

Copyright © 1978, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

PROGRAMMING LANGUAGES FOR

RELATIONAL DATA BASE SYSTEMS

by

C. J. Prenner and L. A. Rowe

Memorandum No. UCB/ERL M78/54

27 July 1978

ELECTRONICS RESEARCH LABORATORY

Coliege of Engineering
<3> University of California, Berkeley

94720

*Programming languages for relational data base systems

by CHARLES J. PRENNER and LAWRENCE A. ROWE
University of Californiaat Hvrkeley
Berkeley. California

INTRODUCTION

There has been a remarkable growth in the use of data base
management systemsover the past decade.This has resulted
from the recognition that many practical applications, pre
viously implemented by special purpose programs, can be
developed more easily through the use of a general data
base facility. Here, we will only be concernedwith relational
data base systems. The advantages of such systems have
been discussed at length in the literature.7•!'•,<,

In modern data base management systems, users typically
interact with data bases via a query language.'••ww*''" These
languages, which are often interactive, allow creation and
deletion of data bases as well as retrieval from, and updating
of, existing data bases. Because query languages have not
provided a complete programming environment, most of
these languages have been coupled to existing programming
languages. Application programs consist of statements in
the programming language intermixed with statements in the
query language to access the data base system when re
quired.

Previously investigated approaches to providing such ac
cess include the definition of subroutines to execute data
base functions and the embedding of data base constructs
into an existing language, using a preprocessor to translate
these constructs into run-time calls on a data base system
(e.g., EQUEL,2 and the embedding of SEQUEL in PL/1*).
Because the primary focus of this work was to provide data
base access from a programming language, little attention
was paid to the programming environment resulting from
the combination of the two languages.

While a given programming language and a given query
language may each be satisfactory in isolation, their com
bination may be less than satisfactory because neither one
was designed for this more general setting. In this paper we
discuss techniques for improving the programming environ
ment for data base applications. Our hypothesis is thai a
superior environment can be realized by incorporating the
data base operations as part of the programming language
itself. In the second section we outline some limitations
associated with previously proposed environments. These

• Tim n-MMich was supported in pari bv I'.S Army Research Office Cirant
DA Mi '»» ?<><'• ONV ami by ilic I'lmeiMU oi Calilomia inula a I .tctillv
Ki\,-.inli IV\i-l«tprtu'iit litanl.

.stem primarily from the fact that the programming language
is totally unaware of the data base. In the third section we
illustrate some of the benefits provided by an integrated
approach through the application ofcurrent techniques from
programming language research.

CURRENT APPROACHES

Most current approaches to providing data base access
frorn a programming language are constrained by the lact
that the language system has no knowledge about the data
base. We divide our discussion of the impact of this con
straint into five areas: data base interface, data base oper
ations, type system, compilation, and abstraction.

Data haxe interface

As mentioned previously, the two primary approaches to
providing data base access have been to provide subroutines
for data base functions and to embed data base constructs
through the use of a preprocessor.

The subroutine approach suffers from the limitations in
herent in any use of subroutines to extend the semantic
space of a language: programs become essentially a series
of calls which are often unreadable because of the many
(bookkeeping) arguments which must be passed to the sub
routine. No syntactic aids are provided to make the use of
these arguments understandable.

The preprocessor approach is somewhat better in that an
actual query language is used. Program statements and
query language statements can be freely intermixed. In most
systems the preprocessor docs not have to parse the entire
language because query language statements are lagged with
some distinguished symbol. The preprocessor removes the
query language statements, replacing them with calls upon
the data base subsystem, before the program is passed to
the language translator. The programmer transacts with a
readable version of the program and only the language Hans
lator need be concerned with the less readable version.

Unfortunately, the preprocessor approach is limited as
well. Since the query language is not part of the program
ming'language, communication between the programming
language and the data base system can become awkward.

N49

850 National Computer Conference, 1978

For example, it is often necessary to use implicitly defined
global variables to communicate the status of queries. In
some contexts, program variables which are to be made
accessible to the data base system must be preceded by
"special symbols" so that they may be recognized by the
preprocessor. In some preprocessors arbitrary constraints
are imposed as to which arguments to a data base operation
can be variables and which must be constants. In other
implementations, even though the language being extended
is strongly typed, the same level of checking is not extended
to the data base objects and their operations. Detailed ex
amples illustrating these problems are given in a previous
paper.35

Although preprocessing the entire language would remove
some of these limitations, this approach is still constrained
by the fact that (practically speaking) no amount of prepro
cessing can extend the language to incorporate relations with
the same amount of symmetry, type checking and protection
available for built-in objects.

Data haxe operations

In considering the query language as part of the program
ming language one finds that the notation and orientation of
the two are quite different. Commonly used programming
languages are procedural, with built-in facilities for iteration,
manipulation of complex data structures, and procedural
abstraction. On the other hand, most query languages are
non-procedural. In the context of a procedurally oriented
programming language these non-procedural operations
seem out of place. To provide a consistent programming
environment the objects manipulated by the data base sys
tem and their attendant operations and control structures
should be related to the objects, operations and control
structures of the language itself. For example, a join oper
ation may be thought of as a nested iteration over relations
yet the operation "join" usually appears in a form com
pletely unrelated to the iteration operations in the program
ming language. We do not advocate that higher level oper
ators such as joins be excluded from a language. Instead,
we suggest that they be defined as extensions to the language
in terms of existing primitives.

Type system

Because the programming language has no knowledge of
the data base system, the type systems of the two are usually
distinct. Data base objects cannot be manipulated in the
programming language with the same ease and flexibility as
language objects. For example, records, as used in a rela
tional data base system, often arc not treated as composite
structures in the language environment (e.g., EQUEL or
SEQUEL). This means that values must be copied individ
ually from data base records into program variables before
the values can be used. Thus, a record from a data base

cannot be an argument to a procedure nor an operand i<> an
otherwise meaningful operation (e.g.. record selection or the

right-hand-side of an assignment). The same situation holds
for relations. For example, relations may not be passetI as
parameters to functions. In addition, it is impossible to op
erate on relation typcN, say. to. obtain the count of the ''
number of columns in the relation, or to obtain the domain
of a column as a type. The existence of two type systems
may require conversions to be performed on objects as they '
flow between the two .systems..One type system controlling
data access whether in main memory or secondary storage
would be more efficient because it removes the need for

such conversions.

Compilation

In programming languages, there is often a tradeoff be
tween program flexibility and run-time efficiency. Most data
base systems arc committed to one extreme or the other
depending upon whether data base operations are inter
prcted (less efficient but more flexible,' e.g.. lN(JRES) or
compiled (more efficient but less flexible, e.g.. SEQUEL).
When a language is committed to one extreme the resulting
design decisions make the language awkward to use. or less
efficient, when the application requirements are not matched
to that commitment. For example, consider the treatment
of relation names in SEQUEL. In order for a query to
appear explicitly in the text, all relation names must be
constant (to allow compilation to be performed). If dynam
ically varying names are desired, then a string for the query
text must be constructed and the relation name inserted into

it at run-time. On the other hand. INGRlvS allows dynami
cally varying relation names but cannot utilize the fact that
a relation name is constant in a given instance. A better
programming environment would allow for a continuous
spectrum ranging from dynamically varying requests with
less efficient execution to fixed requests with more efficient
execution so that the system can provide the best possible
solution for the requirements of the problem to be solved.

Abstraction

The concept of data abstraction has received much atten
tion in the programming language community. Recently,
there has been interest in the use of data abstraction with
respect to data base systems.1" Many data base systems
support abstraction related facilities such as views, integrity
constraints and triggers.:,r--li,:,:' For example, a view pro- •*
vides a form of abstraction in that the user can construct

queries for relations which do not actually exist but are
materialized from a number of relations. If the organization-i
of the relations is changed, the view can be maintained by
redefining it in terms of this new organization. In addition,
some authors have proposed mechanisms for specifying
higher level operations on data bases (such as "hire" and
••fire")."' Although some systems offer these abstraction

• Requests can be changed al runtime (e.g.. in KOtMI. relationami domain
names can change dynamically).

\ *'

facilities, they have not yet integrated them with their coun
terparts in data abstraction from programming languages."

AN JNTEGRATED APPROACH

We will now consider the integration of data base objects
and operations into a programming language. We will not
attempt to give a complete language proposal here. Instead,
we shall illustrate some of the benefits of this approach. Our
discussion is divided into four areas: type system, data base
operations, compilation, and abstraction.

Type system

An extremely important aspect of the language is the
extension of the type system to provide access to data base
retations residing on secondary storage. While a complete
discussion of the type system is beyond the scope of this
paper, we will discuss a few aspects of the type system to
demonstrate the usefulness of an integrated approach. We
have been strongly influenced in our thinking about types
by the Mesa language.15

In introducing data types for relations in the programming
language we will exploit the obvious correspondence be
tween relations and collections of records in programming
languages, namely, a relation may be viewed as an unor
dered collection of records (tuples in data base terminology),
where the collection may not contain duplicate tuples. For
example,

Employee: type=relation of
name:string(20),
dept: integer,
salary: integer,
manager: st ring(20),
jobtitle: string! 15)

ciul

defines Employee as a relation type, where "relation of
means "unordered collection with no duplicates of . . .".

A relation type is itself an object upon which operations
may be performed to obtain access to types contained within
it. Thus,

declare e: record(Employee)

declares e as a variable whose type is identical to the un
derlying record type of the relation, and

declare deptno: Employee.dept

declares deptno to be a variable whose type is identical to
the dept column of the relation, i.e. integer.

By allowing the types contained within the relation type

Reienl woik mi litis diiection has Ken icpoiled

Programming I.anguages 851

to be extracted in this manner, duplication of these types in
the program is avoided. Thus, a degree of modularity is
achieved. In addition, data integrity is enhanced because the
only operations that can be performed on the values in the
data base are those allowed on the given type. Hecause there
is only one representation for a value o(a given type,
whether in the data base or in the program environment,
and because the set of types provided in the language is the
same as those provided in the data base system, no conver
sion is needed when data is moved from one environment
to the other.

Another important feature of the type system is the ability
to specify constant or dynamically varying relation and do
main names. For example, the following program fragment
declares Rel to be a relation bound to the existing data base-
relation EM P.

hefjin
declare Rel: Employee ^relatione EM P>;

end;

If the relation were not constant, e.g., if its name were
entered at a terminal, the program fragment would be

hcxin
declare Rel:limployee,

Rname: slring(15);
writeC'.What is the relation name?")

read(Rname):

Rel: = relation! Rname)

end;

where relation is a function which takes a string argument
and returns a relation as result (or returns undefined if no
such relation exists). In either case the type of the relation
is specified so that operations on Rel can be type checked,
and the program code in the block can be the same. The
only change is in the way the relation is bound to Rel.
Because the programmer has explicit control over the con
version of the input siring into an object of type relation,
the existence of the named relation can be tested and an
appropriate action taken if it does not exist. This cannot be
done easily in any existing language.

The last aspect of the type system to be discussed is type
extensibility. Several researchers have mentioned that a
type extension facility would be valuable so that types other
than the typical primitives (e.g., integers, reals, and char
acter strings) can be placed into a data base record. The
proposed language will allow arbitrary fixed length struc
tured objects, except those including pointers or relations,
to be a component of a data base record. Providing this
feature is not particularly difficult if the data base system
supports a typing mechanism which can be extended to
include generic functions.*:,!'

* Generic functions have multiple definitions for an opeiaiur where the par
licular definition insoked at a call is dcleimined by the arguments (e.g.. ♦

dais several definitions, including definitions for integer, real, complex 01
mixed .iigiimenio.

852 National Computer Conference, 1978

Data base operations

There are several ways that data base operations can be
made more convenient, consistent, and more closely related
to existing constructs in programming languages. Our inter
est in this research was motivated by the difficulty one
author of this paper had expressing complicated queries in
SEQUEL. This led to the design of a procedural query
language, described in detail elsewhere.-" In the following
discussion, an overview of the query constructs is pre
sented.

Suppose that we wish to print the names of all employees
whose manager is Kathy Fallon. This is written as

for xin Rel st x.manager=*Kathy Fallon' do write(x.name);
end

and read "for each record x in the relation Rel, such that

x's manager is 'Kathy Fallon', print x's name."* The vari
able x is known only in the scope of this statement and is
bound to each record in the relation satisfying the qualifi
cation. The qualification clause (st) is optional.

We believe that this construct is cleaner than those used

in many existing data base languages. The binding of lan
guage environment variables to data base objects is more
consistent and the control structure is more natural, say,
than requiring explicit testing of a variable shared by the
data base system and the program environment to determine
if another record exists.3

A query which requires the join of two relations may be
written as a nested for construct. For example, a list of all
employees who earn more than their managers could be
obtained by writing

for emp in Rel do
for mgr in Rel st emp.manager=mgr.name do

i/emp.sal>mgr.sal then write(emp.name)./?
end

end

Suppose one wanted to construct a temporary relation
having employee records for all people working in depart
ment 50. This could be accomplished by using the ./or con
struct to append qualifying tuples to a (temporary) relation
variable.

Alternatively, the ./or statement can be used in its short
form

begin
declare Reltemp: employee;
RelTemp: =l«// | Rel:dept=501

end

which says "construct a relation composed of those records
in Rel such that dept is 50 and assign it to RelTemp." The
construct on the right hand side of the assignment operation
is an example of a relation constructor. The keyword nil

* The use of a for statement to sequence through a collection of data obiects
has been proposed before by programming language designers""-"-10'" but
is absent from existing data base languages.

indicates that all fields of the record are selected. A relation
constructor causes a copy of each record to be made. If
only the name and salary fields were needed, the expression* ''
would be

[name.salary | Rel: dept~50|
•» (

Of course, to assign this value to RelTemp. the type speci
fication for RelTemp must be changed.

The value returned by a relation constructor may contain
duplicate records. Such objects arc called bags,27 or multi
sets.33 If the value is assigned to a relation variable, then
duplicates are removed. However, there are situations in
which the value is useful with duplicates retained, e.g.. when
a function such as average is used as in AVG(|salary|rel|).
To explicitly remove duplicates from the value, two vertical
bars ("||") are used. A relation constructor may be used
directly in ufor statement without having been previously
bound to a relation variable. This is demonstrated by the
next example which intermixes query iteration, relation con
structors, and functions which take relations as arguments
to print a list of all departments and the average salary of
employees in that department.

for x in (dept || Kcl] do
writc(x.dept.AVG((salary|Rel:dcpt--x.dcpl|));

end

This is read "for x in the set of distinct departments from
Rel, print x and the average salary for those employees in
department x".

The iterative construct is also used to update individual
records as shown in the next example in which all employees
are given a 10 percent raise.

for x in Rel do
x.salary: -x.salary * I.I;

end

As in most relational systems, the relation is not actually
changed until all iterations arc completed because the stor
age structure for the relation may require that records be
physically moved when a field is changed, in which case a
record could be updated more than once. One solution, used
in some set theoretic languages, is to make a temporary
copy of the set over which the iteration variable ranges.13
This would not be practical in this environment because of
the size of relations and the time needed to make a copy.
Alternatively, the problem may be solved by keeping all
changes in a separate file until the end of all iterations.w *#
This also solves the problem of keeping a data base consis
tent after certain kinds of crashes.

,,<?

Compilation

The linguistic benefits provided by an integrated environ
ment will be of little utility in practice unless reasonably
efficient code can be produced. Here, we discuss a number
of compilation techniques which can be utilized in order to
ensure that programs in the language have an efficient re
alization. The topics discussed arc: variable binding time.

Im

partial evaluation of procedures at compilc-time, and pro
gram optimization.

Variable binding time

Binding time is the time at which a variable is bound to
an entity, e.g., a specific relation to a variable of type re
lation. Whether this binding occurs at compiie-time or run
time influences both run-time efficiency and program flexi
bility. Figure 1shows a graph of binding time of variables
in data base queries versus the degree towhich these queries
are compiled for two relational data base systems.

Compiling is more efficient in execution time and may be
more efficient in execution space, while late binding allows
more flexibility. Notice thatthese two systems make explicit
commitments, to flexibility (INGRES) or to execution effi
ciency (SEQUEL). By using compilation and optimization
techniques developed for implementing programming lan
guages, it is possible to develop a system that operates in
the grey region of the graph. When enough parts of a lan
guage construct are fixed (e.g.,the relation name isconstant)
code as efficient as possible can be compiled.22 Otherwise,
less efficient code is compiled. This means that the tradeoff
between efficiency and flexibility can be controlled by the
applications programmer. Furthermore, it means that only
those programs that need more flexibility must pay for it in
terms of efficiency. Of course, in those cases where code is
compiled to access a specific relation, programs may have
to be recompiled if the definition of the relation changes.

Partial evaluation

A second compilation technique which can be used is the
partial evaluation of procedures at compile-time (procedure
closure). In SEQUEL, all relation names are viewed as
either constants in the program text (in which case compi
lation is performed) or as strings "read in" at run-time (in
which case no compilation is performed). With this organi-

lote

binding

early
binding

Ingres

System-R

infer pre ted compiled
1'igiiie I Himlinr. lime xeisus eoinpd.iltou

Programming Languages 853

zation it is impossible to pass a relation name to a procedure
and to compile queries issued from the procedures which
use this relation name. However, with global flow analysis
techniques'"combined with procedure closure techniques.'*
a programmer may be given a number ofchoices as to how
such a procedure call should- be compiled. These include:

1. compile one procedure body using only the type infor
mation about the relation,

2. compile distinct procedure bodies for each of the dif
ferent (constant) relations passed to the procedure
using type information as well as specific information
about the relation, or

3. expand certain calls "in-line" so that no call is actually
made.

Providing a programmer with a facility such as this gives
one considerable control over the tradeoff between execu
tion time and space.

Optimization

The use of an integrated language opens up many possi
bilities for optimization. The goal is to reduce the number
of calls on the data base system (and subsequent disk ac
cesses) bycombining many queries intoone. removing quer
ies from loops, eliminating temporary relations, and so on.
This can be achieved through the application of traditional
programming language optimization techniques (e.g.. code
motion, common subexpression elimination, and loop lu-
sion).' However, the potential payoff from such optimiza
tionsis much greater indata base applications than in typical
programs because the removal of a disk access represents
a savings many ordersof magnitude greater than the removal
of, for example, an assignment statement.

Beyond traditional types of optimizations, possibilities
exist for more complex optimizations using techniques sim
ilar to those used in experimental programming systems
which have program verification capabilities.3" In this case,
semantic information available in an abstraction containing
relations (e.g., integrity constraints) and information about
the physical organization of the data can be used to perforin
sophisticated optimizations.

Abstraction

Data abstraction facilities have been found useful in de
veloping programs that involvecomplexdata structures."•"•',u
It seems reasonable to consider extending such facilities to
handle relational objects and operations. Another reason lor
exploring such a facility is because it may provide a struc
turing mechanism for current data base concepts such as
views, integrity constraints, and triggers:,•,'-•,!'••',:, which are all
related to abstraction. Currently these facilities appear in
data base systems in an unstructured fashion which often
makes it difficult to determine how they interact and relate
to one another. A better approach would be to make them
all aspects of a single abstraction mechanism.

854 National Computer Conference. 1978

A view permits a programmer to conceive of a data base
in terms of virtual relations. This allows fields, or complete
relations, to be operated on even though they might not
exist physically. This is similar to the notion of uniform
reference that isbeing explored in programming languages.N
Another use of views isto prevent a programmer from seeing
certain columns of a relation. Again this is similar to a
programming language concept (see the private attribute in
Mesa1*'). A problem with using views is that it is not always
clear how a value to be stored to a virtual field should be
decomposed and stored into the fields that are physically
present. Another problem is that it is not always clear what
action should be taken if a value is to be assigned to a field
which would cause the record to fall out of the view. Some
data base researchers propose to solve these problems by
establishing defaults where unambiguous alternatives are
possible and disallowing the operations otherwise. An alter
native solution, which we are currently investigating, is to
acknowledge the difficulty of establishing defaults and in
stead provide convenient tools for allowing the implementer
of the abstraction to specify the semantics explicitly.

Triggers are data base operations which are invoked au
tomatically when certain primitive operations are per
formed, e.g. when a tuple is deleted from the employee
relation the count of employees in the removed employees
department is decremented by one. In the context of a data
abstraction facility it would seem more reasonable to asso
ciate this operation with the abstract operation "fire" than
with the deletion operation itself.

Integrity constraints are assertions which characterize
what it means for the data base to be in a correct and

consistent state with respect to the semantic meaning of the
data. For example, a constraint might be that all the names
in the data base must be a subset of those in the employee
relation.19 Currently, such constraint information is used in
an enforcement sense, i.e., a constraint is checked after a

data base operation (or a group of operations) are performed.
Often these checks are very expensive. It may be possible
to use this information as assertions to be proved to hold
about the set of abstract operations which are permitted on
the data base. For those constraints which cannot be proved
to always hold it may be possible to automatically determine
additional information which should be retained in order to

simplify enforcement.

CONCLUSIONS

We have attempted to show that an integrated approach to
providing data base access from a programming language
can yield a better programming environment for data base
applications than previously available. We arc currently in
the process of designing a language with this philosophy for
use with the INGRES20 system. Other research groups arc
also working on similar problems.m*-™™ We believe that
this research represents a significant step towards a better
understanding of the relationship between programming lan
guages and data base systems.

REFERENCES

1. Aho. A. V. and J. I). Ulhnan. I'nru iple\ „l i,.mril,r De\n;n. Addison
Wesley. Reading. MA. 1977.

2. Allman. K.. M. R. Slonc.hiakci and(i. Meld. "EmU-diling a Kel.moii.il
Data Sublanguage in a (ieueial i'uipose I'logi/iiiumin: I anguagc.'' I'm
ceedi'ngs ofaConference on Data: Abstraction. IVliiiitioii. and Ninuum-.
SICPtAN Notices. II. Special Issue. March 1976. pp '»S IV ,

3. Astrahan. M. M.. el al.. -.System R: Relational Approach to D.u.i llasr
Management." ACM Transactionson Database Sv\tcm\. I..'. Jum- |«j76.
PP. 97-137.

4. Boycc. R. I-.. D. I). Chamherlin. W. I•'. King and M. M ll.imrnei.
"Specifying Queries as Relational Expressions: The SQUAKF Daia Sub
language." Communications of the ACM. IS. ||. November I'JTs, pp
62I-62H.

5. Brathcrgsengen K. and <). Risnes. "ASTRA A DBMS H.imJ on a High
I^evcl. Relational DMI. with Data Access via a Hierarchical DDI ."
Proceedings SIMIT A Users Conference, SeplemK-i 1977.

6. Chamberlin. I). !).. et al.. "SEQUEL 2: A Unified Approach to tv.ita
Definition. Manipulation, and Control." IIIM Journal ot Hereon h and
Development. 20. 6. November 1976. pp. 560-575.

7. Codd, E. I-.. "A Relational Model of Data lor Uirgc Shared Data Hanks."
Communu atnois <>l the Ai'M, 13. 6. June 197(1. pp. 377-3K7.

8. Codd. E. I-.. "A Data Base Sublanguage Founded on the Relational
Calculus." Proic.dmgs /V7/ ACM-SICIIDEI Workshop. San Diego.
CA. November I97|. pp. 35-68.

9. Codd. E. F. and C. J. Date. "Interactive Support for Non-Programmers."
Proceedings' IV74 ACM-SIUIIDET Workshop on Data Desiriftion. Ac
cess and Control. Ann Arbor. Michigan, May 1974.

10. Date. C. J. and E. F.'Codd. "The Relational and Network Approach:
Comparison of the Application Programming Interfaces." Proceedme* ol
the W74 ACM-SHri IDET Workshop on Data Description. Access and
Control. Ann Arbor. Michigan. May 1974.

11. Dahl, O.-J. and C. A. R. Hoarc, "Hierarchical Program Structures." in

Structured Programming, Academic Press. New Voik, NY. 1972.

12. Eswarcn. K. P.. "Aspects of a Trigger Subsystem in an Intcgiatcd Da
tahasc System," Proceedings Second International Conference on Soft
ware Engineering. San Francisco. CA. October 1976. pp. 243-250.

13. Feldman. J.. J. Low. I). Swinehail and R. Taylor. "Recent Developments
in SAM-—An Algol Based language for Artificial. Intelligence." Pro
ceedings IV72 I all Joint Computer Conference. Vol. 41, I.as Vegas. NV.

December 1972. pp. 1193-1202.
14. Gcschkc. C. M. and J. Mitchell. "On the Problem til' Uniform Reference*

to Data Structures," IEEE Transactions on Software Engineering. SE I.

2. June 1975. pp. 207-219.
15. Gcschkc. C. M.. J. H. Motris. Jr. and E. H Sattcrthwaitc. "Early

Experience with Mesa." Communications of the ACM. 20. X. August
1977. pp. 540-552.

16. Graham. S. L. and M. Wcgman. "A Fast and Usually Linear Algolillun
for Global Flow Analysis," Journal of the ACM. 23. I. January 1976.
pp. 172-202.

|7. dries. D. and N. Gchani, "Some Ideas on Data Types in lligh-l.cvcl
Languages." Communications of the ACM. 20, 6. June 1977. pp. 414-
420.

18. Hammer. M., "I>ata Abstractions for Data Bases." Proceedings of a
Conference on Data: Abstraction, Definition, and Structure. SUil'lAN
Notices. II, Special Issue. March 1976, pp. 25-35.

19. Hammer. M. and D. Mel.cod. "A Framework for Data lla.%e Semantic

Integrity." Proceedings Second International Cnnfereni e on Software
Engineering. S.ut Francisco. CA. October |97«i. pp. 4'W-504.

20. Held. G.. M. R. Stroncbrakci. and E. Wong. "INGRES -A Relationul
Data Base System." Proceedings IV75 National Computer Conference.
44. Anaheim. CA. May 1975. pp. 409-416.

21. Hoare. C. A. R.. "Notes on Data Structuring." in Strut tared Program
ming, Academic Press. New York. NY. 1972.

22. Katz. R. II.. "Compilation of Data Base Queues," M.S. Project. IV-
partment of Electrical Engineering and Computer Sciences. U.(''. Berke
ley. June 1978.

23. Knuth, D. E.. The Art ol Computer Programming. \ olume .*. \ddi\on-

Wesley. Reading. Mass. 1973.

\

a*.

-?

K

24. Liskov. B.. A. Snyder. R. Atkinson, and C. SchalTert. "Abstraction
Mechanisms inCLU."Communications ofthe ACM. 20. 8. August 1977.
pp. 564-576.

25. Merrelt. T. II.,"Aldat—Augmenting Ihc Relational Algebra for Program
mers." Technical Report SOCS-78.1. School of Computer Science.
McGill University. November 1977.
Prenncr. C. J.. "A Uniform Notation for Expressing Queries." ERL
Memorandum M77/60. Electronics Research Laboratory. U.C. Berkeley.
September, 1977.
Rulifson. J. F.. ct al.. "QA4: A Language ft»i Writing Problem Solving
Programs," Proceedings It'll' Congress, 1968.

28. Schmidt, J. W.. "Type Concepts for Database Definition: An Investiga
tion Based on Extensions to Pascal." tnsritul fur Informatik. Univcrsitat
Hamburg, June 1977.

29. Schmidt. J. W.,"Some High-level Unguagc Constructs for Data ofType
Relation." ACM Transactions on Database Systems, 2, 3. September
1977. pp. 247-261.
Schwartz, J. T., "On Programming: An Interim Report on the SET I.
Project. Installment 1—Generalities. Installment 2—The SETL language
and Examples of its Use." Computer Science Department, Couranl In
stituteof Mathematical Sciences. New York University, 1973.
Shaw, M.. W. A. Wulf. and R. L. London. "Abstraction and Verification
in Alphard: Defining and Specifying Iteration and Generators." Com-
munications of the ACM. 20.8. August 1977. pp. 553-563.
Smith. J. M. and D.C. P. Smith."Integrated Specifications for Abstract
Systems." Technical Report UUCS-77-112. Computer Science Depart
ment. University of Utah. September 1977.

26.

27.

30.

31.

32.

Programming Languages H.VS

33. Slonebraker. M. R.. "Implementationol lntcgtn> Constraints andViews
byQuery Modification." Pro, ceding-. /<"> Al MSKiMoD W.«Ai/i../- •"•
the Management of Data. San Jose. CA. May 19/V

34. Stonebraker. M. K.. E. Wong. P. Krcps and G. Held. Ihc Design ami
Implementation of INGRES." ACM Iranuu turns on Database Systems.
I. 3. September 1976. pp. 189-222.

35. Slonchrakci. M. R. and L. A. Rowe. "Observations on Data Mumpula
turn Languages and their Embedding in General Purpose Programming
languages." Proceedings Third International Confer en, e .»i Very forge
Data liases. Tokyo. Japan. October 1977.

36. Wasscrrnan, A. I. and E. Handa. "Preliminary Report on the Progr-mi
ming Language PLAIN." Medical Information Science. U.C. San Iran-
cisco. January 1978.

37. Wegbrcit. B.."Procedure Closure in ELI." Center for Research inCom
puting Technology. Harvard University. March 1972.

38. Wegbrcit. B.. "Multiple Evalualors in an Extensible Programming Sys
tem." Proceedings P/72 lull Joint Computer Conference. 41. Anaheim.
CA. December 1972. pp. 905-915.

39. Wegbrcit. B.. "The Treatment tif Data Types in ELI." <omnmnn alums
of the ACM. 17, 5. May 1974. pp. 251-264.

40. Wulf. W. A.. V. !.. London, and M. Shaw, "An Introduction to the
Construction and Verification of AlphardPrograms." //•/-./• -transactions
on S.if-.ware Engineering. SE-2. 4. December 1976. pp. 251 26S.

41. ZltM»r. M. M.. "Qucry-by-Examplc." Proceedings /V7.S National Com
puter Confereme. 44. Anaheim. CA. May 1975. pp. 431-438.

	Copyright notice 1978
	ERL-78-54

