Copyright © 1978, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PROGRAMMING LANGUAGES FOR

RELATIONAL DATA BASE SYSTEMS

by

C. J. Prenner and L. A. Rowe

Memorandum No. UCB/ERL M78/54

27 July 1978

'ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
: 94720

Programming languages for relational data base systems™

by CHARLES J. PRENNER and LAWRENCE A. ROWE

University of California at Berkeley
Berkeley, California

INTRODUCTION

There has been a remarkable growth in the use of data base
management systems over the past decade. This has resulted
from the recognition that many practical applications, pre-
viously implemented by special purpose programs, can be
developed more easily through the use of a general data
base tacility. Here, we will only be concerned with relational
data base systems. The advantages of such systems have
been discussed at length in the literature, ™

In modern data base management systems, users typically
interuct with data bases via a query lunguage. *4*** These
languages, which are often interactive, allow creation and
deletion of data bases as well as retrieval from, and updating
of, existing data bases. Because query languages have not
provided a complete programming cnvironment, most of
these languages have been coupled to existing programming
languages. Application programs consist of statements in
the programming language intermixed with statements in the
query language to access the data base system when re-
quired.

Previously investigated approaches to providing such ac-
cess include the definition of subroutines to execute data
base functions and the embedding of data base constructs
into an existing language, using a preprocessor to translate
these constructs into run-time calls on a data base sysiem
(¢.g.. EQUEL,? and the embedding of SEQUEL in PL/1%).
Because the primary focus of this work was to provide data
base access from a programming language, little attention
was paid to the programming cnvironment resulting from
the combination of the two languages.

While a given programming language and a given query
language may each be satisfactory in isolation, their com-
bination may be less than satisfactory because neither one
was designed for this more gencral setting. In this paper we
discuss techniques for improving the programming environ-
ment for data base applications. Our hypothesis is that a
superior environment can be realized by incorporating the
data base operations as part of the programming language
itself. In the second section we outline some limitations
associated with previously proposed environments. These
* Thas n-w:m:;\ was supported in part by U8 Army Research Office Grant
DAAG 29 76 G 0MS, and by the University of Calibforaay inder a baculty
Rescarch Deselopment Grant. ’

849

stem primarily from the fict that the programming language
is totally unaware of the data base. In the third section we
lustrate some of the benelits provided by an integrated
approach through the application of current technigues from
programming language research.

CURRENT APPROACHES

Most current approaches to providing data base access
from a programming language are constrained by the fict
that the language system has no knowledge about the data
base. We divide our discussion of the impact of this con-
straint into five areas: data base interface, data base oper-
ations, type system, compilation, and abstraction,

Data base interfuce

As mentioned previously, the two primary approaches to
providing data base access have been to provide subroutines
for data base functions and to embed data base constructs
through the use of a preprocessor.

The sybroutine approach suffers from the limitations in-
herent in any use of subroutines to extend the semantic
space of a language: programs become essentially a series
of calls which are often unreadable because of the many
(bookkeeping) arguments which must be passed to the sub-
routine. No syntactic aids are provided to make the use of
these arguments understandable.

The preprocessor approach is somewhat better in that an
actual query language is used. Program statements and
query language statements can be frecly intermixed. In most
systems the preprocessor does not have to parse the entire
language because query language statements are tagged with
some distinguished symbol. The preprocessor removes the
query language statements, replacing them with calls upon
the data base subsystem, before the program is passed to
the language translator. The programmer transacts wath a
readable version of the program and only the kangaage trans.
Lator need be concerned with the less readable version.

Unfortunately, ‘the preprocessor approach is limited as
well. Since the query language is not part of the program-
ming language, communication between the programming
Language and the data base system can become awkward.

850 National Computer Conference, 1978

For example, it is often necessary to use implicitly defined
global variables to communicate the status of queries. In
some contexts, program variables which are to be made

accessible to the data base: system must be preceded by

"*special symbols™ so that they may be recognized by the
preprocessor. In some preprocessors arbitrary constraints
are imposed as to which arguments to a data base operation
can be variables and which must be constants. In other
implementations, even though the Language being extended
is strongly typed, the same level of checking is not exiended
1o the data base objects and their operations. Detailed ex-
amples illustrating these problems are given in a previous
paper.®

Although preprocessing the entire lunguage would remove
some of these limitations, this approach is still constrained
by the fact that (practically speaking) no amount of prepro-
cessing can extend the language to incorporate relations with
the same amount of symmetry. type checking and protection
available for built-in objects. :

Data base operations

In considering the query language as part of the program-
ming language one finds that the notation and orientation of
the two are quite different. Commonly used programming
languages are procedural, with built-in facilities for iteration,
manipulation of complex data structures, and procedural
abstraction. On the other hand, most query languages are
non-procedural. In the context of a procedurally oriented
programming language these non-procedural operations
seem out of place. To provide a consistent programming
environment the objects manipulated by the data base sys-
tem and their attendant operations and control structures
should be related to the objects. operations and control
structures of the language itself. For example. a join oper-
ation may be thought of as a nested iteration over relations
yet the operation “‘join™" usually appears in a form com-
pletely unrelated to the iteration operations in the program-
ming language. We do not advocate that higher level oper-
ators such as joins be excluded from a language. Instead.
we suggest that they be defined as extensions to the language
in terms of existing primitives.

Tvpe system

Because the programming language has no knowledge of
the data basc system, the type systems of the two are usually
distinct. Data base objects cannot be manipulated in the
programming language with the same case and flexibility as
language objects. For example, records, as used in a rela-
tional data basc system, often are not treated as composite
structures in the language cnvirpnment (e.g., EQUEL or
SEQUEL). This means that values must be copied individ-
ually from data base records into program variables before
the vadues can be used. Thus, a record from a data base
cannot be an argument to a procedure nor an operand Lo an
otherwise meaningful operation (e.g., record selection or the

right-hand-side of an assignment). The same situation holds
for relations. For example, relations may not be passed as
parameters to functions. In addition, it is impossible to op
erate on telation types, say. to. obtain the count of the
number of columns in the relation, or to obtain the domain
of a4 column as a type. The cxistence of two type systems
may require conversions to be performed on objects as they K
flow between the two systems. One type system controlling
data access whether in main memory o secondary storage
would be more ctficient because it removes the need tor
such conversions,

Compilation -

In programming languages, there is often o trideotl be-
tween program {lexibility and run-time efficienicy . Most data
base systems are committed to one extreme or the other
depending upon whether data base operations are inter-
preted (less efficient but more flexible,* c.g., INGRES) or
compiled (more elficient but less flexible, ¢.g.. SEQUEL).
When a language is committed to one extreme the resulting
design decisions make the language awkward to use, or less
efficient, when the application requirements are not matched
to that commitment. For example, consider the treatment
of relation names in SEQUEL. In order for a query to
appear explicitly in the text, all relation names must be
constant (to allow compilation to be performed). If dynam-
ically varying niumes are desired, then a string for the query
text must be constructed and the relation name inserted into
it at run-time. On the other hand, INGRES allows dynami-
cally varying reliation niunes but cannot utilize the fact that
a relation name is constant in a given instance. A better
programming cnvironment would allow for a continuous
spectrum ranging from dynamically varying requests with
less efficient execution to fixed requests with more efficient
execution so that the system can provide the best passible
solution for the requirements of the problem to be solved.

Abhstraction

The concept of data abstraction has received much atten-
tion in the programming language community. Recently,
there has been interest in the use of data abstraction with
respect to dati base systems. ™ -Many data base systems
support abstraction related facilities such as views, integrity
constraints and triggers.®'**% For example, a view pro-2.
vides a form of abstraction in that the vser can construct —
queries for relations which do not actually exist but are
materialized from a number of relations. 1f the organization -4
of the refations is changed. the view can be maintained by ™
redefining it in terms of this new organization. In addition,
some authors have proposed mechanisms for specifying
higher level operations on data bases (such as “thire™ and
“fue’)™ Although some systems offer these abstraction

* Reguests can be changed at rim-tsne (e.g.. in EQUIL relation and domin
mantes can change dynamicallyv),

18

4

Programming l.anguages 851

facilities, they have not yet integrated them with their coun-
terparts in data abstraction from programming languages.”

AN INTEGRATED APPROACH

We will now consider the integration of data base objects
and operations into a programming language. We will not
attempt to give a complete language proposal here. Instead,
we shall ilustrate some of the benefits of this approach. Our
discussion is divided into four arcas: type system, data base
operations, compilation, and abstraction.

Type system

An extremely important aspect of the language is the

extension of the type system to provide access to data base
relations residing on secondary storage. While a complete
discussion of the type system is beyond the scope of this
paper, we will discuss a few aspects of the type system to
demonstrate the usefulness of an integrated approach. We
have been strongly influenced in our thinking about types
by the Mesa language. ™

In introducing data types for relations in the programming
language we will exploit the obvious correspondence be-
tween relations and collections of records in programming
languages, namely, a refation may be viewed as an unor-
dered collection of records (tuples in data base terminology),
where the collection may not contain duplicate tuples. For
example,

Employee: type=relation of
name: string(20),
dept:integer,
salary :integer,
manager : string(20),
jobtitle: string(15)
end

defines Employee as a relation type, where ““relation of™*
means “‘unordered collection with no duplicates of . ..,

A relation type is itself an object upon which operations
may be performed to obtain access to types contained within
it. Thus,

declare ¢ record(Employee)

declares e as a variable whose type is identical to the un-
derlying record type of the relation, and

dectare deptno: Employee.dept

declares deptno to be a variable whose type is identical to
the dept column of the refation, i.c. integer.

By allowing the types contained within the relation type

o Revent warh m this dunection bas been separied ™ ¥

to be extracted in this manner, duplication of these types
the program .is avoided. Thus, a degree of modularity s
achieved. In addition, data integrity is enhanced because the
only operations that can be performed on the values in the
data base are those allowed on the given type. Becanse there
is only one representation for a value of a given type,
whether in the data base or in the program environment,
and because the set of types provided in the language is the
sime as those provided in the data base system, no conver-
sion is needed when data is moved from one environment
to the other.

Another important feature of the type system is the abihity
to specify constant or dynamically varying relation and do-
main names. For example, the following program fragment
declares Rel to be a relation bound to the existing data base
relation EMP.

hegin
declure Rel: Employee =relationC EMPT)

end,

If the relation were not constant, e.g., il its name were
cntered at a terminal, the program fragment would be

hegin
declare Rel: Employee,
Rname:string(15);
write(**What is the relation name?™)
read(Rname):
Rel: =relation(Rname)

end.

where relation is a lunction which takes a string argument
and returns a relation as result (or returns andefined il no
such relation exists), In cither case the type of the relation
is specified so that operations on Rel can be type-cheched,
and the program code in the block can be the same. The
only changé is in the way the relation is bound to Rel.
Because the programmer las explicit control aver the con-
version of the input string into an object of type relation,
the existence of the named relation can be tested and an
appropriate action taken if it does not exist. This cannot be
done easily in any existing language.

The last aspect of the type system to be discussed is type
extensibility. Several rescarchers hive mentioned that a
type extension facility would be valuable so that types other
than the typical primitives (e.g., integers, reals, and char-
acter strings) can be placed into a data base record. The
proposcd language will allow arbitrary fixed length strue-
wred objects, except those including pointers or relations,
to be a component of a data base record. Providing this
feature is not particularly difficult il the data base system
supports a typing mechanism which can be extended to
include generic functions. **

* Generie functions have multiple detinitions for an operator where the par
ticubr defmition insohed ot a call is deteimined by the arguments {e.g., ¢

hias several delinitions, including definitions for integer, seal, complex o
meved wegaments),

852 National Computer Conference, 1978

Data base operations

There are several ways that data base operations can be
made more convenient, consistent, and more closely related
to existing constructs in programming languages. Our inter-
est in this research was motivated by the difficulty one
author of this puper had expressing complicated queries in
SEQUEL. This led to the design of a procedural query
language, described in detail elsewhere.®® In the following
discussion, an overview of the query constructs is pre-
sented.

Suppose that we wish to print the names of all emplovees
whose manager is Kathy Fallon. ‘This is written as

Jor xin Rel st x.manager="Kathy Fallon® do write(x.name); .

end

and read *‘for each record x in the relation Rel. such that
x's manager is *Kathy Fallon’, print x's name.”"* The vari-
able x is known only in the scope of this statement and is
bound to each record in the relation satisfying the qualifi-
ciation. The qualification clause (sr) is optional.

We believe that this construct is cleaner than those used
in many existing data base languages. The binding of lan-
guage environment variables to data base objects is more
consistent and the control structure is more natural, say,
than requiring explicit testing of a variable shared by the
data base system and the program environment to determine
if another record exists.?

A query which requires the join of two relations may be
written as a nested for construct. For example, a list of all
employces who earn more than their managers could be
obtained by writing

Sfor emp in Rel do
JSor mgr in Rel st emp.manager=mgr.name do
if emp.sal>mgr.sal then write(emp.name) fi
end
end

Suppose one wanted to construct a temporary relation
having employee records for all people working in depart-
ment 50. This could be accomplished by using the for con-
struct to append qualifying tuples to a (temporary) relation
variable.

Alternatively, the for statement can be used in its short
form

begin
declare Reltemp:employee:
RelTemp: ={all | Rel: dept=50]

end

which says “*construct a relation composed of those records
in Rel such that dept is 50 and assign it to Rel'Temp.”” The
construct on the right hand side of the assignment operition
is an example of a relation constructor. The Keyword all

* The use of a for statement to sequence through a collection of data obyects
has been proposed before by programming lunguage designers!'®#7:31303 byt
is absent from existing data base languages.

indicates that all fields of the record are selected. A relation
constructor causes o, copy of cach record to he made. If
only the name and salary ficlds were nceded, the expression
would be

[name,sulary | Rel: dept= S0

~
Of course, to assign this value to RelTemp, the type speci-
fication for RelTemp must be changed.

The value returned by a refation constructor may contain
duplicate records. Such objects are called bags,* or multi-
sets.” If the value is assigned (o a relition vanable, then
duplicates are removed. However, there are situations in
which the value is uscful with duplicates retained, ¢.g., when
a function such as average is used as in AVG([salary|rel]).
To explicitly remove duplicates {rom the valae, two vertical
bars (') are used, A relation constructor may be used
directly in a for statement without having been previously

" bound to a relation variable. This is demonstrated by the

next example which intermixes query iteration, relation con-
structors, and functions which take relations as arguments
to print a list of all departments and the average salary of
employees in that department.

Jor x in [dept || Rel] do
write(x.dept. AVG([salary | Ret: dept=x.dept)
end

This is read **for x in the sct of distinct departments from
Rel, print x and the average salary for those employees in
department x*'.

The iterative construct is also used to update individual
records as shown in the next example in which all employees
are given a 10 percent raise.

Jor x in Rel do
x.salary s =x.salary * 1.1:
end

As in most relational systems, the relation is not actually
changed until all iterations are completed because the stor-
age structure for the relation may require that records be
physically moved when a field is changed, in which case a
record could be updated more than once. One solution, used
in some set theoretic languages, is to make a temporary
copy of the sct over which the iteration variable ranges.™
This would not be practical in this environment because of
the size of relations and the time needed to make o copy.
Alternatively, the problem may be solved by keeping all

changes in a separate file until the end of all iterations. ™

This also solves the problem of keeping a data base consis-
tent after certain kinds of erashes.

Compilation

The linguistic benefits provided by an integrated environ-
ment will be of little utility in practice unless reasonably
cfficient code can be produced. Here, we discuss i number
of compilation techniques which can be utilized in order to
ensure that programs in the language have an cfficient re-
alization. The topics discussed are: variable binding time,

e

a

Programming Languages 853

partial evaluation of procedures al compile-time, and pro-
gram optimization.

Variable binding time

Binding time is the time at which a variable is bound to
an entity, e.g., a specific relation to a variable of type re-
lation. Whether this binding occurs at compile-time or run-
time influences both run-time cfficiency and program flexi-
bility. Figure 1 shows a graph of binding time of variables
in data base queries versus the degree to which these querics
are compiled for two relational data base systems.

Compiling is more efficient in execution time and may be
more efficient in execution space, while late binding allows
more flexibility. Notice that these two systems make explicit
commitments, to flexibility (INGRES) or to execution effi-
ciency (SEQUEL). By using compilation and optimization
techniques developed for implementing programming lan-
guages, it is possible to develop a system that operates in
the grey region of the graph. When enough parts of a lan-
guage construct are fixed (e.g., the relation name is constant)
code as efficient as possible can be compiled.* Otherwise,
less efficient code is compiled. This means that the tradcoff
between efficiency and flexibility can be controlled by the
applications programmer. Furthermore, it means that only
those programs that nced more flexibility must pay for it in
terms of efficiency. Of course. in those cases where code is
compiled to access a specific relation, programs may have
to be recompiled if the definition of the relation changes.

Partial evaluation

A second compilation technique which can be used is the
partial evaluation of procedures at compile-time (procedure
closure). In SEQUEL, all relation names are viewed as
either constants in the program text (in which case compi-
lation is performed) or as strings *‘read in"* at run-time (in
which casc no compilation is performed). With this organi-

late . Ingres
binding
~
\\
early
binding | ___ . ___x3stemR
interpreted compiled

Ve T Binding tune versus compilation

Zzation it is impossible to pass a relation name to a procedure
and to compile gueries issued from the procedures which
use this relation name. However, with global flow analysis
techniques™ combined with procedure closure technigues,
a programmer may be given a number of choices as to how
such a procedure call should be compiled. These include:

1. compile one procedure body using only the type infor-
mation about the relation, '

. compile distinct procedure bodies for cach of the dif-
ferent (constant) relations passed to the procedure
using type information as well as specific information
about the relation, or

3. expand certain calls “*in-line™ so that no call is actually

made.

9

Providing a programmer with a facility such as this gives
one considerable control over the tradeoft between execu-
tion time and space.

Optimization

The use of an integrated language opens up many possi-
bilities for optimization. The goal is to reduce the number
of calls on the data base system (and subsequent disk ac-
cesses) by combining many queries into one, removing quer-
ics from loops, eliminating temporary relations, and so on.
This can be achieved through the application of traditional
programming language optimization techniques (¢.g.. code
motion, common subexpression elimination, and loop fu-
sion).! However, the potential payolT from such optimiza-
tions is much greater in data base applications than in typical
programs because the removal of a disk access represents
a savings many orders of magnitude greater than the removal
of, for example, an assignment statement.

Beyond traditional types of optimizations, possibilitics
exist for more complex optimizations using technigques sim-
ilar to those used in ecxperimental programming systems
which have program verification capabilitics.™ In this case,
semantic information available in an abstraction containing
relations (e.g., integrity constraints) and informadion about
the physical organization of the data can be used to perform
sophisticated optimizations.

Abstraction

Data abstraction facilities have been found useful in de-
veloping programs that involve complex data structures, '+
It seems reasonable to consider extending such facilities to
handle relational objects and operations. Another reason for
exploring such a facility is because it may provide a strue-
turing mechanism for current data base concepts such as
views, integrity constraints, and triggers™'*"™* which are all
related to abstraction. Currently these facilities appear in
data base systems in an unstructured fashion which often
mitkes it difficult to determine how they interact and relate
to one another.. A better approach would be to mike them
all aspeets of a single abstraction mechanism.

Te Geendcome e

ST VT AL e TR

854 National Computer Conference. 1978

A view permits a programmer to conceive of a data base
in terms of virtual relations. This allows ficlds, or complete
relations, to be operated on even though they might not
exist physically. This is similar to the notion of uniform
reference that is being explored in pmg.mmmmg languages.
Another use of views is 1o prevent a programmer from seeing
certain columns of a relation. Again this is similar to a
programming language concept (see the private attribute in
Mesa'). A problem with using views is that it is not alw: 1y
clear how a value to be stored to a virtual field should be
decomposcd and stored into the fields that are physically
present. Another problem is that it is not always clear what
action should be taken if a value is to be assigned to a ficld
which would cause the record to fall out of the view. Some
data base researchers propose to solve these problems by
establishing defaults where unambiguous alternatives ure
possible and disallowing the operations otherwise. An alter-
native solution, which we arc currently investigating, is to
acknowledge the difficulty of establishing defaults and in-
stead provide convenient tools for allowing the implementer
of the abstraction to specify the semantics explicitly.

Triggers are data base operations which are invoked au-
tomatically when certain primitive operations are per-
formed, e.g. when a tuple is deleted from the cmployee
relation the count of employees in the removed employee’s
department is decremented by one. In the context of a data
abstraction facility it would seem more reasonable to asso-
ciate this operation with the abstract operation **fire’" than
with the deletion operation itself.

Integrity constraints are assertions which characterize
what it means for the data base to be in a correct and
consistent state with respect to the semantic meaning of the
data. For example, a constraint might be that all the numes
in the data base must be a subset of those in the employee
relation.' Currently, such constraint information is used in
an enforcement sense, i.e., a constraint is checked after a
data base operation (or a group of operations) are performed.
Often these checks are very expensive. It may he possible
to use this information as assertions to be proved to hold
about the set of abstract operations which are permitted on
the data base. For those constraints which cannot be proved
to always hold it may be possible to automatically determine
additional information which should be retained in order to
simplify enforcement.

CONCLUSIONS

We have attempted to show that an integrated approach to
providing data base access from @ programming lnguage
can yicld a better programming eonvironment for data base
applications than previously available. We are currently in
the process of designing a language with this philosophy for
use with the INGRES? system. Other rescarch groups arc
also working on similar problems.***% We believe that
this research represents a significant step towards a better
understanding of the relationship between programming lan-
guages and data base systems.

REFERENCES

~

2
=

. Astriahan, M. M., ¢t al.,

. Chamberlin, . D., ¢t al.,

. Codd, E. F.

. Eswaren, K. P,

. Geschke, C. M., J. H. Motns, Jr. and E. H

. Hoare, C. A. R.,

. Aho, AL Voand 3 DL Ulhman, Prineiples of Comypaler Desien, Adiinon

Wesley, Reading, MA, 1977,

Data .‘\uhl.m;,u.q". wa Genesal Purpose Fooga unumw Fanpuige,”” o
s.ecdlnp of a Conferesicé on Data: Absiraction, Delimtoon, and Straciure,
SIGPLAN Notices, 11, Special Tssue, March 1976, pp 28 38, v
“System R: Relational Apprcach to Data Base
Management,” ACM Transactions on Databave Svatems, 1,2, hne 1976,
pp. 97-137.

. Boyce. R F.. D DL Chamberlin, W. F. King and M. M Hammer

*Speaitying Queries as Relitional Expressions: The SQUARE Data Sub
language.” Commanications of the ACM, 1K, 11
621-62%;

. November 1978 pp.

. Bratbergsengen K. and O Risaes, "ASTRA - A DBMS Hased on a High

Level, Relational DML with Data Access vin a Hierarchical DL
Procecdings SIMUTA Users (‘cmli-rcm':". September 1977,

“SEQUEL 2: A Unficd Approuch to Data
Definition, Manipulation, and Control,™" I8M Journal of Researdh and
Development, 20, 6, November 1976, pp. 560-575,

. A Relational Model of Data for Large Shared Data Banks,”
Communications of the ACM, 13, 6, June 1970, pp. 377-I87,

. Codd, 1 F. A Data Base Sublimguage Founded on the Relatwonal

Calculus,”” Froceedings 1971 ACM-SIGUIDET Workshuy, San Dicgo,
CA, November 1971, pp. 35-6G8,

. Codd, E. FLand C.). Date, “*lnteractive Support for Non- Programmers,”

Procecdings 1979 ACM-SIGUIDET Workshop on Data Description, Ae
cexs and Control, Aoy Arhor, Michigan, My 1974,

. Date, C. J. and E. F.-Codd, *"The Relational and Network Approach:

Companson of the Application Progrimming laterfaces,” Mrecerdings of
the 1974 ACM-SIGFIDET Warkshop on Data Deseriptiom, Aecess and
Control. Ann Arbor, Michigan, May 1974,

. Dahl, O.-3. and C. A. R, Hoare, “*Hierarchical Progriam Steuctures,”” in

Structured Programming, Academic Press, New York, NY, {972,
“Aspects of @ Trigger Subsystem in an Integrated 1
tabise System,”” Procecdings Second International Confetence on Soft
ware Engineering, San Francisco, CA, October 1976, pp. 243250,

. Feldmian, 3., J. Low, D). Swinchart and R, Taylor. “*Recent Developments

in SAll—An Algol Based Language for Anificial Intelligence,” f'ro-
ceedings 1972 Fall Joint Computer Conference, Val. 41, Las Vegin, NV,
December 1972, pp. 1193-1202.

. Geschke.'C. M. and J. Mitchell, **On the Prablem of Uniform Referendes

to Data Structures,”* IEEE Transactions on Software bngineering, SE 1,
2, June 1975, pp. 207-219.

. Satterthwaite, " Ewrly
Expericnce with Mesa,” Comumunications of the ACM, 20, &, August
1977, pp. S40-552.

. Grahum, S. L. and M. Wcgman, **A Fast and Usually Lincar Algonithm

for Global Flow Analysis,”* Journal of the ACM, 23,
pp. 172-202.

1. January 1976,

. Gries, D. and N. Gehini, “"Some ldeas on Data Types in High-Level

Languages.”” Communications of the ACM, 20, 6, Junce 1977, pp. 414-
420.

. Hammer, M., "Data Abstractions for Data Bases,” Proccedings of a

Conference on Data: Abstraction, Definition, and Structure, NIGPLAN
Notices, 11, Special Issue, March 1976, pp, 25-3S.

. Hammer, M. and D. Mclecod, A Framework for Data Hise Semantic _g

Integrity,"”” Proceedings Second International Conference on Soltware
Enginecring, San Francisco, CA, October 1976, pp. 49884,

20. Held, G.. M. R. Stroncbrakes, and E. Wong, “INGRES A Relativnal

Data Base System.” Proceedings 1975 National Computer Conference, =
44, Anaheim, CA, May 1975, pp. 409-416.

< Notes on Data Stractueing,”” in Struc e cd Program-
ming, Academic Press, New York, NY, 1972,

Katz, R. H., " Compilation of Data Base Quenies,”” M.S. Project, De-
partment of Electiical Eagincenng and Computer Sciences, UL, Berhe-
ley, June 1978,

Knuth, . E., The Art of Computer Programnuang, Volime 3.0 Addison-
Wesley, Reading, Mass, 1973,

- Allman, E., M. R. Stonchiaker and G. lhlcl !mbuhlmy nk.lumu d

e

Programming Languages

24,

25.

27.

28.

29.

3.

3.

Lishov. B., A. Snyder, R. Atkinson, and €. Schallert, " Abstruction
Mechanisms in CLU,"" Communications of the ACM, 20, 8, August 1977,
pp. 564-576.

Merrett, T. 1., Aldat— Augmenting the Relational Algebra for Program-
mers.” Technical Report SOCS-78.1, School of Computer Science,

. McGill University, November 1977.
. Prenner, C.)., “*A Uniform Notation for Expressing Queries,” ERL

Memorandum M77/60, Electronics Research Laboratory, U.C. Berkeley.
Scptember, 1977,

Rulifson, J. F.. ct al., “QA4: A Language for Writing Problem Solving
Programs,”” Proceedings IFIP Congress, 1968,

Schmidt, J. W.. ~Type Concepts for Database Delinition: An Investiga-
tion Based on Extensions to Pascal,” lnstitut fur Informatik, Universitat
Hamburg, June 1977,

Schmidt. J. W.. "Some High-level Language Constructs for Data of Type
Relation,”” ACM Transactions on Dutabase Systems, 2, 3, September
1977, pp. 247-261.

. Schwartz, J. T.. "On Programming: An Interim Report on the SETL,

Project. Instaliment 1—Generalities. Installimeat 2—The SETL Language
and Examples of its Use,™ Computer Science Department, Courant In-
stitute of Mathematical Sciences, New York University, 1973.

Shaw, M., W. A. Wulf, and R. L. London, *"Abstraction and Verification
in Alphard: Defining and Specifying lteration and Generators,” Com-
munications of the ACM, 20, 8, August 1977, pp. 553-563.

Smith, J. M. and D. C. P. Smith, “"Integrated Specifications for Abstract
Systems,” Technical Report UUCS-77-112, Computer Science Deparnt-
ment, University of Utah, September 1977.

KEN

34,

3s.

6.

37.

8.

19,

10.

<

41.

Stonebiaker. M. R, “Implementation of Integoty Constiints ad Views
by Query Modification,” F'rocevdings 1975 A€ A-SIGMOD Wonkvhaop on
the Munagement of Data, San Jose, CA, May 1975,

Stoncbraker, M. R., E. Wong, P. Kreps and G Held, The Design and
Implementation of INGRES,” ACM Transactions on Duitahave Systemns,
1. 3, September 1976, pp. 189222,

Stonchraker, M. R, and L. A, Rowe, " Observations on Dita Mampula
tion Languages and their Embedding in General Pipose Progrunming
Languages,” Proceedings Third International Confercice on Viery Large
Duta Bases, Tokyo, Japan, October 1977,

Wasserman, A. 1. and E. Handa, Preliminary Report on the Progam-
ming Language PLAIN," Medical Information Science, ULC. San Frn-
cisco, January 1978,

Wegbreit, B., " Pracedure Closure in ELL™ Centet for Reseirch in Come
puting Technology, Harvard University, March 1972,

Wegbreit, B., "Mulbtiple Evaluatans i an Extensible Proguunming Sys-
tem,”* Procevdings 1972 Fall Joint Computer Conjerence, A1, Anahcim,
CA. December 1972, pp. %05-91 S,

Wegbreit, B., “*The Treatment of Duta Types in EL1. Communcations
of the ACM, 17, 5, May 1974, pp. 251-264.

wulf. W. A.. R. L. London, and M. Shaw, “An Introduction to the
Construction and Verification of Alphard Programs " 18EE Transas ttons
on Software Engineering, SE-2, 4, December 1976, pp. 251 208,

Zloof, M. M.. "Query-by-Example.” Proceedings 1975 National ¢ om-
puter Conference, 45, Annheim, CA, May 1975, pp. 431435,

	Copyright notice 1978
	ERL-78-54

