that T(Y) O1^ =+,then y*(e)

will not be in R^ for any eG [0,1]. In this case, the decision-maker learns
that he is trying to force his preferred point to be in a gap; he must

adjust his preferences and reconsider rectangles that he previously

eliminated in arriving at R . Alternatively, he may wish to modify the speci

fication of X, and possibly f, and apply Algorithm 6.1 to the modified problem.

-44-



7. CONCLUSION

The rectangle elimination method has a number of features which

make it attractive for bi-objective decision-making. First, the method

is a man-machine interactive procedure that can cope with the ill-

defined nature of the decision problem. Second, it makes very simple

assumptions about the decision-maker's ability to process information

and to express his preferences. The method does not require the de

cision-maker to have a utility function or to deal with numerical

tradeoff ratios. Third, the method affords the decision-maker much

flexibility in its use. He may choose to approximate the entire trade

off set or only selected portions of it, or he may concentrate on finding

his preferred objective value. Fourth, the man-machine dialogue is

ideally done via a graphics display terminal. Then the decision

maker can easily view the display of the finite representation of his

tradeoff set, select those rectangles in which he wants more informa

tion, and say how many experiments he wants in these rectangles. And

finally, as we have demonstrated, there are strategies for selecting

experiments which make the method computationally efficient. With these

strategies, the decision-maker has a priori bounds on the number of

experiments he needs in agiven rectangle to obtain a desired reduction

in uncertainty.

While our method is designed for bi-objective decision problems,

some of its underlying principles may be generalized for problems with

three or more objectives. Such generalizations will be the subject of

a subsequent paper. We hope that the rectangle elimination method and

its generalizations will become important tools for computer-aided

decision-making and design.
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FIGURE CAPTIONS

Fig. 2.1. The rectangle [z\ zj.

Fig. 2.2. A typical tradeoff set T(Y) and its enclosing rectangle

Fig. 2.3. (a) A connected tradeoff set Y and a point y £ Y such that

r C [y\ y] U [y\ y_]. (b) A tradeoff set Ywith gaps and a

point y £ r such that r C [y\ y] U [y\ y_].

Fig. 2.4. An example of the set £(I\R ).

Fig. 2.5. A 7-experiment finite representation of the tradeoff set Y.

Fig. 5.1. The rectangle R1 and line segment I".

Fig. 5.2. A partition of R1 by three parallel lines cutting T' into

four segments of equal length.

Fig. 5.3. Application of the strategy Z2(2,3) for a typical tradeoff

set r and a typical DM response.

Fig. 5.4. Application of the strategy £.,(1) for a typical tradeoff

set r and a typical DM response.

Fig. 5.5. Application of the strategy £_(1) for a typical tradeoff

set T and a typical DM response.

Fig. 6.1. Level sets of the function v(»,b;z,z).
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