
 

 

 

 

 

 

 

 

 

Copyright © 1978, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



VECTOR LYAPUNOV FUNCTIONS:

STABILITY AND STABILIZABILITY PROBLEMS FOR INTERCONNECTED SYSTEMS

by

J. Bernussou

Memorandum No. UCB/ERL M78/58

11 August 1978

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



VECTOR LYAPUNOV FUNCTIONS:

STABILITY AND STABILIZABILITY PROBLEMS FOR INTERCONNECTED SYSTEMS

*

J. Bernussou

Summary

The use of the vector Lyapunov function method as a tool for stability

and stabilizability study of large scale interconnected systems is investi

gated. It is shown that, among the Lyapunov-like methods, the vector approach

can provide good results. Of course, the results obtained much depends on a

"good" choice of the Lyapunov functions and an algorithm is given which

enables in the case of linear time invariant systems, to provide such a good

choice. The problem of stabilizability under a decentralized control struc

ture is discussed and some drawbacks of the Lyapunov method approach are

pointed out. Necessary conditions for convergence (stabilizability) are

given.
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Introduction

Since its first appearance [1] and the pioneering work of Bailey [2], the

vector Lyapunov function method has motivated a great deal of works this last

decade. This can easily be seen by reading the numerous references given by .

the two recent books by Michel and Miller [3] and Siljak [A], which themselves

make great use of the vector Lyapunov function concept in studying stability

properties and control problems for large scale interconnected systems. In

[5] is given a critical survey of the Lyapunov method applied to the stability

study of large scale systems. It is not the purpose here to undertake a

general presentation and survey of the vector Lyapunov function method but

merely to discuss some points concerning a comparative study of various

approaches of the Lyapunov method for interconnected systems so as to present

some improvements that can be made in the case where the subsystems are

described by linear time invariant differential equations.

The paper will be divided into three sections. In section I, after a

brief exposure of the stability conditions given by the vector Lyapunov

function and the weighted sum approach, are said a few words about the

respective advantages of the different approaches. It will be shown that in

some cases the vector Lyapunov function approach can provide better results.

Indeed, the conservativeness of the results much depends on a proper choice

of the Lyapunov functions. In section II, the problem of how to find a

"good" Lyapunov function for each subsystem is investigated and a parametric

optimization problem is defined for that purpose. In the third section, the

problem of decentralized control is discussed, in the context of the use of

vector Lyapunov functions for stability testj.



I. Stability Analysis

1.1. Vector Lyapunov Functions. The Comparison Principle

Although the remaining is also valid in the case when non-linearities

(even non-invariant) are present in the interconnection terms, let us con

sider the simplest case of linear time invariant interconnected systems,

described by

N

x. = A.x. + V A..x ; i = 1,2,...,N (1)
u -Ml ' ' '

with x. € R ; A. and A., are respectively niXni» nA xn4 constant

matrices; N is the number of subsystems.

It is first assumed that each isolated subsystem (described by x^A^)

is asymptotically stable so that for all Q. matrices (n^n^

Q = D'D (f means transpose) (2)

such that the pair (A ,D ) is observable, there exists a positive definite

symmetric matrix P , which is the solution of the algebraic Lyapunov equation

AiPi+PiAi =~Qi • (3)

For the i subsystem let us choose the scalar Lyapunov function

Vj =(x'.P.x.)172 (A)
i x i x

which satisfies the inequalities:

[|grad v.H <X^/2(Pi)|lxii|
(5)

where [I-II is the euclidean norm and X (P), ^(P) represent respectively



the minimum and maximum eigenvalues of P. Evaluating the time derivative of

v along the motion of (1), one gets:

v. = TT

- x!(A'P.+P.A,)x.
111111 ^(gradO'XA *i 2 v± v&™ vi7 J ij j

<-aivi+X^/2(Pi)IXm1/2(Pj)llAijOvj
XiQiXiwith a± =min^— .

x i i x

In matrix form, with V = [v-,v2,.. .,vN]f, we get

V<PV ;P={Pij -HX^ +(l-6ij)X^/2(Pj)llAljll}

6* the kronecker symbol. P is a matrix with non negative off-diagonal

elements, so that stability of (6) and consequently (1) can be derived from

the stability study of the following linear system, called comparison system

[6]
W = PW (8)

since, if V(tQ) <W(tQ) then V(t) <W(t), ¥t >tQ; V(t), W(t) GR^.
There exist many equivalent stability conditions for (8), [7] among them:

Theorem 1. The system (8) is asymptotically stable

a) iff the leading principal minors of (-P) are positive (this condition

is known as the Sevastyanov-Kotelyanski condition);

b) iff there exists a positive vector UQ (each component positive)

such that

PUQ < 0 ;

(6)

(7)

c) iff there exists a diagonal matrix B = diag(31), 3^^ > 0 such that

P'B +BP is negative definite.

If P satisfies these conditions (i.e. if P is Hurwitz), then P is called

a (-M) matrix.



In the following we will rather consider the matrix

5=ip±i --Ve^y +d-«lj>iA 1} ; ep =[yp^x;1^)]1'2 (9)

instead of P.

Theorem 2. P is asymptotically stable iff P is asymptotically stable

The proof is straightforward, noticing that P can be written

P=diag[X^/2(Pi)]Pdiag[X~1/2(Pj)] ,

Then denoting by Aj and A the J order principal minors of P and P

respectively, it becomes

aj •(j^vC^v V

The form of the P matrix is interesting since all the variable terms

(i.e. all the terms depending on the choice of P ) are isolated on the main

diagonal. That shows as evidence that a good choice for P must be such

that it results in a ratio a /6. as high as possible. This remark will be

considered in section II.

1.2. The Weighted Sum Approach

An alternative approach for the stability study of (1) is to try to find

a scalar Lyapunov function which is a weighted sum of the individual scalar

Lypunov functions v (A), i.e.

N

V = I 3.v , 3 > 0 . (10)
i=l x 1 1



The problem is itl the determination of the positive numbers 3± such that the

time derivative V be negative definite. Of course, such an approach can be

used on inequality (7) and one gets

v<vfPfB , B= [31,32,...,3N]1 • (ID

Existence of B such as V be negative definite turns out to be the same

condition as condition b) of Theorem 1. But such an approach does not need

to write a differential inequality of type (7). When considering (5), it

is possible to get the differential inequality

V <W , $ = [0x^^11,11x211, — ,DxNU3» (12)
with

L- {4iJ=-k(V\i1/2(pi>6ij+(1-6iJ>^/2(pi>DAiJD} •
With (12), v can be written

V<$fL'B (13)

and v is negative definite iff L1 is a (-M) matrix (^L be a (-M) matrix).

Here too (in a very similar way as for Theorem 2) stability for L can be

stated from that of L, with

There is no evidence that the stability condition given by using L

would give better results than those given by using P since

"i^W^'V • <14)

In fact it may be invoked at this stage that the computation of the true

a. is a much more involved problem than computing X and X for a given

matrix and in fact in some papers a. is replaced by a lower bound, namely



X (Q.)XTJ (P ) so that in that case, indeed P provides worse results than

L. However in section II is given a way to try to optimize globally the ratio

a./8. so that the preceding remark still holds.

Another stability condition can be derived using the weighting sum

approach with quadratic Lyapunov function. Instead of (A) let us use

Vi = XiPiXi • (15)

Then, following the same type of calculations as before, one gets

d N
v =7F( I VP =*,R$ <16>

i=l x x

with R = {t.A

./*±W ; 1=j
±d 3iAM(Pi)I,Aijll+6jVPj)DAji11 ; 1* j

(16) can be written as

with R = {r..}

o ^.rBR+R'B-,^ ,,_,.v = $'[ ^ 1$ (I7)

lj XM(Pi)||A [1 ; i +j
-Xm(Q±) ; i = j

(17) being negative definite means that R is a (-M) matrix (cf. Theorem 1,

condition (c)) so that one gets here the same stability condition as with L

and the same remark holds.

Other motivations for using the vector Lyapunov function approach can

be given and this is the purpose of the next two subsections.
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1.3. Non Linear Interconnected Systems

We will consider here the problem of the estimation of the stability

domains [9] for interconnected non linear systems described by

i± - g±(xi,t)+hi(x,t) , i=1,2,...,N , (18)

n

x £ R , X6R , £n = n. It is assumed that the origin is an equilibrium
1 i 1
point for the overall system and for each isolated subsystem, i.e.

gi(0,t) =0 , h±(0,t) =0 .

There exists, for each isolated subsystem, a scalar Lyapunov function

v.(x ,t) such that

<j)11(nxi0) < vi(x±,t) (< <f>±2([ix±n) for uniformity purpose) (19)

and

av

-g^+ (grad v±) ,gi(xi,t) <-<J)i3(!|xil|) (20)

where (J).., <}>.«, <J>.~ are functions of class K [8]. Furthermore the inter

connection terms are assumed to be such that

N

We consider the case when (10), (11) does not hold globally but only in the

domain

V = {x.: v.(x,,t) <v .; i = l,2,...,N} .
X xx — ox

Then, using (20) and (21), in V we obtain

tf<LW with V= [v1,v2,...,vN]», W= Wl3>4>23"-9h3]' (22)
and

l =Uij =(-i-hr.i)61.)+<i-«1.))Y1.|} .

(grad v^'^Cx.t) < I Yi^^COXjl) . (21)



Let us now consider the scalar Lyapunov function V = 13/v. = V'B. Then
i

V<W»L'B (23)

which is negative definite if and only if L'B < 0. That generally implies

(since in most the cases y > 0, see (21)) L* (and consequently L) be

a (-M) matrix.

To be able to get a true differential system (the comparison system) from

(22) one needs a supplementary condition on the <J> -, <J> «, <j> « functions:

namely <J) ,<()«, <J)^, of the same order of magnitude, i.e.,

Rii*il =R"i2*i2 "*13 • (24)

Then, (22) can be written

£<LV ;L={l^ =(-Ri2^iiRn)6ij+(1-6ij)YijRji} ' (25)

Here too one could try to find a scalar Lyapunov function V = l3.v.. The

final stability test would be that L be a (-M) matrix but such a way

would provide much conservative results than those obtained by using L

since

L=L-diag(R^) , L={£±j =(Yii-RilRi2)<5ij+(1"6ij)Yij}
and

L 2l L (term by term) .

But, (25) enables one to consider the comparison system

W = LW . (26)

If L is a (-M) matrix, i.e., if it exists a positive vector

U0 = tu01,***,lW SUCh that ^U0 <°* then V=maX Vi"U0i ±S aLvaPunov
function for (26). It is easy to see that the estimate of the stability
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stability domains in the two cases is

l$±v± <max $±v±0 for (22)

Vju"J <max viQu^ for (26)

It may happen that the estimate obtained for (26) be wider than that obtained

for (22) and, even, in the case where U- can be chosen such that

n = [v.n,...»vNn]' this estimate actually coincides with the domain of

definition V of the comparison system.

I.A. The Case of Structural Perturbations

Let us consider the system (1) subjected to structural perturbations in

the following way. It is assumed that the number of perturbations is finite,

say P, and that for each structural perturbation the system is described by

k=l,2,...,P; i=l,2,...,N. (27)V^i+J^ij Xj •

It will be assumed that the perturbations do not greatly affect the isolated

k °
subsystems, i.e. A = A , k = 1,2,...,P, such that a unique scalar

Lyapunov function can be chosen for each isolated subsystem whatever the

perturbation. It can be noticed that such a presentation differs substan

tially from that used in the concept of connective stability which merely

consists in defining a comparison system (the fundamental comparison system)

which overevaluates all the comparison systems built for each particular

perturbation. Following what has been done in subsection 1.1 for each struc

tural perturbation one gets a comparison system

$ = pN, . k ~ 1,2 P (28)

pfc - (P*., -«S[«1J+(i-slj)*i/2<p1>\;1/2(pi)'Aijk'} •
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Then it can be stated

Theorem 3. The system (27) is stable for all structural perturbations

if there exists a vector U0 > 0 such that

a) either (Mk)'Ug <0 Vk =1,2,...,p
b) or M^q <0 Vk=l,2,...,P

The first condition a) expresses the fact that V = V'U is a scalar

Lyapunov function for (27) (weighted sum approach) while for b) the Lyapunov

function is V = max v,u~ , which can only be used if we are dealing with
^ i Oi

a true differential system like (18). It is easy to see that conditions a)

and b) are not equivalent and that furthermore a) may not hold while b)

holds.

II. The Choice of the Lyapunov Functions (P. matrices)

As pointed out in section I, naturally the stability conditions given

depend on the choice of the Lyapunov functions associated to each subsystem.

In the vector Lyapunov function approach it was seem that the main parameter

was the ratio ot./9.. The best stability condition will be achieved if we

are able to solve the parametric optimization problem

max a.eT1: A]P4 +P.A. +D!D, =0 (29)D xi ii ix xi

where

°i • l^w? • 9i •' wC<v]1/2 •
i x x

Because of the non differentiability of the cost function this is a very

intricate problem and the following will be devoted to derive a noticeably

equivalent problem, much simpler to solve.
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II.1. An "Equivalent" Problem

First let us remark that the problem (29) is equivalent to

max 3ie~1: (A^I)'P± +Pi(Ai+3iD +T)'±T)± =0, 0<3± <0± (30)
D±,3i

where I is the n x n identity matrix and a the stability degree of the

matrix A. (i.e. A +a I is stable).

Proof. Let a.(6.)" and 3.(9.) be the maximum achieved respectively

by problems (23) and (2A). First

3^(e^)"1 <ajo^)"1 . (31)

The restriction in (30) can be written AjP,, +PjrAJ +D!D^ +23*Tpj = 0
ii ii ii 11

so that the corresponding a. is

ai =2min xTflT " e± +2min x'P.x,
x i i i x. i i i

which obviously implies

e>t>_11 ai(et>_1i ai(eirl •

But, we also have

ajo^)"1 <3*(6+)~1 . (32)

The restriction in (29) can be written as

(A4-Kx°I)'P. +P. (A.+a?I) +D!D. -2a?P^ =0 .
iii iii ii xi

By definition of a,,, the matrix D!DJ-2a.PJ is a non negative definite
i i i x i

matrix, so that there exists a matrix D. with D!D. = DID. -2a.P.,
' i i i i i i x'
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i.e., there exists 3. and D corresponding to problem (30) and then

(31) together with (32) implies

1/2Problem (30) involving explictly 9± =(^AJ is still very difficult

to solve in this form. From the following considerations one can propose

another problem which is not strictly equivalent but, as far as I know,

provides good results in that sense that, most often, it really implies an

improvement in the ratio a /9 .

For all positive definite n*n P matrix, one has

11"T Tr(P)Tr(P_1) <62 <Tr(P)Tr(P_1)
n

and

-j Inf[Tr(P)Tr(p"1)] =Inf(92) =1 iff X±(P) =X=etc.
n

i = l,2,...,n (X eigenvalue of P)

Problem (30) can now be written as

min

°-3i-ai

{-^-min 9i(P±):(A^.1)'P^P^A^.D+D^=0}

and, from the above considerations, let us deal with the problem:

min {^9(P.); P. given by min J(D.) =Tr(P,)Tr(PT1) : (32)
0<34<a. 3i x x D. ± 1 1

11 1 (A +3.I)fP +P (A+3iD+D|D =0}
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II.2. An Algorithm for Solving (32) [10]

Solution of (32) can be searched for by gradient techniques in the

following way. For a given 3.» solve the problem min J(D ) which amounts
Di

to calculating the gradient matrix dJ/dD,. The minimization with respect

to 3. is a problem of one-dimensional optimization performed by a step-by-

step search using the knowledge at each step of the function 9/3*

The determination of the gradient matrix dJ/dD. is easily derived

from the following: Let f(x): R •+ R be such that

f(x+eAx) = f(x)+eTr[M(x)-Ax] as e -*- 0 .

Then

dx

We get:

Theorem A. The gradient matrix of the function J(D.) = Tr(P.)Tr(P" ),

where P is the solution of the Lyapunov equation

(A|+3iI)Pi+Pi(Ai+3iD +D^D± = 0 , 0 < 3± < a± ,

with respect to D is such that:

dJ = 2D.SdD± i
(A^+34I)S+S(A4+3.I)' +T = 0 (33)

XX XX

T = Tr[p"1]I-Tr[P.]PT2
i x i

Proof. JtD^AD^^] =Tr{P(Di+eADi)}Tr{p"1(D +eAD±)} where P(D±+eADi)
is the solution of

F,P(D.+eADj+P(D.+eAD.)F+(D.+eAD.),(DJ+eADJ) = 0 , F = A. +3.1 (3A)
XX XX 1 I X X IX

Restricting the calculations to the first degree in e it becomes



with
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P(Di+eADi) = P(D1)+eAP(Di,ADi)

AP(D±+eADi) =reF,t(D^ADi+ADpi)eFtdt
Furthermore,

-1 -1 -1p""J-(Di+eADi) =P(Di) -eP x(Di)AP(Di,AD1)P (D±)

so that

-1J(Di+eAD±) = J(DjL)+eTr[AP(Di,ADi)]Tr[P (D±)]

since

and

Tr

one gets

-£Tr[P(Di)]Tr[P"x(Di)AP(Di,ADi)P (D±)]

eFteF S^dtoADj

[p"1(Di)AP(Di,ADi)P"1(Di)] =2Tr[jeFtp"2(Di)eFttD^dtoADi]

-£f- =2DTeFtTeFttdt =2D,S .
dDi ^0 1

(35)

Q.E.D,

Remark. It is clear that the proposed algorithm enables one to give

only a local minimum. Furthermore it is not claimed that the solution of

problem (32) always results in an increase of the ratio 3/9; however from

numerous numerical experiments, chosen at random, it seems that this is the

general case.

As an example, let us consider

min J(D) = TrtPjTrtP""1]: A'P+PA+D'D = 0
D

with

A =

0 10 0

0 0 10

0 0 0 1

-1 -A -6 -A
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Starting with an initial condition on D being the unity matrix, the

final "optimal value for D" was found to be

0.08 -0.07 0.18 0.05

-0.03 0.59 0.15 0.55

opt 0.26 -0.01 0.05 0.38

0.16 0.96 0.76 1.20

2 2
With D the unity matrix 9 = 8A and with D 9 =6.5

III. Multilevel and Decentralized Control Schemes

Let us now consider the system

1=Aixi+Biui+^1Vj ' i =1'2---Nx. =
(36)

and the problem of the design of acontrol u={u^ i=l,2,...,N> in order

to stabilize the overall controlled system (36), the stability being checked

by means of the vector Lyapunov function approach.

In several papers, i.e. [11], a two level control scheme was proposed

with the following features: the first level (local) is designed in order

to insure a certain stability degree to each isolated subsystem, the second

one (higher hierarchical level) in order to decrease the amplitude of the

interconnection terms:

"i-KUxi+5K±jXJ .1-1.2.....H (37)

where K is the matrix gain of the local control, and K the matrix

gain of the control delivered by the higher level. A way for the choice of

the K matrices is the use of the Moore-Penrose pseudo-inverse which is
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known to minimize llA., -B.K. J. It is not the purpose to discuss the quality
ij i ij

of such a design but to point out that, once the higher level is fixed, one

is faced with a.decentralized control problem, namely, the choice of

u = -&±x± » ±= 1,2,...,N

such that system (36) is asymptotically stable. The following is restricted

to such a problem, recalling that the method used to test the stability

properties is the vector Lyapunov function method.

Taking into account the results of section II, one can propose the

following algorithm:

1st step: Determination.of the norms of the interconnection

matrices. Let

H={h :h -IAjjD; i,j =1,2,.. .,N}

2nd step: For each subsystem, design of a control ui = "Kixi
so as to give a stability degree equal to 0±.

3rd step: Determination of the P matrices (section II).

Ath step: Stability test (section I); if not satisfied increase

of a. and go to step 2.

In fact, the choice itself of the K± matrices should affect the results

obtained in step 3 and henceforth step A, and there is also a problem of the

best choice of the K matrices according to the structural properties of

the matrices A and B in order to get the best stability conditions.

This problem is not investigated here, where it is assumed (as in all the

papers on the subject) an a priori choice of the design method for K±;

for instance, pole placement techniques, or linear quadratic optimization.
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The question which can now be asked is: "Is it possible to give classes

of systems for which the preceding algorithm will work, i.e., will it provide

us with a decentrally stabilizing control?"

The answer is: generally, no (save for very trivial cases such as B^^ a

regular n *n matrix). The main reason for such an impossibility comes

from the fact that the vector Lyapunov function approach needs a fairly great

degree of aggregation to get equations like (7) (in some papers, the scalar

Lyapunov functions v are called aggregation functions). The aggregation

is particularly hard on the interaction terms. Indeed, there is a great

loss of structural information when passing from A±. to DA^ll. This loss

of information is deduced by the fact that to a given comparison system

such as (8) there can be associated an infinite number of systems of type

(1) or (36), from which it can be derived. Let us denote by (S) the set of

all possible systems giving the same comparison system (with the same choice

of the vector Lyapunov function V).

To the contrary, from such a remark it is often easily possible to

give sufficient conditions for the preceding algorithm not to work, or,

which is the same, necessary conditions for the algorithm to work. This can

be done by simply trying to find in (S) systems which are known not to be

stabilizable.

For instance, let the system (36) be constituted by A± matrices in

comparison form and B the column vector [0,0,...,1]f. Then

Theorem 5. A necessary condition for the algorithm to work is that

(H-I) be an asymptotically stable matrix.

The proof comes from the fact that for all P±, 0^9± < 1. This can

be seen by considering the system
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o

X =

A1-B.Ki A±2

A2± ArB±k±

The comparison system is written

W =

-a^1 IlAi2U
L «A2iii -c^1 j

(38)

w

>-lwhich is stable whenever a±9~ >/||Ai2nilA21l|. Choosing A±2 =A2i =

The system (38) having one zero fixed mode cannot be asymptotically stabilized

which implies necessarily that

01000

0

a^i1 1 1 •

This result can be extended to the multivariable case when (A^B^) is

controllable, by using similar transformations, but this involves many

calculations.

In general, the following can be stated:

Theorem 6. Let I.n be the set of indices of the null rows of

matrices B , i = 1,2,...,N, and assume that

Ii0 * $ Vi =1>2»--->N •

A necessary condition for the convergence of the algorithm is that the

matrix [H-diag(r )] is asymptotically stable.

r = min \\ fa ,
1 JGI Vk=l 1k

i.e. r is the minimum of the norms of the rows of A corresponding to

the null rows of B..
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The proof is similar to the above one and is omitted.

Conclusion

This paper was concerned with the use of the vector Lyapunov function

method for some problems of interest in the field of interconnected systems:

stability, stabilizability. It has been shown that the use of the vector

Lyapunov approach (together with the comparison principle) can provide in

some cases better results than the weighted sum approach, although the

obtention of a comparison system generally implies a degree of approximation

higher than for the weighting sum approach. This can be explained by the

fact that the true differential system, which is the comparison system,

enables one to use a wider class of techniques for its study than differen

tial inequalities (used in the weighted sum approach). In some sense there

is a tradeoff between the two approaches. It is quite obvious that the

stability conditions depend on the choice of each Lyapunov function, asso

ciated to each subsystem. In the case of linear time invariant systems, a

problem was defined in order to try to get "good" Lyapunov functions. The

problem is a parametrical optimization problem which can easily be solved by

the gradient method. In the last section the problem of decentralized control

is discussed within the framework of the use of vector Lyapunov functions

methods. This method which is conceptually simple suffers from the major

drawback of needing a relatively high amount of approximation, which results

in a loss of structural information. This point is discussed, giving rise

to some simple necessary conditions for stabilizability under decentralized

structure.
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