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Abstract

Electronic circuit simulation programs can accurately predict voltage and

current waveforms for small integrated circuits but as the size of the circuit

increases, e.g. for Large-Scale Integrated (LSI) Circuits involving more than 10000

devices, the cost and memory requirements of such analyses become prohibitive.

Logic simulators can be used for LSI digital circuit evaluation and design if

only first-order timing information based on user-specified logic gate delays is

required. If voltage waveforms and calculated delays are important, a timing simu

lator may be used. In many circuits, however, there are critical paths or analog cir

cuit blocks where more accurate circuit analysis is necessary.

This dissertation describes the hybrid simulation program SPLICE, developed

for the analysis and design of LSI Metal-Oxide-Semiconductor (MOS) circuits.

SPLICE allows the designer to choose the form of analysis best suited to each part

of the circuit and logic, timing and circuit analyses are performed concurrently.

The use of an event scheduling algorithm and selective-trace analysis allows the

program to take advantage of the relatively low activity of LSI circuits to reduce

the cost of the simulation.

SPLICE is between one and three orders of magnitude faster than a circuit

simulation program, for comparable analysis accuracy, and requires less than ten

percent of the data storage used in a circuit analysis. SPLICE is written in FORTRAN

and is approximately 8000 statements long.

The algorithms and data structures used in SPLICE are described and a number

of example simulations are included.
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CHAPTER 1

INTRODUCTION

A number of simulation techniques are available for the analysis of electronic

circuits. For small circuits where analog voltage levels are critical to circuit perfor

mance, or where tightly coupled feedback loops exist, a circuit simulator such as

SPICE2 [1] can accurately predict circuit performance. As the size of the circuit

increases, the cost and memory requirements of such an analysis become prohibi

tive.

Large-scale integrated (LSI) circuits can contain over 10000 transistors. Con

sider the analysis of a circuit containing 10000 Metal-Oxide-Semiconductor (MOS)

transistors, for 1000ns of simulation time on an IBM 370/168 computer. If the

circuit simulation program SPICE2 were used and computer time cost $1000/hour,

the cost of such a simulation would exceed $30000 (App. 9). For most circuits, a

number of simulations are required before the design is completed.

For circuits where verification of the logical operation of the circuit and only

first-order timing information is sufficient, a logic simulator [2]-[6] may be used.

Logic simulators provide a discrete "on/ofF* analysis for digital circuits and, because

of the simplifications made during the simulation, can analyze circuits containing

over 10000 logic gates. If dynamic charge-storage effects or bilateral circuit ele

ments are important, or if a waveform analysis is required and the expense of a

circuit simulation is not justified, a timing simulator can be used [7], (App. 8).

Timing simulation is a simplified form of circuit simulation which takes advantage



of the properties of digital circuits to reduce the simulation time. Fortunately, a

large portion of a typical large scale integrated circuit is digital in nature. For this

reason, simplifications can be made in the analysis which greatly increase execution

speed yet provide adequate information about circuit performance.

A comparison of circuit, timing and logic analysis programs for the analysis of

the same problem on the same computer [9] has shown the timing simulator

MOTIS-C (App. 8) to be typically two orders of magnitude faster than SPICE2, and

the logic simulator salogs-3 [2] to be three orders of magnitude faster than

SPICE2.

It is evident that for the analysis of large digital systems which contain tightly

coupled circuit blocks or critical paths, a simulator is required which will combine

the accuracy of circuit simulation (for critical parts of the network) with the speed

and memory-saving advantages of timing and logic simulation for the remainder of

the circuit [10]. At the same time, techniques must be used which can take advan

tage of the relatively low circuit activity of LSI circuits. If only those portions of

the circuit which are active at any time are analyzed by the simulator, substantial

time savings can be achieved.

This dissertation describes the hybrid analysis program SPLICE (Simulation Pro

gram with Large-scale Integrated Circuit Emphasis), which allows concurrent cir

cuit, timing and logic analyses of various parts of the same integrated circuit. Each

part of the circuit is partitioned by the user from the rest of the network and hence

need only be simulated when it is active.

SPLICE has achieved speed advantages of from one to three orders of magni

tude over circuit simulator SP1CE2 and requires from one to ten percent of the



memory used by SP1CE2. The circuit designer may choose the form of analysis

(circuit, timing or logic) suitable for each part of the circuit to be simulated.

Chapter 2 introduces the LSI circuit design problem and describes briefly the

techniques used today for the analysis of electronic circuits. These techniques

include circuit, timing and logic analysis. The hybrid analysis program DIANA,

developed by Arnout and DeMan [10] is also described.

The algorithms used in circuit, timing and logic analysis programs are

described in Chapter 3 and Chapter 4 describes the algorithms used in program

SPLICE. In particular, the techniques used for exploiting the low circuit activity of

typical LSI circuits and the interface between the various forms of analysis are

presented. The use of an event-scheduler, similar to that used in a logic simulator,

for the control of circuit, timing and logic analyses is also described.

Chapter 5 describes the program structure of SPLICE and the data structures

used during the analysis. These data structures are critical for the efficient opera

tion of the program.

A number of example simulations are included in Chapter 6. These examples

include a 256-by-l bit dynamic RAM circuit, which combines circuit, timing and

logic analyses in the same simulation, and a 700 MOS transistor timing analysis

performed on an integrated digital filter which has subsequently been fabricated for

use in an electronic instrument. The latter example illustrates how relatively low

circuit activity is exploited to enhance the speed of the simulation.

In the final chapter, a summary of program performance is presented and

areas for future work are described.



There are eleven appendices. The first two appendices contain some details of

timing analysis, appendices three to six contain a description of the data structures

used in program SPLICE and appendix seven contains the input to SPLICE for the

examples of Chap. 6. Copies of three papers which describe earlier work in this

area are included in appendices eight to ten and appendix eleven contains a listing

of program SPLICE.



CHAPTER 2

THE LSI CIRCUIT SIMULATION PROBLEM

2.1. Introduction

Circuit simulators, such as SPICE2 [1],[11], SCEPTRE [12] and astap [13],

have proved effective for the analysis of small circuit blocks (less than 100 active

devices) by providing accurate voltage and current waveforms. Today's large-scale

integrated circuits contain over 10000 active devices. The application of such

simulators to circuits of more than 1000 active devices is often not cost-effective or

is beyond available computer resources, as brought out in a later example.

Logic simulators provide a discrete "on/ofT analysis of the circuit under test.

By the use of simple gate-level models and Boolean arithmetic, logic simulators

such as SALOGS-4 [3], F-LOGIC [4], CC-TEGAS3 [5], and LOGCAP [6] are capable of

economically analyzing systems containing the equivalent of over 100000 active

devices. The simplicity of the models used in logic simulation and the relatively

small number of discrete signal levels available in logic simulators, only a first-

order timing analysis for design verification can be provided. Due to the simplicity

of the signal representation, however, logic simulators can generate and validate

the test patterns used in digital circuit testers and simulate the effect of a variety of

circuit faults.

A simplified form of circuit analysis called timing simulation [7] has been

developed recently and its performance lies between circuit and logic analyses.

Timing simulators [7], (App. 8), [14] take advantage of the properties of digital



networks to simplify both the active device models and the arithmetic required for

the analysis. Between one and three orders of magnitude computational speed

improvement over circuit simulation have been obtained using timing simulation.

The actual speedup depends on both the type of circuit being analyzed and the

level of model complexity used by the program, as described later in this chapter.

In the remainder of this chapter the LSI design process is introduced and the

importance of modularity and regularity in both the circuit design and the circuit

analysis are explained. The concepts behind circuit, timing and logic analysis are

also presented while the details of specific algorithms are included in Chap. 3.

A speed comparison of different simulators, running on the same computer,

analyzing the binary-to-octal decoder circuit of Fig. 2.1, is presented in Table 2.1.

The circuit simulation was performed using SPICE2, timing simulation with program

MOTIS-C (App. 8) and SALOGS-3 [2] was used for the logic simulation. This table

illustrates that timing simulation can be two orders of magnitude faster than circuit

simulation and logic analysis can be as much as three orders of magnitude faster

than circuit analysis on the same computer.

There are many LSI circuits where a logic simulation alone cannot accurately

predict circuit performance. For the design of a Random Access Memory (RAM),

an accurate circuit level analysis of each sense amplifier and associated storage

transistors is required to predict its performance satisfactorily. Integrated circuits

which combine digital logic with analog functions such as active filters or analog-

to-digital converters also require a circuit-level analysis of the analog circuit blocks.

For this reason hybrid analysis programs have been developed. These programs

combine circuit, timing and/or logic analysis in a single program and allow the

designer to analyze some parts of the circuit with detailed device-level analysis and
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Central Processor Time

per Print Point (2ns)
(seconds)

Normalized

CIRCUIT (SPICE2) 1.3 3000

TIMING (MOTIS-C) 0.0037 6

LOGIC (SALOGS-3) 0.0006 1

Table 2.1 Analysis Times for the Binary-to-Octal Decoder



sophisticated device models while less critical digital parts of the circuit may be

analyzed using timing or logic analysis.

The partitioning of the circuit into analog and digital blocks allows the

designer to choose the level of modeling appropriate to each portion of the circuit

and hence reduce the total cost of the analysis. The circuit partitioning is also used

by the program to take advantage of the relative inactivity of large digital circuits

and reduce analysis time even further. The algorithms used to perform these tasks

are described in Chap. 3. Programs of this type include DIANA [10] and SPLICE

described in Chap. 4 and Chap. 5.

2.2. The LSI Design Process

When an integrated circuit contains less than 100 active devices or is of a reg

ular structure, such as a register or Programmable Logic Array (PLA), it is often

possible for a single engineer to design the entire circuit. With large circuits con

taining large blocks of random logic this is no longer the case. The circuit must be

partitioned into functionally-independent blocks, each of which may be partitioned

further, until each piece of the circuit is small enough to be designed by a single

engineer. A block diagram of such a partitioning process is shown in Fig. 2.2. The

partitioning process is hierarchical and the circuit often contains regular structures

such as RAMs, Read-Only Memories (ROMs), PLAs or shift registers.

As the design progresses the circuit may be verified at each level of complex

ity. The set of design verification aids corresponding to each level ot uesign com

plexity is shown in Fig. 2.3.

It is often sufficient to perform the detailed and relatively expensive circuit

analysis on the separate modules at the lowest level of Fig. 2.2, where the circuit is
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described in terms of devices such as MOS transistors. The circuit analysis data is

used by the designer to choose an appropriate topology for a logic gate-level

description of the circuit block and to determine its parameters. This task may be

performed interactively on aminicomputer or suitable intelligent terminal [15]. In

this way, as the implementation of the circuit moves up the hierarchical tree of

Fig. 2.2, the integrity of the circuit (its connectivity) and accuracy of the signal tim

ing information for the various blocks in the design may be preserved.

The highest level of simulation shown in Fig. 2.3 is the Register Transfer

Level (RTL) simulation. An RTL simulator uses the same form of signal descrip

tion used in alogic simulator but provides higher-level logic models, such as regis

ters, PLAs and Arithmetic Logic Units (ALUs), and higher-level structures such

as parallel data buses, where anumber ofdata lines are described as asingle, paral

lel data path, both in the input description and during the analysis.

Note that Junctional simulation is not included directly in the verification pro

cess. Functional simulation is simulation at the algorithmic level and does not

depend on the particular design implementation. It is the comparison of the RTL

simulation and the original functional-level description of the circuit which finally

verifies that the circuit design meets the specifications required by the original algo

rithmic description of the circuit function. This dissertation is not concerned with

functional simulation, as mentioned earlier.

2.3. Analysis Techniques

2.3.1. Introduction The detailed analysis of integrated circuits in the time domain

requires the solution of a set of first-order, nonlinear ordinary differential equa

tions which describe the circuit and its associated signal sources. In the case of



Nodal Analysis [16], the node voltages may be expressed in compact vector form

as

v= f(v,t) 0-D

where Vi, i—1 n are the node voltages. For MOS circuits, the nonlinear devices

include driver transistors, loads and transmission gates and the principle energy

storage element is the capacitance at a node. Adetailed analysis of circuit perfor

mance requires the accurate solution ofthis set ofdifferential equations.

2.3.2. Circuit Analysis A nodal or modified-nodal [17] circuit analysis program

such as SPICE2 solves the initial value problem of Eqn. 2-1 until the successive

difference in the computed node voltages between analysis iterations is less than

0.1%. The device models are relatively complex and describe accurately the termi

nal characteristics of the nonlinear devices which make up the integrated circuit.

In a circuit analysis program the numerical solution of Eqn. 2-1 is performed

in two steps. First, the solution time interval T is divided into small time steps

where each increment h is called the stepsize. This is shown for a single node in

Fig. 2.4. The set of nonlinear algebraic difference equations, derived below, is

then solved numerically.

At any time tn where the node voltages are known, the node voltages at time

tn+i may be obtained explicitly from those already computed at tn by using a

Taylor-series expansion at tn. If only the first term of the expansion is used the

method is called the Forward-Euler algorithm where

vn+i =vn +hf(vn,tn). (2-2)

Explicit methods such as this require very small values of the timestep h to main

tain accuracy and stability [16]. For this reason they are seldom used in circuit
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simulation programs.

Another way of obtaining the value of the node voltages at tn+l is to use a

polynomial approximation to the voltage waveform at each node. In this case the

values of the node voltages at previous timepoints are used to predict the value of

the voltages at tn+1. These predicted voltages at tn+1 may then be used to obtain a

better approximation for the node voltages at tn+1 in a similar manner. This results

in an implicit solution method. The two implicit methods of interest here are the

first-order Backward-Euler method where

vn+i = vn+hf(vn+b tn+1) (2-3)

and the second-order Trapezoidal method:

vn+i = vn + y[f(vn+1, tn+1) + f(vn, tn)]. (2-4)

The second part of the circuit analysis concerns the solution of the set of non

linear algebraic equations which result from the application of the difference

methods described above. Eqns. 2-2, 2-3 and 2-4 may each be written in the stan

dard form:

v = V(v). (2-5)

where v is the vector of node voltages at tn+i. The subscript n+1 has been dropped

for clarity and is assumed below. The method most commonly used for the solu

tion of Eqn. 2-5 is the Newton-Raphson algorithm [16]. Eqn. 2-5 may now be writ

ten in the form

j(v) - 0 (2-6)

and assuming an initial choice for the voltages at tn^j of v° then the mth iteration

of the Newton-Raphson algorithm may be written as
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ym+l „ vm-[j(vm)]-1j(vm) (2-7)

where J(vm) is the Jacobian matrix of j(vm). Eqn. 2-7 then becomes:

J(vm)vm+1 = J(vm)vm-j(vm) = i(vm). (2-8)

This is the set of linear algebraic equations solved during the circuit analysis.

The flow diagram of a typical circuit analysis program is shown in Fig. 2.5.

After an initial choice for the node voltages vjj is made at time t=0(A), the non

linear device models are evaluated to obtain the matrix entries for both the Jaco

bian matrix J(vm) and the right-hand-side equivalent current vector i(vm) in

Eqn. 2-8 above (B). The contributions from linear elements, such as time-invariant

capacitors, resistors and voltage and current sources, are also loaded into the

matrix at this time. The set of linear equations are then solved using an efficient

sparse matrix algorithm [1] (C) and the new voltages are compared to the previous

estimate (D). If the process has not converged this loop is repeated until conver

gence is obtained. Typically 3 to 5 iterations are required per timepoint once the

initial solution (at t=»0) has been obtained.

Once convergence is obtained, the error introduced by the Trapezoidal rule

approximation is estimated (E). This estimation may be done directly, using a

Local Truncation Error (LTE) scheme [1], [16], or indirectly by counting the

number of iterations required for convergence in the Newton-Raphson loop. For

the analysis of linear or weakly-nonlinear circuits the former method must be

used. For highly nonlinear circuits (e.g. digital circuits), LTE estimation algorithms

are generally too conservative and the iteration count method is far more effective

(see App. 9). If the solution at a timepoint is not satisfactory, the timestep is

reduced and the loop is repeated until an acceptably small error or number of
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iterations is obtained. Time is then incremented (F) and the entire process is
repeated until the requested simulation period is over (G).

Fig. 2.6 shows the percentage of time spent in the major subroutines of pro

gram SPICE2 for the analysis of the binary-to-octal decoder circuit of Fig. 2.1. It is

evident from this analysis that almost 80% of the total analysis time is spent in the

evaluation of the device model entries for the Jacobian matrix and the right-hand-

side current vector. Alarge fraction of the remaining time was spent in the evalua

tion of LTE and the integration of the capacitor currents using the Trapezoidal

Rule. Techniques which can be used to reduce these times are described below

and in Chap. 3.

2.3.3. Timing Analysis Timing analysis [7] is a simplified form of circuit

analysis which takes advantage of the properties of digital circuits to reduce the

simulation time and memory requirements of the analysis. Timing simulators are

less accurate than circuit simulators. Node voltages may be as much as 5%-10% in

error but the timing information provided by the simulator is within a few percent

which is sufficient for most digital design problems.

The various simplifications made in a timing analysis are described in terms of

the circuit simulation algorithms presented above. Details of the algorithms used

for timing simulation are included in Chap. 3.

As mentioned above the evaluation of device model equations for each device

in the circuit at each iteration in the analysis can account for a large percentage of

the total analysis time. In a timing simulator the model equations are replaced by a

table of values and model evaluation consists of looking up the values of the

matrix entries in the table. A detailed description of the table models used in
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program MOTIS-C and SPLICE is included in App. 1. For example, the drain-to-

source current IDS of an MOS transistor may be obtained from

Ids(Vds, Vgs, Vbs) » TD(VDS, VGS, Vbs) (2-9)

where VDS, VGS, and VK are the controlling branch voltages and TD is a table con

taining values of IDS spanning the expected range of the branch voltages. For most

computers the table look-up scheme is much faster than the equivalent equation

evaluation and the model accuracy is still consistent with the accuracy of the

overall analysis. The table model requires more storage than an equivalent equa

tion model would; however, the memory requirements of the table may be

reduced substantially if a number of simple transformations are used (App. 1).

Table 2.2 shows a comparison of model evaluation time and Newton-Raphson

iterations required for convergence for the three models available in SPICE2 [18],

[19] and a table look-up model of the type described in detail in App. 1. This table

model used 100 steps for each controlling voltage to span a range of voltage of ±

twice the maximum power supply voltage. These results are based on the analysis

of the circuit of Fig. 2.1 on a CDC 6400 computer.

For circuit analysis the table values must be interpolated to avoid convergence

problems due to table step discontinuities. In timing analysis interpolation is gen

erally not used because only a single Newton-Raphson step is taken at each

timepoint and hence dc convergence is not a problem.

The next simplification used in timing analysis is to replace the circuit matrix

solution of Eqn. 2-8 with a simple vector product. This is accomplished by decou

pling the circuit equations for the evaluation of the node voltages at tn+, by using

previously computed values of voltage for the evaluation of node coupling terms.
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This results in an explicit analysis of the coupling while the solution at the node

may still be implicit in form. The process may be clarified by considering Eqn. 2-8

evaluated using voltages at the previous timepoint tn rather than the previous

Newton-Raphson iteration m:

J(vn)vn+1 =i(vn). (2-10)

If J( vn) is partitioned into two parts

J(vn) =D(vn)+0(vn) (2-11)

where D(vn) contains the diagonal entries and 0(vn) the off-diagonal entries of

J(v„):

D(y„)

Jn 0

0 J22

0

(2-12)

Jnn

0 J12

J21 0

JlN

J2N
0(vn)» ; (2-13)

JNl JN2, ' *' 0

where N is the number of circuit nodes or equations. Eqn. 2-10 may be written:

[D<vn)+0(vn)lvn+I -i(vn) (2-14)

D(vn)vn+l+0(vn)vn+, - i(vn). (2-15)

If the coupling terms 0(vn) are evaluated using the voltages at the previous

timepoint tn then Eqn. 2-15 becomes

D(vn)vn+, +0(vn)vn - i(vn) (2-16)
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D(vn)vn+1 = i(vn)-0(vn)vn (2-17)

since 0(vn)vn is known at time tn+,. The left-hand-side of Eqn. 2-17 may now be

replaced by a vector product to give

g(vn)vn+1=k(vn) (2-18)

where g(vn) = On, J22» J33» • • • JniJ and k<vn) = i(vn)-0(vn)vn.

Eqn. 2-18 is in the form used in timing simulators MOTIS, MOTIS-C and SIMPIL

[14]. Although explicit analysis is less stable than an implicit scheme of the same

order [16], the unilateral nature of most digital circuits and the voltage limiting of

logic levels 1 and 0 in MOS and I L circuits make this approach practical. The use

of explicit coupling techniques and their effect on the stability and accuracy of the

analysis are described in Chap. 3.

Single Iteration: As mentioned earlier, only a single Newton-Raphson step is

used to approximate the solution of the nonlinear difference equations. This is

satisfactory because the device model equations are relatively smooth and slowly-

varying functions. Accuracy is maintained in MOTIS by using a global fixed timestep

h, typically Ins, which is small enough to keep the change in device model

operating-point between successive timepoints within acceptable limits. MOTIS-C

and SPLICE use variable timestep algorithms for timing analysis. MOTIS-C selects a

timestep which keeps the change in node voltage between any two successive

timepoints small (less than ~ of the supply voltage range) while SPLICE monitors
64

the change in device currents between timepoints. The latter scheme is described

in detail in Chap. 4.

The difference equation used for the integration of capacitor currents varies

between simulation programs. MOTIS and SIMPIL use the Backward-Euler scheme
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of Eqn. 2-3, MOTIS-C uses the Trapezoidal algorithm of Eqn. 2-4 and the timing

analysis part of SPLICE uses a modified form of the Forward-Euler method,

Eqn. 2-2, for the integration of grounded capacitor currents. Non-grounded (float

ing) capacitors cannot be treated implicitly if the node decoupling scheme is used.

Techniques for integrating floating capacitors are described in Chap. 3 and App. 2.

Flow Diagram: The combination of the simplifications described above consti

tutes timing analysis and the flow diagram of a typical timing simulator is shown in

Fig. 2.7. After an initial guess for the node voltages is made at time t-0 (A), the

contributions to the node conductance vector g(vn) and the right-hand-side

equivalent current vector k(vn) in Eqn. 2-18 are looked-up in the model tables

(B). The contributions from linear elements such as time-invariant capacitors,

resistors and voltage and current sources are also loaded into the vectors at this

time. The vector division is then performed to obtain a new set of node voltages

(C), time is incremented and the loop is repeated until the requested simulation

period is over. The simplicity of this scheme is apparent when Fig. 2.7 is compared

with Fig. 2.5, the flow diagram for circuit simulation.

If table models are generated for individual transistors, timing simulators may

be between one and two orders of magnitude faster than circuit analysis programs,

with less than 10% error in the node voltages. The actual speed improvement

depends on the type of circuit under analysis. If the circuit contains a node or

nodes which may change voltage levels very rapidly, a very small timestep must be

used. In this case the program is relatively slow. Four-phase MOS circuits often

fail into this category. This problem is alleviated when a variable timestep scheme

is used. In MOTIS-C, the timestep is chosen to limit the maximum voltage change

at all circuit nodes between timepoints. As circuit size increases, the probability
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that at least one node in the circuit is changing rapidly at any time increases. Thus

if the timestep is the same for every node in the analysis it is often maintained at a

small value for most of the analysis. A technique which overcomes this problem is

used in splice and is described in Chap. 4.

Macromodels: LSI circuits often contain many groups of transistors which per

form the same function (e.g. logic gates in a digital circuit). If the designer or

computer program can identify these blocks before the analysis, further speed

improvements can be obtained by exploiting known characteristics of the group of

devices. The simplified model of a group of transistors which perform aspecific cir

cuit function is called a macromodel [20]. For example MOTIS-C contains avariety of

macromodels for logic gates and a data latch (D-type flip-flop). The macromodels

may use the existing device look-up tables or generate their own, as in the case of

the CMOS inverter macromodel in MOTIS-C [8]. SIMPIL uses a macromodel for each

multi-collector I L gate. With the use of such macromodels up to three orders of

magnitude of speed improvement over conventional circuit analysis has been

obtained, with comparable waveform accuracy (App. 8), [14].

2.3.4. Logic Analysis A logic analysis may be viewed as a simplified timing

analysis where a number of discrete voltage levels are used rather than a continu

ous voltage range. The level denotes the logic condition at a node and in the sim

plest logic simulator these conditions are logic-1 (T), logic-0 00') and all other

conditions are denoted by the unknown logic state (**'). For MOS circuits an addi

tional state is often used to simplify the analysis of tri-state gates and logic buses.

This is called the high impedence state OH'). For worst-case and other forms of

logic analysis other states may be added to denote such conditions as signal rising,
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falling, about-to-rise and so on [3].

Rather than model individual transistors, groups of devices which perform a

logic function are modeled as a single block. This is similar to the timing macro-

models described in the previous section. These models may include simple gates

such as nand, NOR and inverter, or more complex functions such as flip-flops and

registers.

Some logic simulators can only analyze combinatorial circuits. That is, time

delays through the signal paths are not included in the gate models. Other logic

simulators allow unit delays where all logic gates have the same delay and still oth

ers have assignable delays where the designer can assign specific delays to any of

the gates used in the simulation. For MOS circuits where rise and fall times of

gates may be quite different an assignable delay simulator with the ability to assign

different rise and fall delays to each gate is required. In general only one logic state

change may propagate through a gate at any one time. Not until it has reached the

output of the gate can a second change begin. This type of delay is sometimes

called an inertial delay. Should the input change again before the gate output has

reached its new value a logic spike is produced and may or may not be propagated

depending on the simulator being used. The generation of a spike is illustrated in

Fig. 2.8. Most simulators print a warning message when spikes occur should the

user request it. If more than one logic state may propagate through the device at

the same time, a transmission line delay is required. This requires a variable-length

queue for each delay and is generally not used except in special cases, such as for

long signal path delays. Transmission line delays may be generated artificially in

many simulators by connecting a number of buffer gates in series.
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Even in assignable delay logic simulators the delays may only be integer mul

tiples of a fundamental time quantum. This quantum may represent 0.5ns, for

example, in which case a gate of delay 10 units would have an effective delay of

5ns.

The unilateral nature of logic gates is fundamental to the operation of logic

simulators. The inputs of gates sample the logical values of the nodes to which

they are connected and then the gate determines the logical values of its own out

puts. Inherently bidirectional elements such as MOS transmission gates are difficult

to implement in a logic simulator other than by using a unidirectional approxima

tion to the gate.

Just as with timing simulation, it is the unidirectional nature of the gates

which maintains the stability of the analysis. Tightly-coupled gates can still cause

problems. Consider the NAND latch of Fig. 2.9. If the initial conditions are as

shown in the table at t=0, and each gate has a unit delay, the logic outputs will

oscillate. Many logic simulators can detect such oscillations during the analysis and

attempt to correct the problem by holding a node until the oscillation settles, or

halting the analysis and advising the user of the problem.

In many logic simulators tri-state gates or wired-or circuits also require special

attention.

Due to the many simplifications described above, logic simulators can achieve

speeds of more than three orders of magnitude faster than circuit-levc' Emulators.

The decoupling of logic nodes by the logic gates also permits the use of algorithms

which detect the logic gates that may change at any given time and ignore the

remainder of the circuit (gates where no input changes have taken place at this
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time). This process is called selective trace or event-driven analysis and is described

further in Chap. 4. Since in most large digital networks less than 20% of the nodes

are changing at any one time selective trace algorithms can enhance execution

speed greatly.

The simplifications made in logic simulation also reduce the accuracy of the

analysis. The output waveforms for the analysis of the circuit of Fig. 2.1 for circuit

and logic analysis are shown in Fig. 2.10(a) and Fig. 2.10(b). Note that the logic

levels have been scaled to match those of the circuit analysis and the logic unk

nown states are shown as rising or falling lines as appropriate. The relative speeds

of the analysis are also included. Both analyses were performed with program

SPLICE.

2.4. Hybrid Analysis

Modern circuit analysis programs require a great deal of computer time for

the analysis of LSI circuits. In many of these circuits the detailed accuracy pro

vided by a circuit simulation program is not required for the entire circuit under

investigation but only in some areas of the circuit. This is particularly true of digi

tal circuits where often a gate-level logic analysis provides sufficient information

about the performance of much of the circuit while other parts, such as transfer

gate clusters in MOS circuits [15], require more detailed modeling and analysis.

By providing a range of models, from highly accurate circuit-level device

models for critical parts of the network to less accurate models which describe

larger pieces of the circuit, the designer can reduce the simulation time significantly

by choosing the computationally less expensive models wherever it is appropriate.
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For example, consider the dynamic RAM circuit shown in block form in

Fig. 2.11. To predict the circuit performance accurately it is necessary to analyze

each sense amplifier with adetailed circuit-level analysis. The high loop gain of the'

amplifier makes a decoupled timing analysis unsatisfactory due to the equation

decoupling scheme used in the timing analysis. For storage transistors and data

input/output circuits a timing analysis provides the voltage waveform information

required, while the row and column decoding functions are modeled adequately by

a pure logic analysis.

Another property of LSI circuits which may be exploited in the analysis is

their relative inactivity. Typically less than 20% of an LSI circuit is changing state at

any one time. In a circuit simulation program, where a single matrix is used to

describe the network, the entire circuit must be re-computed at each analysis point

even when only a small percentage of the entries are changing in the matrix

describing the LSI circuit. Just as sparse matrix techniques reduce the memory

requirements and analysis time for circuit analyses so algorithms must be used

which take advantage of this relative inactivity of LSI circuits to reduce the simula

tion time.

Hybrid analysis programs allow the designer to use a combination of analysis

techniques and models, from circuit-level device models to logic-level gate models

in the same simulation program. Such programs have provided up to three

orders-of-magnitude reduction in simulation time and substantially lower memory

requirements than conventional circuit simulation, while still providing a detailed

circuit-level analysis where necessary [10] (App. 8).

There are many ways that circuit, logic and timing analysis may be combined

in a single analysis program. The simplest approach is to combine existing
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simulators via a data interface which transforms the circuit or logic variables into a

form suitable for use by the other program (s). The block diagram of such a pro

gram, which combines circuit and logic analysis, is shown in Fig. 2-12. After the

circuit has been analyzed for a short period of time the circuit node voltages are

converted to equivalent logic levels with a thresholding process. A node voltage or

branch current below a prescribed level is converted to a logic 0, above another

prescribed value to a logic 1, for positive logic. Voltages or currents between these

levels are propagated as unknown logic states ('**). A logic analysis is then per

formed for those parts of the circuit which were described in terms of logic gates.

After a short period of time, the logic nodes which are connected to the circuit-

level devices are processed and used to control voltage sources, current sources or

switches in the circuit analysis. This process is repeated for the duration of the

simulation. Note that the circuit-level part of the analysis is included as a single

block and thus the entire circuit-level part of the analysis must be performed at

each analysis iteration. The program diana uses an analysis similar to this.

Another approach is to integrate the analysis algorithms in such a way that the

circuit analysis may be partitioned into many small blocks, each of which may be

processed independently. In the case of the RAM circuit above only one sense

amplifier would be selected at any time. By partitioning each sense amplifier into a

separate block for circuit-level analysis, only the selected sense amplifier need be

processed. Program SPLICE permits such decoupling of circuit blocks whereas pro

grams where the circuit analysis is performed as a single block must analyze all

sense amplifiers at every analysis point. The algorithms used in SPLICE are

described in detail in Chap. 4.



CHAPTER 3

ALGORITHMS FOR CIRCUIT, TIMING AND LOGIC ANALYSIS

3.1. Introduction

A number of approaches may be used in the design of circuit, timing and

logic analysis programs. In each case tradeoffs are made between memory require

ments, execution speed, model accuracy and simulation accuracy. In a hybrid

analysis program, in which two or more forms of analysis may be performed con

currently, a number of additional constraints are applied. The degree to which

these constraints influence the architecture of the hybrid program depends largely

on the way in. which the various components of the program communicate with

one another.

This chapter describes certain of the critical algorithms used in circuit, timing

and logic analysis programs as an introduction to the description of hybrid simula

tion presented in Chap. 4. Table look-up models for circuit analysis and the appli

cation of diakoptics or tearing to nonlinear circuit analysis are described. The use

of equation decoupling in timing simulation and its effects on the stability of the

analysis are included and time queue techniques for logic simulation are intro

duced.

3.2. Circuit Analysis

23
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3.2.1. Introduction Circuit analysis algorithms for the time-domain transient

analysis of medium and small scale integrated circuits have received a great deal of

attention over the past decade. Most of the algorithms used in modern circuit

simulation programs have been compared and described in detail by Nagel [1].

Recent work has focused on increasing the speed of circuit analysis, at the

expense of some accuracy, and the application of circuit tearing techniques [27] to

the solution of nonlinear networks. Tearing algorithms allow the circuit analysis to

take advantage of the known inactivity of certain parts of the circuit at any time

and, by using previously computed solutions for these inactive blocks, the simula

tion time can often be reduced substantially. These algorithms are described later

in this section.

3.2.2. Table Models As shown in the previous chapter the evaluation of the non

linear device model equations may account for over 80% of the total circuit simula

tion time. A table look-up model for MOS transistors similar to that described ear

lier for timing analysis was used in a version of circuit simulator SPICE2 for the

analysis of large digital circuits. The tables were generated using the techniques

described in App. 1. The two timestep control algorithms used in program SPICE2

(the LTE method and the iteration count method) were also compared and the

effectiveness of the device bypass algorithm [1] was investigated. The bypass

scheme enhances execution speed by monitoring the operating point (node vol

tages and branch currents) of each active device. If the operating point does not

change significantly between Newton-Raphson iterations the device models are not

re-evaluated but rather the matrix entries computed at the previous iteration are

used again. All devices must still be checked at each iteration to determine
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whether the model equation evaluation may be bypassed.

The details of these investigations are included as App. 9. The results show

that with the table model, analysis speed could be increased by as much as a factor

of four over an analysis using the equivalent conventional analytic model. The

iteration count timestep control scheme is far more effective than the LTE scheme

for the digital circuits investigated and it is to be also noted that the error criteria

used by the program in the Newton-Raphson iteration could be relaxed

significantly before errors were observed in the voltage waveforms. The bypass

scheme also proved very effective for digital circuits. Approximately 50% of all

model evaluations were bypassed during the analyses. This is a far greater percen

tage than that observed for typical linear integrated circuits [1].

With all of the above techniques incorporated in the program the execution

speed of SPICE2 could be increased by approximately a factor of twenty. This

improvement is not sufficient for the economic analysis of LSI circuits.

3.2.3. Nonlinear Circuit Tearing A number of recent publications [21]-[23], [25]

have extended and generalized Kron's method [27] of diakoptics or tearing. These

extensions include the application of this approach to nonlinear networks and some

strategies for choosing appropriate tearing interfaces [24]. Rather than repeat these

general results, a description of Kron's technique for nodal analysis is presented

and its application in the circuit analysis program macro [26] is described.

Modifications of the diakoptic approach, such as co-diakoptics [22] anH node tear

ing [23] are not described here.

Kron's method greatly reduces the dimensions of the matrices to be inverted

during the analysis by dividing the network into a number of smaller subnetworks.
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A more important outcome for the analysis of LSI circuits is that the approach par

titions the subnetworks in such a way that only those that are active at any time

need be analyzed.

The division of a given network is performed by detaching suitable tie

branches so as to create a number of unconnected subnetworks. To compensate

for the branches removed by this process, currents equal to those that were

flowing through the branches are injected at the nodes from which they were

disconnected. This method, based on the nodal admittance approach, is called

diakoptics.

Consider the network shown in Fig. 3.1(a). Its corresponding admittance

matrix may be written in the form:

Yn Y12 Yn

Y21 Y22 Y23

Y31 Y32 Y33

(3-1)

All the submatrices along the main diagonal are square and their off-diagonal

elements depend only on the corresponding subnetwork. The elements of the

off-diagonal submatrices Yti, i^j consist of the tie or transfer admittances connect

ing nodes of the subnetworks i and j. The nodal equations for the network may be

written in the form

Yv - i (3-2)

where v and i are the vectors of node voltages and node currents, both of order N,

respectively, where N is the total number of nodes in the circuit. By adding addi

tional equations to the system, the tie admittances Y^ can be removed from the Y

matrix and the resulting block-diagonal matrix structure obtained is
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(3-3)

where p is the number of branches removed, Y'(NxN) is the block-diagonal

admittance matrix, Z(pxp) is the tie-branch impedance matrix, K(Nxp) represents

the tie connections, b(p) is the vector of compensating currents to be injected and

v and i are the unknown node voltages and node currents respectively. The

number of torn branches p is much smaller than the total number of nodes N. For

the example of Fig. 3.1(a) p - 4.

K has N rows, corresponding to each node of the original network, and p

columns, corresponding to each of the tie branches. In column q of K, +1 will

appear in the row corresponding to the node where + Iq is injected and -1 in the

row of the node at which -Iq is injected, as shown in Fig. 3.1(b).

The form of the matrix on the left side of Eqn. 3-3 is bordered block diagonal

and is shown schematically in Fig. 3.2. It can be shown that for a relatively sparse

network and using efficient sparse matrix algorithms the number of arithmetic

operations required to solve Eqn. 3-3 can be greater or fewer than those required

for the solution of the original nodal system depending on the form of the network

being simulated and the re-ordering scheme used to reduce fillin terms generated

during the matrix decomposition process [22].

The major saving of such a scheme for circuit analysis comes from the fact

that the LU factors for the individual Yu blocks need only be re-computed if the

node voltages within the subnetwork change [29]. Since the evaluation of the

admittance matrix entries consumes a substantial portion of the total circuit

analysis time, and large networks are often relatively inactive, the potential savings

can be quite significant.
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On the other hand, if a bypass scheme of the form described in the previous

section is used, the only time savings of a diakoptic analysis of this type is the

evaluation of the LU factors. Unless the model evaluation time is reduced to the

point where it is comparable to the time required for LU factorization and

forward/backward elimination, diakoptic analysis on computer which can only per

form one arithmetic operation at a time cannot provide a significant speed

improvement over nodal analysis with bypass.

Another approach based on diakoptics, which is used in the circuit analysis

program macro [26], [25] is to partition the analysis into two separate Newton-

Raphson iterations which are coupled by a functional iteration as described in the

previous chapter. In this case the block-diagonal Y' is inverted to give Z' = (Y')"1.

This inversion is performed symbolically to reduce computation time. Z' is then

used to solve for the tie branch currents b in an independent Newton-Raphson

loop. Once these have converged a new estimate for the node voltages is computed

and the Y' matrix entries are re-computed for any subcircuits where the voltages

have changed. The algorithm proceeds as follows: partition Eqn. 3-3 into two parts

Y'v - i + Kb (3-4)

KV + Zb - 0 (3-5)

Substitute Eqn. 3-4 into Eqn. 3-5 to obtain:

Zb - -Kl[Z'(i + Kb)]. (3-6)

An initial estimate is made for b, i and Z' then Eqn. 3-6 is solved using a Newton-

Raphson algorithm until b converges. Z' is fixed during this iteration and this is the

major difference between this approach and conventional diakoptic analysis. Once

the b values have been obtained, Eqn. 3-4 is used to solve for a new estimate of v
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and then the necessary entries of Y' are re-computed. This outer Newton-Raphson

loop is repeated until convergence is obtained for the node voltages.

Rabbat and Hsieh [28], [25] have also presented a scheme for detecting inac

tive subnetworks a priori by noting that only if a block connected to an already-

inactive block changes state, can the inactive block become active. Since this tech

nique is very similar to the selective trace approach used in logic simulation, it will

not be described further here.

Many of the above approaches have the potential of reducing the numerical

operation count for the solution of the linearized equations at a Newton-Raphson

iteration. While device model evaluation is still the most time-consuming part of

the analysis, diakoptic approaches alone cannot improve the speed of circuit

analysis so that the simulation of LSI circuits becomes economical.

3.3. Timing Analysis

3.3.1. Introduction Many simplifications made to the circuit simulation algo

rithms introduced in the previous chapter to obtain a timing simulator. The algo

rithms described here apply to MOS timing simulation but most of the techniques

are similar to those used in other timing simulators, such as SIMPIL [14] for I2L

circuits.

Since device model evaluation is generally the most expensive part of circuit

analysis, timing simulators use table look-up models to reduce model evaluation

time. This technique has been described earlier and a detailed description of the

algorithms used in MOTIS-C and SPLICE are included in App. 1. Another important

simplification in timing simulators is the reduction of the Newton-Raphson itera

tion loop and matrix solution to an explicit, single-iteration vector product as



30

shown in Chap. 2. By using decoupling the circuit equations the program can take

advantage of the low circuit activity of many LSI circuits and enhance execution

speed. The penalty for this simplification is reduced stability of the analysis. Algo

rithms which allow the program to take advantage of this low circuit activity and

techniques for overcoming some stability problems in timing simulators are

described in this section.

3.3.2. Equation Decoupling As shown in Chap. 2, the use of node voltages from

previous timepoints for the evaluation of coupling terms allows the use of the

explicit, single-iteration-per-timepoint analysis of Eqn. 2-18.

g(vn)vn+1 - k(vn) (3-7)

where g(vn) = Ou,j22, •••JmnI and k(vn) =» i(vn)-0(vn)vn as described in Sec.

2.3.3. This equation is in the form used in programs MOTIS, MOTIS-C and SIMPIL.

Program SPLICE uses a variation of Eqn. 3-7 as described in Chap. 4. Eqn. 3-7

shows that the voltage at node m in the circuit at timepoint tn+l may be computed

directly from voltages evaluated at tn:

8m(v„)vnm+1 ="km(vn). (3-8)

Hence the nodes are decoupled at time tn+l. Eqn. 3-8 may be expanded to include

the coupling terms in the form:

gm(v„)v£, - i™,- X Omjf(v{, k - n, n-1, •• ). (3-9)
j- i

Omj contains the off-diagonal Jacobian entries as described in the previous chapter.

Note that v*" has been replaced by f(v£, k =- n, n-1, ••• ) above. In MOTIS, MOTIS-

c and SIMPIL, extrapolation is not used and hence:
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f(vi, k = n, n-1, ••• ) = vj. (3-10)

Accuracy is improved by evaluating the slope of the current characteristic at tn and

using the slope to estimate the current at tn+l. If this were not used the algorithm

would reduce to the Forward-Euler form of Eqn. 3-10. As it is, the programs use

one iteration of the Backward-Euler method for the node voltages. Note that this

technique is similar to the Jacobi method [30]. If k = n+1 is permitted in Eqn. 3-9

for nodes which have already been solved at tn+1 then the method is of the Gauss-

Seidel form [30].

Since the equations have now been decoupled and each node voltage may be

solved independently of the other nodes at tn+1, techniques which exploit the inac

tivity of the circuit can be used. One approach is to monitor node voltages for a

number of timepoints and if any node has not changed by a significant amount the

solution for that node voltage may be bypassed at the next timepoint and its old

value used instead. To do this effectively the program must have a facility for

determining which other nodes are affected by the change in voltage at a particular

node. For example in the circuit of Fig. 3.3, if the voltage at node 2 changes then

node 3 must be checked to see if its voltage has changed. MOTIS performs this task

by having a flag associated with each element. Should the operating point of any

element change significantly at a timepoint, the flags associated with all elements to

which it is connected are set and these elements are processed at the next

timepoint. Note that this implies a numerical delay of at least one timestep but if

the timestep is small these errors will not be significant. SIMPIL performs a fast

logic simulation of each gate to determine whether it need be processed in detail at

the current timepoint and MOTIS-C does not use a bypass scheme.
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3.3.3. Single Iteration Circuit simulators use the Newton-Raphson procedure to

solve the nonlinear algebraic difference equations at each timepoint (typically 2-5

iterations are required). If the equations are decoupled using the scheme described

above, convergence could only be obtained using a functional iteration approach

and would therefore be much slower in most cases. Rather than perform a number

of iterations at each timepoint, a single iteration is used in timing analysis. Accu

racy is maintained by reducing the timestep so that the linearized device models do

not change significantly between timepoints. In MOTIS and SIMPIL this timestep is

chosen prior to the analysis and must therefore be a conservative value. MOTIS-C

uses a variable timestep scheme in which the initial guess for the timestep is based

on the properties of the circuit (App. 8), but at any time during the analysis the

timestep may be adjusted by the program to limit the voltage change at all nodes in

the circuit. This approach is acceptable for most digital circuits where accumulated

voltage errors at a node are removed when the node voltage reaches logic "1" or

logic "0" value. A variable timestep scheme also enhances the stability of the

analysis as described in the following section.

With a global timestep and without a bypass scheme, the value of the

timestep chosen by the program will be small for large circuits. As the size of the

circuit increases the probability that the voltage at at least one node in the circuit

will be changing rapidly increases as well. Since the equations are decoupled, it is

possible to have different timesteps at each circuit node. Those nodes where there

is little activity or where the voltages are changing slowly may use a large timestep

while nodes switching rapidly can use a smaller stepsize. The voltage at inactive

nodes used in the analysis of a node with a small timestep may then be extrapo

lated to estimate their value at the new time, for the evaluation of device models.
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SPLICE uses such an approach and it is described in Chap. 4.

3.3.4. Stability Matrix iterative schemes such as the Jacobi and Gauss-Seidel

methods are inherently unstable when the matrix has a weak diagonal [30]. In cir

cuit terms, this corresponds to a network in which there is a strong bilateral cou

pling between nodes. For MOS digital circuits most of the node coupling may be

represented by voltage-controlled current sources and their almost unilateral pro

perties ensure local stability. It is possible, however, for loops to exist within the

network where the circuit delay around the loop may be comparable to the analysis

timestep. A simple example of such a circuit and its associated directed graph is

shown in Fig. 3.4. A loop exists which could cause numerical instability if the

analysis timestep were comparable to the loop delay. In this case the instability can

be removed by reducing the timestep and hence increasing the self-admittance of

each node in the analysis until the system is diagonally dominant and stable. This

approach relies on the fact that their are grounded capacitors at nodes around the

loop.

There are two cases which arise in MOS circuits where this approach is not

sufficient. The first is the case of an MOS transmission gate where the drain and

source nodes are coupled by the channel conductance. This conductance can be

quite large when the device is in the conducting state. Techniques for the analysis

of transmission gates in this situation are presented in [15] and App. 8. The second

case is that of a floating capacitor. A technique which has been used successfully

for the analysis of floating capacitors is included in App. 2. Both of these solutions

require the use of a much smaller timestep than would otherwise be necessary.
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(b) Directed Graph showing the signal loop

Fig. 3.4 Circuit with Potential Timing Instability
if Clock Signals Overlap.
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3.4. Logic Analysis

Most gate-level logic simulators belong to one of two general types. The first

is based on the Huffman model [31] shown in Fig. 3.5. In this case, the gate

description of the network supplied by the user is read by the program and any sig

nal delays are factored out. The resulting combinatorial network is then ordered in

terms of signal dependence. This ordering process includes the detection of certain

pathological conditions in the network such as zero-delay loops. The analysis then

consists of applying the input excitations to the network and following any signal

path state changes through the network to the outputs. The delays are then applied

to any secondary outputs and the analysis of the combinatorial block begins once

again. The process is repeated until the requested input sequence has been com

pleted.

This approach is very efficient for circuits where relatively few delays are

significant in the operation of the circuit. When all gates have associated delays,

performance will be degraded but the severity of the degradation depends greatly

on the way the algorithm is implemented. SALOGS [2], [3] uses an algorithm of

this form.

The second and more common approach is based on the use of a Time Queue

(TQ) [32] as shown in Fig. 3.6. Each entry in the queue represents a discrete point

in simulation time. Time moves ahead in fixed increments, determined by the

user, which correspond to consecutive entries in the time queue. Each entry in the

queue contains a pointer to a list of events which are to occur at that instant of

time. An event is defined as the change of logical state of an output node of an

element. The element may be a logic gate or an input signal source. The new state

may or may not be the same as the state already held by the output line. If the
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new state is different from the old one, all elements whose input lines are con

nected to this output line must be processed to see if the change affects their out

puts. These elements are called the fanouts of the output node and if the gate has

only one output they constitute all the fanouts of the gate. Fig. 3.7 shows a simple

circuit in which the NAND gate with output at node 1 has 3 fanouts. If the new

state at the output line is the same as the old state then the fanouts need not be

processed at this time. The algorithm used to determine whether the fanouts need

processing at any time is called a selective trace algorithm as mentioned in the previ

ous chapter. It is also referred to as event-driven analysis or dynamic leveling. For

logic simulation no penalty in accuracy or stability is incurred with the use of selec

tive trace.

When an output is evaluated and the new value is the same as the value

already held by the node, the event is cancelled and the fanouts are not added to

the time queue. If the new value is different, the event is executed by adding a list

of all the elements which fan out from the node to the time queue. Each of these

elements is then checked in turn to see if its outputs may have changed due to the

change of state at its input and the process is repeated. Cyclic races can occur in

this simulation. They are detected and the simulation is halted using the approach

mentioned in the previous chapter.

The program module responsible for adding elements to the time queue is

often called the scheduler and elements added to the time queue at time t are

scheduled to be processed at time t. The scheduler is the heart of a time queue

simulator and will be described in detail in Chap. 4 and Chap. 5.

In the time queue algorithm delays are included as part of each gate element

and hence are not treated separately as in the first approach. Since for an accurate
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Fig. 3.7 NAND gate 1 has 3 fanouts at node A
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simulation most gates will have a delay associated with them this approach lends

itself to a more efficient implementation.

Many logic simulators use the time queue approach (e.g. [4]-[6]) and this

approach also has advantages for hybrid simulation as described in Chap. 4.



CHAPTER 4

HYBRID ANALYSIS AND SPLICE

4.1. Introduction

This chapter describes the algorithms used in the hybrid simulation program

SPLICE. Program SPLICE can perform circuit, timing and/or logic analysis for MOS

circuits. Parts of the circuit where simple logic functions are performed and the

voltage levels are not critical can be described in terms of logic gates. Other parts

of the circuit where MOS transfer gates are present, dynamic loading effects are

critical to the circuit operation or where voltage levels are required, may be

analyzed using a timing simulation. If the circuit contains blocks where a timing

analysis is not satisfactory a circuit simulation may be performed. These blocks

include circuit networks where strong feedback is present, such as sense amplifiers

in a RAM or closed-loop operational amplifiers in an analog filter circuit. If floating

capacitors are connected in series a circuit analysis may also be required. The cir

cuit analysis is performed locally on a small group of devices and hence many

separate blocks which require circuit analysis may be included in the input to the

program.

Each portion of the circuit, whether it is described using logic gates, transis

tors used in a timing analysis or circuit elements, can communicate with the other

parts of the circuit via the hybrid interface This interface converts logic levels to vol

tages and currents, or voltages to logic levels, according to the user's specifications.

The hybrid interface is described in Sec. 4.6.

37
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Consider the 256-by-l bit dynamic RAM circuit shown in Fig. 4.1 and men

tioned in Ch. 2. If this circuit were simulated using a complete circuit analysis, a

great deal of time would be spent providing detailed waveform information about

the input decoders and input/output circuits. At the same time, when only one

sense amplifier is selected in a read or write operation, all sixteen amplifiers and

the entire circuit array are processed. A bypass scheme or diakoptic approach as

described in Chap. 3 may reduce the total analysis time but the cost of the analysis

would still be prohibitive. A logic analysis would be much faster but would not

provide any information about the operation of the RAM (access time, refresh

time, etc.).

The input decoders can be simulated using a simple logic analysis to select the

addressed row and column of the memory array. The logic outputs of the decoders

may then be converted to voltages which control the input/output transistors and

storage transistors. These transistors can be analyzed using a timing analysis since

the voltage waveforms, charge stored on the bit storage capacitors and the circuit

delays are important. The sense amplifiers are regenerative and hence require a

circuit analysis for accurate prediction of their performance and to avoid numerical

instabilities during the simulation. For this example the program would consider

each sense amplifier separately and only analyze the active or selected one(s). The

analysis results for this RAM example are included in Ch. 6.

With a hybrid analysis program the designer can select the form of analysis

suitable for each part of the circuit. Each block of the circuit is processed separately

(each gate in the logic analysis, each node in the timing analysis and individual cir

cuit block for the circuit analysis). Blocks which are not active at any time are not

simulated.
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The analysis algorithms of SPLICE are controlled by an event scheduler of the

type used in a time queue logic simulator. In SPLICE however, the events

scheduled can be gates, as in the logic simulator, and/or timing elements or entire

blocks of transistors which require a circuit analysis. In the remainder of this

chapter the algorithms used by the .event scheduler, the logic, timing and circuit

analysis modules of SPLICE, and the hybrid interface are described.

4.2. The Event Scheduler

4.2.1. Basic Concepts The event scheduler used in SPLICE is similar to that used

in a time queue logic simulator. As mentioned above, the elements the scheduler

deals with are not only logic gates but timing transistors and circuit blocks as well.

An element of the analysis is defined to be a logic gate, timing elements or group of

connected transistors which constitute a circuit analysis block. Elements have

three types of ports. Input ports (I), output ports (0) or input/output ports (I/O).

Input ports sample the signal at the node to which they are connected but play no

part in determining its value, as shown in Fig. 4.2. Output ports simply drive a

node and the value of the signal at that node plays no part in determining the out

put of the element at that time, and input/output ports both sample the signal and

then may change its value. Some examples of logic, timing and circuit elements

and their ports are shown in Fig. 4.2.

In SPLICE, the circuit nodes also have distinct properties, as shown in Fig. 4.3.

A node may have fanouts, which are the connections to the input ports of ele

ments, and fanins which are the connections to output ports of elements. A con

nection to an input/output port constitutes both a fanin and a fanout. Fanouts

sample the signal level at the node and fanins can change the value of the signal at
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a node. Note that nodes internal to a circuit-analysis block are not the concern of

the scheduler and hence not included here.

The efficiency of a time queue simulator depends on the particular data struc

tures it uses. As events are scheduled to occur, they must be ordered in such a

way that the scheduler can determine which event to process next. To make this

process efficient the simulation time is broken down into small, uniform timesteps.

The size of the timestep is the smallest non-zero delay which a logic gate may have

and the delay of any gate must be an integral multiple of this timestep. This tech

nique is used in SPLICE and the size of the timestep is called the Minimum Resolv

able Time (MRT). For MOS circuits one unit of MRT is typically Ins. In SPLICE,

one unit of MRT is the minimum non-zero delay of a logic gate and the minimum

time for which a circuit or timing element may be analyzed before its output

change is propagated to the remainder of the network. The timestep may be

reduced below one unit of MRT within the circuit or timing analysis, as described

later in this chapter. One unit of MRT is also the smallest timestep between output

events, such as print or plot requests made by the user.

4.2.2. Data Structure of Elements and Nodes Prior to the analysis, SPLICE gen

erates a list of data for each element and node in the circuit. Fig. 4.4 shows the

general structure of an element block. The first word of the data list contains a

pointer to another data list which describes the element model (whether it is an

MOS transistor, NAND gate, etc. and the parameters of the model sr^ as delays,

threshold voltage, etc.). Rather than store the element parameters in the element

list itself, a separate model Ust is used. Since many elements in a large circuit are

of the same type, by keeping all device parameters separate form the elements the
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likelihood of storing redundant information is reduced.

The second word in the list contains the number of output plus input/output

nodes the element has. This value is stored with the element for reasons of

efficiency during the scheduling process.

The list then contains pointers to each of the node lists which correspond to

the outputs of the element, followed by input/output node pointers and finally

input node pointers. The data structure for a circuit block is more complex and is

described in Chap. 5.

The general structure of a node is shown in Fig. 4.5. The first word of the list

contains a pointer to a list of elements which fan out from the node. This list is

called the fanout list and contains pointers to each element whose input or

input/output port is connected to the node. The second word contains a pointer to

a fanin list. This list contains pointers to elements whose output or input/output

ports are connected to the node. The third word contains the node type. Nodes

may be of type logic, timing, external-circuit and internal-circuit. External circuit

nodes are those connected to timing elements. The fourth word contains Ts\ the

last time a which the nodes fanout list was scheduled to be processed. The

remaining words contain the node voltages or logic levels at the previous two

analysis points as well as a variety of parameters such as node capacitance, for tim

ing nodes, and pointers to matrix entries for circuit nodes. A detailed description

of these data structures is included in App. 5.

When an element is processed, its outputs are evaluated and if any of them

have changed, the element node pointer is used to find the corresponding node list

and the location of the fanout list is obtained from the first word of the node list.
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The fanout list origin is then used by the scheduler to schedule the fanouts to be

processed at the appropriate time in the future.

Thus the lists for an element contains the element connection information

and a pointer to the model information. The node list contains information about

the state of the signal level at the node, pointers to fanout and fanin lists, and

some parameter information.

4.2.3. Data Structure of the Time Queue Efficient processing of the time queue

is critical to the overall performance of the program. The time queue contains the

fanout lists of all nodes scheduled to be processed and the time at which they are

scheduled to be processed. A simple way of storing these entries is the linked list

structure of Fig. 4.6. The scheduler moves along this time-ordered linked list

where each entry in the list contains the time the fanouts of a node are to be pro

cessed and a pointer to the fanout list of the node. As each event is executed, the

scheduler processes each element on the fanout list in an arbitrary order. Once the

elements on th list have been processed, the simulator moves to the next entry in

the time queue. It may contain a list to be processed at the same time as the last

list or a list to be processed some time in the future. Any events generated as

each list is processed are inserted in the time queue at the time they are due to

occur. Unfortunately, if an event is scheduled to occur more than one unit of

MRT into the future, the process of inserting it in the time queue may involve

searching many entries already in the queue before its place can be de-^ined and

hence this scheme is relatively inefficient. By observing that most events occur

within a few units of MRT from the present time (PT), a more efficient scheme

may be used [5], [33].
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Rather than a simple linked list as described above, a contiguous block of data

is set aside where each consecutive position in the block represents the next unit

of MRT. If no events are scheduled at a particular time, the entry in the block is

null (-1). If the first entry in the block is the present time, PT, then any event to

occur s units in the future can be added to the list simply by adding s to the PT

pointer and inserting the fanout list pointer in the scheduler block. If the block is

100 units of MRT long, most events will occur within the time-span of the block.

A linked list is still used for events outside this range.

Fig. 4.7 shows the structure of the scheduler used in program SPLICE. The

program uses two 100-word blocks as well as the linked lists. As the PT pointer

moves down one block, entries may be added to the second block. When PT

reaches the end of the first block, it jumps directly to the second block and a swap

occurs. When a swap occurs, the first block is cleared and the linked list is

searched to find any events which may occur within the next 200 units of MRT. If

any are found they are added to the blocks at the appropriate point. Note that if

more than one event (fanout list) is scheduled to occur at the same time, the

fanout lists are linked as shown in Fig. 4.7.

4.2.4. Schedular Operation A simple example of the way in which the scheduler

operates is illustrated in Fig. 4.8. When processing begins at PT, the address of

FOL1 is obtained from the time queue. Each entry on FOL1 is then processed in

turn. In this case the first entry in the list is a pointer to elemc . ELI. The

scheduler determines how many output nodes the element has and then proceeds

to check each one. If the first output node is ONI, the scheduler finds the node

list, checks the node type and depending upon the node type passes the fanin list
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address to either the circuit, timing or logic analysis module of the program. The

analysis module then performs the analysis at the node in question, updates the

signal values and if a significant change has occured sets a flag, notes the time at

which the fanouts should be scheduled and returns control to the scheduler. The

scheduler checks the flag and, if it is set, adds the pointer to FOLN at the end of

the list at the appropriate point in the time queue. The scheduler then moves on to

the next output node of ELI and continues the processing until no output nodes

remain. The scheduler begins processing the next element on list FOL1 and so on

until all fanouts from the node have been processed. It then moves on to the next

list of node fanouts, FOL2. When all events at PT have been processed, the PT

pointer is incremented and the process begins again.

4.3. Logic Analysis

With the event scheduler described above, logic analysis is straightforward.

When a gate is scheduled, its inputs are evaluated and the logic function of the

gate determines the value at the output. If there is a change in a gate output, the

appropriate gate delay tD is obtained from the gate model and the gate fanouts are

scheduled tD units of MRT in the future.

A spike analysis is performed for each gate and should a spike be detected an

entry is made in a spike data file. Spikes are not propagated by SPLICE. This data

file may then be interrogated by the user after the analysis. A variety of logic gates

are defined by SPLICE and described in App. 3.

Most logic nodes have only one fanin (only one gate determines the logic

value at the node) and in this case the fanin list contains a single entry. When tri-

state gates and logic buses are involved, many gates may fan in to a node. When
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the logic analysis is performed a node where more than one fanin is present,

SPLICE checks the outputs of all other gates connected to the node to see if a bus

contention exists. If a conflict is present and more than one gate connected to the

node is trying to set its value, a diagnostic message is issued to a bus contention

file and the new value is forced at the node.

4.4. Timing Analysis

When the scheduler determines that the next node to be processed is a timing

node, it calls the timing processor and passes it a pointer to the node fanin list as

above. The timing processor then evaluates the nett current charging the grounded

node capacitor and computes the change in node voltage for one unit of MRT

using a Backward-Euler model for the grounded capacitor. If this change in voltage

AV is less than a user-defined value AVS, the node fanouts are not scheduled, the

node voltages are not updated and control returns to the scheduler. The default

value for AVS is 0.1volt. Note that by not updating the node voltages if AV is less

than AVS, the program avoids the situation where a slowly-varying node may

change over a wide range of voltage without ever exceeding AVS between

timepoints and hence without ever having its fanouts scheduled. All node voltages

in the program are stored as 16bit integers to conserve memory and voltages are

scaled to lie within the range of ±32767 units.

SPLICE does not use both a current and an equivalent conductance to model

the active devices in the circuit as would be the case in a true Newton-Raphson

step. Instead the program predicts the current midway between timepoints and

uses a single current source to model each active device. The approach is shown

schematically in Fig. 4.9 and results in the use of Eqn. 3-9:
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gm(vn)vnm+1 =inm+1- £ OmJf(vi, k=n, n-1, ••• ). (4"1}

wnere now

f( vj, k = n, n-1, • • • ) = v£+ 14-2)

This approach reduces the arithmetic required to evaluate the device models

and no penalty in either stepsize or accuracy has been observed.

For a node which is switching rapidly from one voltage level to another, the

change in the currents flowing through the active devices over a period of one unit

of MRT may be larger than can be tolerated for an accurate simulation. For this

reason SPLICE monitors the change in 1^ for each MOS transistor, AI^, and if AI*

exceeds a user-defined value AI„ the timing analysis timestep is reduced bu a fac

tor of 4 and the analysis is repeated. Hence many internal timesteps may be used

by the timing simulation to obtain a satisfactory solution for the node voltage over

the one unit of MRT required by the scheduler. For each internal timestep

Eqn. 4-1 is used for the evaluation of the voltage at node m but now the coupling

terms are evaluated using

r( i . i N i, hi(v^-vn-l) (AX\f(vj, k = n,n-l, • • • ) « v£ + ———> (4-3)
*nMRT

where hs is the internal timestep at the node and hMRT is one unit of MRT.

During the internal solution, if the drain current changes by less than an

amount AID, a provision is made to increase the internal timestep.

/
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4.5. Circuit Analysis

If the next node to be processed is an external circuit node, the scheduler

passes control directly to the circuit analysis module of SPLICE. The data structures

used for circuit analysis are more complex than those used for logic and timing

analysis and are described in Chap. 5. Once the circuit analysis module has deter

mined which circuit block is to be processed for one unit of MRT it proceeds by

evaluating the timing element models for all devices connected to the external cir

cuit nodes, as described in the previous section. This process is illustrated in

Fig.410(b). The resulting circuit block is then simulated using algorithms similar to

those used in program SPICE2. The Trapezoidal method is used for the integration

of capacitor currents and a linked-list sparse matrix structure, described in Chap. 5,

is used for the solution of the linear algebraic circuit equations at each Newton-

Raphson step.

The circuit simulator may use an internal timestep smaller than one unit of

MRT and the extrapolation algorithm of Eqn. 4-3 is used to evaluate the timing

element contributions at each Newton-Raphson step.

4.6. The Hybrid Interface

The timing analysis and circuit analysis are coupled directly since both simula

tions use voltages to denote the signal level at a node and hence an additional

interface is not required. The logic simulation does require an interface to and

from the circuit and timing blocks so that logic levels may be converted to currents

and voltages and the voltages of circuit and timing nodes can be converted to logic

levels for use in the logic simulation. This interface is included in SPLICE by the

use of three types of elements: a thresholder (THRESH) for converting voltages to
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BLOCK
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±

(a) Circuit Block and Timing Elements

(b) Equivalent Circuit after Evaluation of the
Timing Element Contribution.

Fig. 4.10 Circuit Block Processing in SPLICE.

47A



48

logic levels, a logic-to-voltage converter (LTV) and a logic-to~current converter (LTC)

to convert the logic levels for use in circuit and timing analysis. One of these ele

ments must be included in the simulation whenever a connection is made between

a logic gate and circuit or timing transistors.

4.6.1. The Thresholder This element is used to convert the node voltages com

puted in the logic or timing analysis into one of the four logic levels used in

SPLICE. The user can define two threshold levels for each thresholder as shown in

Fig. 4.11. For a voltage greater than the logic "1" level, a logic "1" is propagated

into the logic network. If the level is below the logic "0" level, a logic M0" is pro

pagated. Any level between these two constitutes a logic unknown state "*".

The high-impedance state is determined by monitoring the equivalent node

current and output conductance used in the evaluation of the voltage at the node.

If both the current and the conductance values are small an "H" state is pro

pagated.

4.6.2. Logic-to-Circuit Conversion Elements are provided in SPLICE for the

conversion of logic levels to voltages and currents. These are the LTV converter

and the LTC converter mentioned above. They are identical in form and provide a

voltage-source and current-source output respectively for the circuit and timing

analysis. The operation of the LTV converter is shown in Fig. 4.12. When a transi

tion occurs from one logic level to another, the converter outputs a ramp. The

user can specify the logic T, logic "0" and logic "•" voltage or current levels as well

as rise and fall time. If a logic state becomes high-impedance the converter simply

holds the voltage or current at its present level. The converter does not include a

provision for voltage decay in the high-impedance state.
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CHAPTER 5

THE SPLICE PROGRAM

5.1. Introduction

The overall structure of SPLICE is shown schematically in Fig. 5.1. Program

SPLICE is written for use as a stand-alone batch program or for use with an intelli

gent terminal for input and output processing. To aid implementation on an intel

ligent terminal the program is written as three separate modules which communi

cate via data files.

The input module reads the user's input data and checks for obvious syntax

and circuit errors, such as missing device models or a node with only one element

connected to it. The input processor produces a binary data file which is then read

by the setup and analysis module of SPLICE. The setup and analysis module of the

program actually performs the analysis. During the analysis, an output data file is

generated for post-processing by the output module. The file contains the voltages

or logic levels at all nodes to be plotted by the user for each time the value at the

node changed and its fanouts were scheduled to be processed.

The output processor interprets this file and plots the logic or voltage

waveforms on an x-y plotter. Examples of the output from SPLICE are ;^~'"ded in

Chap. 6.

SPLICE is written in FORTRAN and is approximately 8000 statements long. A

listing of SPLICE is included in App. 11. This chapter describes the operation of

49
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Fig. 5.1 General Structure of SPLICE.

Output to
User



50

SPLICE and the data structures it uses. The input processor is described with the

types of circuit elements available to the user. A description of the setup and

analysis phase follows with a simple circuit example, and finally the output post

processor is described briefly.

5.2. The Input Processor

The input processor reads model, element and analysis control statements

which are entered by the user. It links elements to the corresponding model and

compacts the input data into a file to be read by the setup and analysis module of

SPLICE. The program contains a variety of built-in models for logic gates, transis

tors and other elements. A list of the elements available in SPLICE is included in

App. 3. The format of the input data provided by the user is very similar to that

of SPICE2. Some examples of inputs for SPLICE are included in App. 7. After decod

ing the input data, the input processor generates a binary file whose format is

described in App. 4.

5.3. Setup and Analysis Module

5.3.1. Introduction A block diagram of the setup and analysis module of SPLICE

is shown in Fig. 5.2. The data file generated by the input processor is read by the

setup module and the data structures required for analysis are generated. All calcu

lations that can be performed prior to the analysis are also done at this time. After

setup is complete, the analysis module is entered and the event scheduler takes

over for the duration of the analysis.

SPLICE uses a simple dynamic memory allocation scheme. The memory

manager used in SPLICE can allocate fixed blocks of real or integer data and the
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transportability of the program was considered in its design. The program uses

scratch files during the setup phase to reduce the maximum amount of memory

required by the program and to avoid the necessity to relocate data blocks which

can be an difficult process in FORTRAN. The scratch files are referenced via sub

routine calls to aid conversion of the program to computers with a different file

structure.

5.3.2. The Setup Phase The operation of the setup phase is illustrated with the

simple example shown in Fig. 5.3. SPLICE reads the element models and allocates a

data array for the model type and its parameters as shown in Fig. 5.4. In this case,

three models are used: one model for the input source, one for the inverter and

the third model for both NAND gates. At the same time the program generates a

model map to aid the linking of elements and models which is to follow. Next the

circuit elements are read and sorted according to type (logic, timing or circuit) and

the size of the fanin and fanout tables are computed and stored in a node map.

The program proceeds to generate the data structures for all the nodes including

the allocation of storage for the fanin and fanout tables. The tables for the four

nodes of Fig. 5.3 are shown schematically in Fig. 5.5. The circuit elements are

read back into memory in the compact form described in the previous chapter, and

the scheduler table storage is allocated. The data storage for the four elements of

the example circuit is shown schematically in Fig. 5.6. By allocating the scheduler

storage last, should the linked-list of future events grow during the nalysis, its

size is not limited by any other blocks allocated later in the setup phase.

Once all the data blocks have been allocated, SPLICE proceeds to generate the

fanin and fanout tables and link each element to its model. At this point, the



Fig. 5.3 Example Circuit to illustrate the
Data Structures of the Setup Phase,
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LOCS SOURCE

JUL
VI

Tdelay

Tperiod

brkptl

brkpt2

brkpt N

(a) Model for the Source SI

LOCN NAND

Trise

Tfall

(b) Model for the NAND gates Nl and N2

LOCI INV

Trise

Tfall

(c) Model for Inverter II

Fig. 5.4 Model Storage for the Example of Fig. 5.3,
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NODE TABLE FANIN LIST FANOUT LIST

(-1)

(-D Nl

LOGIC SI 11
*

T

VALUES

(-1)

r--n N2

LOGIC 11

T

VALUES

(-1)

(-1) N2

LOGIC Nl

*

Ts

VALUES

(-1)

(-1) Nl

LOGIC N2

*

Tc;

VALUES

Fig. 5.5 SPLICE tebles for the nodes of Fig. 5.3.
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Fig. 5.6 SPLICE tables for the Elements
of Fig. 5.3.
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elements which comprise circuit blocks must be identified. All elements which

require circuit analysis are linked. SPLICE then generates a Model Control Block

(MCB) for the first circuit block and repeatedly searches the circuit element list to

coalesce all connected circuit elements. These elements are linked to the MCB as

illustrated in Fig. 5.7. Once all elements of the first circuit block have been

identified, a second MCB is generated and the process is repeated until the circuit

element list is empty. Once all the MCBs have been generated and the internal and

external circuit nodes associated with each block have been added to the MCB,

SPLICE begins to allocate storage for the circuit matrix. The matrix is stored with

the circuit nodes as shown in Fig. 5.8. A linked list is used to identify the upper

and lower triangular entries of the matrix. The internal circuit nodes are then re

ordered using a Markowitz scheme [34] to minimize matrix fillins generated during

the LU factorization process, the external circuit nodes are not re-ordered as they

must occur first in the MCB data array of Fig. 5.4 to allow efficient evaluation of the

timing element contributions in the analysis. A mock LU factorization is not per

formed but the matrix fillins are generated during the first iteration of the circuit

analysis.

Once the data structures have been set up, SPLICE reads the first set of

analysis requests (until a "GO" statement is encountered) and computes the analysis

control data, such as MRT and the voltage scaling factor (for a range of ±32767

units). A number of pre-analysis data reductions are performed, such as the

conversion of gate delays to units of MRT, and all the elements are scheduled at

time t=»0.
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Fig. 5.7 Data Structure of a Circuit Model Control Block
and Associated Elements
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Fig. 5.8 Storage of the Circuit Matrix with the
Circuit Node.
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5.3.3. The Analysis Phase The analysis phase consists of executing the algo

rithms described in the previous chapter. When an output event is scheduled

SPLICE enters the time and signal level at the node in the output file for post pro

cessing. After the requested simulation time has elapsed, any remaining analysis

control requests are executed and the program terminates. A list of analysis con

trol statements available in SPLICE is included in App. 3

5.4. The Output Processor

The output processor has been implemented on an off-line HP21-MX minicom

puter acting as an intelligent terminal. It can produce plots of selected node

waveforms on an x-Y plotter. The format of the output file read by this processor

is included in App. 6



CHAPTER 6

PROGRAM PERFORMANCE

6.1. Introduction

This chapter presents the results of a number of circuit simulations using

SPLICE. The results show that using a hybrid analysis for a large circuit, between

one and three orders of magnitude speed improvement and between one and two

orders of magnitude reduction in memory requirements can be obtained compared

to conventional circuit analysis.

The first example illustrates the use of the hybrid approach to improve

analysis speed and the input to program SPLICE is described. The second example,

a 256-by-l bit dynamic RAM circuit, demonstrates the use of concurrent circuit,

timing, and logic analysis. The final example, a 700 MOS transistor digital filter cir

cuit, illustrates the speed and stability improvements possible using an event-

driven analysis. The description of each of these circuits, as read by SPLICE, is

included in App. 7.

6.2. The Binary-to-Hexidecimal Decoder

6.2.1. Timing Analysis The circuit schematic of the Binary-to-Hexidecimal

Decoder is shown in Fig. 6.1. It consists of an array of NOR gates and sixteen out

put inverters to provide an active-low output. The waveforms obtained from pro

gram SPLICE using a timing analysis of the circuit are shown in Fig. 6.2. These

waveforms agreed with those obtained from a SPICE2 simulation to within 2% using

54
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TIME OC10°)

Fig. 6.2 Output waveforms for the Timing Analysis
of the Hexidecimal Decoder Circuit.
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equivalent device models in both programs. A comparison of analysis times

between the SPICE? analysis and the SPLICE timing analysis shows that SPLICF is

approximately 80 times faster than SPICE2 and requires 5% of the data storage.

Note the spikes in the output waveforms caused by the delay of the input invert

ers.

Since SPLICE is an event-driven simulator, it only analyzes nodes which are

changing at any time during the simulation. This is illustrated in Fig. 6.3 where

the "events" used to generate the plot of Fig. 6.2 are shown. Each dot in Fig. 6.3

represents an analysis at that node. Note that while the nodes are not active, they

are not processed.

6.2.2. Hybrid Analysis Once the circuit designer is satisfied that the circuit meets

the design specifications, a macromodel of the circuit may be constructed using a

combination of timing transistors and logic gates. A macromodel for the decoder

above is shown in Fig. 6.4. All the internal transistors have been replaced with

logic gates and the output inverters are still analyzed using a timing analysis. The

input voltages are converted to logic levels using thresholding circuits, and the

logic outputs are converted back to voltages to drive the output inverters.

The input file used to describe the circuit is shown in Fig. 6.5(a) and

Fig. 6.5(b). The model for each input source (type LSRC) is specified first. The

model parameters for the sources are the input levels, followed by a delay time,

period, and a set of breakpoints on the piece-wise linear input waveform. The list

of inputs is terminated with a -1. The two MOS transistor models follow. They are

used for the transistors in the output inverters. The parameters for these models

are described in App. 3. The first model is the driver device (NDRIV) and the
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second model is for the depletion load transistor (NLOAD). The supply voltage for

the load is set to 5 volts in the model. Models for the logic inverter and NOR gates

are included, each with a rise time of 4ns and a fall time of 2ns, derived from the

timing analysis results of the previous example. The logic-to-voltage converter

model, LTV, defines the rise time ("0"-to-'T transition time), fall time ("l"-to-"0"

transition time) and voltages corresponding to logic "0", logic "1" and logic unk

nown "*" respectively. The final model defines C as a grounded capacitor.

The element list follows the ten model specifications described above. The

input sources, input logic inverter gates and the sixteen output timing inverters,

each of which consists of two transistors, a driver and a load, then follow. The

driver transistors have two nodes; a gate node and a drain node. The load simply

requires that its gate/source node be specified and the substrate node is assumed

to be node 0. The NOR gates follow in Fig. 6.5(b). These are all four-input gates

and the output node number is the first one specified. The logic-to-voltage con

verters are specified and the capacitance at each output node is set to 0.08pF,

derived from the circuit layout.

The final data required by SPLICE is the list of analysis requests. The OPTS

statement sets the time for each output event (plot point) to correspond to each

unit of MRT when the node is active. This request also sets the maximum circuit

voltage to 7 volts. The TOPTS request sets the timing analysis options. These

include the internal step-size control parameters, the ratio of minimu^-permitted-

stepsize to one unit of MRT and finally the voltage change required at a node

before its fanouts are scheduled (0.1volt). The simulation time is set for 800ns

with each unit of MRT set to 2ns.



Y-AXIS OHE-OF-SIXTEEN DECODER: HYBRID ANALYSIS (LOGIC ANO TIMIHC)

• RO&ELS

ROOEL SO LSRC. 0 1 ONS 100NS ONS 40NS SONS 90NS 100NS -1 )

RQDSL 31 LSRCC 0 1 ONS 200NS OHS 90NS 100NS 190NS 200HS -1 )

flGDEL S2 L3RC< 0 1 ONS 400NS ONS 130HS 200H3 390NS 400NS -1 )

MODEL S3 L3RC. 0 1 ONS 300NS ONS 390MS 400NS 790NS 900NS -I )

RGDEL IDRI HOR!V< 2 .00 3 3 20U 0 7 0.5 0.0 3 100 >

ROOEL ILOO1 HLOAD( i .00 -3 2<>U 0. 7 0*0.03 100 )

RODEL INV INV C 4NS 2NS )

ROOEL NOR NOR ( 4NS 2NS )

RODEL LTV LTV C 6NS 3HS 0 3 2 3 )

ROOEL C SCAPR

« INPUT SOURCES

SO I SO

s: 2 si

S2 3 S2

S3 4 S3

* INPUT INVERTERS

11 37 1 IHV

12 33 2 IHV

13 39 3 INV

14 40 4 INV

• OUTPUT 1INVERTERS

13 S 41 IDRI

IS 6 42 IDRI

17 7 43 IDRI

IS 8 44 IDRI «•

13 9 45 IDBI
110 10 4S roRi

I'.l 11 4 7 I DPI
i:2 12 49 ioai

113 13 49 IDRI '

114 14 30 IDRI

113 13 31 IDRI

116 Id 32 IORI

117 17 3 3 IDRI

119 Id 34 IDRI

119 19 33 IDRI

120 20 36 IDRI

L3 3 IL9D

L6 6 ILOO

L7 7 ILOD

L3 8 ILOD

L3 9 ILOD

l:o 10 ILOO

Li! 1 1 ILOD

1-12 12 ILOD

L13 13 ILOD

L14 14 ILOD

LIS IS ILOO

LU 16 ILOO

L17 17 ILOD

LIS 18 ILOO

L 19 11 ILOO

L20 20 ILOD

• NOR GA7 E3

HO 21 1 2 3 4 NOR

Fig. 6.5 (a) Input Data for the Analysis of the Decoder
Circuit.
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HI 22 37 ? 3 4 HOR

N2 23 I 38 3 4 NCR

Ho 24 37 38 3 4 NOR

H4 25 1 2 39 4 NOP.

NS 26 37 2 39 4 NOR

N€ 27 I 33 39 4 HOR

H7 28 37 38 39 4 NOR

H8 29 1 2 3 40 NOR

N9 30 37 2 1 40 SOP

H10 31 I 39 3 40 NOR

Nil 32 37 38 3 40 NOR

H 12 33 I 2 39 40 NOR

N13 34 37 2 39 40 NCR

N14 35 I 33 39 40 NOR

H15 36 37 33 39 40 NGR

* LOGIC-TO-VOLTAGE CONVERTERS

VI 41 21 LTV

V2 42 22 LTV

V3 43 23 LTV

V4 44 24 LTV

V5 45 25 LTV

V6 46 26 LTV

V7 47 27 LTV

VS 48 29 LTV

V9 49 29 LTV

V10 SO 30 LTV

Vli 31 31 LTV

V12 32 32 LTV

V13 33 33 LTV

VI 4 54 34 LTV

V 13 55 35 LTV

V16 56 36 LTV

* NODE CAPACITANCES

C5 3 C 0. 08P

C6 6 C 0. 08P

C7 7 C 0. 09P

C8 a c O.09P

C9 9 C 0. 08P

CIO 10 C 0.08P

C 11 11 c 0.03P

C12 12 C 0.08P

C13 13 C 0.09P

C14 14 C 0.08P

CIS 15 C 0. 08P

C16 16 C 0.08P

C17 17 C 0. 08P

CIS 18 C 0.03P

C19 19 C 0.08P

C20 20 C 0. 08P

*

* ANALYSIS REQUESTS

OPTS 1 7.0

"OPTS 0.IL 0. 05 1000 0 1

TI.1IE 2.ONS BOONS

PLOT 1, :It 3/ 4

PLCIT 3/ ;5, ?, 8, 9, 10, 11 , 1L2

PLCIT 13, 14, 15, 16, '.7, 15, 1

GO

20

Fig. 6.5 (b) Input Data for the Hybrid Analysis of the
Decoder Circuit.
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The output waveforms for this analysis are shown in Fig. 6.6. Note that they

are almost identical to those of Fig. 6.2 except that some of the spikes are missing.

This analysis is over an order of magnitude faster than in the previous case. If the

circuit simplification process illustrated here is performed carefully, substantial

analysis speed improvements can be obtained for a small penalty in accuracy.

6.3. The 256-by-l bit Dynamic RAM

A block diagram of the RAM circuit is shown in Fig. 6.7. The row and

column decoders used in the analysis of this circuit are based on the decoder

described above and included both logic gates and timing elements. The

input/output circuits and storage transistors of the RAM are analyzed using a tim

ing analysis and each sense amplifier is analyzed as a separate circuit block. The

sense amplifiers used in the simulation are a modification of the Intel design [35]

and the schematic for the sense amplifier and associated "dummy" cell is shown in

Fig. 6.8. The input data used for this analysis is included in App. 7.

Fig. 6.9 contains a summary of the statistics provided by SPLICE for the RAM

analysis. It also includes estimates for the memory and time requirements of

SPICE2 for the same analysis. Fig. 6.10 shows the waveforms produced in a "write-

1-read-l" mode and Fig. 6.11 shows the waveforms for a "write-0-read-0H. The

voltage at the storage node is indicated as Abll.

The simulation time for this example was estimated to be approximately

twenty times faster than for SPICE2. This estimate is based on the MOS model

evaluation time and other overhead required in the circuit analysis (App. 9). The

simulation could not be performed with SPICE2 as the memory requirement for the

SPICE2 analysis exceed 200000 words on a CDC 6400 computer and these resources
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Fig. 6.6 Output Waveforms for the analysis of the
hybrid macromodel of the Decoder circuit
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Fig. 6.10 Output Waveforms for a "Write 1 Read 1"
Operation on the RAM circuit.
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Fig. 6.11 Output waveforms for a "Write 0 Read 0"
Operation on the RAM circuit.
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were not available. The reason the analysis of this circuit does not show the same

improvement over SPICE2 as the previous example is that the program must per

form a circuit analysis for the sense amplifier which is relatively time-consuming.

Another factor is the parallel nature of the circuit. For the short period when the

column line is switching, the fanouts of all the storage transistors in the column

must be processed. Since each sense amplifier is connected to one of these transis

tors via the row, for that period of time all sixteen sense amplifiers are analyzed by

the program. The separate analysis of these circuits is more time-consuming than

a single circuit analysis in this case.

6.4. The Digital Filter

Fig. 6.12 shows the block diagram of an integrated circuit which performs a

digital filtering function. This simulation involved the analysis of 700 MOS transis

tors which realize the blocks shown as solid lines in Fig. 6.12 and was performed

using a timing analysis. The integrated circuit layout for this example is shown in

Fig. 6.13 and the input data used for the analysis is included in App. 7. The input

data for SPLICE was derived directly from the integrated circuit layout file, which

produced the plot of Fig. 6.13, using another computer program [36].

The waveforms produced by SPLICE are shown in Fig. 6.14(a). The circuit is a

serial, pipelined filter and the first 10 clock cycles are used to clear the circuit by

clocking zeros into all the shift registers, adders, and multiplexers. A reset pulse is

then issued and data pulse is entered into the filter. Note that two power supplies

(7 and 12 volts) are used in the circuit, hence the different levels seen at the out

put of the second adder (Sum.B2).
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Fig.6.14(a) Output Waveforms for the Digital Filter Example from Program SPLICE.
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Fig. 6.14(b) summarizes the statistics produced by SPLICE for this example.

The simulation was performed for 4000 units of MRT (Ins) and the simulation

time is estimated to be over 100 times less than would be required using SPICE2.

The circuit was also simulated using a modified version of MOTIS-C [37] on an

HP3000 computer and the output waveforms from this analysis are shown in

Fig. 6.15. Note the numerical noise present in the MOTIS-C output, particularly evi

dent at the output of the shift register (SR->B1 node). This noise is not present

in the SPLICE output due to the filtering effect of the event scheduler (small, oscil

latory changes in node voltages do not cause the fanouts to be scheduled) and the

variable timestep algorithm used in SPLICE.

The savings obtained from the event scheduling scheme are illustrated in

Fig. 6.16. This plot shows the average number of events per node per unit of.MRT

and corresponds to the number of nodes processed by the scheduler at each

timepoint. The time average of these events indicates that the circuit is less than

20% active and only during clock transitions does the circuit become highly active.

This result supports the claim made earlier regarding the relatively low activity of

large digital circuits.

Fig. 6.17 shows the average number of timing analyses per node per unit of

MRT. Since SPLICE uses an internal timestep for the timing analysis (and hence a

number of internal steps may be used for each unit of MRT) this value can be

greater than the number of events per node per unit of MRT of Fig. 6.1*



SPLICE ANALYSIS STATISTICS:

393 nodes

705 elements

s 393 timirg
: 705 timing

Element Storage
Node Storage

: 2786 words

: 5710 words

Setup Time :
Analysis Time

14 seconds

460 seconds

Events Scheduled:

Timing Analyses :
248626

455460

SPLICE SPICE2

(estimate)

Total Memory Required 10102
for Data (words.ft)

210000

Total Central Processor

Time (seconds)
475 50000

Fig. 6.14(b) Summary of Statistics for the Analysis of the Digital Filter Circuit
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CHAPTER 7

CONCLUSIONS

Circuit simulation programs which accurately predict the voltage and current

waveforms, of an electronic circuit are generally too expensive to use for the

analysis of LSI circuits. Logic simulators can be used for first-order timing analysis

of digital circuits but do not provide the detailed waveform information required in

critical parts of the circuit or where tightly-coupled circuit blocks are present.

The hybrid analysis program SPLICE is a simulation. program for large-scale

integrated circuits which can perform circuit, timing and logic analyses in parallel.

While SPLICE is written for use on a CDC 6400 computer, it was designed for use

with a minicomputer or similar intelligent terminal as well.

The program uses event-scheduling algorithms, coupled with circuit analysis

and timing simulation techniques, to take advantage of some of the properties of

large integrated circuits. These techniques reduce the simulation time and memory

requirements of the analysis compared with an equivalent circuit simulation.

SPLICE is typically between one and three orders of magnitude faster than a

circuit-level simulation program when the hybrid analysis techniques are used.

The algorithms developed to permit the parallel analysis of circuit, timing and

logic blocks have been presented. Techniques developed for the partitioning of the

analysis which exploit the low circuit activity of large integrated circuits have also

been described and a number of example simulations for large integrated circuits

are presented. These examples include a 256-by-l bit dynamic RAM circuit, which
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was simulated using concurrent logic, timing and circuit analyses, and a 700 MOS

transistor digital filter circuit which illustrates the time savings of the event-

scheduling algorithm.

The use of an event scheduler for the control of all three forms of analysis

has proven very efficient and the analysis instability conditions which result from

the decoupling of the circuit elements can be resolved in most cases.

SPLICE was written for the analysis of MOS integrated circuits. The analysis

techniques used in the program can be extended to other integrated circuit techno

logies, such as I2L, and possibly to high-speed bipolar technologies like Emitter

Function Logic (EFL). Before the program can be used by a circuit designer, a

number of enhancements must be added to both the input and the output proces

sors. These include the ability of the input processor to expand nested subcircuits,

as in program SPICE2 [1], [11]. A users manual is also required.

Future work in the area of extending techniques of the type used in SPLICE to

Register Transfer Level and Functional level simulation seems promising. Errors

are often introduced in the process of converting a schematic circuit description to

integrated circuit layout, and visa versa. Efficient algorithms to perform these

tasks must also be developed to automate the entire design cycle and reduce the

chance of human error. In the simplification process used to generate circuit

macromodels, it is essential that the accuracy of the model be maintained. Tech

niques for aiding the designer in the determination of macromodei parameters

(such as gate delays, node capacitances, etc.) are also required. This work may

include the use of efficient optimization algorithms for the adjustment of macro-

model parameters [15].



APPENDIX 1

A Table Model for an MOS Transistor

The drain current of an MOS transistor may be expressed in terms of the

branch voltages

Ids = F( VDS, VGS, VBS ) (AM)

where IDS is the drain-to-source current and VDS, VGS, and VBS are the drain-to-

source, gate-to-source and bulk-to-source branch voltages respectively, as shown in

Fig. Al.l.

A table look-up model requires a table containing values of IDS which is

indexed by the independent variables VDS, VGS, and VBS. If n discrete values were

chosen for each independent variable the resulting table would require n3 storage

locations. In practice, n should be at least 100 for circuit or timing simulation and

hence the resulting table would require 106 entries. This number can be reduced

substantially via two simple transformations, as shown in this appendix. The

transformations will be developed using a simple quadratic MOS model and then

extended to a more accurate set of model equations later.

Consider the Shichman-Hodges model[38] as follows:

Ids(Vgs, Vds, Vbs) =K'(VGS-Vbl.yV^TvS--fi)VDS. (A1"2)

where Vbl, y, <hs and K' are physical constants for a given device [18]. If the

effective gate voltage Vge is defined as

Al.l



Bulk

Source

Fig. Al.l An MOS Transistor and the Branch
Conventions.



A1.2

Vge=VGS -Vbi -yV^TVbI (A1'3)

= VGS-V, (AM)

where V, is the effective threshold voltage, then a linear table may be used to store

the values of V,(VBS)

Vt(VBS) =TB(VBS). (Al-5)

Hence Eqn.(Al-2) may be written in the form:

IDs(Vge, VDS) =K'(vge-^)VDS. (Al-6)

If the maximum permitted gate voltage (corresponding to the largest value of

the VGS index) is V™x and

AV = V™x-Vge (Al-7)

then Eqn.(Al-6) may be rewritten in the form:

(Vnc + AV) AVIDs(Vge, VDS) =K'(V™X--^-^ i)(VDS +AV)-K'(Vgr--^UV (Al-8)

= IDs(Vgr\ VDS + AV)-IDS(V™\ AV). (Al-9)

Thus the drain current at any given VDS and Vge less than V™* may now be

obtained from the single drain characteristic evaluated at V™x and the second

linear table required is:

Ids(Vds) = TD(VDS, V£"). (Al-10)

This transformation is illustrated graphically in Fig. A 1.2 and corresponds to mov

ing the origin of the drain characteristic along the characteristic evaluated at V™\

A third linear table is required to store the output conductance in saturation

for each value of effective gate voltage:



VGS(max)

Fig. A1.2 The Effect of the Gate Transformation
is to move the Origin along the V (max)
Characteristic.



0.7

.3 0.3

Measured,

Table Mode:

Vds(V>
Fig. A1.3 Comparison of Table Look-Up Model with Real Device.

For the device, W= llu L=22u.



A1.3

Gsal(Vge) = TG(Vge). (AMD

Hence rather than a table of n3 entries only 3n locations and two additional subtrac

tions are required to obtain the drain current at any device operating point.

This approach relies on the quadratic form of the Shichman-Hodges model.

The transformations may however be used with a more accurate model if some

pre-scaling of the current is performed. Consider the following model where the

first-order effects of variation of depletion charge stored under the channel with

drain voltage are included [39],[18]:

V DSIds(VGs, Vds, Vbs) - K'(VGS-Vbi--fL)V
2

DS

(Al-12)

2-J7[(VDS +<6s-VBS)1-5-(rf>s-VBS)15]

where vbj, y, K' and <bs are as before. It is necessary to maintain the threshold vol

tage V, and the saturation current of the device IDsat under the transformation.

91
The saturation voltage VDsal is defined as the value of VDS for which t^- = 0 and

ovDS

hence from Eqn.(Al-12)

Vds^Vgs, VBS, Vbi) =VGS-Vbi +̂ -[l-A/l +4(vGS-Vbi +0s +VBS)](AM3)

For the previous model, from Eqn.(Al-2)

VDsa,(VGS, VBSl Vbj) = vGS-vbryVvv^. (Al-14)

Now substitute Eqn.(Al-14) into Eqn.(Al-12) and solve for an effecuve built-in

voltage V'bj to maintain V, under the transformation:

V'bi = Vt-yVVGs + <6s-V, (AM 5)

where



A1.4

/ TT~ (Al-16)
V, = Vbi + yV^Vbs-

Ascale factor may then be computed at V™ and used to generate the linear table

TD

vDsat = vDsal(v™\o,vbl)

VDM-VDlll(Vj«l0,Vbi)

w, = iDs(vgr^vDsal,o)

iw»iDs(vgr,v'DS8„o)

I'Dsat (Al-21)
A - -:

lDsat

The table is then generated by using Eqn.(Al-12) scaled by A

TD( VGS, VDS, VBS) =AIDS(VGS, VDS, VBS) <Al-22)
The back-gate table TB and the output conductance table TG are generated as

described for the simple model.

This table has been used successfully in simulation programs MOTis-c(App.
8), SPICE2(APP. 9) and SPLICE(Ch. 5). An example of the table generated for an

actual device is included as Fig. Al.3.

(AM7)

(AM8)

(Al-19)

(Al-20)



APPENDIX 2

Floating Capacitors in Timing Analysis

The decoupling process used in a timing simulator introduces a numerical

delay between the circuit nodes and for tightly coupled nodes this delay can cause

inaccuracy. This problem arrises with both the floating capacitor and floating MOS

transistor, or transfer gate (Fig. A2.1), models which are included in SPLICE and

MOTIS-C.

An investigation of the stability and accuracy of the decoupling procedure

when used with these elements has shown that for floating capacitors the admit

tance matrix must be inverted at each timepoint. For transfer gates the decoupling

scheme is satisfactory provided the change in drain to source voltage is kept small

between timepoints.

Consider the floating capacitor shown in Fig. A2.2. It is connected between

nodes 1 and 2 which have conductances G, and G2 to ground and are driven by

currents Ij and I2 respectively. If the Trapezoidal Rule is used to integrate the capa

citor current, at time tn+1:

IT1 =^(vcn+1-vcn)-icn
(AM)

=^-(AV2-AVlMr,

where AV2 = V^'-V? , AV, = Vf^'-V," and h is the integration timestep.

KirchhorTs current law is then applied to nodes 1 and 2 respectively:

A2.1



/
VGS <j>

t

Fig. A2.1 An MOS Transfer Gate

©

1!=dh
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\ ©
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I
Fig. A2.2 Floating Capacitor and Terminations

Q ^i

Fig. A2.3 Equivalent Circuit Model for
Decoupled Equations.
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A2.2

(G^G^AV.-GcAV^lMS-ir1 (A2-2)

-GCAV, + (G2 +GC)AV2= -Icn-ia2-I2n+I (A2-3)

where Gc = —•
h

Eqns. A2-2 and A2-3 are coupled and a matrix inversion is required for their

solution. This inversion is relatively expensive in a timing simulation program. By

replacing AV2 in Eqn. 2-2 by 8V2 and AV, in Eqn. A2-3 by 8V,, where 8V = Vn-

Vn_l, equations A2-2 and A2-3 become:

(G,+GC)AV, = I-.I^-ir' +GcSV, (A2-4)

(G2 + GC)AV, = -Icn-IA -I2n+1 + Gc8V (A2-5)

where all the quantities in the right-hand-side of Eqns. A2-4 and A2-5 are now

known following the solution at tn. This substitution has introduced a numerical

delay into the equations relating the voltages at nodes 1 and 2 and will adversely

effect the integration accuracy.

The equivalent circuit model for the solution of equations A2-4 and A2-5 is

shown in Fig. A2-3. A stability analysis of the above model produces the charac

teristic polynomial:

h2G,G, hGr,VJ2 i hG, ,
4C2 2C 2C

h2G,G2 hG, hG2
+

4C2 2C 2C

z4 +
h2G,G2

2C2

z2 + 2z-l = 0

(A2-6)

The roots of this polynomial, for various values of stepsize h, are plotted in

Fig. A2.4. Since the roots lie within the unit circle for all values of h the scheme is

unconditionally stable. The presence of complex roots indicates the method
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Fig. A2.4 Root Locus for Modified Trapezoidal Method.
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A2.3

produces an oscillatory solution for large h.

The inclusion of linear and quadratic predictors to obtain a better estimate for

the voltage at the next timepoint does not significantly improve the accuracy of

this approximation. For this reason, rather than reduce the timestep to a very

small value to avoid oscillation, the admittance matrix for the floating capacitor

must be inverted.

The transfer gate is almost always operating in the linear region and hence is

not completely bilateral. For this reason, somewhat larger timesteps may be used

before the analysis begins to show oscillation and the decoupling scheme described

above is used for transfer gates.



APPENDIX 3

SPLICE Input Elements

The following tables describe the input format and parameters for logic, timing and

circuit elements used in SPLICE.

A3.1



(data)

MODEL TYPE

BUF

INV

AND

OR

NAND

NOR

XOR

XNOR

ROM

RAM

NALA

NOLA

TWOP

DFF

DFF2

DSR

SAH

LSRC

THRESH

DESCRIPTION PARAMETERS

Buffer Tr Tf

Inverter Tr Tf

AND gate Tr Tf

OR gate Tr Tf

NAND gate Tr Tf

NOR gate Tr Tf

Exclusive OR gate Tr Tf

Exclusive NOR gate Tr Tf

Read-Only Memory Tr Tf No Ni

Random Acess Memory Tr Tf No Ni

NAND latch Tr Tf

NOR latch Tr Tf

Two Phase Flip-Flop Tr Tf

D-type Flip Flop Tr Tf

Two Phase D-type Flip-Flop Tr Tf

Shift Register Section Tr Tf

Sample and Hold Tr Tf

Logic Source LO LI D P (1
Thresholder VO VI V*

(breakpoints) -1

Tr = Rise Time, Tf = Fall Time, No = Number of Output Ports, Ni = Number of Input Ports
1.0 = first logic level, LI = Second Logic Level, D = Source Delay, P = Source Period,
VO = Voltage Level for Logic 0, VI = Voltage Level for Logic 1, V* = level for Logic *.
* indicates the element has not been fully implemented or extensively tested.

Table 3.1 SPLICE Logic Elements and their Parameters



MODEL TYPE

GCAPR

NDRIV

PDRIV

NLOAD

PLOAD

CINVT

FCAPR

NTXG

PTXG

NTTDV

PTTDV

NTTLO

PTTLO

NTTXG

PTTXG

TSRC

LTV

LTI

DESCRIPTION

Grounded Capacitor
N-Channel Driver Transistor

P-Channel Driver (eqns)
N-Channel Load (eqns)
P-Channel Load (eqns)
CMOS Inverter

Floating Capacitor
N-Channel Transfer Gate

P-Channel Transfer Gate

N-Ch. Driver (Table)
P-Ch. Driver (Table)
N-Ch. Load (Table)
P-Ch. Load (Table)
N-Ch. Transfer (Table)
P-Ch. Transfer (Table)
Timing Voltage Source
Logic-to-Voltage Converter
Logic-to-Current Converter

•ARAMETERS

C

W/L Vt Kp Gam Phi Lam

W/L Vt Kp Gam Phi Lam

W/L Vt Kp Gam Phi Lam Vdd

W/L Vt Kp Gam Phi Lam Vdd

W/L Vt Kp
C

W/L Vt Kp

Gam Phi Lam Nst Vdd

Gam Phi Lam

W/L Vt Kp Gam Phi Lam

W/L Vt Kp Gam Phi Lam Nst

W/L Vt Kp Gam Phi Lam Nst

W/L Vt Kp Gam Phi Lam Nst Vdd

W/L Vt Kp Gam Phi Lam Nst Vdd

W/L Vt Kp Gam Phi Lam Nst

W/L Vt Kp Gam Phi Lam Nst

VO VI D P (breakpoints) -]L

Tr Tf VO VI V*

Tr Tf 10 ![1 I*

W/L = width to Length ratio, Vt=zero bias threshold voltage, Kp=Transconductance per unit
gate voltage, Phi = surface potential for strong inversion, Lam = output conductance factor
for saturation region, Nst=Number of table steps, Vdd=effective supply voltage for loads,
VO = voltage first, VI + second voltage, D=delay, P=period, Tr=risetime, Tf=falltime,
* indicates the element has not been fully implemented or extensively tested.

Table 3.2 SPLICE Timing Elements and their Parameters.
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STATEMENT

PRINT

PLOT

TIME

LOPTS

TOPTS

COPTS

GO

END

SETDC

SETTR

DCOP

SUST

UNDEF

DESCRIPTION

Print node voltages
Plot node voltages
Set simulation time and MRT

Set logic analysis options
Set timting analysis options
Set circuit analysis options
Begin analysis
End this simulation run

Set node voltages for a dc analysis
Set node voltages for a transient analysis
Compute the dc operating point
Simulate until stable (scheduler queue is empty)
List all nodes whose signal levels are not 1 or 0

* indicates command not fully implemented or extensively tested.

Table 3.4 SPLICE Analysis Commands



APPENDIX 4

Input Processor Data Structure

Fig. A4.1 shows the structure of the file produced by the input processor. Device

models are stored first followed by elements, control statements and the node map

which translates the user-defined signal paths to SPLICE internal node numbers.

A4.1



Model Type

Numpar

P2

(-D

Element Type

Numnodes

nl

n2

Numpar

Pi

p2

(-1)

Control Types

Numpar

cl

c2

(-1)

Fig. A4.1 Structure of the file produced
by the Input Pre-processor. Numpar
is the number of parameters and Numnod
is the number of nodes.
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APPENDIX 5

Setup and Analysis Data Structures

The following figures illustrate the setup and analysis data structures, with program

variable names used wherever appropriate.
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LOCNOD LOCFOL

LOCFIL

*

Ts

Lu"x & L"

(a) Logic Node. Note the last two
Logic values are packed into
one word.

LOCNOD LOCFOL

LOCNOD

LOCFIL

Ts

Vn-1

Vn

LOCCAP

(b) Timing Node. LOCCAP is a pointer
to the node capacitance Value.

LOCFOL

LOCFIL

3 or 4

Ts

Vn-1

Vn

LOCDIA

LOCUPR

LOCLWR

(c) Circuit Node. Type 3 is external-circuit
Type 4 is internal-circuit.

Fig.A5.1 Data Structure for Logic, Timing and Circuit Nodes
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The fanout list origin is then used by the scheduler to schedule the fanouts to be

processed at the appropriate time in the future.

Thus the lists for an element contains the element connection information

and a pointer to the model information. The node list contains information about

the state of the signal level at the node, pointers to fanout and fanin lists, and

some parameter information.

4.2.3. Data Structure of the Time Queue Efficient processing of the time queue

is critical to the overall performance of the program. The time queue contains the

fanout lists of all nodes scheduled to be processed and the time at which they are

scheduled to be processed. Asimple way of storing these entries is the linked list

structure of Fig. 4.6. The scheduler moves along this time-ordered linked list

where each entry in the list contains the time the fanouts of a node are to be pro

cessed and a pointer to the fanout list of the node. As each event is executed, the

scheduler processes each element on the fanout list in an arbitrary order. Once the

elements on th list have been processed, the simulator moves to the next entry in

the time queue. It may contain a list to be processed at the same time as the last
list or a list to be processed some time in the future. Any events generated as

each list is processed are inserted in the time queue at the time they are due to

occur. Unfortunately, if an event is scheduled to occur more than one unit of
MRT into the future, the process of inserting it in the time queue may involve

searching many entries already in the queue before its place can be defined and
hence this scheme is relatively inefficient. By observing that most events occur

within a few units of MRT from the present time (PT), a more efficient scheme

may be used [5], [331.



PT

(present time)

T4 > T3>T2>T1 = PT

Fig. 4.6 Simple Linked-Lisc Time Queue
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LOCELM
LOCMOD

Noutput

Nopl

Nopn

Nipl

I Nipm

(a) Structure of Logic and Timing Elements
Noutput is the number of output nodes.
Nopl-Nopn are the output node pointers and
Nipl-Nipm are the input node pointers.

LOCE LOCMOD

LOCNXT

Nl

Nn

(b) Structure of Circuit Element. Same as
above except the second word is used to
link the elements associated with the

same Model Control Block.

A5.3

Fig. A5.2 Data Structure for Logic, Timing and Circuit
Elements.



ISCB2

ISCB3.

+2

+99

+1

+2

+99

"^•LOSFOL

Tschedl

LOCFOL1

Tsched2

LOCFOL2

(-1)

Fig. A5.3 Data Structure for the Scheduler.
TIME is the present analysis time
and LOSFOL is the scheduled fanout list,
See subroutine SWAP for more details
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APPENDIX 6

Output Processor Data Structure

Fig. A6.1 shows the structure of the file produced by SPLICE for the output post

processor.
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Node Number

Node Type

Last Time

Last Value

This Time

This Value

Node Number

Node Type

Last Time

Last Value

This Time

This Value

Fig. A6.1 Format of the file produced for the
Output Post-Processor. Last Time and
Last Value are the previously
Scheduled Time and Value respectively,
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APPENDIX 7

Input Data for Example Circuits

This appendix contains the input data used by SPLICE for the analysis of the

Binary-to-Hexidecimal Decoder, 256-by-l bit Dynamic RAM and Digital Filter

examples of Chap. 6.
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Y-AXIS ONE-OF-SIXTEEH DECODER: HYBRID ANALYSIS (LOGIC AND TIMING)

• NQOELS

MODEL SO LSRC< 0 1

MODEL SI LSRCC 0 1

MODEL S2 LSRC( 0 1

MODEL S3 L3RC< 0 1

MOOEL IOR1 HDRIV< 2

MODS L ILOC> NLOAO< 1

MODEL INV INV < 4

MODEL NOR NOR < 4

MODEL LTV LTV < 6

NODE L C GCAPR

* INPUT SOURCES

SO 1 SO

SI 2 SI

S2 3 S2

S3 4 S3

« INPUT INVERTERS

11 37 1 INV

12 38 2 INV

13 39 3 INV

14 40 4 INV

* OUTPUT ]INVERTERS

13 3 41 IDS!

16 6 42 IDRI

17 7 43 IDRI

ia 3 44 IDRI

19 9 45 IDS!
HO 10 46 IDRI

111 1147 IDRI

112 12 48 I OR I

113 13 49 IDRI

114 14 30 IDRI

113 IS 31 IDRI

116 16 32 IDRI

117 17 S3 IORI

113 18 34 IDRI

119 19 33 IDRI

120 20 36 IDRI

LS 3 ILOD

L6 6 ILOD

L7 7 ILOD

L8 8 ILOD

L9 9 ILOD

L10 10 ILOD

Lll 11 ILOD

L12 12 ILOD

L13 13 ILOD

L14 14 ILOD

L15 13 ILOD

L16 16 ILCD

L17 17 ILOD

LIS 18 ILOO

L19 19 ILOD

L20 20 ILOD

* N!!R GATES

NO 21 1 2 3 4

ONS lOONS ONS 40NS SONS 90NS lOONS -1 )

OHS 200NS ONS 90NS lOONS 190NS 200NS -1 )

ONS 400NS ONS 13CNS 200N3 390NS 40CNS -1 )

ONS 300NS ONS 390HS 400NS 790NS 800NS -1 )

00 0.3 20U 0.7 0.6 0.0 5 100 )

00 -3 20U 0.70.60.03 100 )

4HS 2NS )

4NS 2HS )

6NS 3NS 0 5 2.5 )

NOR



Nl 22 37 2 3 4 NOR

N2 23 t 38 3 4 NOR

N3 24 37 38 3 4 NOR

N4 23 1 2 39 4 HOR

NS 26 37 2 39 4 NOR

H6 27 1 38 39 4 NOR

H7 28 37 38 39 4 NOR

H8 29 1 2 3 40 HOR

N9 30 37 2 3 40 HOR

N10 31 1 38 3 40 NOR

Nil 32 37 38 3 40 NOR

H12 33 1 2 39 40 NOR

N13 34 37 2 39 40 NOR

N14 33 1 38 39 40 NOR

N13 36 37 38 39 40 NOR

• LOGIC-TO-VOLTAGE CONVERTERS

VI 41 21 LTV

V2 42 22 LTV

V3 43 23 LTV

V4 44 24 LTV

vs 45 23 LTV

V6 46 26 LTV

V7 47 27 LTV

V8 48 28 LTV

V9 *9 29 LTV

VIO SO 30 LTV

vn SI 31 LTV

y 12 32 32 LTV

V13 S3 33 LTV

VI4 54 34 LTV

VIS S3 33 LTV

V16 36 36 LTV

• HODE CAPACITANCES

cs S C 0.08P

Co 6 C 0.08P

C7 7 C 0.08P

C8 8 C 0.08P

C9 9 C 0. 08P

CIO 10 c 0.08P

Cll 11 c 0.03P

C12 12 c 0.08P

C13 13 c 0.08P

C14 14 c 0.08P

CIS IS c 0.08P

C16 16 c 0.08P

CI? 17 c 0. 08P

C13 18 c 0.03P

C19 19 c 0.08P

CZO 20 c 0.08P

• ANALYSIS REQUESTS

OPTS 1 7.0

TOPTS 0.I 0.03 1000 0.1

TIME 2.ONS 800HS

PLOT 1, 2i 3, 4

PLOT 3. 6, 7, 8. 9, 10, 11/ 12

PLOT 13. 14. 15. IS. 17, IS. 19

GO

A7. 2



A7

Y-AXIS ONE-OF-SIXTEEH DECODER: TIMING ANALYSIS

3 ONS lOONS ONS 40HS SONS 90HS TOONS -1 )
3 ONS 20ONS ONS 90HS lOONS 190NS 209HS -1 )
3 ONS 400NS ONS 190NS 20ONS 390NS 400NS -1 )
3 ONS 800NS ONS 390NS 409NS 790NS 800NS -1 )
2.00 0.3 20U 0.7 0.6 0.0 3 100 )

I.00 -3 29U 0.7 0.6 0.0 3 100 )

1.30 0.3 20U 0.7 0.6 0.0 3 100 )

0.73 -3 20U 0.7 0.6 0.0 5 100 >

• MODELS

MODEL SO TSRCC 0

MODEL SI TSRCC 0

MODEL S2 TSRCC 0

MOOEL S3 TSRCC 0

MODEL !ORI NORIVC

MOOEL ILOD NLQADC

MODEL HOR ! NDRIVC

MODEL NLOD HLOAO<

MOOEL C GCAPR

* INPUT SOURCES
SO 1 SO

SI 2 s:

S2 3 S2

S3 4 S3
*

• INPUT INVERTERS
II 37 1 IDRI

12 38 2 IORI

13 39 3 IDRI
14 40 4 IDRI

LI 37 ILOD

L2 38 ILOD

L3 39 ILOD
L4 40 ILOD

* OUTPUT INVERTER

IS 3 21 IDRI
16 6 22 IDRI

17 7 23 IORI

IS 8 24 IDRI

19 9 23 IDRI
110 10 26 IDRI
111 11 27 IDRI
112 12 28 IORI

113 13 29 IORI
114 14 30 IDRI

113 13 31 IDRI

116 16 32 IDRI
117 17 33 IORI

118 18 34 IDRI

119 19 33 IORI
120 20 36 IORI

LS 3 ILOO
L6 6 ILOD
L7 7 ILOD
L8 8 ILOO
L9 9 ILOO
L10 10 ILOO
LU 1 1 ILOD
L12 12 ILOD

L13 13 ILOD
L14 14 ILOD

LIS 13 ILOD

LIS 16 ILOO

L17 17 ILOD

LIS 13 ILOD
L19 19 IL30

L20 20 ILOD
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C29

C30

C31

C32

C33

C34

C33

C36

C37

C38

C39

C40

29

30

31

32

33

34

35

3&

3?

38

33

40

0. 10P

0 . !0P

0 . 10P

0 . 10P

0 10P

0. SOP

10P

10P

08P

08P

08P

08P

NALY3I3 REQUESTS

3 1 7.0

TS 0.1 0.05

E 1.5NS 300NS

T 1 , 2. 3. 4

T 5. 6. 7, 8, 9,

1000 0. 1

10, 11, 12

* A

OPT

TOP

TIB

PLC

PLO

?L0 T 13, 14, 13, 16, 17 , 1 19, 20

GO

E.iD

A?



256-9IT RAHi HYBRID ANALYSIS (CIRCUIT, TIMING i LOGIC)

• MODELS

• INPUT S

MODEL AO

MODEL

MODEL

MODEL

Al

A2

A3

OURCE MODELS FOR A0DRSS3 LINES AND CLOCKS
LSRCC 0 1 ONS 200NS ONS 20NS 23NS 190NS 200HS -1
LSRCC 0 0 ON5 203NS 0N3 20HS 23N
L3RCC 0 < ONS 200NS OHS 20NS
LSRCC 0 0 ONS 200NS ONS

I90HS 200NS -1
23NS 190NS 20ONS -1
23NS 130NS 200NS -1

MOOEL

MODEL

MODEL

MODEL
•

MOOEL CU

MODEL C12

-10DEL ^V
MODEL DI

A4

A3

A6

A7

LSRCC 0 0 IONS 200NS ONS
LSRCC 0 I IONS 200NS OHS
LSRCC 0 1 IONS 20ONS ONS
LSRCC 0 0 IONS 200NS ONS

20NS

20HS

20HS

20NS

20NS

23NS 190NS 200HS -1 )
23HS 190HS 200HS -I )
23NS I90NS 200NS -1 )
23NS 190NS 200NS -1 )

A"

TSRCCI2 0 OH 20OH ON 2SN 28H 40N 43H 86N 90N 124N I27N 200H -I)
TSRCC 0 12 ONS 200HS ONS 33NS 36NS 127NS 130NS 200HS -I )
TSRCC 0 12 ONS 400NS ONS 190NS 200NS 390N3 4«0NS -I)
TSRCC 0 0 OHS 400HS ONS 190N3 20OHS 390HS 400NS -1 )

• T

NOD

HOD

HOD

MOD

MOD

•

• C

MOD

NOD

MOD

MOD

»

• H

MOD

MOD

IMING TRANSISTOR MODELS FOR DECODER AND I/O CIRCUITS
EL IDRI NDRIVC 2.00
EL ILOD HLOADC 1.00
EL TXSN NTXG ( 1.00
EL NSTG NTXG C 1.00
EL DRSN NDRIVC 1.00

0 3 20U 0.7 0.8 0.0 S
-5 20U 0.7 0.6 0.0 3
0.3 20U 0.7 0.6 0.0 5
0.3 20U 0.7 0.6 0.0 5
0.9 20U 0.7 O.S 0.0 3

100 )

100 )

100 )

100 )

100 )

IRCUIT TRANSISTOR MODELS FOR SENSE AMPLIFIERS
EL TX5L NMOSEC 3.00 0.3 20U 0.7 0 6 0 0)
EL TXSF NMOSEC 30.0 0.3 20U 0.7 0.6 0.0 )
EL TXSS NMOSEC I.00 0.3 20U 0.7 0.6 0 0 )
EL DSEH NMOSEC 20.0 0.5 20U 0.7 0.6 0.0 )

OOELS FOR OUMMY-SELECT OECOOERS
EL IHV IHV < 4HS 2HS )
EL NOR HOR C 4NS 2NS )

• LOGIC-TO-VOLTAGE CONVERTER AHO CAPACITOR HOOELS
MODEL LTV LTV C 6NS 3NS 0 3 2.3 )
MOOEL C GCAPR
«

• COLUMN DECODER
«

• AOORESS LINES? l-AO, 2-Al, 3-A2, 4-A3
•

• IHPUT INVERTERS
11 37 1 INV
12 33 2 IHV
Is 39 3 IHV
14

m

40 4 IHV

a

• NOR GATHS
NO 21 1 2 3 4 NOR
Nl 22 37 2 3 4 HOR
N2 23 1 38 3 4 HOR
H3 24 37 38 3 4 HOR
N4 25 1 2 33 4 NOR
.13 26 37 2 39 4 NOR
•16 27 1 38 39 4 NOR
H7 28 37 38 39 4 NOR
N8 29 1 2 3 40 NOR
M? 30 37 3 40 NOR



N10 31 1 38 3 40 HOR
Nil 32 37 38 3 40 HOR
M12 33 I 2 39 40 NOR
N13 34 37 2 39 40 HOR
N14 35 1 38 39 40 HOR
HIS 36 37 38 39 40 HOR

♦ LOGIC-TO-VOLTAGE COHVERTERS
VI 41 21 LTV

*2 22 LTV

43 23 LTV

44 24 LTV

43 23 LTV
46 26 LTV

47 27 LTV

48 28 LTV
49 29 LTV

V2

V3

V4

V3

V6

V7

V8

V9

V10 30 30 LTV
VII 31 31 LTV
V12 52 32 LTV
VU 53 33 LTV
V14 54 34 LTV
VIS 35 35 LTV
V16 36 36 LTV

* Y-AXIS ADDRESS DECODER AHD I/O SELECT
*

* J"JUT ADDRESS LIHES. 101-A4, 102-A5, I03-A6, 104-A7
* DATA IN: 161, DATA OUT« 162, R/H SELECT: 163

* I NPUT INVERTERS
11 137 101 IHV
12 138 102 IHV
13 139 103 IHV
14 140 104 IHV

* OUTPUT INVERTERS
15 1000 141 IDRI
16 1100 142 IDRI
17 1200 143 IDRI
18 1300 144 IDRI
19 1400 145 IDRI
110 1300 146 IDRI
111 1600 147 IDRI
112 1700 148 IDRI
113 1800 149 IDRI
114 1900 130 IDRI
115 2000 151 IDRI
116 2100 152 IDRI
117 2200 153 IDRI
118 2300 154 IDRI
119 2400 155 IDRI
120 2500 136 IDRI
L5 10O0 ILOD
L6 1100 ILOD
L7 1200 ILOD
L9 1300 ILOD
L9 1400 ILOD
L10 1300 ILOD
111 1600 ILOD
L12 1700 ILOD
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L13 1800 ILOO
L14 1900 ILOD
LIS 2000 ILOD
L16 2100 ILOO
LI? 2200 ILOD
L18 2300 ILOO
L19 2400 ILOD

L20 2500 ILOD
•

• NOR GATES

HO 121 101 102 103 104 HOR
HI 122 13? 102 103 104 HOR
H2 123 101 138 103 104 HOR
H3 124 137 138 103 104 HOR
H4 125 101 102 139 104 HOR
H3 126 137 102 139 104 HOR
N6 127 101 138 139 104 NOR
H7 128 137 138 139 104 HOR
H8 129 101 102 103 140 NOR
N9 130 13? 102 103 140 NOR
N10 131 101 138 103 140 NOR
HU 132 137 133 103 140 HOR
H12 133 101 102 139 140 NOR
H13 134 137 102 139 140 NOR
NI4 133 101 138 139 140 HOR
HIS 136 137 133 139 140 HOR
•

• LOGIC-TO-VOLTAGE CONVERTERS
VI 141 121 LTV
V2 142 122 LTV
V3 143 123 LTV
V4 144 124 LTV
V3 145 125 LTV
V6 146 126 LTV
V7 147 127 LTV

V3 148 128 LTV
V9 149 129 LTV
V10 130 130 LTV

VII 131 131 LTV
V12 132 132 LTV

V13 133 133 LTV
V14 154 134 LTV

V13 135 135 LTV
V16 156 136 LTV

• I/O RO«-SELECT TRANSMISSION GATES
Tl 1001 ISO 141 HSTG
T2 1101 160 142 HSTG
T3 1201 160 143 HSTG
T4 1301 160 144 HSTG
TS 1401 160 145 HSTG
T6 1501 160 146 HSTG
T? 1601 160 147 HSTG
T8 1701 160 148 NSTG
T9 1301 160 149 HSTG
TIO 1901 160 150 HSTG
Til 2001 160 151 HSTG
T12 2101 160 152 HSTG
TI3 2201 160 153 HSTG
Tl* 2301 160 134 NSTG
T15 2401 160 133 HSTG
T16 2S01 160 IS6 HSTG-

A7. 10



* DATA REAO/HRITE CIRCUITRY

TDI 161 160 163 HSTG

TOO 160 162 164 NSTG

IRU 164 :L63 IDRI

LRU 164 ILOD

C160 160 C 0. OSP

C162 162 C 0.08P

C164\ 164 C 0.08P

* DATA [Hii HODE 161, TIHIHG SOURCE
* DATA OUT:i HODE 162, VOLTAGE

* R/W SELTi
•

' HOOE 163, TIHIHG SOURCE

*

* NODE CAPACITAHCES

cs 1000 C 0.08P

C6 1100 C 0.08P

C7 1200 C 0.08P

C3 1300 C 0.08P

C9 1400 C 0.08P

CIO 1500 C 0. 08P

Cll 1600 C 0.08P

C 12 1700 C 0.08P

C13 1800 C 0.08P

C14 1900 -C 0.08P

C15 2000 c 0.08P

C16 2100 c 0.08P

CI? 2200 c 0.08P

CIS 2300 c 0.08P

C19 2400 c 0.09P

C20 2500 c 0.08P

< 12-URITE, O-READ )

» SEHSE ANP AND STORAGE DEVICES, ROW 1000

* LEFT 1BIT LINE: 1001

♦ RIGHT 1BIT LIHEi 1002

• STORAGE NODES: 1041

- R0« SELECT i 1000

* VDD •' 12

* SEHSE iflttP

TL1 10 1001 11 TXSL
TL2 10 1002 11 TXSL
T30 1001 1002 1000 TXSS
Trl 1001 1003 1002 TXSF

TF2 1002 1003 1001 TXSF

TTO 1003 12 DSEH

C01 1001 C 0. 8P

C02 1002 C 0. 8P

C03 1003 C 0. OIP

• DUMMY 1CELLS

COl 1001 1004 4 TXSH
C02 1002 1040 40 TXSH

CP1 1004 1000 DRSH

CP2 1040 1000 DRSH

CD1 1004 C 0.'OIP

C?2 1040 CO.'OIP

* STORAGE CELLS

1048 CLEFT), 1049 1056
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C41 1001 1041 41 TXSH
C42 loot 1042 42 TXSH

C43 1001 1043 43 TXSH
C44 1001 1044 44 TXSH
C45 1001 1045 43 TXSH
C46 1001 1046 46 TXSH
C4? 1001 1047 4? TXSH

C48 1001 1048 48 TXSH
C49 1002 1049 49 TXSH
CSO 1002 1050 SO TXSH
CS1 1002 1051 51 TXSH
CS2 1002 1052 52 TXSH
C53 1002 1053 S3 TXSH
C34 1002 1054 34 TXSH
C35 1002 1035 55 TXSH
CS6 1002 1056 56 TXSH
S41 1041 C 0.06P
S42 1042 C 0.06P

S43 1043 C 0.06P

S44 1044 C 0.06P

S4S 1045 C 0.06P

S46 1046 C 0.06P

S4? 1047 C 0.06P

S<8 1048 C 0.06P

S49 1049 C 0.06?

SSO 1050 C 0.06P

S51 1051 C 0.06P

352 1052 C 0.06P

S33 1053 C 0.06P

S54 1054 C 0.06P

S5S I05S C 0.06P

S36 1056 C 0.06P

SEHSE ANP AHO STORAGE OEVICES, ROW 1100

LEFT 8IT LINE:

RIGHT SIT LINE:
1101

1102

STORAGE NODES: 1141

R0« SELECT

VDD

SENSE AHP

LI 10 1101

L2 10 1102

SO 1101 1102 1100 TXSS
FI 1101 1103 1102 TXSF

F2 1102 1103 1101 TXSF

1100

12

11 TXSL

11 TXSL

TO 1103 12 DSEH
01 1101 C 0. 3P
02 1102 C 0. 8P

03 1103 C 0. OIP

DUNKY CELLS
01 1101 1104 4 TXSH

02 1102 1140 40 TXSH

PI 1104 1100 DRSH

PZ 1140 1100 DRSN

CI 1104 C 0 OIP

:-2 1140 C 0. OIP

STORAGE CELLS

41 1101 1141 41 TXSH

143 CLEFT), 1149
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C42 1101 1142 42 TXSH

C43 1101 1143 43 TXSH

C44 1101 1144 44 TXSH

C45 1101 1145 45 TXSH

C46 1101 1146 46 TXSH

C47 1101 114? 4? TXSH

C48 1101 1148 48 TXSH

C49 1102 1149 49 TXSH

C50 1102 1150 50 TXSH

C51 1102 1151 51 TXSH

CS2 1102 1152 52 TXSH

C53 1102 1153 S3 TXSH

C54 1102 1154 34 TXSH

C55 1102 1155 55 TXSN

CS6 1102 1156 56 TXSH

S41 1141 C 0. 06P

S42 1142 C 0. 06P

S43 1143 C 0. 06P

S44 1144 C 0. 06P

545 1145 C 0. 06P

346 1146 C 0. 06P

S4? 114? C 0. 06P

S48 1148 C 0. 06P

S49 1149 C 0. 06P

S50 1150 C 0. 06P

SSI 1131 C 0. 06P

SS2 1152 C 0. 06P

S53 1153 C 0. 06P

S54 1154 C 0. 06P

S55 1155 C 0. 06P

S56 1136 C 0. 06P

• SEHSE AHP AHD ST<BRAGE

* LEFT BIT LIHE: 1201

* RIGHT BIT LIHE: 1202

• STORAGE HODESl 1241

* SOU SELECT : 1200

* V(

* St

>D ! 12

•HSS AHP

TH 10 1201 11 TXSL

TL2 10 1202 11 TXSL
TSO 1201 1202 1200 TXSS

TFl 1201 1203 1202 TXSF
TF2 1202 1203 1201 TXSF

TTO 1203 12 DSEH

COl 1201 C 0. 8P

C02 1202 C 0. 8P

C03 1203 C 0. OIP

♦ DUHNY <CELLS

COl 1201 1204 4 TXSH

C02 1202 1240 40 TXSH

CP1 1204 1200 DRSH

CP2 1240 1200 DRSH

CD1 1204 C 0. OIP

CD2 1240 C 0. OIP

* STORAGE CELLS

C41 1201 1241 41 TXSH

C*2 1201 1242 42 TXSH

1248 CLEFT), 1249
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C43 1201

C-U 1201

C4S 1201

C46 1201

C47 1201

C48 1201

344

545 1245

546 1246

547 1247

548 1248

549 1249

550 1250

551 1251

552 1252

353 1233

S54 1254

553 1255

SS6 1256

1243

1244

1245

1246

124?

1248

C49 1202 1249

CSO 1202 1250

C51 1202 1251

CS2 1202 1232

C33 1202 1233
C54 1202 1254

CSS 1202 1233

C56 1202 1256
541 1241

542 1242

543 1243
1244

43 TXSH

44 TXSH

45 TXSH

46 TXSH

47 7XSN

43 TXSH

49 TXSH

50 TXSH

51 TXSN

52 TXSN

53 TXSH

54 TXSH

S3 TXSH

56 TXSH
06P

06P

06P

0 6P

06P

06P

06P

06P

06P

06P

06P

06P

06P

06P

06?

06?

• SEHSE AHP AHO STORAGE DEVICES, ROU 1300

LEFT 8IT LIHE: 1301
RIGHT 8IT LINE: 1302
STORAGE NODES: 1341
ROU SELECT : 1300
yOD : 12

SENSE AHP

10 1301

10

1301

1301

1302

1303

1301

1302

1303

- 1348 CLEFT). 1349 - 1356

TL1

TL2

TSO

TFl

TF2
TTO

COl

C02

C03

1302

11

11

TXSL

TXSL

1302 1300 TXSS

1303 1302 TXSF

1303 1301 TXSF

12 DSEH
C 0.3P

C 0.8P

C 0.OIP

* DUMMY CELLS

COl 1301 1304

1302 1340

1304 1300

4 TXSN

40 TXSH

ORSH

DRSH

C02

CPl

C?2 1340 1300

COl 1304 C 0.01P

C02 1340 C 0.01P

• STORAGE CELLS

C41 1301 1341 41 TXSH
C42 1301 1342 42 TXSH

C43 1301 1343 43 TXSH
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C44 1301 13 44 44 TXSN

C45 1301 13 45 45 TXSN

C46 1301 13 46 46 TXSH

C47 1301 1347 4? TXSH

C48 1301 1343 48 TXSH

C49 1302 1349 49 TXSN

CSO 1302 1350 50 TXSH

CS1 1302 1351 51 TXSH

CS2 1302 13S2 52 TXSH

C53 1302 1353 53 TXSN

CS4 1302 1354 54 TXSN

C53 1302 13 55 55 TXSN

C56 1302 1336 56 TXSN

S41 1341 C 0. 06P

S42 1342 C 0. 06P

343 1343 C 0. 06R

S44 1344 c 0. 06P

S4S 1345 c 0. 06P

S46 1346 c 0. 06P

S4? 1347 c 0. 06P

S48 1348 c 0. 06P

S49 1349 c 0. 06P

SSO 1350 c 0. 06P

S51 1331 c 0. 06P

S52 1352 c 0. 06P

S33 1353 c 0. 06P

334 1354 c 0. 06P

355 1355 c 0. 06P

SS6 1356 c 0. 06P

1449 - 1456

* SEHSE AMP AND STORAGE DEVICES, ROU 1400

• LEFT SIT LINE j :1401

* RIGHT 8IT LIHE: 1402

* STORAGE HODES: 1441 - 1448 (LEFT), 144

* R0« SELECT 1400

« voo

«

* SEHSE AHP

! 12

TL1 10 1401 11 TXSL

TL2 10 1402 11 TXSL

TSO 1401 1402 1400 TXSS

TFl 1401 1403 1402 TXSF

TF2 1402 1403 1401 TXSF

TTO 1403 12 DSEN

COl 1401 C 0.8P

CO2 1402 C 0.9P

C03 1403 C 0.01P

* DUMMY CELLS

COl 1401 1404 4 TXSN

C02 1402 1440 40 TXSN

CP1 1404 1400 DRSH

CP2 1440 1400 DRSH

CD1 1404 C O.OIP

CD2 1440 C O.OIP

* STORAGE CELLS

C41 1401 1441 41 TXSH

C42 1401 <442 42 TXSH

C43 1401 1443 43 TXSH

C44 1401 1444 44 TXSN
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C4S 1401 1445 45 TXSN

-*6 1401 1446 46 TXSN
C4? 1401 144? 47 TXSN

C48 1401 1448 48 TXSN
C49 1402 1449 49 TXSH

C30 1402 1450 50 TXSH

C?l 1402 1431 51 TXSH

C52 1402 1452 32 TXSH

C53 1402 1453 53 TXSH
C54 1402 1454 54 TXSH

CSS 1402 14S5 55 TXSH

CSS 1402 1456 56 TXSH
S41 1441 C 0.0 6P

S42 1442 c 0.06P

S43 1443 c 0.06P

S44 1444 c O.06P

S45 1445 c 0. 06P

S46 1446 c 0.06P

S4? 144? c 0.06?

S43 1443 c 0.06P

S49 1449 c 0.06?
S50 1430 c 0.06?

331 1451 c 0. 06P

S52 1432 c 0.06P

S53 14S3 c 0.06P

SS4 1454 c 0.06P

S5S 1453 c 0.06P

S56 1456 c 0.06P

• SEHSE AHP AND STORAGE DEVICES, ROM 1500

• LEFT BIT LINE" 1501

♦ RIGHT BIT L IHE : 1502

* STORAGE HODES i 1541

* ROW SELECT : 1500

• VDO : 12

• SEHSE AHP

TL1 10 1501 11 TXSL

TL2 10 1502 11 TXSL

TSO 1301 1302 1500 TXSS

TFl 1501 1503 1502 TXSF

TF2 1502 1503 1501 TXSF

TTO 1503 12 DScH

COl 1501 C 0.!9P

C02 1502 C O.iBP

C03 1503 C 0.'91P

* OUHflY CELLS

COl 1501 1504 4 TXSH

C02 1502 IS40 40 TXSH

CPl ISO* 1500 DRSH

CP2 1340 1500 DRSH

CD1 1504 CO.'0 IP

C02 1340 C O.iOIP

• STORAGE CELLS
C41 1301 tS4l 41 TXSH

C42 1301 1542 42 TXSH

C43 1301 1343 43 TXSN

C44 1501 1344 44 TXSN

C45 1301 i«45 45 TXSH
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C46 1501 1546 46 TXSN

C4? 1501 154? 47 TXSN

C48 1501 1548 48 TXSH

C49 1502 1549 49 TXSH

C50 1502 1550 50 TXSH

C51 1502 1551 51 TXSN

C52 1502 1552 52 TXSN

C53 1502 1553 53 TXSN

C54 1502 1554 54 TXSH

CSS 1502 1555 55 TXSH

CSS 1302 1556 56 TXSH

S41 1541 C 0.06P

S42 1542 C 0.06P

S43 1543 C 0.06P

S44 1544 C 0.06P

S45 154S C 0.06P

S46 1546 C 0.06P

S47 154? C 0.06P

S48 1348 C 0.06P

S49 1349 C 0.06P

SSO 1550 C 0.06P

S51 1551 C 0.06P

S52 1552 c 0.06P

S53 1553 c 0.06P

S54 1554 c 0.06P

S55 15 55 c 0.06P

S56 1556 c 0.06P

• SEHSE AHP AHD STORAGE DEVICES, ROW 1600

* LEFT BIT LIHE t 1601

♦ RIGHT BIT LIHE : 1602

* STORAGE NODES! 1641

* ROW SELECT I 1600

* VDD i 12

♦ SEHSE AHP

TL1 10 1601 11 TXSL

TL2 10 1602 11 TXSL

TSO 1601 1602 1600 TXSS

TFl 1601 1803 1602 TXSF

TF2 1602 1603 1601 TXSF

TTO 1603 12 DSEH

COl 1601 C 0.13P

C02 1602 C 0.18P

C03 1603 C 0.<HP

* DUMMY CELLS

COl 1601 1604 4 TXSH

C02 1602 1640 40 TXSH

CP1 1604 1600 DRSH

CP2 1640 1600 DRSH

CD1 1604 C O.iHP
C02 1640 C 0.(HP

• STORAGE CELLS
C'l 1601 1641 41 TXSH

C42 1601 1642 42 TXSH

C43 1601 1643 43 TXSH

C44 1601 1644 44 TXSH

C4S 1601 1645 45 TXSN

C46 1601 1646 46 t:<sn

1648 CLEFT), 1649
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C47 1601

C48 1601

C49 t602
CSO 1602

C51 1602

C52 1602

CS3 1602

C54 1602

C5S 1602 1655

C56 1602 16S6

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1634

1655

1656

S41

S42

S43

S44

S4S

S46

S47

S43

S49

S50

SSI

SS2

553

SS4

S55

S56

164?

1643

1649

16S0

16S1

1652

1653

1654

4? TXSH

48 TXSH

49 TXSN

50 TXSH

51 TXSH

TXSH

TXSH

TXSH

TXSH

TXSH

52

53

54

55

56

06P

06?

06P

06P

06P

06P

06P

06?

06P

06P

06P

06P

06P

06P

06P

06P

SEHSE AHP AHD STORAGE DEVICES, ROW 1700

LEFT BIT LIHEs 1701
RIGHT SIT LINE: 1702
STORAGE HOOES> 1741
ROW SELECT s 1700
VOD : 12

SEHSE AMP

10 1701

10 1702

1701 1702

1701 1703

1702 1703

TL1

TL2

TSO

TFl

TF2

TTO

COl

C02

C03

• OUHHY CELLS

COl 1701 1704

1702

1704

1740

1704

1740

11 TXSL

11 TXSL

1700 TXSS

1702 TXSF

1701 TXSF

C02

CP1

CP2

CD1

C32

1703

1701

1702

1703

12

C 0.8P

C 0.8P

C O.OIP

1740

1700

1700

C O.OIP

C O.OIP

OSEH

TXSH

TXSH

DRSH

DRSH

» STORAGE CELLS
C41 1701 1741

C42 1701 1742

C43 1701 1743

C44 1701 1744

C43 1701 1743

C46 l?OT 1746

C47 IrOl 174?

41 TXSH

42 TX3H

43 TXSH

44 TXSH

43 TXSN

46 TXSH

4? TXSH

1748 CLEFT), 1749 - 1756

A7. 18



C48 1701 1748 48 TXSH

C49 1702 1749 49 TXSH

C50 1702 1750 50 TXSH

C51 1702 1751 51 TXSH

C32 1702 1732 52 TXSH

C53 1702 1753 S3 TXSN

C54 1702 1754 54 TXSN

CSS 1702 1755 55 TXSN

C36 1702 1756 56 TXSN

S41 1741 C 0. 06P

S42 1742 C 0. 06P

S43 1743 C 0. 06P

S44 1744 C 0. 06P

S4S 1745 C 0. 06P

S46 1746 C 0. 06P

S4? 174? C 0. 06P

S48 1748 C 0. 06P

S49 1749 C 0. 06P

S50 1750 C 0. 06P

S51 1751 C 0. 06?

SS2 1752 C 0. 06P

S53 1753 C 0. 06P

S54 1754 C 0. 06P

555 1755 C 0. 06P

SS6

*

* SE

1756 C 0. 06P

:hse 1IMP AHD STORAGE

* LEFT 1SIT LINE) 1801

* RIGHT 1SIT LINE: 1802

* STORAGE NODES! 184 1

* ROW SELECT : 1800

* VDD » 12

* SEHSE lMP

TL1 10 1801 11 TXSL

TL2 10 1802 11 TXSL

TSO 1301 1302 1800 TXSS

TFl 1801 1803 1802 TXSF

TF2 1802 1S03 1801 TXSF

TTO 1803 12 DSEN

COl 1301 C 0. 8P

C02 1802 C 0. 8P

C03 1903 C 0. OIP

* DUHHY lCELLS

COl 1301 1804 4 TXSH

C02 1802 1840 40 TXSH

CP1 1804 1800 DRSH

CP2 1840 1300 DRSH

CD1 1804 C 0. OIP

CD2

*

* SI

1340 C 0. OIP

rORAG!E CELLS

C41 1801 1841 41 TXSN

C42 1801 1342 42 TXSH

C43 1301 13 43 43 TXSH

C44 1801 1344 44 TXSH

C45 1801 1845 45 TXSH

C46 1801 1846 46 TXSN

C4? 1301 1347 4? TXSN

C48 1801 1848 43 TXSH

1849 CLEFT), 1349

A7. 19

1836



C49 1802 1849 49 TXSH
C50 1302 1850 50 TXSH
C31 1802 1831 51 TXSH

C32 1802 1852 52 TXSH

C53 1902 1933 S3 TXSH
C54 1802 1854 54 TXSN

CSS 1302 1855 35 TXSH

C56 1902 1856 56 TXSH

S41 1941 C 0.06P

342 1942 C 0.06P

S43 1843 C 0.06P

S44 1844 C 0.06P

S4S 1345 C 0. 06P

S46 1846 C 0.06P

S47 184? C 0.06P

S43 1848 C 0.06?

S49 1849 C 0.06?

SSO 1850 C 0.06?

S51 1331 C 0.06?

SS2 1852 C 0.06?

S53 1333 C 0.0 6P

S54 1834 c 0.06P

sss 1833 c 0.06P

SS6 1836 c 0.06?

« SEHSE AMP AHO
0

STORAGE DEVICES,

• LEFT BIT LIHE:: :1901

• RIGHT BIT LIHE;« :1902

• STORAGE HODES: 1941 - 1948 CL

♦ ROW SELECT i 1900

« VDD : 12

• SEHSE AHP

TL1 10 1901 11 TXSL

TL2 10 1902 11 TXSL

TSO 1901 1902 1900 TXSS

TFl 1901 1903 1902 TXSF

TF2 1902 1903 1901 TXSF

TTO 1903 12 9SEH

COl 1901 C 0.8P

C02 1902 C 0.8P

C03 1903 C O.OIP

• DUMMY CELLS

COl, 1901 1904 4 TXSH

C02 1902 1940 40 TXSH

CPl 1904 1900 DRSH

CP2 1940 1900 DRSH

CDl 1904 C O.OIP1

CD2 1940 C O.OIP

• STORAGE CELLS

C41 1901 1941 41 TXSH

C42 1901 1942 42 TXSN

C43 1901 1943 43 TXSH

C44 1901 1944 44 TXSH

C4S 1901 1945 45 TXSH

C46 1901 1946 46 TXSH

C47 1901 I»4? 4? TXSH

C48 1901 1948 48 TXSH

C49 1902 1949 49 TXSH

ROW 1900

1949
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C50 1902 1950 50 TXSN

C51 1902 1951 51 TXSH

C52 1902 IS 52 52 TXSH

C53 1902 1953 33 TXSH

C54 1902 1954 54 TXSH

C55 1902 IS'55 55 TXSH

CS6 1902 1956 36 TXSN

S41 1941 C 0.06P

S42 1942 C 0.06P

S43 1943 C 0.06P

S44 1944 C 0.06?

S45 1945 C 0.06P

S46 1946 C 0.06P

S47 1947 C 0.06P

S48 1948 C 0.06P

S49 1949 C 0.06?

S50 1950 C 0.06P

SSI 1951 C 0.06P

S52 1952 C 0.06P

S53 1953 C 0.06P

S54 1954 C 0.06P

S5S 1955 C 0.06P

S56

*

1956 C 0.06?

• SEHSE AHP AHO STORAGE DEVICES, ROW 2000

- 2048 CLEFT), 2049

* LEFT BIT LIHE : 2001

♦ RIGHT BIT LIHE: 2002

♦ STORAGE HOOES : 2041

* ROW SELECT : 2000

* VDD
dj

12

• SEHSE ANP

TL1 10 2001 11 TXSL

TL2 10 2002 11 TXSL

TSO 2001 2002 2000 TXSS

TFl 2001 2003 2002 TXSF

TF2 2002 2003 2001 TXSF

TTO 2003 12 DSEH

COl 2001 C 0.9P

C02 2002 C 0.8P

C03 2003 C O.OIP

* DUMMY CELLS

COl 2C01 2004 4 TXSH

C02 2002 2040 40 TXSH

CP1 2004 2000 DRSH

CP2 2040 2000 DRSH

CD1 2004 C O.OIP

CD2 2040 c o.<)1P

* STORAGIE CELLS

C41 2001 2041 41 TXSN

C42 2001 2042 42 TXSN

C43 2001 2043 43 TXSN

C44 2001 2044 44 TXSH

C4S 2001 2045 43 TXSH

C46 2001 2046 46 TXSN

C47 2001 2047 4? TXSH

C48 2001 2048 48 TXSH

C49 2002 2049 49 TXSH

C50 2002 2050 50 TXSH
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CS1 2002 2051 51 TXSN

CS2 2002 2052 52 TXSN

C53 2002 20S3 33 TXSN

C34 2002 2034 54 TXSH

CSS 2002 2055 55 TXSN

CS6 2002 2056 56 TXSH
S41 2041 C 0.06P

S42 2042 c 0.06?

S43 2043 c 0.06P

S44 2044 c 0.06P

S45 2045 c 0.06?

S46 2046 c 0.06P

S4? 2047 c 0.06P

S48 2048 c 0.06?

S49 2049 c 0. 06?

SSO 2050 c 0.06P

S51 2051 c 0.06P

SS2 2052 c 0.06P

SS3 2053 c 0.06P

S54 2054 c 0.06P

S3S 2055 c 0.06?

S56 2056 c 0.06?

• SENSE AHP AHD STORAGE DEVICES, ROW 2100

- 2148 CLEFT), 2149

• LEFT BIT LINE: 2101

* 'RIGHT BIT LIHE: 2102
• STORAGE HODESi 2141
• ROW SELECT : 2100

• VOD : 12

• SENSE AH?

TL1 10 2101 11 TXSL

TL2 10 2102 11 TXSL

TSO 2101 2102 2100 TXSS

TFl 2101 2103 2102 TXSF

TF2 2102 2103 2101 TXSF

TTO 2103 12 DSEN

COl 2101 C 0.8P

C02 2102 C 0.3P

C03 2103 C O.OIPl

• DUHHY CELLS

COl 2101 2104 4 TXSH

C02 2102 2140 40 TXSH

CP1 2104 2100 DRSH

CP2 2140 2100 8RSH

CD1 2104 C O.OIPi

CD2 2140 C O.OIPi

• STORAGE CELLS

C41 2101 2141 41 TXSH

C42 2101 2142 42 TXSH

C43 2101 2143 43 TXSH

C44 2101 2144 44 TXSH

C4S 2101 2145 45 TXSH

C46 2101 2146 46 TXSH

C4? 2101 214? 47 TXSH

C48 2101 2143 46 TXSN

C49 2102 2149 49 TXSH

CSO 2102 2150 SO TXSH

CS1 2102 2151 51 TXSH

>r

A7 22
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C52 2102 2152 52 TXSH

C53 2102 2153 53 TXSH

C54 2102 2154 54 TXSH

CSS 2102 2135 55 TXSH

C56 2102 2156 56 TXSH

S41 2141 C 0. 06P

S42 2142 C 0. 06P

S43 2143 C 0. 06P

S44 2144 C 0. 06P

S4S 2145 C 0. 06P

S46 2146 C 0. 06P

S47 2147 C 0. 06P

S48 2148 C 0. 06P

S49 2149 C 0. 06P

S50 2150 C 0. 06P

S51 2151 C 0. 06P

S52 2152 C 0. 06P

S53 2153 C 0. 06?

S54 2154 C 0. 06P

S5S 2ISS C 0. 06P

S56 2156 C 0. 06P

* SEHSE i)HP AHD STORAGE

* LEFT 1JIT LIHE: i2201

• RIGHT 13IT LIHE! ;Z202

* STORAGE NODES: 2241

• ROW SELECT : :2200

* VDO : 12

* SEHSE i1NP

TL1 10 2201 11 TXSL

TL2 10 2202 11 TXSL

TSO 2201 2202 2200 TXSS

TFl 2201 2203 2202 TXSF

TF2 2202 2203 2201 TXSF

TTO 2203 12 DSEH
COl 2201 C 0. 8P

C02 2202 C 0. 8P

C03

*

♦ D(

2203 C 0. OIP

JHHY (CELLS

COl 2201 2204 4 TXSH

C02 2202 2240 40 TXSH

CP1 2204 2200 DRSH

CP2 2240 2200 DRSH

CD1 2204 C 0. OIP

CD2
0

2240 C 0. OIP

♦ STORAGE CELLS

C41 2201 2241 41 TXSH

C42 2201 2242 42 TXSH

C43 2201 2243 43 TXSH

C44 2201 2244 44 TXSH

C4S 2201 2245 45 TXSH

C46 2201 2246 46 TXSH

C47 2201 22 4? 4? TXSH

C48 2201 2248 48 TXSH

C49 2202 2249 49 TXSH

C50 2202 2250 50 TXSH

C31 2202 2251 51 TXSH

C32 2202 2252 52 TXSH
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CS3 2202 2253 53 TXSH

C34 2202 2254 54 TXSH

C53 2202 2255 55 TXSH

CS6 2202 2256 56 TXSH

S41 2241 C 0.06P

S42 2242 C 0.06?

S43 2243 c 0. 06?

344 2244 c 0.06P

S49 2245 c 0.06?

S46 2246 c 0.06?

S47 2247 c 0.06?

S48 2243 c 0.06P

S49 2249 c 0.06P

SSO 2250 c 0.06?

S51 2251 c 0.06?

SS2 2252 c 0.06P

SS3 2253 c 0.06?

S34 2254 c 0.0 6?

SS5 2255 c 0. 06?

SS6 2256 c 0.06P

• SEHSE ANP AHO STORAGE DEVICES, ROW 2300

- 2348 CLEFT), 2343 - 2356

* LEFT 8IT LIHEI: 2301

« RIGHT BIT LIHE:: 2302

• STORAGE HOOES : 2341

• ROW SELECT : 2300

• VOO : 12

• SENSE AHP

TL1 10 2301 11 TXSL

TL2 10 2302 1! TXSL

TSO 2301 2302 2300 TXSS

TFl 2301 2303 2302 TXSF

TF2 2302 2303 2301 TXSF

TTO 2303 12 DSEH

COl 2301 C 0.3?

C02 2302 C 0.3P

C03 2303 C O.OIPi

* DUMMY CELLS

COl 2301 2304 4 TXSN

C02 2302 2340 40 TXSH

CP1 2304 2300 ORSH

CP2 2340 2300 ORSH

COl 2304 C O.OIPi

CD2 2340 C O.OIPi

* STORAGE CELLS

C41 2301 2341 41 TXSH

C42 2301 2342 42 TXSH

C43 2301 2343 43 TXSN

C44 2301 2344 44 TXSH

C45 2301 2345 45 TXSH

C46 2301 2346 46 TXSH

C4? 2301 234? 4? TXSH

C48 2301 2348 48 TXSH

C49 2302 2349 49 TXSH

C50 2302 2350 30 TXSH

CS1 2302 2351 31 TXSH

C32 2302 2352 52 TXSH

CS3 2302 2353 53 TX9N
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C54 2302 2354

CSS 2302 2355

2302

2341

2342

2343

2344

2345

C56

S41

S42

S43

S44

S4S

546 2346

547 234?

548 2348

549 2349

550 2330

551 2351

552 2352

553 2353

554 2334

555 2355

556 2356

54

55

2356 56

C 0.06P

C 0.06P

C 0.06P

C 0.06P

C 0.06P

C 0.06P

06P

06P

06P

06P

06P

06P

06P

06P

06P

06P

TXSH

TXSH

TXSH

* SEHSE AMP AHD STORAGE DEVICES, ROW 2400

LEFT BIT LIHE: 2401

RIGHT BIT LIHEl 2402

STORAGE NODES! 2441

ROW SELECT : 2400

VDD i 12

• SENSE AHP

TL1 10 2401 11 TXSL

TL2 10 2402 U TXSL

TSO 2401 2402 2400 TXSS

TFl 2401 2403 2402 TXSF

TF2 2402 2403 2401 TXSF

TTO 2403

COl 2401

C02 2402

C03 2403

12

0.3P

0.3P

O.OIP

* DUMMY CELLS

COl 2401 2404

C02 2402

CP1 2404

CP2 2440

COl 2404

CD2 2440

2440

2400

2400

C O.OIP

C O.OIP

4

40

« STORAGE CELLS

C41 2401 2441 41

C42 2401 2442 42

C43 2401 2443 43

C44 2401 2444 44

C45 2401 2445 45

C46 2401 2446 46

C4? 2401 244? 4?

C48 2401 2449 48

C49 2402 2449 49

C50 2402 2450 50

C51 2402 2451 51

C52 2402 2452 52

C53 2402 2453 53

CS4 2402 2454 54

DSEN

TXSN

TXSN

DRSN

DRSH

TXSH

TXSH

TXSH

TXSH

TXSH

TXSH

TXSN

TXSN

TXSH

TXSH

TXSH

TXSN

TXSN

TXSH

2448 CLEFT), 2449 - 2456
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C55 2402

C56 2402

S41

S42

S43

544

S45

346

S47

S48

549

SSO

S51

2441

2442

2443

2444

2445

2446

2447

2448

2449

2430

2431

S32 2432

SS3 2453

S54

S55

S56

2454

2455

2456

2455 55

2456 36

C 0.06P

06?

06?

06P

06?

06?

06?

06?

06?

06?

06P

06?

06P

06?

06P

06P

TXSH

TXSH

* SEHSE AMP AHD STORAGE DEVICES, ROW 2300

LEFT BIT LIHE: 2301
RIGHT BIT LIHEJ 2302
STORAGE HODES: 2341
ROW SELECT t 2500
VDD i 12

- 2549 CLEFT), 2549 - 2556

• SEHSE AHP

TL1 10 2501 11
TL2 10 2502 11
TSO 2501 2502 2500
TFl 2301 2503 2502
TF2 2502

TTO 2503

COl 2501

C02 2502

C03 2503

• DUHHY CELLS

COl 2501 2504
C02 2502 2540

CP1 2304 2500

CP2 2540 2500

COl 2504 C O.OIP
CD2 2540 C 0.01?

2543 2501

12

C 0.8P

C 0.8P

C O.OIP

* STORAGE CELLS
C41 2501 2541

C42 2S01 2542

C43 2501 2543

C44 2501 2544

C4S 2501 2545

C46 2501 2546
2501 254?

2301 2548

C4?

C48

C49

CSO

C51

CS2

CS3

C34

CS5

2502 2549

2502 2550

2502 2551

2502 2552

2502 2333

2502 2354

2302 2333

SI

32

S3

54

35

TXSL

TXSL

TXSS

TXSF

TXSF

DSEH

TXSH

TXSH

DRSH

DRSH

TXSH

TXSH

TXSH

TXSH

TXSH

TXSH

TXSH

TXSH

49 TXSH

50 TXSN

TXSN

TXSN

TXSH

TXSH

TXSH
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C36 2502 2556 56 TXSH

S41 2541 C 0.06P

S42 2542 C 0.06P

343 2543 C 0.06P

S44 2544 C 0.06P

S4S 2545 C 0.06P

S46 2546 C 0.06P

S4? 254? C 0.06P

S48 2548 C 0.06P

S49 2549 C 0.06P

SSO 2550 C 0.06P

S51 2551 C 0.06P

S52 2552 C 0.06P

S53 2553 C 0.06P

SS4 2554 C 0.06P

SSS 2555 C 0.06?

SS6 2556 C 0.06P

* AHALYSIS REQUESTS

OPTS I 15.0

TOPTS 0. 1 0.OS 1000 0.1

TIME 1HS 300HS

PLOT• 1 2 3 14 101 102 103 104

PLOTr n :12 161 162 163 164

PLOT' 1600 1601 1602 1603 1646 1640 147 46 13

GO

EHD

A7
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SERIAL ARITHMETIC UNIT FOR DIGITAL FILTER
•

• SOURCE M00EL5

MODEL VDI TSRCC 7 7 ON I ON I -1 )
MOOEL VD2 TSRCC 12 12 ON- I OH I -I )
MODEL CXI TSRCC 12 0 ilOH 200H ON 103N U5H 1SOH 200N -1 )
MODEL CJC2 TSRCC 12 0 ION 200» OH I03N 113N 190N 200N -• )
MOOEL SIl TSRCC 0 12 30N 2.2U OU 1.S9U 1.6U 1.79U 1.3U 2.2U -I )
MOOEL SI2 TSRCC 0 7 30N 3.OU OU 1.99U 2.OU 2. 19U 2 2U 3 OU -1 )
HODEL VGH TSRCC 0 0 ON 1 ON 1 -I )
*

•HOSFET MODELS C TIHIHG )
HOOEL NOOl NTXG < I.OOOO 0.5 lOU 0.7 0.6 0.0 12 100 )
HODEL H002 HORIVC 4.5000 0.5 lOU 0.7 0.6 0.0 12 100 )
MODEL 1003 HLOAOC 0.8333 -5.3 10U 0.7 0.6 0.0 12 100 )
MODEL H004 NTXG C 2.2500 0.5 lOU 0.7 0.6 0.0 12 100 )
MOOEL N005 HDRIVC 2.2300 0.3 10U 0.7 0.8 0.0 12 100 )
MOOEL 1006 NLOADC I.3000 -3.3 lOU 0.7 0.6 0.0 12 100 )
MODEL 1007 NTXG C 1.3000 -3.3 lOU 0.7 0.6 0.0 12 100 )
HOOEL N010 HDRIVC 7.2300 0.3 10U 0.7 0.6 0.0 12 100 )
HODEL HOll HDRIVC 6.3000 0.3 lOU 0.7 0.6 0.0 12 100 )
MODEL 1012 HLOAOC 1.5667 -3.3 10U 0.7 0.6 0.0 12 100 )
MOOEL 1013 HLOAOC 0.3333 -3.3 10U 0.7 0.6 0.0 7 100 )
MODEL H014 NDRIVC 3.7300 0.3 10U 0.7 0.6 0.0 12 100 )
HODEL N015 HDRIVC 4.0000 0.3 lOU 0.7 0.6 0.0 12 100 )
MOOEL 1016 HLOAOC 0.6230 -3.3 lOU 0.7 0.6 0.0 12 100 )
MODEL N017 HORIVC 3.0000 0.5 IOU 0.7 0.6 0.0 12 100 )
HODEL 1020 HLOAOC 0.4345 -3.3 10U 0.7 0.6 0.0 12 100 )
MODEL N021 NDRIVC 2.7300 0.3 10U 0.7 0.6 0.0 12 100 )
HODEL H022 HORIVC 3.3000 0.3 lOU 0.7 0.6 0.0 12 100 )
HOOEL 1023 HLOAOC 0.3346 -3.3 lOU 0.7 0.8 0.0 12 100 )
MODEL H024 HORIVC I.OOOO 0.3 IOU 0.7 0.6 0.0 12 100 )
MOOEL N023 HORIVC 2.5000 0.5 lOU 0.7 0.5 0.0 12 100 )
MODEL 1026 HLOAOC 0.4543 -5.3 lOU 0.7 0.6 0.0 7 100 )
HODEL N027 NTXG C 1.2500 0.5 lOU 0.7 0.6 0.0 12 100 )
HOOEL 1030 HLOAOC 0.416? -5.3 lOU 0.7 0.6 0.0 7 100 )
HODEL N031 NDRIVC I.230* 0.3 lOU 0.7 0.6 0.0 12 100 )
HODEL 1032 HLOAOC 0.62S0 -5.3 10U 0.7 0.6 0.0 ? 100 )
MOOEL 1033 HLOAOC 0.5000 -5.3 1OU 0.7 0.6 0.0 7 100 )
HOOEL 1034 HLOAOC 0.5000 -5.3 10U 0.7 0.6 0.0 12 100 )
HOOEL H035 HORIVC 5.0000 9.5 10U 0.7 0.6 0.0 12 100 )
MODEL 1036 HLOAOC 0.7143 -5.3 1OU 0.7 0.6 0.0 12 100 )
MOOEL 1037 NTXG C 0.8333 -5.3 lOU 0.7 0.6 0.0 12 100 )
HODEL N040 HORIVC 3.2500 0.5 10U 0.7 0.6 0.0 12 100 )
MODEL 1041 HLOAOC 0.5356 -3.3 10U 0.7 0.6 0.0 7 100 )
HOOEL 1042 HLOAOC 0.4167 -5.3 10U 0.7 0.6 0.0 12 100 )
HODEL H043 HDRIVC 6.00aO 0.3 lOU 0.7 0.6 0.0 12 100 )
HOOEL H044 HORIVC 1.7500 0.5 lOU 0.7 0.6 0.0 12 100 )
MODEL H045 HORIVC 4.2500 0.5 10U 0 7 0.5 0.0 12 100 )
MODEL H046 NDRIVC 7.0000 0.5 lOU 0.7 0.6 0.0 12 100 )
MODEL 1047 HLOAOC 0.5556 -5.3 IOU 0.7 0.6 0.0 12 100 )
MODEL 1050 HLOAOC 0.2632 -5.3 IOU 0.7 0.6 0.0 12 100 )
MODEL 1051 HLOAOC 1.0000 -5.3' IOU 0.7 0.6 0.0 12 100 )
HODEL 1052 HLOAOC 0.3846 -5..3 IOU 0.7 0.6 0.0 7 100 )
HODEL H053 HTXG C 4.7500 0.5 IOU 0.7 0.6 0.0 12 100 )
MOOEL H054 HORIVC 5.7300 0.5 IOU 0.7 0.6 0 0 12 100 )
MODEL H035 NTXG C 0.8750 O.S IOU 0.7 0.6 0.0 12 100 )
MOOEL 1056 HLOAOC 0.71*3 -3.3 IOU 0.7 OS 0.0 7 100 )
MODEL N037 HDRIVC10 . OOOO 0.5 IOU 0.7 0.6 0.0 12 100 )
MODEL 1060 HLOAOC 1.165? -5.3 IOU 0.7 0.6 0.0 7 100 )
MOOEL 1061 NLOADC 1.6000 -S.3 IOU 0.7 0.6 0.0 7 100 )
MOOEL 1062 HTXG C 0 5000 -3.3 1OU 0.7 0.6 0.0 12 100 )
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M0552 2 00 1030

M0553 200 214 N022

H0554 215 200 33 H001

H0S55 216 215 H02 2

H0556 217 216 82 N001
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H0563 221 219 H022

MOS64 221 1026
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M0367 223 222 33 HOO!
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M0376 227 229 H015

M0577 81 231 H057

M0600 228 230 H021

H0601 229 223 82 H001

M0602 230 226 83 NOOi

H0603 231 232 82 N001
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H0613 96 264 H015
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H061? 239 238 H005

N0620 240 239 H025

H0621 240 2?4 H005

M0622 241 242 N005

H0623 242 225 H005
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M0627 243 218 33 NOOI

M0630 244 243 N022

M063I 245 244 32 NOOI

N0632 244 1030
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H0633 24? 246 83 NOOI

M0636 243 247 N022

M063? 249 243 82 NOOI

M064O 248 103 0
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APPENDIX 8

MOTIS-C: A New Circuit Simulator for MOS LSI Circuits

Presented at the 1977 IEEE International Symposium on Circuits and Systems,

Phoenix, Arizona, April 1977.
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MOTIS-C:ANEWCIRCUITSIMULATORFORMOSLSICIRCUITS

S.P.Fan,M.If.Ksueh,A.R.Newtonand0.0.Pederson

DepartmentofEle-ctricalEngl
UniversityofCillfornl*,

neeringandComputerSciences
Berkeley,California94720

Theprogramstoresallcircuitnodevoltageson
adiscfilewhichIslaterinterrogatedbythe
outputmoduleofMOTIS-C.Atpresent,line-
printerplotsofvoltagewaveformsareavailable
andKOTIS-Ccan.senddatatoanHPV330programmable
calculatorforoff-li;ieploctingofanX-Yplotter
oraTektronixgraphicsdisplay.

Performanceoftheprototypeprogramindicatesup
to2,500gatescanbeanalysedinU0Koctal
memoryontheClKe-iOOcomputeratBerkeley,with
anaveragecenrralprocessortimeofunder0.5aa
pergateforeachtimepoint.Improvementsof
uptooneorderofmagnitudeareexpectedasthe
programisfurtherrefined.Itsimuldalsobe
notedthatincontrasttoconventionalcircuit
simulatorstheanalysistimeofMOTIS-CIncreases
almostlinearlywithcircuitsize.
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Abstract

Recentlyanewtypeofcircuitslaulator.MOTIS,
wasreportedfordieefficientsimulationoflarge-
scale,integrated.MOSlogiccircuits.Anew
versionofthistypeofprogram,MOTIS-Chas
beendevelopedemployingseveralnewanalysis
techniquesevolvedfromthoseusedinMOTIS.The
programtakesdatainputatthelogicgatelevel
andplotstime-uomainwaveformsatseleocedout
putnodes.TheeffecKvencssofsimulatinglarge
logiccircuitsreliesondirectsolutionmethods
ateachtimepoincandatablelook-upschemefor
theevaluationofnon-lineardevicecurrents.

TheprogramIswritteninFORTRAN,hasaSPTCS-
likeinputlanguageforuserconvenienceandthe
detailsofgatesaremacrocodeledtominimize
computation.

Preliminaryresultsindicatethespeedandcircuit
sizecapabilityofMOTIS-Careovertwoordersof
magnitudegreaterthanthoseofconventional
tlne-dorsaincircuitsimulatorssuchasSPICE2.

1.Introduction

TherecentlyannouncedprogramMOTIS[1]isanew
typeofcircuitanalysisprogramdesignedexplicitly
forthesimulationoflarge-scaleMOSintegrated
circuits.MOTISwaswritteninassemblylanguage
onanHP2100minicomputer.Manyoftheanalysis
techniquesusedinMOTIShavebeenadaptedfor
useinanewversionofthistypeofprogram,
MOTIS-C(California).MOTIS-Csimulatescircuits
atthedevicelevelbutthemethodusedfor
propagatingvoltagesignal*fromnodetonodeis
similartothatusodInlogicsimulators.The
resultistime-domainw.v.efonssproducedatmuch
higherspeedsthanconventionalcircuitsimulators
suchasSPICS2[2.3J.MOTIS-Ciswrittencompletely
inFORTRAN'andatpresentIsbeir.grunonthe
CBCfc'.QOcomputerattrioUniversityofCalifornia,
Berkeley.MOTIS-Cdonsnotrelyonthe60-bit
wordavailableonCDCrnc'ilnes,andcouldberun
onaminicomputeraiturminorprogrammodifica
tions.'

MOTIStsaproprietaryprogramwithinBell
Laboratories,MurrayHill,.'".J.However.MOTIS-C
is.ivail.-ibleinthepublicdomain.Interested
partiesshouldcontactProfessor0.0.Pedurson
attheaboveaddress.
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Fig.1TypicalMOTIS-CInputData.

2.CircuitOescripcion

An(ntprratcdcircuitisdescribedtotheprogram
by.1setofrlai;»rcrordsverysimilartothose
usedInProgramST;.'.£;.(Anexampleofaninput
filetoM0TI5-CisincludedasFig.I.)Each
circuitelementisalm;icgateconsistingofa
ci'llectU'iofMOSdevices,hencetheterm

t%



macromodel, the parameters of which are described
usluy a MODEL statement. Floating capacitor.-,, as
well as grounded capacitors, are included so chat
bootscrapping and dynamic logic tamllli-s can be
analyzed.

The non-linear device tables are generated by
M07IS-C using a modified I'crm of the Frohmann-Grove
MOSFL'T equations [4j. These tables are written on
a (lie wiilch can be saved on disc. They arc
automatically attached and niav be used by the pro
gram during later analyses. The input and out
put capacitances lor the gate ir.acrninodiUs are

obtained by cvmp.irlng swltchliiK simulations on
SPICKS and MOTIS-C and Chen choosing the

.appropriate values to match the results.

3. Program Structure

The program is written in a modular style with a
main program calling three sub-programs in sequence.
All modei and device data is stored in labeled

common blocks with a format decided during the
read-in phase. To improve program speed during
analysis, the program bypasses any macromodel
whose driving voltages have not changeJ significant
ly over the past two tiaepolnts. It also writes
only node voltage changes to the output file for
later interrogation by the post-pruccssor.

4. Table Functions for Nonlinear Elements

For each nonlinear device type, MOTIS-C stores a
table of output currents which Is indexed directly
by the appropriate combination of controlling
voltages. Circuit voltages are scaled to permit «
direct indexing from rounded no.ie voltages; for
MOS devices and positive supply voltage is
scaled to an Internal voltage of 50 volts. In
order to allow a limited range of capacltive boot
strapping, the device tables are stored for
controlling-voltage values to twice the positive
supply voltage.

Load devices are indexed directly by their independ
ent node voltage as in MOTIS. Driver and transfer
gate currents are more difficult to calculate.

Fig. 1(a) shows a typical device with Its three
controlling voltages. MOTIS uses a two-dimensional
array, Indexed by both V„s and \'dg, and a one-
dimensional back-gate bias table to modify the
final current in accordance with back-gate thres
hold shift. In MOTIS-C, however, 100-entry one-
dleenslonal tables arc used fcr all device

characteristics. A vector of Id's, Indexed by
VJs at the highest expected jjate voltage, V„s(nuix),
a vector of output conductances for 100 different
gate voltages up to Vgg(max) and a back-gate bias
vector are stored.

Drain currents at any gate voltage below VfiS(max)
are obtained by an origin shifting operation
on the single stored characteristic:

vw - VV™50, v«»+ 4V)
- ld(V;s(max), aV) (i)

where

AV V (max)
8« gs (2)
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Thi- drain characterIstlcs of a real device and
those gem-rati-d by the orofcra:-. using the above
tran.ilorxution .ire compared In Fig. 2(b).

•H
Jl'a-

gs

-49 V

TV
ds

Fig. 2a MUSFUT Transfer l)r>vli*e

FiR. 2b Comparison of MOTIS-C MOSFET model and a
typical device

5. Macromodeling of Logic Gates

At present. MOTIS-C has three logic gate macromodels,
the ANDrOR-INVERT, OR-AND-INVERT, and the transfer
gate. (The AND-OR-INVERT and OR-AND-INVERT
structures are shown in Fig. 3.) While these gates
art analysed using techniques very similar to
those used in MOTIS [lj, the transfer gate macro-
modc1 presents a more difficult problem. Since
the device current is a function of two independent
quantities, a set of two simultaneous equations
must be solved at each timepoinr, which in turn
would substantially increase solution time.

The transfer gate may he represented as a nonlinear,
voltage controlled current source is shown in
Fig. 4(a), with nodes (1) and (2) as the controlling
nodes:

f(V1 - V2) - f(x)

• I + C Ax - I T q (iV
n+l Tn T T„ T l

"T "l '?' " ***' t3>

A first-older Taylor series expansion vields:

£V,)

(4)



where

CT -51 and ox -AV -dV (5)

At node (1), Equation (4) may he rewritten as:

XVi *VVi +"*« " w <6>
The equivalent circuit of Fig. 4(b) may be used
to represent this equation. Since AVi is not
kttewn at this sta^e, rather than use Eqn. (6),
an explicit substitution is made for iV^:

'Vl *VVl +UT "W
where

<5V • V
2 2

n-1

(7)

(8)

A similar process is carried out ac node (2) and
the resulting equivalent circuit for the 4V's is
shown in Fig. 4<cl. The equations are now de
coupled and say be solved separately.

Fig. 3a OR-AND-INVERT Gate Struecure

Fig. 3b AN0-OR-INVEST Gate Structure

»,

l«»

Fig. 4 Transfer Cace Models

in
IUI

702

A8.4

6. Analysis Algorithms

MOTIS uses the backward Euler method, a first-
ordar mvthod, for Integrating the capacitor
equation::. Previous programs of this type have
used the inherently unstable forward Sulor uethod.
MOTIS-C use.« TrapciolJal Integration, a second-
order method, uhlch requires the saving of
capacitor currents and only one more subtraction
at each iteration. MOriS-C solves for incremental
node voltages at each tImepolnt using nodal
analysis, internal circuit voltages, capacitors
and devtce look-up tables are scaled to permit
the tables to be indexed directly by rounded node
voltages.

While MOTIS-C is similar to MOTIS in that It uses
only one iteration per timepoint, it maintains
accuracy by automatically selecting a timestep
to limit the maximum AV at each node. Fortunately,
as the gate output reacnes either the positive
or negative suj.ply voltage, accumulated voltage
errors are lost and the accuracy of the simulation
is enhanced.

Floating capacitors cannot be handled using
the decoupling process described for the transfer
gate. The decoupling scheme results in a stable
but inaccurate integration method. Instead, the
two simultaneous equations describing the
capacitor node villages are solved directly. By
insuring that the integration step size Is less
than the zero-valued time constant at each
capacitor node, the number of long operaclons for
an accurate solution at each timepoint may be
reduced to 6 per floating capacitor, significantly
reducing the overhead.

7. Tiaestep Selection

At present MOTIS-C does not use automatic tiaestep
control during analysis, because most conventional
tiaestep control scneaes are too expensive. How
ever the program does select an internal timestep
during the equation steup phase prior to analysis.
As the program accumulates the node capacitances,
lc saves the value of the smallest node capacitance
it finds. Cmln, at any node other than a source
node. The maximum node voltage swing, V^g, is
estimated from the positive end negative supply
voltages and the maximum gate pulldown current,
•max* ls obtained from the driver table. The
program then computes an internal tlmestep, h,
using:

C . aV

h> alT "" (9)

where

aV F.V (10)

F ls an empirical constant chosen to maintain the
difference between S7ICS2 and KOTIS-C output
waveforms at less than 10Z for most circuits,
while maximizing the speed of KOTIS-C.

8. Simulation Results

Table (1) shews a comparison between SPICE2 and
MOTIS-C for two typical logic circuits. In both
cases, SPICF.2 was using assembly language routines



on toe CDC6400 computer to solve the set of linear
equations at each Ncwton-R.iphb:>u iteration. It
should be notei cti.it in the <>-blt adder example,
the SPICE2 slt-ulation was performed on a Cyber 73
and not on the- Berkeley CDC6400. MOTIS-C uses
fixed length arrays for data storage. In both
thebe examples, a substantial amount of storage
resialned for more elements and MOTIS-C was over

two orders of magnitude f..stcr than SPICE2 for
10X accuracy in the node voltage waveforms.

A8.5

CIRCUIT

SPICE 2 MOTIS-C

Number of

M0SF-1S

lierat ions CPU Tlmc(s) Number of

Gates

Analysis

Points

CPU Time (s)

Timepoints Memory (Kft) Memory (K„)

Binary-to-
Octal

Decoder

48

1883 359
17 200

1.95

422 120 27

4-bit

NMOS Binary
Adder

ioa

14S6S 643S

36 2200

36.4

3305 150 27

Table 1: SPICE 2 and MOTIS-C Comparison for two typical circuits.

Conclusions

MOTIS-C has displayed a definite speed and size
advantage over conventional circuit simulation
programs for a special class of integrated
circuits, namely MCS digital LSI circuits. The
analysis techniques rely on saturating devices,
repetitive structures such as gates and a relative
ly low circuit connectivity.

For handling circuits of this size, both convenient
data input schemes and output data processing
techniques must be employed. For this reason,
MOTIS-C allows repetitive post-processing of data
within the large computer or on an off-line.
Intelligent terminal. Ease of program modification
ls also most Important and the modular structure
and FORTRAN language of MOTIS-C permit the addition
of new macromodels without detailed knowledge of
the entire program operation.
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ANALYSIS TIKE, ACCURACY AHD MEMORY REQUIREMENT TRADEOFFS IN SPICE2

A. R. Newton and 0. 0. Pederson

Department of Electrical Encln««rlnR and Computer Sciences
and the Electronics Xvsearch Laboratory

University of California, Serkeley, California 94720

Ab«tr»ct

SPICE2 has proven to be an effective electronic circuit slouiatlon program. Nonetheless,
needs exist for faster computational performance and the ability to simulate economically
larger circuits, especially large MOS circuits. Tradeoffs are necessary between iccuracy
and aemorv with circuit sise and between accuracy and computational speed. For a bench-
oarx example of a blnary-to-octal decoder, the above aspects are illustrated. la additloa,
computational time that ls required for different levels of device models is illustrated
together with the savings achieved using a device bypass scheme and table lookup models.

1. INTRODUCTION

Many decisions must be made in the design of an elec
tronic circuit simulation program which are based on
the types of circuits the program is Intended to »ira-
uiate and the computer'on which the program ls to be
executed. As circuit and device types and computers
change, it ls necessary to review these decisions and
make adjustments and improvements where possible.

ST1CS2 [1], (2] is anintegrated-clrculc simulation
program which performs dc operating point, transfer
curve and sensitivity analyses, small-signal ac, noise
•nd low-level distortion analyses, and large-signal
nonlinear time domain transient analysis. SP1CE2 was
written for a C3C6400 computer with 40000 words of
available memory. Increasingly, a large percentage of
both the instructional and research use of the program
ls for the time-domain analysis of large. MOS trans
istor circuits. These analyses prove to be relatively
expensive.. Therefore it ls worthwhile to identify the
areas where most of the computational effort is being
expended la the program, reducing this cost where
possible. For large circuits, central memory size ls
also limited. Most computer systems have either a
liu.it on maximum memory partition size or apply a
surcharge to the analysis cost based on the amount of
memory used.

SPICE2, slnee its release In 1975, has proven to be an
effective integrated-clrculc simulator. As expected,
nodiflcations and additions have been made since its

release to improve its effectiveness, repair and correct
inevitable bugs. etc. Further, we are faced with a
continuing need for faster performance and the ability
to handle larger circuits.

For economic reasons, there have to be tradeoffs between
accuracy and circuit size, and between accuracy and
computational speed. In addition, tradeoffs are nec
essary between the memory requirements necassary for
new features and the ability to handle large circuits
for a given computer capability.

In this paper a detailed breakdown of-these factors Is
presented for SPICS2. Computational tine that ls
required for different levels of nonlinear electronic

device noddling is developed tor both MOS and bipolar
devices as well as models including cable look-up
schemes. The effects and savings of device-level by
pass schemes are evaluated. Finally, the cost of
extensive user oriented features now available la

SPICE2 ls described in terms of required memory and
speed.

CH131S-1/78/O000-0OC6SOO.75 (c) 1976 IEEE

2. DATA STORAGE

SPICZ2 provides built-in models for circuit elements
which can be included. The parameters for all active
device oodcls may be modified during the input phase
but in Kuneral the some aodei is usttd for sany device*.
For this reason tn* device storage requirements
dominate the total input data storage. Table 1 contains
a summary of the CDC6400 60-bit words required for
typical devices. Each device requires a number of
words to store a aodel pointer, deviee-dependene
parameters, such as resistor value cr a M0SFET channel

length, and aolnters to she locations In the Modified
Nodal Analysis (MNA) matrix in which the device circulc-
aodei elements are included. These pointers are used
during the analysis to save the search else otherwise
required to find tne corresponding diagonal and off-
diagonal entries In the matrix. The number of words
used by each device far these functions ls shown la
the second column of Table 1.

element cev ice four stole total

storage vectors uords

resistor 14. 8 14 .

capacitor 12 8 20

inductor 14 8 22

vol lege source 16 8 16

current source !1 8 11

8JT 3S S6 9!

MOSFET 45 88 133

JfET 39 52 82

DIODE 23 20 40

Outputs: words = Cnoutp+l)»nufflttp

Codgen = words =2.5 »iops
Table 1 Storage Requirements la SPXCE2D.8.



For the trapezoidal integration scheme used in SPICE2,
four past Iteration values of capacitor charges and
Inductor fluxes .ire usee to estimate the local trunca
tion error and compute the next timestep value. This
information, toisether with past copies of device branch
voltages, partial derivatives and other Information ls
stored In the "state vector". The storage required for
Che four past state vectors used by each device ls
shown In the third column of Table 1 and the total
storage requirements for each device ls Included in the
last column.

The derivatives and other information mentioned above
are used to reduce node I evaluation tlr.c by allowing a
device to be "bypassed" If Its branch voltages have noc
changed significantly since the last Siewton-Raphson
iteration. In bypass, the partljl derivatives and
currents evaluated at the last iteration are simply
reloaded Into the MNA matrix and right-hand side vector.
Fer digital circuits, thl* technique proves very
valuable as ls shown later. For MOSFETS the bypass
scheme uses 32 words/device in the present implementa
tion. This storage could be reduced to 8 words/device
without altering program performance.

Experiments with SPICE2 have shown that truncation error
estimation for timestep control ls of limited value in
digital circuits and that the alternative method of
Iteration count is often more effective [1]. With
Iteration count timestep control only three state
vectors are required by the program in its present form
and another 22 words/device are saved.

SP1CE2 stores its outputs in central memory. The
aeoory used for this storage is prohibitive for large
circuits, e.g., a circuit with greater than hundreds
of devices. The total number of storage words required
ls equal to the number of user-requested output
variables (noutp) plus one. times the total number
-of converged time-points (nuattp) as shown in Table 1.

The program also has the facility to generate loopiess
machine code for the factorization and solution of the
HNA equations. As indicated in Table 1, the memory
used for this code is directly proportional to the
number of operations performed during the solution
process.

3. EXAMPLE: THE BINARY-TO-OCTAL DECODES

Speed and memory tradeoffs that can be achieved in
SPICE2 are Illustrated based on the transient analysis
of the MOS circuit shown in Fig. 1. This circuit can
be implemented with 48 MOS devices and provides 35
equations in SPICE2. The transient waveform outputs
for the benchmark run are shown in Fig. 2. The input
excitations are chosen co keep a portion of the circuit
changing at all times.

The central memory required by the program for this
Circuit is summarized in Table 2. The element and
output storage requirements dominate the total data
storage. The generated machine code does not produce
a significant overhead in aeoory usage.

4. MODEL COMPLEXITY VERSUS SPEED

There are three MOS models available la SPICE2D.8.
The most complex of the three (M0S3) la based on the
formulation of ElMansy and Boothroya [31* The M0S2
model is faster to evaluate. It ls based on the work
of a number of authors and is described in detail in
[It]. The sietplcst model, MOSI. is similar to the
Shlchman and lindr.es model as Irapluircr.tud In SPICE1
[1]. Both M0S2 and MOS3 contain voltaic-dependent
capacitors to model thin-oxide charge ntorage while
MOSI contains only constant capacitors.
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3>
Fig. 1 Btaary-to-Octal Decoder.

0.0
TIX* (ZOaa per tie*) '

Fig. 2 Outputs of Binary-to-Octal Decoder for bench
mark run.

total percent

words

Elements 7508 58

Outputs 3200 25

Codgen 1100 8

Others 1200 9

Total S3000 00

Table 2 Storage requirements for Binary-to-Octal
Decoder.



Table 3 shews the model evaluation time per device per
Iteration (cp/d/lt) and the percencacc of total time

moaol cp/d/it /'icp •l/tp cp/pp cp/pp

Cms) 1ood over q <m> norm

GP 2.9 8t 4.S 2.6* 12'
EM! 2.3 77 4.7 2.3* IS*
M0S3 9.8 88 •3.7 2.2 10

M0S2 4.3 79 3.1 1.3 6

MOS! 3.7 78 4.1 8.9 4

M0S8 9.24 21 4.6 8.22 I
..J
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by the parameter RELTOL. which determines the point
of convenience. If the number of Iterations required
to converge exceeds 10, (lie timepoint ls uncondition
ally rejected and the timestep Is cut. Otherwise as
estimate nt the local truncation error (LTE) Incurred
for c.ip.icitor currents .md Inductor voltac.es ls com
puted and cos-pared to the maximum permitted value.
if this test falls the timestep is also-cut. For
stiff linear or "weakly nonlinear" circuits, the LTE
stepsite control is essential to maintain reasonable
accuracy. For hichlv nonlinear circuits, however, the
iteration count stepsize eontrol can provide comparable
accuracy in voltage waveforms at ouch lass cose.

A comparison of waveform accuracy and central processor
time using both iteration count alone and iteration
jcounc with LTE, plotted against RELTOL. is shown la
Fig. 3. Run time ls normalized to the program default

100.

1.0 10.0 100.0
KELT0L (pererat)

O kmomm vomer two*, ivaxnca cower (x>

O KMCUIUM VOLTACC EHL0R. tTt (X)

x xeurive cenrju. -rockso* tike, tit co
+ relative ccrrrja F*eccssoft ri:e, te (X)

£ FUCC-TACt Of !-0SCl CVAUMrtOttS VHia
•XSW.TI0 tN A BYFASS, US

3 Program performance for different convergence
criteria.

•normalized by device count C48/88)
ep : centra! processor time for analysis
d : active device

it •' Newten-Raphson iteration

tp : time point

pp : user requested print point

Table 3 Relative model performance for Blnary-co-Octal
Decoder.

per Nevton-Raphson iteration spent evaluating the aodel
and loading the MNA matrix entries. These models are
"smart" in all of the sense that the bypass scheme is
included consistently in the models.

The benchmark circuit has also been implemented using
bipolar devices with both the Cusacl-Poon (C?) and
level-one Ebers-Moll (EMI) models available in SPICE2
[S] for comparison. It ls evident that model evalua
tion and matrix loading dominates the total solution
time, typically 80S of the total.

The results above prompt the inclusion of a table
look-up aodel in the program similar to that used la
MOTIS [6] and MOTIS-C [7]. Results using this model
a* implemented in MOTIS-C are included la Table 3
as MOSO. The results are for almost identical output
with respect to the other models for this circuit and
yet model evaluation time was less than IS times that
using M0S1. The speed Increase is not entirely
reflected in the run time however. The simpler models
tend to have more abrupt switching points and trans
itions vnich Increase the average number of iterations
required per timepoint. This, in turn, increases the
number of rejected tiaepoincs. Both effects slew down
the analysis slightly.

For MOSO, the aodel evaluation tine is only 21Z of
the total analysis time. The other 79Z is spend
solving the matrix equations and computing the next
timepoint. Since all of these analyses are made using
the program-generated machine code, the matrix solution
tloe is a very small percentage of the total time (less
than 3 pcrcenc of the total time for M0S1). The
remainder of the tloe Is spent in the estimation of
local truncation error and In overhead associated with
the analysis.

5. ACCURACY VERSUS SPEED

SPICE2 uses both the relative change in active-device
branch currents and node voltages, as well as their
absolute change, to test for convergence of the
Nevton-Raphson Iterations at a timepoint. In most cases
It Is the maximum permitted relative change, defined

Fig.

condition of LTE stepslze control with RELTOL • 0.1Z.
RELTOL is varied from its default value to 100Z at

vnich point the analysis Is meaningless.

These plots show that LTE is extremely conservative and
can cost almost twice as much as iteration count on

a large digital circuit. LTE maintains voltage wave
form accuracy over a much wider rani;e of values of
RELTOL but with reasonable values of RELTOL the results
are identical for the benchmark circuit of Fig. 1.

6. THE MOOEL EVALUATION BYPASS SCHEME

As mentioned earlier, the nonlinear device aodela may
not be evaluated at every Iteration. If the change
In device branch voltages ts sufficiently snail, the
derivatives and currents evaluated ac the previous



tloepolnt will be loaded Instead. Earlier experiments
Indicated that this scheme provided an averse of only
41 saving In run time tor .1 variety of circuits (1|.
Our present studies Indicate that (or large digital
circuits savings of over -iOS are possible. Figure 3
Includes a plot or' the percentage nt total model
evaluations which resulted In a bypass, ustntf LTE and
the M0S2 model. These savings Justify the extra memory
required to implement this scheme.

If a euch faster model evaluation scheoe ls used, such
as table look-up, the advantage of bypass ls signifi
cantly reduced. In fact, the time required to test
for bypass oay be comparable to the total aodel
evaluation time.

7. SUMMARY

There are a number of areas where SPICE2 may be la-
proved for the analysis of large, digital MOS circuits.
The reduction of storage in the state vectors and the
use of iteration-count cicastep control reduce sub
stantially the memory required for elements. The
storage of outputs-on disk, rather than in central
oeoory, ls also desirable for large analyses.

The machine code generated by the program does not
require a substantial amount of oeaory and significant
ly improves run time if the device models can be
evaluated cheaply.

In SPICE2D.8, nodel evaluation time still dominates
total run time. Techniques such as table look-up
need to be investigated further to provide a more
uniform spread of computational effort while not
degrading the solution accuracy. Finally, the bypass
scheme used in SPICE2 is worthwhile for digital cir
cuits. It provides substantial time savings for a
relatively small penalty in memory requirements for
cases where a model evaluation tlee is significant.
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A SIMULATION PROGRAM WITH LARGE-SCALE INTEGRATED CIRCUIT EMPHASIS

A.R.Newton and O.O.Pederson

Department of Electrical Engineering and Computer Sciences.
University of California, Berkeley. Ca.. 94720

Abstract: SPLICE is a computer program for the simulation
of large digital electronic circuits which combines circuit,
timing and logic analyses into a single package. It provides
detailed analog circuit simulation for critical parts of the
network while signals between the circuit blocks may be
processed using timing or logic analyses. All three types of
analysis are performed simultaneously, while event control
is used to enhance execution speed.

1 INTRODUCTION

A number of simulation techniques are available for the
analysis of electronic circuits. For small circuits where analog
voltage levels are critical 10 circuit performance, or where
tightly coupled feedback loops exist, a circuit simulator such
as SPICE2 (1] can accurately predict circuit performance. As
the size of the circuit increases, the cost and memory
requirements of such an analysis become prohibitive. For*
tunateiy. a large fraction of a typical LSI system is digital in
nature. For this reason, certain simplifications may be made
during the analysis which greatly increase execution speed
and yet provide adequate information about circuit perfor
mance.

For circuitswhere a verification of the logical operation
of the circuit and only first-order timing information is
sufficient, a logic simulator may be used [21-(41. If dynamic
charge-storage effects or bilateral circuit elements are impor
tant, or if a waveform analysis is required and the accuracy
and expense of circuit simulation is not justified, a timing
simulator can be used (51.[bl.

A comparison of circuit, timing and logic analysis pro
grams for the analysis of the same problem on the same
computer [7] has shown MOTIS-C [61 to be typically two
orders of magnitude faster than SPICE2, and SALOGS-3 (21
to be three orders of magnitude faster than SPICE2.

It is evident that for the analysis of large digital systems
which contain tightly coupled circuit blocks or critical paths a
simulator is required which will combine the accuracy of cir
cuit simulation ifor critical parts of the network) with the
speed and memory-saving advantages of timing and logic
simulation for the remainder of the circuit [SI. SPLICE
(Simulation Program with Large-scale Integrated Circuit
Emphasis) has been written with this goal in mind.

This work was sponsored by Hewlett Packard, Palo Alto, Ca.

2 PROGRAM STRUCTURE

The block structure of program SPLICE is shown in
Fig.l. The program has been partitioned into three distinct
blocks which communicate with each other via mass-storage
files. This permits the input and output processing modules
of SPLICE to be implemented on machines other than the
main computer. The input processor for SPLICE processes
data with a syntax which is very similar to that used by pro
gram SPICE2. It is responsible for circuit macro expansion,
satisfying back-referenced models, identifying element types
and reducing arithmetic expressions wherever possible. The
input processor produces a binary file to be read by the Setup
and Analysis segment of the program. tThis binary file could
also be produced by programs such as direct circuit extraction
from integrated circuit artwork data.)

Input
Compxle-r

Sotuo and

Analysis
Output

Proc*i««cu-

U««r (0i«kJ *(3i«k) Um'mr
Input \^y \^y/ Output

LCoBpota*. Cen—-oted Inpwt

Fig. I - Gorffal Structure) of SPLICE

Certain analysis constants and variables are initialized
and the input file is read and processed. After reading the
circuit description and anaiyMs requests, the program per
forms a number of preprocessing operations to minimize the
overhead which will occur during the analysis. This Setup
Phase includes the generation of node famn and fanout
tables, ihe reduction of data required for each element to
signal-path values and a model pointer, the compaction of



node-to-ground capacitors [Si. mock decomposition of the
sparscly-storcd circuit matricies to minimize and compute
fill-ins. and the reduction of many indirect address chains to
reduce the numocr of memory references performed during
analysis. Most of the data used by SPLICE is stored in
dynamically allocated arrays controlled by a memory manage
ment package included.in the program. A number of tem
porary mass-storage files are used by SPLICE to reduce the
maximum memory requirements of the program during the
Setup Phase. These files are released prior to the analysis.

The circuit is then analyzed using an event scheduling
scheme similar to that used in many modern logic simulators
[91. However, in contrast to a logic simulator the 'events'
scheduled in SPLICE may be any one of the three types:
logic, timing or circuit. After the analysis of a scheduled
block, any other blocks affected by its change of slate are
also scheduled for analysis. The storage of selected circuit
variables on mass-storage as they change is also controlled by
the schedular. as described in Section 3.1. If a circuit block
exhibits no significant change in state over a period of time,
it may be released from the event list just as a logic or timing
block would be.

After the analysis the output file may be processed
repeatedly by the output module of the program to produce
waveform plots and logic output tables. This task may be
performed on the host machine or the data may be shipped
to an off-line intelligent terminal.

3 ANALYSIS ALGORITHMS

The program can perform a static analysis, which will
allow for the propagation and solution of initial conditions,
and a time-domain non-linear transient analysis for circuit
node voltages and logic levels. The logicsimulation uses four
states: logic zero, logic one. undefined and high impedance.
All logic elements may have different rise and fall delays, a
necessity for MOS logic. As an event occurs, control is
passed temporarily to the circuit, timing or logic analysis con
trol module. Each block of the circuit uses a model control
block t.MCB) of data which contains either the information
or the addresses of the information required during analysis.

To reduce the overhead imposed by the scheduling
operation for a circuit analysis, the concept of minimum
resolvable time (MRT) is used. One unit of MRT is both the
minimum permitted non-zero gate delay of the logic simula
tion and the minimum time for which a circuit or timing

block may be analyzed for the storage of changed values or
propagation of events. For example, once a circuit analysis is
scheduled, the circuit block is analyzed repeatedly until at
least one unit of MRT has elapsed. In general, this should
not require more than one solution unless one or more of
the circuit variables is changing very rapidly at that time.
Another advantage of MRT is that since piece-wise input
sources are constrained to have their breakpoints at integer
multiples of MRT a breakpoint table, such as is used in
SPICE2. is not required.
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One time consuming aspect of schedular operation is
the searching of the event list to insert a new event. Since
most events occur wuhin 10O MRT units of the present
event and because of the uniform discrctiration of time pro
vided by ihe MRT algorithm*, a sciected number of events
near the present event may be addressed directly. SPLICE
provides direct addressing for 200 MRT units around the
present event. This scheme implies a small penalty in storage
but reduces the event access time during analysis (101.
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PT —»
. .

--»•
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♦3 <-l>

• : :SCB1 ;
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ISCB2*0 — (-1)

; J;SC82 i
♦99 (-1)

ISCB3 —•' time

:SCB3 =

timo

m^^^^^

Fiej. 2 ~ Structure) of tho Sch-»dular»
Control Block*

3.1 The Schedular

The structure of the schedular event list is shown in
Fig.2. The event list is partitioned into three blocks. The first
block SCB1 is addressed by ISCB1 and contains ihe event
presently being processed as indicated by pointer PT (Present
Time) in Fig.2. The entries in this block and in block SCB2
are separated in time by one unit of MRT. Multiple events at
the same time are handled wi:h a linked structure, as shown.
Many of the MCB pointers in these blocks will be null (-1)
for a relatively inactive network. Any events scheduled to
occur outside the range of SCBI and SCB2 are stored in
biock SCB3 and are lagged with th :hey arc due to be
processed. As PT moves down the list to 1SCBI+99,
pointers ISCBI and ISCB2 are swapped, block 1SCB2 is
cleared and the entries in SCB3 are searched for inclusion in



the new SCB2 block. Should the network become dormant,

that is if SCB1 and SCB2 are empty, a provision is made to
branch directly to the next change in input excitation which
would be present in SCB3.

3.2 Model Control Block (MCB)

All network macro-models use an MCB during analysis.
The structure of the MCB for a circuit block is shown in

Fig.3(a>. Examples of circuit blocks stored in this way are
floating capacitors or resistors, operational amplifiers, or a
number of MOS transfer gates connected to a single circuit
node. The sparse circuit matrix is stored as a set of linked
elements associated with the solution vector and the circuit

MCB contains a set of pointers to these nodes, ordered such
that the number of fillins generated during the matrix elimi
nation processed is minimized. The circuit elements are
stored as a linked list .associated with the MCB. Elements-
stored in the element list contain pointers to directly address
their matrix entry locations, as is done in SPICE2. These
pointers are generated during the Setup Phase to minimize
matnx load time during the circuit analysis. To further
reduce the time overhead associated with finding the matrix
locations for each element, the modified nodal analysis
(MNA) matrix is only updated between Newton-Raphson
iterations at a single umepoint if variable charge-storage ele
ments are present in the block or the timestep has just been
cut. Otherwise, the LU factors computed at the first iteration
of the timepoint are used (11).

uxxca—»

uxxcs'

Co) Circuit Slock

•kodei pointer

nt-abar af

output node*

pointera

(e> Logto or Tiatrvg SlooJt

Fig. 3 - Data Storage* far £iom«nt»
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The MCB for a typical timing or logic element is shown
in Fig.3(b). The structure is very similar to the element
storage structure for a circuit block. No parameters are stored
with the elements, but ratner a new model isgenerated for
each different element type or device geometry. While this
implies a storage penalty for smail circuits, for large circuits
where one type of device may be used many hundreds or
thousands of times this approach results in significant storage
savings. Tne device model block may contain a piece-wise
linear look-up table, the parameters required for a simple
analytical model, or the parameters required for a more com*
plex model. For example an MOS transistor may be modeled
using the table look-up technique employed in MOTIS-C, the
simple Shtehman-Hodges model of SPICE-1 (11 or the MOS2
model of SPICE2D (121. These models are available for
both the circuit and timing analyses.

3.3 Solution Vector tod Fanout Tables

The structure of the solution vector and fanout tables is
shown in Fig.4. For each node type, the output vector con
tains pointers to the node fanin and fanout tables, the node
type (logic, timing, external circuit or internal circuit) and
the last time at which a logic or voltage change occurred at
that node. In all cases the fanout table contains the

addresses of all elements which are driven by the node.
Should the state of a node change significantly at any time,
the fanout uble is scheduled for processing and thus the
effect of the change is propagated throughout the circuit.

For logic nodes the fanin pointer is only used if the
logic node is a buss, that is if more than one logic element
may determine the logical state of the node. In this case the
fanin table is used to check for buss contention. The past
two logic states of the node are packed into a single word ax
the end of the list.

LCCN00-*
• M

nod* type

r«

log!a etat-M
or voltages

fanout Ilet

fanin ll««

pareaatare ana/or
•parmm aotrl*

Fig. 4 - Noda Data Structi

For timing nodes the fanin uble contains the addresses
of all elements which drive the node. These may include
driver transistors, loads, transmission gates or floating capaci-



tors. Grounded capacitors are treated as a special case to
improve efficiency. The past two node voltages and the
address of the node capacitance entry are stored at the end of
the list. Timing node voltages utc scaled and stored as
integers with 30000 discrete levels of voltage spanning twice
the range of the network power supplies.

Circuit blocks are treated as timing macromodels. com
municating with the rest of the network via timing nodes.
When a circuit block is scheduled, all timing nodes to which
it is connected are processed to generate a Norton equivalent
at the node. The circuit block, together with the current
source and conductance equivalents at these external circuit
nodes, is processed. Should internal or external circuit node
voltages change significantly, the circuit block and its associ
ated timing nodes are scheduled one unit of MRT ahead.

4 PROGRAM PERFORMANCE

The program has been used to simulate a number of
circuits, so far the largest being a 600 MOSFET PLA circuit.
For logic elements an average of 12 words per gate or 12
words per logic node are required. This includes the storage
required for the element itself and its share of node, fanin
and fanout table storage. The speed of a pure logic simula
tion is approximately lOus per gate per unit of MRT or Ims
per gate-event. For timing simulation approximately 8 words
per device or 25 words per timing node are required. The
speed of a pure timing simulation is typically 50us per MOS
transfer device per unit of MRT. For both logic and timing
simulations the execution times may vary up to an order of
magnitude depending on the properties of the circuit being
simulated. The time and memory requirements of a circuit
simulation are variable but in general they are significantly
lower than those of SPICE2D.

5 SUMMARY

SPLICE is a simulation program for large-scale digital
electronic systems and can perform circuit, timing and logic
analyses in parallel. While SPLICE is written for use on a
CDC6400 computer, it was designed with use on a minicom
puter or similar intelligent terminal in mind.

The program uses event-scheduling algorithms coupled
with modern circuit analysis and timing simulation tech
niques to take advantage of some of the properties of large
integrated circuits and enhance both program execution
speed and data storage requirements. For logic analysis an
average of 12 words per simple gate is required. Timing
analysis results show an average of 8 words per element. For
circuit blocks the storage requirements vary but are
significantly less than those of SPICE2. Preliminary results
indicate thai SPLICE typically requires lOus per simple gate
per unit of MRT for logic simulation and SOus per MOS dev
ice per unit cf MRT for timing simulation on the CDC6400.
A combined simulation would lie between these two limits.
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