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Abstract

The Paige style Lanczos algorithm is an iterative method for finding a

few eigenvalues of large sparse symmetric matrices. Some beautiful rela

tionships among the elements of the eigenvectors of a symmetric tridiagonal

matrix are used to derive a perverse starting vector which delays convergence

as long as possible. Why such slow convergence is never seen in practice

is also examined.
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1. Introduction

In 1950 Lanczos [2] presented an algorithm for reducing a symmetric

matrix, call it A, to tridiagonal form. The algorithm begins with an arbi

trary unit vector q,. It produces a tridiagonal matrix T and an ortho

gonal matrix Q such that

(1) Q*AQ =T and Qe] =q] .

In practice the algorithm could not compete in speed or accuracy with later

methods based on explicit orthogonal transformations.

In 1971 Paige [3] introduced a modified version of the algorithm which

could be used effectively to find a few eigenvalues, and their eigenvectors

too if desired, of a large sparse symmetric matrix. Paige suggested terminat-

ing the process prematurely at, say, the j step with T. the j*j leading

principal minor of T and Q. the first j columns of Q in hand. In
j

exact arithmetic

(2) Q*AQ. - T. .

Let the spectral decomposition of T. be
j

(3) T. =S.est with 0=diag(6^,0^,...,e^) and S*S. =I. .

Define

Yj =(yJ,yJ2,...,yj) =Qjsj.

Then e^,ej},... ,8J. are the Rayleigh-Ritz approximations to the eigenvalues

of A (commonly called Ritz values) derivable from the subspace spanned by

the columns of Q., and yl^l*- -9y\ are the corresponding Ritz vectors.

The norm of the residual of y?, namely IIAyj-e'V.II, is abound on the
accuracy of 6^ as an approximation to an eigenvalue of A.



The Kaniel-Paige error estimates [1,3] lead us to expect that some of

the eigenvalues of T. should converge (have negligible error bound) for

j« n, provided only that the starting vector q1 is not pathologically

deficient in the corresponding eigendirections of A. Numerical tests by

Paige and other researchers have confirmed that convergence occurs relatively

quickly. Despite this abundance of evidence, Paige was unable to prove that

convergence of some Ritz value must occur before j = n = dim(A) at which

point, in exact arithmetic, T is similar to A so that all the "approxi

mations" are exact and all the bounds are zero.

There are several interesting unresolved problems connected with the

Lanczos process. Except in its last section, this paper is restricted to

the theoretical behavior of the algorithm in the context of exact arithmetic.

In the following section we derive some beautiful relationships among the

elements of the eigenvectors of a symmetric tridiagonal matrix which may be

of interest in their own right. In Section 3 these results are applied to obtain

formulas for the Lanczos starting vector. In Section 4 these formulas are used

to find a perverse starting vector for matrices with well separated eigenvalues

which delays convergence until j=n. Section 5 generalizes the construction

to matrices with close or multiple eigenvalues to yield a vector which

delays convergence for a long time. The final section will indicate why

such slow convergence is never seen in practice.

2. The Eigenvectors of a Symmetric Tridiagonal Matrix

Definition. Let adj(R) be the transpose of the matrix of cofactors

of R. This is usually called the adjugate or classical adjoint of R. By

the Cauchy-Binet theorem

(1) R adj(R) = det(R)I .



Example.
"1 0 1

R = 1 1 1

_2 -1 1

"2 -1 -1

adj(R) = 1 -1 0

^3 1 1

"1 0 0

R adj(R) = 0 -1 0

0 0 -1

Theorem 2.1 (Thompson and McEnteggert, 1968). Let A = ZAZ*

with A=diag(X1,X2,...,An), Z= (z-j ,z2,...,z ) and Z*Z = I.

Then for i = l,2,3,...,n

n

adj(A.I-A) = n(yVz.z* =X^^-Jz.z* ,
j '

J7i

where Xn(u) is the derivative of the characteristic polynomial

of A.

Note that if A. is a multiple eigenvalue of A, then x'Ax.) = 0, so

that the ambiguity in the choice of eigenvectors doesn't matter.

Proof. Let y f A., for all i, so that (yI-A)~ exists Then

adj(yl-A) = det(yI-A)(yI-A)
-1

where A is diagonal and A

=xA(u)Z(yI-ArV
= ZAZ*

XA(u) n ,
A = H (y-A,),

kk y-A
k j=l

J7i

Since computing cofactors



does not involve division, adj(R) is a continuous function of R. There

fore the last equation must hold even for y = A... Setting y = A.., for

i = 1,2,3,...,n, yields

adj^I-A) =ZAZ ,

where

n
0 if k M ,

Akk ="/W = n
S JVxrxj) if k=i*

3ti

Since n (A.-A.) = xiUJ. tne result follows.
j-1 1 J
#1

D

Thompson and McEnteggert were working with general Hermitian matrices.

The application of their theorem to tridiagonal matrices was made by Paige [3]

Notation. Let

r,t

a $
r r

3r Vl 3r+l
3r+l ar+2

o
*t-l

o

>t-1
a.

Let x 4.M =det(uI-T .), the characteristic polynomial of Tr t, and
r,t r,t '

let xr,r-l(t) E] for a11 r*



(2)

Theorem 2.2 (Paige. 1971). Let T = T, = SOS* with
l,n

0 = diag(e1,62,...,en) and S*S = I. Then for r<t and all i,

xln(ei>sristi =xl,r-l(ei^A+T-^t-lxt+l,n(0i) •

In particular

x1,n(ei>sri " X1>r.i(9l)%l.n<el' •

Proof. By Theorem 2.1

adj(e.I-T) =X\je.)s.s*

The (r,t) element of the RHS of (2) is xi n(6js .s... Because of the
I, n i • ri Li

tridiagonal form of T, the (r,t) element of the LHS of (2) is

^.r-l^i^A+r'^t-^t+l.n^i5- For examPle>

6iI"Tl,6

<S)
"31 Va2 -3,

fW ei-a3 -h
-3< ^ei"a4 ^4

-h 0i-a5 'h
-35 6ra

The circled elements contribute to the (2,3) cofactor. Note that the minus

signs on the 3's cancel with the alternating signs associated with the

cofactors. •

3. Formulas for Starting Vectors

The Lanczos algorithm begins with an arbitrary unit vector q, and

terminates with a tridiagonal matrix T and an orthogonal matrix Q such



that q, is the first column of Q and AQ = QT. The process is geometric,

i.e. it is invariant under orthogonal changes in coordinates. The coordinates

which give the most insight into the process are the eigenvectors of A.

In these coordinates the operator A is diagonal and the matrix Q

becomes the transpose of S, the matrix of eigenvectors of T. The matrix

equation AQ = QT becomes

(1) AS* = S*T

where A= diag(A,,A2,...,A ).

Theorem 3.1. Let AS* = S*T as above. Then for i = l,2,...,n

W s1isniX;(V =W6n-1 "*n aconstant.

Proof. Since A is similar to T, XAM ~ XjM = xM
(i) This is Theorem 2.2 with r = 1 and t = n.

(ii) This is Theorem 2.2 with r = n and t = n. D

In order to refer to the Lanczos vectors, we need names for the columns

of S*. For this purpose, when A = A, we define

(2) P=(PrP2"-->Pn)

Theorem 3.1 (i) relates the first Lanczos vector p1 to the last Lanczos

vector p . Theorem 3.1 (ii) relates p to the eigenvalues of T-j n-1 which
st

are the approximations to eigenvalues of A furnished by the (n-1) step

of the Lanczos algorithm. Since T-, is similar to A, the Cauchy Inter-
i,n

lace theorem requires that the eigenvalues of T -j, call them y-j ,y2»... ,yn_-j



satisfy the inequalities

(3) h < Vi 1 *o < ••* < y« i < A_ .1 - Mi - Kn-1 - An

S1nce Tl,n' the trid1a9onal matrix produced by the Lanczos algorithm, will
be unreduced, the interlacing must be strict.

Theorem 3.2. Let A=ZAZ* with A=diag(A1,A2,...,A ) and j
Z Z = I. Then the Lanczos algorithm run with a starting vector

q-, produces a T, , with eigenvalues y1<y0<---<y , if
1 •»'•"' I c n-1

and only if q] =Zp], where

'11

n-1

\i n (A.-A.) n (A.-y.)]
" j=l 1 J j=l 1 J

J7i

"M^V^n-i^"1

Strict interlacing is required to make the quantity in the brackets positive

for all i.

Proof. The Lanczos algorithm produces the same T whether it runs on

the pair (A^) or (A.Pj). Combining the two parts of Theorem 3.1 and

changing to the P notation yields

(4) PilX'^X^V^n

for any starting vector p,.

If p1 is known, then by interpolation, x} n^M can be found from

(4), up to aconstant factor. Hence PrP2»---»Vr the zeros of x] n_-|(v)
can be found.

If Pry2"-*,yn-l are 9iven> tnen Pii» for i= l,2,...,n, can be
found from (4) up to the multiplicative factor tt which can be determined



by the required normalization of pr The ambiguity in the choice of sign

for each component of p-, merely reflects the choice of sign for each eigen

vector of T. All choices yield the same tridiagonal matrix T. •

The required q, depends on both the eigenvalues and on the eigenvectors

of A. The expression q, =Zp] clarifies their roles; Z is independent

of the A., while p1 is independent of Z.

Example. Let A = diag(l,3,5,7,9) and y. = 2i, for i = 1,2,3,4.

x'tDXpO") =(l-3)(l-5)(l-7)(l-9)(l-2)(l-4)(l-6)(l-8) =40320
X'0)xy(3) -(3-1)(3-5)(3-7)(3-9)(3-2)(3-4)(3-6)(3-8) = 1440
X'(5)x (5) = (5-1)(5-3)(5-7)(5-9)(5-2)(5^4)(5-6)(5-8) = 576

X'(7)x (7) = (7-1)(7-3)(7-5)(7-9)(7-2)(7-4)(7-6)(7-8) = 1440

x'(9)x (9) = (9-l)(9-3)(9-5)(9-7)(9-2)(9-4)(9-6)(9-8) = 40320

so

pll =p51 =V1^5^ =-00498ir5
P21 =P41 =V/144° = '026357r5

p31 =tt5/v^76 = .04167ir5

By normalization tt5 = 17.749 and

p1 =(.0880, .4677, .7396, .4677, .0880)* .

The Lanczos algorithm run on A with p] as the starting vector yielded

a T. with eigenvalues 2, 4, 6, and 8 correct to the precision of the

machine used.
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4. Slow Convergence

Before examining the convergence properties of the Lanczos algorithm in

the light of Theorem 3.2, it is useful to describe in more detail the

properties of the Rayleigh-Ritz procedure. Let W be any subspace of Fn

and let Pw denote the orthogonal projection of Fn onto W. Then the

Rayleigh-Ritz approximations to eigenpairs of A obtained from W are

precisely the eigenpairs of P..A whose eigenvectors lie in W.

Theorem 4.1. If V c W then the Rayleigh-Ritz approximations

for A obtained from V are the same as the Rayleigh-Ritz

approximations for P..A obtained from V. Further if (y,0)

is a Ritz pair then ll(P,,A)y -yell < IIAy-yell, with equality

holding if and only if the residual vector, Ay -ye, lies in W.

Proof. Let P„ be the orthogonal projection onto V. Then

PV(PWA) = (PVPW)A = PVA, since Vc W. Since ye Vc W,

IKPuAiy-eyll = IIPw(Ay-ye)ll. Finally since Pw is an orthogonal projection,

IIPw(Ay-ye)ll < llAy-yell, with equality holding if and only if Ay-ye e W. D

Corollary. If V and W are nested Krylov subspaces of

different dimensions, then IIAy-yell = tlPwAy-yeII.

.Proof. If V=K.(q-j) and W=^(q-j) for k>j, then, since

yefCjfq^, Ay-ye eK^fq^ a^) =W. •

We now examine the convergence properties of the Lanczos algorithm.

The reader is directed to Section 1 for the terminology.



(5)
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Theorem 4.2. Suppose that the Lanczos algorithm when run on

st
(A,q,) produces U-j >U2,.. .,yn_-, as Ritz values at the n~1
step. Let (y,e) be a Ritz pair from any step except the n

Then
Y = IIAy-yell >6y/2 ,

where 6 = min |y,--X,,|.
y i<n-l 1 K

k<n

Proof. For any vector x and any scalar t it is well known that

min |X.-t| < ||Ax-xtI
i<n

In particular,

(6)

(7)

min |X.-e| < IIAy-yell = y » and
i<n

min |y.j-e| <llPwAy-yell =y ,

with the last equality following from the Corollary. The smallest y which

can satisfy both (6) and (7) is 6/2. •

In practice y can not be as small as 6 /2. However no significantly

stronger bound can be obtained. In particular, the smallest residual at the

st
n-1 step can be 6 .

The combination of Theorem 3.2 and Theorem 4.2 yields the following.

Theorem 4.3. Let A be a symmetric matrix with eigenvalues

X, < X0 < ••• < X . Let 6» = min |X.-X.|. Then there exists a\ - l- - n A .jk i k
starting vector for the Lanczos algorithm such that the residual

norm of any Ritz vector at any step j < n will be larger than 6^/4
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Proof. If A has multiple eigenvalues then 6- = 0 and any vector

will do, so we may assume that A has distinct eigenvalues. Let

V- =(X^+X^^J/2, for i=1,2,...,n-1, and let q1 be any starting vector

generated by Theorem 3.2. With this choice of q,, u,,y2,...,y , will be

the Ritz values at the n-lst step and 6 =6-/2. The result now follows
y a

from Theorem 4.2. •

If the spectrum of A is such that 6A/4 is larger than some given

convergence tolerance, then Theorem 4.3 shows that there exist perverse

starting vectors which delay convergence until the n step. This result

does not imply that no earlier Ritz value is accurate enough, it only

guarantees that the corresponding bound will not reveal such accuracy. In

the previous example of A = diag(l,3,5,7,9) and y. = 2i, for i = 1,2,3,4,
3

e2, the middle eigenvalue.of T, 3 is 5, correct to working accuracy. The

corresponding bound is 1.25, which shows that this fortuitous accuracy is

due to the symmetry of the example, rather than the accuracy of the Ritz

vector.

5. The Problem of Clustered Eigenvalues

If the spectrum of A is such that 6-/4 is smaller than the given

convergence tolerance, Theorem 4.3 does not guarantee slow convergence.

However starting vectors can still be found which delay convergence a long

time.
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Theorem 5.1. Let W be an A-invariant subspace of maximal dimen

sion such that A =A restricted to W is such that 6^/4 is

larger than the given convergence tolerance. Let m = dim W.

Then there exists a starting vector for A which delays conver-

4~h

gence until the m step.

Proof. Apply Theorem 4.3 to A to yield a starting vector q-j. Since

the Lanczos algorithm run on (A,q.j) yields the same T as the Lanczos

algorithm run on (A,q.j), this q1 will do. E

In general, it may be possible to delay convergence even longer.

6. The Beneficial Effects of Rounding Errors

The slow convergence discussed in the previous sections never seems to

occur in practice. The reason for this lies in the formula for p^ given

in Theorem 3.2,

(1) Pil^n^VW^3"1
First we give three examples.

Example 1. Linear distribution.

X. = i for i = 1,2,...,50

y. = 121+l =i+^ for i=1,2,...,49 .

p, was computed by Theorem 3.2. p, is symmetric from top to bottom. The

largest elements of p] are p25 1= p26 1= .397. The smallest elements
\-14

of p, are p1,1 " p50,l = .25x10
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Example 2. Geometric distribution.

Xi =(l.l)1 for i=1,2,...,50

^ = 2~~^ for i= 1.2,...,49

The largest element of P] is pgJ =.495. The smallest element of P]
is p5Qjl =.162 x10-52.

Example 3. Tchebychev distribution.

X. =cos(jLy) for i=1,2,...,50

^ = 2^ for i= 1,2 49

The largest elements of P] are p25J =p26J =.228. The smallest elements
of P, are P]J =p5QJ =.642 x10"3.

The tiny elements of p1 in Examples 1and 2are due to the large varia

tion in magnitudes of the numbers {x'(XR)|k=1,2,...,n}. Most practical
examples also show large variations, which leads to a perverse starting

vector with some tiny eigencomponents. Such tiny components are unlikely

to appear in a randomly chosen vector. More importantly, such tiny components

are unstable in the face of rounding errors.

By standard rounding error analysis

(2) q1 =Zp^f , ||f|| <n3/2e

where e is the relative machine precision. In exact arithmetic,

<3> z*qi=p1+z*f.
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Unless Z has some special symmetry, the term Z*f will swamp any tiny

component of p,. That is, q, is unlikely to have any eigencomponents

much smaller than e. Even if q, had precisely the eigencomponents desired,

the first step of the Lanczos algorithm would obliterate the small components

unless the example were specially rigged. The first step of the algorithm

computes q« as

(4) 3^2 =(A-a1I)q1+f , where UfO £n3/2ellAll .

Again f will be randomly distributed among the various eigendirections

and will prevent q« from inheriting any tiny components from q^.

We have been able to observe delayed convergence for large matrices

only for two classes. Tchebychev distributions come very close to minimizing

the variation in x^ U-). Therefore Tchebychev distributions (even on

fairly large problems) do not have components of p, smaller than e. The

other class of examples is diagonal matrices in which the rounding errors

are uncoupled with tiny elements of p-j (which is q,) are not swamped by

small multiples of much larger elements.
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